
6 The Optimal Assignment Problem

6.1 Definition

The complete bipartite graph Km,n is the bipartite graph with bipartition {X, Y }
where |X | = m, |Y | = n and each vertex of X is adjacent to every vertex of Y .

6.2 Problem

Let N be a network obtained from Km,m by giving each edge e an integer weight
w(e). Find a perfect matching of maximum weight in N .

As in most optimization problems, an important step in finding an algorithm
for solving this problem is to give a criterion for recognising an optimal solution.
We shall accomplish this by giving a ‘max-min formula’ using the following
concept.

6.3 Definition

A feasible vertex labelling for N is a function ` : V (N) → Z such that `(x) +
`(y) ≥ w(xy) for all x ∈ X and y ∈ Y . We define the size of `, by size(`) =
∑

v∈V (N) `(v).

6.4 Example

Let N be the weighted K5,5 with bipartition X = {x1, x2, x3, x4, x5} and Y =
{y1, y2, y3, y4, y5}, and weights given by the following matrix.

y1 y2 y3 y4 y5

x1 3 5 5 4 1
x2 2 2 0 2 2
x3 2 4 4 1 0
x4 0 1 1 0 0
x5 3 2 1 3 3

Thus, for example, the weight of the edge x1y1 is w(x1y1) = 3, and the weight
of the matching M = {x1y1, x2y2, x3y3, x4y4, x5y5} is given by w(M) = 3 + 2 +
4 + 0 + 3 = 12. We may define a feasible vertex labelling ` of N by putting
`(xi) equal to the maximum weight of an edge incident to xi, and `(yi) equal
to zero for all 1 ≤ i ≤ 5. This gives `(x1) = 5, `(x2) = 2, `(x3) = 4, `(x4) = 1,
`(x5) = 3 and `(yi) = 0 for all 1 ≤ i ≤ 5. Thus size(`) = 5 + 2 + 4 + 1 + 3 = 15.

6.5 Lemma

Let ` be a feasible vertex labelling for N and M be a perfect matching in N .
Then w(M) ≤ size(`).

47

Proof Let M = {x1y1, x2y2, . . . , xmym}. Then

w(M) =

m
∑

i=1

w(xiyi) ≤

m
∑

i=1

[(`(xi) + `(yi)] =
∑

v∈V (N)

`(v) = size(`)

since ` is a feasible vertex labelling.
Lemma 6.5 implies that the maximum weight of a perfect matching in N is

less than or equal to the minimum size of a feasible vertex labelling of N . We
shall see that equality always occurs.

6.6 Definition

Let ` be a feasible vertex labelling of N . Then the equality subgraph G(`)
for ` in N is the spanning subgraph of N containing all edges xy for which
`(x) + `(y) = w(xy).

6.7 Example

The equality subgraph G(`) for the feasible vertex labelling given in Example
6.4 is shown below.

u u u u u

u u u u u
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Note that this bipartite graph is the same as the one considered in the previous
chapter as Example 5.2.6

6.8 Lemma

Let ` be a feasible vertex labelling for N and M be a perfect matching in in
the equality subgraph G(`). Then w(M) = size(`) and hence M is a maximum
weight perfect matching in N and ` is a minimum size feasible vertex labelling
of N .

Proof Let M = {x1y1, x2y2, . . . , xmym}. Since G(`) is the equality subgraph of
` in N , we have `(xi) + `(yi) = w(xiyi) for all 1 ≤ i ≤ m. Thus

w(M) =

m
∑

i=1

w(xiyi) =

m
∑

i=1

((`(xi) + `(yi)) =
∑

v∈V (N)

`(v) = size(`).

48

The facts that M is a maximum weight perfect matching in N and ` is a mini-
mum size feasible vertex labelling of N now follows from Lemma 6.5.

6.9 Theorem (Egerváry, 1931)

Let N be a weighted complete bipartite graph. Then the maximum weight of a
perfect matching in N is equal to the minimum size of a feasible vertex labelling
of N .
Proof Let ` be a minimum size feasible vertex labelling of N and G = G(`)
be the equality subgraph for ` in N . By Lemma 6.8 it suffices to show that G

has a perfect matching. We proceed by contradiction.
Suppose that G does not have a perfect matching. Then by Hall’s Theorem,

there exists a set S ⊆ X such that |ΓG(S)| < |S|. Let

α = min{`(x) + `(y) − w(xy) : x ∈ S, y ∈ Y − ΓG(S)}.

Note that α > 0 since there are no edges in the the equality subgraph from
S to Y − ΓG(S) and hence we have `(x) + `(y) > w(xy) for all x ∈ S and
y ∈ Y −ΓG(S). We may now define a feasible vertex labelling `′ of N as follows.
For each v ∈ V (N) let

`′(v) =

`(v) − α for v ∈ S

`(v) + α for v ∈ ΓG(S)
`(v) otherwise.

We shall show that `′ is a feasible vertex labelling of N . Suppose not. Then we
have `′(x)+`′(y) < w(xy) for some x ∈ X and y ∈ Y . Since ` is a feasible vertex
labelling of N , we must have x ∈ S and y ∈ Y −ΓG(S). But then the definition
of α implies that `(x) + `(y) − w(xy) ≥ α and hence `′(x) + `′(y) − w(xy) ≥ 0.
Thus `′ is a feasible vertex labelling of N .

Since α > 0 and |S| > |ΓG(S)|, we have size(`′) = size(`) − α(|S| −
|ΓG(S)|) < size(`). This contradicts the fact that ` is a minimum size fea-
sible vertex labelling of N . Thus G has a perfect matching.

6.10 The Hungarian method

Kuhn gave the following algorithm for solving the optimal assignment problem
in 1954. He called it the Hungarian method since it was inspired by Egerváry’s
proof of Theorem 6.9. Suppose N is a network obtained from Km,m by giving
each edge e an integer weight w(e). The algorithm iteratively constructs a
sequence of feasible vertex labelling `1, `2, . . . for N such that size(`i+1) <

size(`i), and a sequence of matchings Mi such that Mi is a maximum matching
in the equality subgraph G(`i), for all i ≥ 1. It stops when it finds a feasible
vertex labelling `i for which Mi is a perfect matching in G(`i).

Initial Step Construct a feasible vertex labelling `1 for N by putting `1(x) =
max{w(xy) : y ∈ Y } for each x ∈ X , and `1(y) = 0 for all y ∈ Y . Construct a
maximum matching M1 in G(`1) using Algorithm 5.2.5.

49

Iterative Step Suppose we have constructed a feasible vertex labelling `i of
N , and a maximum matching Mi in G = G(`i), for some i ≥ 1.

• If |Mi| < m, then construct a new feasible vertex labelling `i+1 for N as
follows:

(1) Let F be a maximal Mi-alternating forest in G rooted at the set of
Mi-unsaturated vertices in X . Put S = V (F) ∩ X . Then ΓG(S) =
V (F) ∩ Y .

(2) Compute α = min{`i(x) + `i(y) − w(xy) : x ∈ S, y ∈ Y − ΓG(S)}.

(3) For each v ∈ V (N) let

`i+1(v) =

`i(v) − α for v ∈ S

`i(v) + α for v ∈ ΓG(S)
`i(v) otherwise.

Construct a maximum matching Mi+1 in G(`i+1) using Algorithm 5.2.5,
starting with the matching Mi. Now iterate.

• If |Mi| = m then STOP. Output Mi and `i.

6.11 Notes

(a) The fact that each labelling `i constructed by Algorithm 6.10 is a feasible
vertex labelling of N follows by induction on i, using a similar argument as in
the proof of Theorem 6.9.

(b) The fact that size(`i+1) < size(`i) in each iteration of Algorithm 6.10 also
follows by a similar argument as in the proof of Theorem 6.9.

(c) The fact that Mi is contained in G(`i+1) follows from the definition of `i+1.
(d) The algorithm must terminate since each iteration decreases the size of the
feasible vertex labelling, and this size is bounded below by the weight of any
perfect matching of N .
(e) When the algorithm terminates it outputs a feasible vertex labelling li and
a perfect matching Mi in the equality subgraph G(`i). Lemma 6.8 implies that
w(Mi) = size(`i), and hence Mi is a maximum weight matching in N and `i is
a feasible vertex labelling of minimum size.

6.12 Example

Let N be the weighted K5,5 given in Example 6.4. with weights given by the
following matrix.

50

First iteration

We first construct the feasible vertex labelling `1 below.

y1 y2 y3 y4 y5

x1 3 5 5 4 1 5
x2 2 2 0 2 2 2
x3 2 4 4 1 0 4
x4 0 1 1 0 0 1
x5 3 2 1 3 3 3

0 0 0 0 0 `1

The equality subgraph G(`1) for `1 is shown in Example 6.7. Applying
Algorithm 5.2.5 to G = G(`1) we construct the maximum matching M1 =
{x2y1, x3y2, x4y3, x5y4} in G(`1), see Example 5.2.6.

Second iteration

The maximal M1-alternating forest F in G rooted at the set of M1-unsaturated
vertices in X , {x1}, is also given in Example 5.2.6. We have S = V (F) ∩ X =
{x1, x3, x4} and ΓG(`1)(S) = V (F) ∩ Y = {y2, y3}. Hence α = 1, and we
construct a new feasible vertex labelling `2 for N given below.

y1 y2 y3 y4 y5

x1 3 5 5 4 1 5 4
x2 2 2 0 2 2 2 2
x3 2 4 4 1 0 4 3
x4 0 1 1 0 0 1 0
x5 3 2 1 3 3 3 3

0 0 0 0 0 `1

0 1 1 0 0 `2

The equality subgraph G(`2) as shown below.

u u u u u

u u u u u
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

We apply Algorithm 5.2.5 to G(`2) starting with the matching M1 and construct
the perfect matching M2 = {x4y2, x1y4, x2y1, x3y3, x5y5} in G(`2). We have

51

w(M2) = 14 = size(`2). Thus M2 is a maximum weight perfect matching in N ,
and `2 is a minimum size feasible vertex labelling for N .

We close this chapter by showing that the Hungarian Method is a strongly
polynomial algorithm. We first need a result which tells us that the number of
times the algorithm grows an alternating forest cannot be too large.

6.13 Lemma

Let N is a network obtained from Km,m by giving each edge e an integer weight.
Suppose we use the Hungarian method to construct a maximal weight perfect
matching in N . Then the number of times the method grows an alternating
forest is at most 2m2.

Proof Suppose that at some point in the algorithm we have a matching M in
an equality subgraph G(`) and we have grown an M -alternating forest F in
G(`) rooted at the set of M -unsaturated vertices in X . The are two possible
alternatives: either F contains an M -augmenting path and we use it to construct
a matching M ′ with |M ′| > |M |; or we deduce that M is a maximum matching
in G(`) and we use the set S = V (F) ∩ X to construct a new feasible vertex
labelling `′. If the second alternative occurs, we grow an M -alternating forest
F ′ in G(`′) rooted at the set of M -unsaturated vertices in X . It can be shown
that F will be properly contained in F ′.

It follows that each time we grow an alternating forest, we either construct a
bigger matching, or the matching stays the same and we construct a new feasible
vertex labelling which gives rise to a bigger alternating forest in the new equality
subgraph. Since the maximum number of vertices in an alternating forest is 2m,
the size of the matching must increase after we grow at most 2m alternating
forests. Since the algorithm terminates when it finds a matching with m edges,
the number of edges in a matching can increase at most m times. Thus the
total number of alternating forests grown during the algorithm is at most 2m2.

6.14 Theorem

Suppose N is a network obtained from Km,m by giving each edge e an integer
weight. Then the Hungarian method finds a maximum weight perfect match-
ing in N in time O(m4), under the assumption that all elementary arithmetic
operations take constant time.

Proof The algorithm proceeds by growing alternating forests. Growing an
M -alternating forest in an equality subgraph G by breadth first search takes
O(|E(G(`))| = O(m2) time. Once we have grown the forest, we either update
the matching, which takes O(m) time, or update the feasible vertex labelling,
which again takes O(m) time. Thus the total time spent on each alternat-
ing forest is O(m2 + m) = O(m2). Since the algorithm grows at most 2m2

alternating forests by Lemma 6.13, the total time taken by the algorithm is
O(2m4) = O(m4).

52

6.15 Remark

The complete graph Kn is the simple graph with n vertices in which all pairs of
vertices are adjacent. In 1965, J. Edmonds gave an algorithm for constructing
a maximum weight perfect matching in a network obtained by assigning an
integer weight to the edges of a complete graph on an even number of vertices.
This algorithm uses his algorithm for finding a maximum matching in a graph
as a subroutine, see Remark 5.1.13.

53

