MTH6115 Cryptography Exercises 3 Solutions

Q1 (a) The output sequence is

$$
10100111010 \ldots
$$

Its period is 7 .
(b) Every configuration in the same cycle as 1010 will have period 7.

The output sequence when the initial configuration is 0001 is

$$
00010110001 \ldots
$$

This also has period 7 and every configuration in the same cycle as 0001 will have period 7 .
The output sequence when the initial configuration is 0000 or 1111 has period 1.

Q2(a)(i) We have $v_{0}=u_{1}, v_{1}=u_{2}, \ldots, v_{n-2}=u_{n-1}$ and $v_{n-1}=\sum_{i=0}^{n-1} a_{i} u_{i}$. Thus $u_{1}=v_{0}, u_{2}=v_{1}, \ldots, u_{n-1}=v_{n-2}$ and

$$
u_{0}=v_{n-1}+\sum_{i=1}^{n-1} a_{i} u_{i}=v_{n-1}+\sum_{i=1}^{n-1} a_{i} v_{i-1}
$$

(ii) Suppose that $\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ is the first configuration which is repeated by the shift register. Part (i) tells us that the configuration $\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ which precedes $\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ is completely determined by $\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$. Thus, if $\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ were not the initial configuration, then $\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ would have been repeated before $\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$. This would contradict the choice of $\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$. Hence $\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ is the initial configuration.
(b) Consider for example the 3-bit shift register described by the polynomial $x^{3}+x$, with initial configuration $(1,0,0)$. The next two configurations are $(0,0,0)$ and $(0,0,0)$. Thus the first configuration to be repeated is not the initial configuration.
Q3(a) The number of primitive 5 -bit shift registers is $\Phi\left(2^{5}-1\right) / 5=\Phi(31) / 5=6$. (b) Let $p(x)=x^{5}+a_{4} x^{4}+a_{3} x_{3}+a_{2} x^{2}+a_{1} x+a_{0}$ be irreducible. Since x is not a factor of $p(x)$ we have $a_{0}=1$ and since $x+1$ is not a factor we have $a_{4}+a_{3}+a_{2}+a_{1}=1$. This leaves 8 possible values for $\left(a_{4}, a_{3}, a_{2}, a_{1}\right)$. We can find which of these give irreducible polynomials as follows.

Consider for example $p(x)=x^{5}+x^{2}+1$. We know that $p(x)$ has no factor of degree one. So if $p(x)$ factorises, we must have $x^{5}+x^{2}+1=\left(x^{2}+b x+\right.$ 1) $\left(x^{3}+c x^{2}+d x+1\right)$. Equating powers of x we get $b+d=0,1+b d+c=1$, $1+b c+d=0, b+c=0$. The first equation gives $b=d$, and the last equation gives $b=c$. We can now rewrite the second and third equations as $b^{2}+b=0$ and $b^{2}+b=1$ which clearly have no solution. Hence $p(x)$ is irreducible.
(A similar analysis works for the other irreducible polynomials $x^{5}+x^{3}+1$, $x^{5}+x^{4}+x^{3}+x^{2}+1, x^{5}+x^{4}+x^{2}+x+1, x^{5}+x^{4}+x^{3}+x+1, x^{5}+x^{4}+x^{3}+x^{2}+1$.)
(b) The output sequence for the shift register described by $x^{5}+x^{2}+1$ is

$$
000010010110010011111000110111010100001 \ldots
$$

The shift register is primitive since it cycles through all 31 non-zero configurations of \mathbb{Z}_{2}^{5}.
Q4 Since the first two letters in the message are 'th', the first 8 bits in the plaintext are 00001001 . Since the first 8 bits in the ciphertext are 10111011 So the first 8 bits in the keyword are given by

$$
0000100101 \oplus 1011101101=10110010
$$

Let the polynomial describing the shift register be $x^{4}+a_{3} x^{3}+a_{2} x^{3}+a_{1} x+a_{0}$. Then we have the following system of simultaneous equations.

$$
\left.\begin{array}{rlrrr}
0 & = & a_{0} & & +a_{2}
\end{array}+a_{3}\right)
$$

This has the unique solution $a_{0}=a_{3}=1$ and $a_{1}=a_{2}=0$. So the polynomial describing the shift register is $x^{4}+x^{3}+1$. Since the first 8 bits in the keyword are 10110010 , the initial configuration of the shift register is (1011). Hence the output sequence of the shift register is
$1011001000111101011001000111101011001000111101011001000 \ldots$
Since the substitution table is just the addition table for \mathbb{Z}_{2}, we can find the plain text by adding the keyword to the ciphertext. Thus the plaintext is

0000100101010101000010000000110011010000000011100100011

We can now use the table for the International Telegraph Code to decode the plaintext and obtain the message 'threeonetwo'.

