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4.5 Autoregressive Processes AR(p)

The idea behind the autoregressive models is to explain the present value of the
series,Xt, by a function ofp past values,Xt−1, Xt−2, . . . , Xt−p.

Definition 4.7. An autoregressive process of order p is written as

Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + Zt, (4.20)

where {Zt} is white noise, i.e., {Zt} ∼ WN(0, σ2), and Zt is uncorrelated with
Xs for each s < t.

Remark 4.12. We assume (for simplicity of notation) that the mean ofXt is zero.
If the mean isEXt = µ 6= 0, then we replaceXt byXt − µ to obtain

Xt − µ = φ1(Xt−1 − µ) + φ2(Xt−2 − µ) + . . .+ φp(Xt−p − µ) + Zt,

what can be written as

Xt = α + φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + Zt,

where
α = µ(1 − φ1 − . . .− φp).

Other ways of writing AR(p) model use:

Vector notation: Denote

φ = (φ1, φ2, . . . , φp)
T,

Xt−1 = (Xt−1, Xt−2, . . . , Xt−p)
T.

Then the formula (4.20) can be written as

Xt = φTXt−1 + Zt.

Backshift operator: Namely, writing the model (4.20) in the form

Xt − φ1Xt−1 − φ2Xt−2 − . . .− φpXt−p = Zt,

and applyingBXt = Xt−1 we get

(1 − φ1B − φ2B
2 − . . .− φpB

p)Xt = Zt
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or, using the concise notation we write

φ(B)Xt = Zt, (4.21)

whereφ(B) denotes theautoregressive operator

φ(B) = 1 − φ1B − φ2B
2 − . . .− φpB

p.

Then the AR(p) can be viewed as a solution to the equation (4.21), i.e.,

Xt =
1

φ(B)
Zt. (4.22)

4.5.1 AR(1)

According to Definition 4.7 the autoregressive process of order 1 is given by

Xt = φXt−1 + Zt, (4.23)

whereZt ∼ WN(0, σ2) andφ is a constant.

Is AR(1) a stationary TS?

Corollary 4.1 says that an infinite combination of white noise variables is a sta-
tionary process. Here, due to the recursive form of the TS we can write AR(1) in
such a form. Namely

Xt = φXt−1 + Zt

= φ(φXt−2 + Zt−1) + Zt

= φ2Xt−2 + φZt−1 + Zt

...

= φkXt−k +

k−1
∑

j=0

φjZt−j.

This can be rewritten as

φkXt−k = Xt −
k−1
∑

j=0

φjZt−j .

What would we obtain if we have continued the backwards operation, i.e., what
happens whenk → ∞?
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Taking the expectation we obtain

lim
k→∞

E

(

Xt −

k−1
∑

j=0

φjZt−j

)2

= lim
k→∞

φ2k E(X2

t−k) = 0

if |φ| < 1 and the variance ofXt is bounded. Hence, we can represent AR(1) as

Xt =
∞
∑

j=0

φjZt−j

in the mean square sense. This is a linear process (4.15) with

ψj =

{

φj for j ≥ 0,
0 for j < 0.

This technique of iterating backwards works well for AR of order 1 but not for
other orders. A more general way to convert the series into a linear process form
is the method of matching coefficients.

The AR(1) model is
φ(B)Xt = Zt,

whereφ(B) = 1−φB and|φ| < 1. We want to write the model as a linear process

Xt =

∞
∑

j=0

ψjZt−j = ψ(B)Zt,

whereψ(B) =
∑∞

j=0
ψjB

j. It means we want to find the coefficientsψj . Substi-
tutingZt from the AR model into the linear process model we obtain

Xt = ψ(B)Zt = ψ(B)φ(B)Xt. (4.24)

In full, the coefficients of both sides of the equation can be written as

1 = (1 + ψ1B + ψ2B
2 + ψ3B

3 + . . .)(1 − φB)

= 1 + ψ1B + ψ2B
2 + ψ3B

3 + . . .− φB − ψ1φB
2 − ψ2φB

3 − ψ3φB
4 − . . .

= 1 + (ψ1 − φ)B + (ψ2 − ψ1φ)B2 + (ψ3 − ψ2φ)B3 + . . .

Now, equating coefficients ofBj on the LHS and RHS of this equation we see
that all the coefficients ofBj must be zero, i.e.,

ψ1 = φ

ψ2 = ψ1φ = φ2

ψ3 = ψ2φ = φ3

...

ψj = ψj−1φ = φj .
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So, we obtained the linear process form of the AR(1)

Xt =

∞
∑

j=0

φjZt−j =

∞
∑

j=0

φjBjZt.

Remark 4.13. Note, that from the equation (4.24) it follows thatψ(B) is an inverse
of φ(B), that is

ψ(B) =
1

φ(B)
. (4.25)

For an AR(1) we have

ψ(B) =
1

1 − φB
= 1 + φB + φ2B2 + φ3B3 + . . . (4.26)

As a linear process AR(1) is stationary with mean

EXt =

∞
∑

j=0

φj E(Zt−j) = 0 (4.27)

and autocovariance function given by (4.19), that is

γ(τ) = σ2

∞
∑

j=0

φjφj+τ = σ2φτ

∞
∑

j=0

φ2j.

However, the infinite sum in this expression is the sum of a geometric progression
as|φ| < 1, i.e.,

∞
∑

j=0

φ2j =
1

1 − φ2
.

This gives us the following form for the ACVF of AR(1).

γ(τ) =
σ2φτ

1 − φ2
. (4.28)

Then the variance of AR(1) is

γ(0) =
σ2

1 − φ2
.

Hence, the autocorrelation function of AR(1) is

ρ(τ) =
γ(τ)

γ(0)
= φτ . (4.29)
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Figure 4.7: Simulated AR(1) processes forφ = −0.9 (top) and forφ = 0.9
(bottom).
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Figure 4.8: Sample ACF for AR(1): (a)xt = −0.9xt−1+zt and (b)xt = 0.9xt−1+
zt.
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Figure 4.9: Simulated AR(1) processes forφ = −0.5 (top) and forφ = 0.5
(bottom).
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Figure 4.10: Sample ACF for AR(1): (a)xt = −0.5xt−1 + zt and (b)xt =
0.5xt−1 + zt.
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Figures 4.7, 4.9 and 4.8, 4.10 show simulated AR(1) processes for four different
values of the coefficientφ (equal to -0.9, 0.9, -0.5 and 0.5) and the respective sam-
ple ACF functions.

Looking at these graphs we can see that for positive coefficient φ we obtain more
smooth TS than for the negative one. Also, the ACFs are very different. We see
that if φ is negative the neighboring observations are negatively correlated, but
those two time points apart are positively correlated. In fact, if φ is negative the
neighboring TS values have typically opposite signs. This is more evident ifφ is
close to -1.

4.5.2 Random Walk

This is a TS where at each point of time the series moves randomly away from its
current position. The model can then be written as

Xt = Xt−1 + Zt, (4.30)

whereZt is a white noise variable with zero mean and constant varianceσ2. The
model has the same form as AR(1) process, but sinceφ = 1, it is not stationary.
Such process is calledRandom Walk.

Repeatedly substituting for past values gives

Xt = Xt−1 + Zt

= Xt−2 + Zt−1 + Zt

= Xt−3 + Zt−2 + Zt−1 + Zt

= . . .

= X0 +
t−1
∑

j=0

Zt−j.

If the initial value,X0, is fixed, then the mean value ofXt is equal toX0, that is

EXt = E

[

X0 +
t−1
∑

j=0

Zt−j

]

= X0.

So, the mean is constant, but as we see below, the variance andcovariance depend
on time, not just on lag. The white noise variablesZt are uncorrelated, hence we
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Figure 4.11: Simulated Random Walkxt = xt−1 + zt.

obtain

var(Xt) = var

(

X0 +

t−1
∑

j=0

Zt−j

)

= var

(

t−1
∑

j=0

Zt−j

)

=

t−1
∑

j=0

var(Zt−j) = tσ2

and

cov(Xt, Xt−τ ) = cov

(

t−1
∑

j=0

Zt−j ,

t−τ−1
∑

k=0

Zt−τ−k

)

= E

[(

t−1
∑

j=0

Zt−j

)(

t−τ−1
∑

k=0

Zt−τ−k

)]

= |t− τ |σ2.

A simulated series of this form is shown in Figure 4.11.
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Figure 4.12: (a) Differenced Random Walk∇xt and (b) its sample ACF.

As we can see the random walk meanders away from its starting value in no par-
ticular direction. It does not exhibit any clear trend, but at the same time is not
stationary.

However, the first difference of random walk is stationary asit is just white noise,
namely

∇Xt = Xt −Xt−1 = Zt.

The differenced random walk and its sample ACF are shown in Figure 4.12.

4.5.3 Explosive AR(1) Model and Causality

As we have seen in the previous section, random walk, which isAR(1) withφ = 1
is not a stationary process. So, there is a question if a stationary AR(1) process
with |φ| > 1 exists? Also, what are the properties of AR(1) models forφ > 1?

Clearly, the sum
∑k−1

j=0
φjZt−j will not converge in mean square sense ask → ∞

and we will not get a linear process representation of the AR(1). However, if
|φ| > 1 then 1

|φ|
< 1 and we can express a past value of the TS in terms of a future

value rewriting

Xt+1 = φXt + Zt+1

as

Xt = φ−1Xt+1 − φ−1Zt+1.
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Figure 4.13: Simulated Explosive AR(1):xt = 1.02xt−1 + zt.

Then, substituting forXt+j several times we obtain

Xt = φ−1Xt+1 − φ−1Zt+1

= φ−1(φ−1Xt+2 − φ−1Zt+2) − φ−1Zt+1

= φ−2Xt+2 − φ−2Zt+2 − φ−1Zt+1

= . . .

= φ−kXt+k −
k−1
∑

j=1

φ−jZt+j

Since|φ−1| < 1 we obtain

Xt = −
∞
∑

j=1

φ−jZt+j ,

which is a future dependent stationary TS. This however, does not have any prac-
tical meaning because it requires knowledge of future values to predict the future.

When a process does not depend on the future, such as AR(1) when |φ| < 1, we
say that it iscausal.

Figure 4.13 shows a simulated seriesxt = 1.02xt−1 +zt. As we can see the values
of the time series quickly become large in magnitude, even for φ just slightly
above 1. Such process is calledexplosive. This is not a causal TS.


