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4.6 Autoregressive Moving Average Model ARMA(1,1)

This section is an introduction to a wide class of models ARMA(p,q) which we
will consider in more detail later in this course. The special case, ARMA(1,1), is
defined by linear difference equations with constant coefficients as follows.

Definition 4.8. A TS{Xt} is an ARMA(1,1) process if it is stationary and it
satisfies

Xt − φXt−1 = Zt + θZt−1 for everyt, (4.31)

where{Zt} ∼WN(0, σ2) andφ+ θ 6= 0.

Such a model may be viewed as a generalization of the two previously introduced
models: AR(1) and MA(1). Compare

AR(1): Xt = φXt−1 + Zt

MA(1): Xt = Zt + θZt−1

ARMA(1,1): Xt − φXt−1 = Zt + θZt−1

Hence, whenφ = 0 then ARMA(1,1)≡ MA(1) and we denote such a process as
ARMA(0,1). Similarly, whenθ = 0 then ARMA(1,1)≡ AR(1) and we denote
such process as ARMA(1,0).

Here, as in the MA and AR models, we can use the backshift operator to write the
ARMA model more concisely as

φ(B)Xt = θ(B)Zt, (4.32)

whereφ(B) andθ(B) are the linear filters:

φ(B) = 1 − φB, θ(B) = 1 + θB.

4.6.1 Causality and invertibility of ARMA(1,1)

For what values of the parametersφ andθ does the stationary ARMA(1,1) exist
and is useful? To answer this question we will look at the two properties of TS,
causality and invertibility.

The solution to 4.31, or to 4.32, can be written as

Xt =
1

φ(B)
θ(B)Zt.
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However, for|φ| < 1 we have (see Remark 4.13)

1

φ(B)
θ(B) = (1 + φB + φ2B2 + φ3B3 + . . .)(1 + θB)

= 1 + φB + φ2B2 + φ3B3 + . . .+ θB + φθB2 + φ2θB3 + φ3θB4 + . . .

= 1 + (φ+ θ)B + (φ2 + φθ)B2 + (φ3 + φ2θ)B3 + . . .

= 1 + (φ+ θ)B + (φ+ θ)φB2 + (φ+ θ)φ2B3 + . . .

=
∞

∑

j=0

ψjB
j ,

whereψ0 = 1 andψj = (φ + θ)φj−1 for j = 1, 2, . . .. Thus, we can write the
solution to 4.32 in the form of an MA(∞) model, i.e.,

Xt = Zt + (φ+ θ)

∞
∑

j=1

φj−1Zt−j . (4.33)

This is a stationary unique process.

Now, suppose that|φ| > 1. Then, by similar arguments as in the AR(1) model, it
can be shown that

Xt = −θφ−1Zt − (φ+ θ)
∞

∑

j=1

φ−j−1Zt+j.

Here too, we obtained a noncausal process which depends on future noise values,
hence of no practical value.

If |φ| = 1 then there is no stationary solution to 4.32.

While causality means that the process{Xt} is expressible in terms of past values
of {Zt}, the dual property of invertibility means that the process{Zt} is express-
ible in the past values of{Xt}. Is ARMA(1,1) invertible?

ARMA(1,1) model is
φ(B)Xt = θ(B)Zt

and so writing the solution forZt we have

Zt =
1

θ(B)
φ(B)Xt =

1

1 + θB
(1 − φB)Xt. (4.34)
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Now, if |θ| < 1 then the power series expansion of the functionf(x) = 1
1+θx

is

f(x) =
1

1 + θx
=

∞
∑

j=0

(−θ)jxj ,

what in terms of the backshift operator B can be written as

1

1 + θB
=

∞
∑

j=0

(−θ)jBj .

Applied to 4.34 it gives

Zt =

∞
∑

j=0

(−θ)jBj(1 − φB)Xt

= Xt − (φ+ θ)
∞

∑

j=1

(−θ)j−1Xt−j .

The conclusion is that ARMA(1,1) is invertible if|θ| < 1. Otherwise it is nonin-
vertible.

The two properties, causality and invertibility, determine the admissible region for
the values of parametersφ andθ, which is the square

− 1 < φ < 1

− 1 < θ < 1.

4.6.2 ACVF and ACF of ARMA(1,1)

The fact that we can express ARMA(1,1) as a linear process of the form

Xt =
∞

∑

j=0

ψjZt−j ,

whereZt is a white noise, is very helpful in deriving the ACVF and ACF of the
process. By Corollary 4.1 we have

γ(τ) = σ2
∞

∑

j=0

ψjψj+τ .

For ARMA(1,1) the coefficientsψj are

ψ0 = 1

ψj = (φ+ θ)φj−1 for j = 1, 2, . . .
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and we can easily derive expressions forγ(0) andγ(1).

γ(0) = σ2
∞

∑

j=0

ψ2
j

= σ2

[

1 + (φ+ θ)2

∞
∑

j=1

φ2(j−1)

]

= σ2

[

1 + (φ+ θ)2
∞

∑

j=0

φ2j

]

= σ2

[

1 +
(φ+ θ)2

1 − φ2

]

.

and

γ(1) = σ2
∞

∑

j=0

ψjψj+1

= σ2
[

1(φ+ θ) + (φ+ θ)(φ+ θ)φ+ (φ+ θ)φ(φ+ θ)φ2 + (φ+ θ)φ2(φ+ θ)φ3 + . . .
]

= σ2
[

(φ+ θ) + (φ+ θ)2φ(1 + φ2 + φ4 + . . .)
]

= σ2

[

(φ+ θ) + (φ+ θ)2φ

∞
∑

j=0

φ2j

]

= σ2

[

(φ+ θ) +
(φ+ θ)2φ

1 − φ2

]

Similar derivations forτ ≥ 2 give

γ(τ) = φτ−1γ(1). (4.35)

Hence, we can calculate the autocorrelation functionρ(τ). Forτ = 1 we obtain

ρ(1) =
γ(1)

γ(0)
=

(φ+ θ)(1 + φθ)

1 + 2φθ + θ2
(4.36)

and forτ ≥ 2 we have
ρ(τ) = φτ−1ρ(1). (4.37)

From these formulae we can see that whenφ = −θ the ACFρ(τ) = 0 for τ =
1, 2, . . . and the process is just a white noise. Graph 4.14 shows the admissible
region for the parametersφ andθ and indicates the regions when we have special
cases of ARMA(1,1), which are white noise, AR(1) and MA(1).
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Figure 4.14: Admissible parameter region for ARMA(1,1)
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Figure 4.15: ARMA(1,1) for various values of the parametersφ andθ.
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Figure 4.16: ACF of the ARMA(1,1) processes with the parameter values as in
Figure 4.15, respectively.


