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Substitution ciphers have been used since time immemorial. As we have seen,
they are vulnerable to frequency analysis based on the statistics of the language used.
Although frequency analysis was first developed by Arab cryptographers in the tenth
century, substitution ciphers continued to be used until quite recently. Simon Singh,
in The Code Book, tells the dramatic story of how the breaking, by Elizabeth’s crypt-
analysts, of the cipher used by Mary Queen of Scots led to her trial and execution in
1587. Apparently Mary and her conspirators thought their cipher was secure.

Eventually, it was realised that better ciphers were needed. Many schemes were
tried, but the essential idea was to use different substitutions for different letters of the
plaintext. The general name of a cipher based on this principle is astream cipher. In
this chapter we discuss stream ciphers.

We begin with a general principle, known asKerckhoffs’ Principle:

Alice and Bob must always assume that Eve knows the encryption system
they are using, as well as having intercepted the ciphertext. All they can
hope to keep secret is the key.

For, although cryptographers continually invent new systems, knowledge of these sys-
tems will soon spread in the intelligence community.

The Vigenère cipher

In 1562, Blaise de Vigeǹere invented a cipher in which a different Caesar shift is
applied to each letter of the plaintext.

Suppose that we shift the first letter by 5, the second by 14, the third by 23, the
fourth by 4, and the fifth by 18. Thus the wordenemy would be encrypted asJBBQQ.
Notice that the two occurrences ofe in the original message are replaced by different
letters (J andB). Conversely, different letters in the plaintext become the same in the
ciphertext.
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The key to this cipher is the sequence(5,14,23,4,18). Vigeǹere’s idea was that,
instead of having to remember the sequence of numbers, it is enough to remember the
letters obtained by shifting the lettera by these numbers. In this case,aaaaa would
becomeFOXES; this is the key to the cipher.

We can represent the process by aVigeǹere square, as shown in Table 1. Write
down the plaintext with the key immediately under it:

e n e m y
F O X E S
J B B Q Q

Now look in rowe and columnF to find the first letter in the ciphertext to beJ . Repeat
for the remaining letters.

What if the message is longer than the key? Vigenère’s idea here was to repeat the
key as often as necessary:

e n e m y p a t r o l s
F O X E S F O X E S F O
J B B Q Q U O Q V G Q G

So the ciphertext isJBBQQ UOQVG QG.
So the key is a simple word or phrase which can be easily memorised and can be

changed frequently.

Breaking the Vigenère cipher

The Vigeǹere cipher is a great advance on the monoalphabetic substitution cipher, and
was used for hundreds of years. However, it has two weaknesses, which eventually
led to a system of cryptanalysis for it. These are that the cipher applied to each letter
is a simple Caesar shift, which is very easy to break, and the fact that the key string
repeats after a relatively short number of steps.

Suppose that we knew that the keyword contains five letters. Then we can divide
the ciphertext into five strings, where the first string contains the first, sixth, eleventh,
. . . , letter; the second string contains the second, seventh, twelfth, . . . , letter; and so
on. Now each string is a Caesar cipher and can be attacked by the methods we have
already discussed. (We cannot use digram or trigram frequencies here, since letters
which are consecutive in one of the substrings were five steps apart in the original
message. But the letter frequency analysis, and in particular the frequency patterns
of consecutive letters in the alphabet, can be applied.) Once we have a conjectured
decryption of each string, we can reassemble them to give the message.
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a A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
b B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
c C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
d D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
e E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
f F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
g G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
h H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
i I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
j J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
k K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
l L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
mM N O P Q R S T U V W X Y Z A B C D E F G H I J K L
n N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
o O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
p P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
r R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
s S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
t T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
u U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
v V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
w W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
x X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Table 1: Vigeǹere square
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How do we determine the length of the key? We could simply use trial and error.
The frequency analysis is not likely to give sensible answers unless the assumed length
is a small multiple of the true length.

A more systematic method uses repeats in the ciphertext. A common digram like
th will probably occur many times in a reasonably long message. If the key length is
5, then the number of different encryptions of it is (at most) 5, and two occurrences will
be encrypted in the same way if their positions in the plaintext differ by a multiple of
5. If the key isFOXES, thenth will be encrypted asYV, HE, QL, XZ, orLM, according
as its starting position is congruent to 1, 2, 3, 4 or 5 mod 5.

If we notice that the digramYVoccurs in positions 1, 66, and 111 of the message,
we might guess that it representsth , and that the length of the key is a common factor
of 65 and 110. Since gcd(65,110) = 5, we would deduce that the key has length 5.
We have more information too: if our guesses are correct, then the first two letters of
the key are also revealed asFO. However, the deduction about the key length does not
depend onYVactually beingth ; it could be any common digram.

Two digrams could agree by chance, so it is safer to apply the method to trigrams,
if we have a reasonable amount of ciphertext.

The first person to propose this method was Charles Babbage, better known as
the inventor of the “Difference Engine” and the “Analytical Engine” (two mechanical
computers) in the nineteenth century. Babbage never published his decryption method,
and Simon Singh speculates that it might have been used by British Intelligence (who
would want the method kept secret!) A few years later, Friedrich Kasiski proposed a
similar method which now carries his name.

To summarise, Kasiski’s method consists of two parts:

• First, guess the keyword lengthm, by finding the greatest common divisor of
the distance apart of the commonest digrams or trigrams.

• Then divide the message into substrings each consisting of the letters congruent
to i mod m for i = 1,2, . . . ,m, and apply frequency analysis to determine the
shift associated with each substring.

Chi-squared

The method can be mechanised to some extent. We now describe a method for sug-
gesting a solution to a Caesar cipher, which can be applied after we have found the
length of the keyword. This uses thechi-squared statistic, which statisticians use for
measuring the goodness of fit of data. Unlike statisticians, we make no assumptions
about the distribution of our data, and draw no conclusions about the significance of
the result; the method simply suggests a possible decryption.
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It should be stressed that in simple cases, pattern matching by eye is perfectly
satisfactory; but it is easier to tell the computer to optimize a complicated function
than to do some pattern matching.

Suppose thatn objects are put intoq boxes, where the probability that each object
is put into theith box is pi (with ∑ pi = 1). The expected number of objects in the
ith box isei = npi . Suppose that the actual number in theith box isai . Then the
chi-squared statistic is

X =
q

∑
i=1

(ai −ei)2

ei
.

The smaller the value ofX, the better the data fit the prediction.
Now suppose we have a piece of text of lengthnencoded with a Caesar shift, which

we want to find. We apply what we hope is the inverse shift to the text. If we are right,
then the result should be plaintext, and the letter frequencies should approximate those
in English text, that is,ei = npi , wherepi is the relative proportion of the occurrences
of letter i in English. So we calculate the chi-squared statistic, whereai is the actual
number of occurrences of letteri in the shifted text. If we are right, its value will be
small. So we try all 26 shifts; the most likely decryption is the one with the smallest
value ofX.

This method only uses letter frequencies and makes no use of digrams, trigrams,
etc. So it can be applied separately to all the substrings of a Vigenère enciphered text,
once we know the period.

Here is a worked example. The following is encrypted with a Vigenère cipher.

FZFGW BOPFW LWKRA SUQSY JHSIJ DHFVW ICCWA YHFRY GMEIJ
XWPXW WCKXZ JPXRC FBASX MOSMF LBLXZ NBDXG ICLRU JCOXO
NQBWZ JVXHH JSMIV NBQSL MSYSG PVBVK NGQIJ BOPVW FRFRY
GIQML MOARG UWZXM WSPSJ HCKZW WGXXA TBPMF NHXRV BVXXA
XHEIM XSLJS GCLOL MCRKZ YOIMU JKFXZ TIQTA HHRVW XCOGG
SJBVK FHFSF XGLWZ JKXWU TBPMV JFFRY NBEIJ TKKQA SRXWO
JZIEK XVBGG ZZAJG WHEIZ THAEQ ROAIZ JFCIW QJBVQ XZBIH
DOKHK YIMMV BVBXZ JFQLW UZBEK ZFBSX ROHMF LOAEA XMZLS
NBTSM QRYIO TFQLL MSQVG ZPIIG KUBXL NBDYH FBATA HYFRY
YVBHS NGFIK BVBRK ZRAIF QMXAZ NHBVS GPFXO NHETA SYBCW
XFXRU QCPIT DVBV

Step 1 asks us to guess the keyword length. We notice that the digramHEoccurs
at positions 182, 287 and 442 in the ciphertext, and in the first two of these it is part of
the trigramHEI . So by the first step of Kasiski’s algorithm, the keyword length should
divide gcd(105,155) = 5. (I have anticipated this by writing the cipher in blocks of 5;
usually Alice will not be so helpful!)
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The first of the five substrings that we have to analyse is obtained by taking the first
letter of each block; it isFBLSJDIYGXWJFMLNIJNJJNMPNBFGMUWHWTNBXXGMY
JTHXSFXJTJNTSJXZWTRJQXDYBJUZRLXNQTMZKNFHYNBZQNGNSXQD. The let-
ter frequencies in this substring are given in the third column of Table 2.

We calculate the chi-squared values using the frequency data fromAlice’s Adven-
tures in Wonderland. Table 2 gives the calculation for shifts 0 and 5; it is easy to
automate this to work out all values. The answers would not be very different if we
had used different data for the frequencies.

We find that, for a shift of 5, the value of chi squared is 23.99. The smallest value
for any other shift is 281.56, for a shift of 1. This strongly suggests that the shift is 5
and the first letter of the keyword isF.

By the same method (and the results are as clear-cut in all cases), we find the
shifts for the other substrings to be 14,23,4,18, so that the keyword isFOXES. The
decrypted text is

Alice was beginning to get very tired of sitting by her sister on the bank
and of having nothing to do: once or twice she had peeped into the book
her sister was reading, but it had no pictures or conversations in it, and
“what is the use of a book,” thought Alice, “without pictures or conversa-
tions?” So she was considering, in her own mind (as well as she could, for
the hot day made her feel very sleepy and stupid), whether the pleasure of
making a daisy-chain would be worth the trouble of getting up and pick-
ing the daisies, when suddenly a White Rabbit with pink eyes ran close
by her.

In fact, finding the period can also be mechanised to some extent, using a method
due to William Friedman. See Garrett’s book for a description of this.

Stream ciphers

The cryptographers now had two tasks. First, they had to find a way of producing a
non-repeating key; second, to make the frequency analysis more difficult, they had to
use an arbitrary permutation of the alphabet in each position, rather than just a shift.
The two tasks require completely different ideas.

These complications also make it much more difficult to use the ciphers, especially
in situations such as a battlefield signal unit. Thus it was necessary to move from hand
to machine for the encryption and decryption.

One more thing to remember is that we are not restricted to using the Roman
alphabet for our ciphers. We can translate our message into a string in any alphabet at
all, and use this as the plaintext. In particular, the plaintext could be a string of digits
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Letter Frequency Observed Expected Expected
% Shift 0 Shift 5

A 8.15 0 7.58 0.73
B 1.37 5 1.27 2.32
C 2.21 0 2.06 0.12
D 4.58 3 4.26 1.96
E 12.61 0 11.73 0.65
F 1.86 5 1.73 7.58
G 2.36 4 2.20 1.27
H 6.85 3 6.37 2.06
I 6.97 2 6.48 4.26
J 0.14 11 0.13 11.73
K 1.07 1 1.00 1.73
L 4.37 3 4.06 2.20
M 1.96 5 1.82 6.37
N 6.52 11 6.06 6.48
O 7.58 0 7.05 0.13
P 1.40 1 1.30 1.00
Q 0.19 4 0.18 4.06
R 5.02 2 4.67 1.82
S 6.05 4 5.63 6.06
T 9.93 6 9.23 7.05
U 3.22 2 2.99 1.30
V 0.78 0 0.73 0.18
W 2.49 4 2.32 4.67
X 0.13 9 0.12 5.63
Y 2.11 4 1.96 9.23
Z 0.07 4 0.65 2.99

∑(o−e)2/e 1949.79 23.99

Table 2: A chi-squared calculation
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(so that the alphabet is{0,1,2,3,4,5,6,7,8,9}, or a string of binary digits (so that the
alpabet is just{0,1}.

In the 1930s, a standard International Telegraph Code was agreed (see Figure 3).
This is based on a code invented by Baudot, whose name has given rise to the word
baudfor the rate of information transmission. The ITC translates the 26 letters and 6
control characters into sequences of length 5 from a two-letter alphabet. With hind-
sight and familiarity with computers, we regard the symbols of the alphabet as 0 and
1; but originally they were two voltage levels in international telegraphy (+80 and
−80 volts), or “hole” and “no hole” in punched paper tape. The names of the symbols
don’t matter, but the names 0 and 1 will be very convenient later.

Using the ITC, a message is encoded into a string of zeros and ones. We can regard
this as a string of length 5n over the alphabet{0,1}, or as a string of lengthn over an
alphabet of 32 symbols (the 26 letters and six control characters), whichever is more
convenient.

Generating the key

The best key is a completely random sequence of letters from the alphabet. Such a
sequence is called a “one-time pad”. As we will see later, the one-time pad provides
an absolutely secure form of encryption; no possible deductions about the plaintext
can be made from knowledge of the ciphertext if this system is used properly.

However, it is very difficult to generate a truly random sequence. (There are ru-
mours that people were employed by the CIA to toss coins all day and write down
the results to produce one-time pads for the two-letter alphabet (whose letters might
be called “heads” and “tails” in this case). It seems very likely that one-time pads
were produced and used by intelligence services. Peter Wright, inSpycatcher, records
the finding of one-time pads in the personal possessions of suspected Soviet spies in
London by MI5 during the Cold War.

The difficulties of producing a random key led to various types of mechanical or
electronic devices for producing what are known as “pseudo-random” keys. These are
sequences of letters which, although not random, behave in many ways like a random
sequence, so that a short sequence of the key gives very little information about the rest
of the key. In particular, we require that each letter occurs with the same frequency,
and similarly for digrams, trigrams, etc. We also require that the sequence does not
repeat during the transmission of a typical message.

Every deterministic finite machine which outputs a string of characters must even-
tually repeat; its output will beultimately periodic. That is because the machine must
be in one of a finite (possibly very large) number of states at any moment. If it op-
erates continuously, it must eventually return to the same state that it was in at some
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A 11000
B 10011
C 01110
D 10010
E 10000
F 10110
G 01011
H 00101
I 01100
J 11010

K 11110
L 01001

M 00111
N 00110
O 00011
P 01101
Q 11101
R 01010
S 10100
T 00001
U 11100
V 01111
W 11001
X 10111
Y 10101
Z 10001

Letters 11111
Figures 11011

Line feed 01000
Carriage return 00010

Word space 00100
All space 00000

Table 3: International teleprinter code
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previous time. From that point on, its behaviour will be the same as on the previous
occasion; so the output is periodic. (The period may be very large. For example, a
computer with 128 megabytes of memory has 230 transistors, each capable of being in
two states; so the number of configurations is 2230

. In principle, the period could be as
large as this number, approximately 10300000000.)

We will look later at some of pseudo-random number generators which have been
used in practice.

Combining key and plaintext

The Vigeǹere square gives a method of combining plaintext with key to give cipher-
text. We can descibe it more simply by identifying the lettersA...Z with the elements
0. . .25 of Z/(26). Then the combination of plaintext letterp and key letterk gives
the ciphertext letterz= p+k, where the addition is mod 26. Then decrypting simply
involves subtraction mod 26:p = z−k.

In the Second World War, the Japanese military ciphers often used the digits 0· · ·9
as symbols. The ciphers would also often use a codebook where various commonly
used terms were encoded as groups of four digits. Thus, for example,0700 could
refer to thekōkū tokushi musentai(Air Special Radio Unit), and4698 to thekōkū
tokushu j̄ohōtai (Air Special Intelligence Unit). The key was a string of pseudo-
random digits, and the encryption was addition mod 10, or addition without carrying.
Thus, encrypting4698 with key 7251 would give1849 . Once again, decryption is
subtraction mod 10 (subtraction without borrowing).

The same principle can be used in the simpler case of the binary alphabet. The
rules for addition without carry give the addition table of the integers mod 2 (the finite
field with two elements, often called thebinary field:

+ 0 1
0 0 1
1 1 0

Then, if the plaintext and key are strings of zeros and ones, we just add the mod 2; for
example:

Plaintext: 01001001010. . .
Key: 10100010011. . .

Ciphertext: 11101011001. . .

Latin squares

It is possible to generalise the way in which we combine the plaintext and key to form
the ciphertext in a stream cipher.
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For each character of the key we associate a function mapping plaintext characters
to ciphertext characters. This mapping must be a permutation, so that the recipient
can invert it to recover the plaintext. So the addition table must have the property that
each character appears exactly once in each column.

A Latin square of orderq is anq×q array whose entries are taken from an alphabet
of q symbols such that each symbol occurs exactly once in each row and column. This
is a stronger requirement than we need; we will see later why it is a good feature from
a cryptographic point of view.

In particular, the Vigeǹere square, the addition table of 0, . . . ,9 mod 10, and the
addition table of the binary field (with the borders removed) are Latin squares. How-
ever, there are many other Latin squares. The exact number is not known; it is known
that there are upper and lower bounds for the number of Latin squares of orderq of
the form(cq)q2

for positive constantsc.
For example, here is a Latin square of order 10, using the alphabet{0, . . . ,9}. I

have bordered it with row and column indices for ease of use in enciphering.

0 1 2 3 4 5 6 7 8 9
0 8 6 3 1 2 5 9 7 0 4
1 1 8 4 3 7 0 6 5 9 2
2 4 1 6 2 3 8 0 9 7 5
3 9 3 2 4 0 7 5 1 6 8
4 6 2 5 7 4 1 3 0 8 9
5 0 9 7 6 8 4 1 2 5 3
6 2 7 0 5 6 9 8 3 4 1
7 5 4 9 8 1 2 7 6 3 0
8 7 5 8 0 9 3 2 4 1 6
9 3 0 1 9 5 6 4 8 2 7

(This random Latin square was produced by a Markov chain algorithm due to
Jacobson and Matthews.)

Thus, encrypting the plaintext 4698 with key 7251 using this square gives the
ciphertext 0065. (For example, the entry in row 4 and column 7 is 0.) A Latin square
used in this way is called asubstitution table. Thecolumnsof the substitution table
are the permutations of the alphabet associated with the key symbols. In the above,
the key symbol 0 corresponds to the permutation(

0 1 2 3 4 5 6 7 8 9
8 1 4 9 6 0 2 5 7 3

)
,

or in “cycle notation”(0,8,7,5)(1)(2,4,6)(3,9).

We summarise a stream cipher in the following definition.
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Definition: A stream cipherover an alphabet ofq symbolsa1, . . . ,aq requires akey,
a random or pseudo-random string of symbols from the alphabet with the same length
as the plaintext, and asubstitution table, a Latin square of orderq (whose entries
are symbols from the alphabet, and whose rows and columns are indexed by these
symbols). If the plaintext isp1p2 . . . pn and the key isk1k2 . . .kn, then the ciphertext is
z1z2 . . .zn, wherezt = pt ⊕kt for t = 1, . . . ,n; the operation⊕ is defined as follows:

ai⊕a j = ak if and only if the symbol in the row labelledai and the column
labelleda j of the substitution table isak.

In the next section we will analyse the security of stream ciphers.
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