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4.5 Autoregressive Processes AR(p)

The idea behind the autoregressive models is to explainrdsept value of the
series,X;, by a function ofp past valuesX,_;, X; o, ..., X;_,.

Definition 4.7. An autoregressive process of order p iswritten as
Xe =01 Xi1 + 02 Xo o+ ...+ 0, Xy + 24, (4.20)

where {Z,} iswhite noise, i.e., {Z;} ~ WN(0,0?), and Z; is uncorrelated with
X, for each s < t.

Remark 4.12 We assume (for simplicity of notation) that the meanXgfis zero.
If the mean i X; = u # 0, then we replac&; by X; — i to obtain

X —p=¢1(Xee1 — ) + G2( X2 — p) + o + Gp(Xsmp — 1) + Zi,
what can be written as
Xe=a+ o Xe + 0 X0+ + 0pXep + Zy,
where

a:/l(l_(bl_-u_(bp)'

Other ways of writing AR(p) model use:
Vector notation: Denote

¢ = (¢17 ¢27 LI gbp)Ta
Xt—l = (Xt—17 Xt—27 s 7Xt—p)T'

Then the formula (4.20) can be written as

Xt — ¢T.Xt_1 "‘ Zt~

Backshift operator: Namely, writing the model (4.20) in the form
Xi =01 Xoo1 — 0o Xy o — .. — 0 Xy, = Zy,
and applyingBX; = X, ; we get

(1= ¢1B—¢:B* —...— $,B")X, = 7,
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or, using the concise notation we write

¢(B)Xi = Zy, (4.21)

where¢(B) denotes thewutoregressive operator

¢(B) =1— ¢ B — ¢B* — ... — ¢,B".
Then the AR(p) can be viewed as a solution to the equatiod4i.2.,
1

45.1 AR(1)

According to Definition 4.7 the autoregressive process 0épof is given by
Xy = 0 Xi 1 + Z, (4.23)
whereZ; ~ W N(0,0?%) and¢ is a constant.

Is AR(1) a stationary TS?

Corollary 4.1 says that an infinite combination of white moigriables is a sta-
tionary process. Here, due to the recursive form of the TSamenrite AR(1) in
such a form. Namely

X=X+ Z4
=¢(¢Xi2+ Zi1) + 24
= ¢2Xt—2 + Q2+ Zy

k—1
=" X p, + Z &7 ;.
j=0
This can be rewritten as

k—1
FXew=Xe= Y FZi .
j=0

What would we obtain if we have continued the backwards djmeral.e., what
happens wheh — c0?
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Taking the expectation we obtain

k—o0

k—1 2
: o Vi ) I T 2k 2 _
lim E (Xt > o th> = lim ¢* B(X?,) =0
=0
if |¢| < 1 and the variance ok, is bounded. Hence, we can represent AR(1) as
X =Y 7
j=0

in the mean square sense. This is a linear process (4.15) with

;i = ¢/ for j >0,
71 0 forj<O.

This technique of iterating backwards works well for AR ofler 1 but not for
other orders. A more general way to convert the series initeea process form
is the method of matching coefficients.

The AR(1) model is
¢(B)Xt - Zt7
wherep(B) = 1—¢B and|¢| < 1. We want to write the model as a linear process

Xe =) 0iZi; =9(B)Z,
j=0

wherey)(B) = Zj‘;o ¥;BI. It means we want to find the coefficients. Substi-
tuting Z; from the AR model into the linear process model we obtain

Xy =y(B)Z = ¥(B)p(B)X;. (4.24)
In full, the coefficients of both sides of the equation can ligten as
l=(1+1B+ B>+ v3B*+...)(1 - ¢B)
=14+ B+ B>+ 3B% + ... — ¢B — 1 pB? — 1y B> — 1h39 B — . ..
=1+ (1 — ¢)B + (o — 1) B* + (Y3 — 120) B + ..

Now, equating coefficients aB’ on the LHS and RHS of this equation we see
that all the coefficients aB’ must be zero, i.e.,

Y1 =9
e = 1 = ¢

V3 = Potp = ¢°

by =0 =¢
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So, we obtained the linear process form of the AR(1)
Xe=) ¢Z;=) &'BZ.
§j=0 j=0

Remark 4.13 Note, that from the equation (4.24) it follows thatB) is an inverse

of ¢(B), that is

1
W(B) = S5 (4.25)

For an AR(1) we have

Y(B) =14+ ¢B+¢*B*+¢*B* + ... (4.26)

~1-¢B

As a linear process AR(1) is stationary with mean
EX =Y ¢E(Z_;)=0 (4.27)
j=0

and autocovariance function given by (4.19), that is

oo

Wr) =0y T =0Ty o,
J=0

Jj=0

However, the infinite sum in this expression is the sum of arggtdac progression
as|¢| < 1, i.e.,

S =
i=0 1-¢
This gives us the following form for the ACVF of AR(1).
O.2¢T
Then the variance of AR(1) is
2
g
7(0) = T

Hence, the autocorrelation function of AR(1) is

p(T) = W =¢. (4.29)
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Figure 4.7: Simulated AR(1) processes for= —0.9 (top) and for¢ = 0.9
(bottom).
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Figure 4.8: Sample ACF for AR(1): (&) = —0.92;_1+2, and (b)z; = 0.9z, 1+

Zte
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Figure 4.9: Simulated AR(1) processes for= —0.5 (top) and for¢ = 0.5

(bottom).
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Figure 4.10: Sample ACF for AR(1): (a) = —0.5x;1 + 2z and (b)x; =

0.5z¢_1 + 2.
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Figures 4.7, 4.9 and 4.8, 4.10 show simulated AR(1) prosessdour different
values of the coefficient (equal to -0.9, 0.9, -0.5 and 0.5) and the respective sam-
ple ACF functions.

Looking at these graphs we can see that for positive coettigive obtain more
smooth TS than for the negative one. Also, the ACFs are vdfgrdnt. We see
that if ¢ is negative the neighboring observations are negativaisetaied, but
those two time points apart are positively correlated. b, fd ¢ is negative the
neighboring TS values have typically opposite signs. Thimore evident it is
close to -1.

45.2 Random Walk

Thisis a TS where at each point of time the series moves ralydomay from its
current position. The model can then be written as

X = Xo1 + Zy, (4.30)
whereZ, is a white noise variable with zero mean and constant vagiahcThe

model has the same form as AR(1) process, but sineel, it is not stationary.
Such process is callégdlandom Walk

Repeatedly substituting for past values gives

Xe=Xo 1+ 7
=Xy o+ Zi 1+ 72y
=Xy 3+ Zi o+ 2+ 2y

t—1
=Xo+ Y _ Zi .
j=0
If the initial value, Xy, is fixed, then the mean value &f, is equal toX,, that is
t—1
Xo+ Y Zi,
j=0

EX,=E - X,.

So, the mean is constant, but as we see below, the variana®aeaidance depend
on time, not just on lag. The white noise variablesare uncorrelated, hence we
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Figure 4.11: Simulated Random Watk= z; | + z;.
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A simulated series of this form is shown in Figure 4.11.
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Figure 4.12: (a) Differenced Random Walkr; and (b) its sample ACF.

As we can see the random walk meanders away from its stardilog ¥n no par-
ticular direction. It does not exhibit any clear trend, butre same time is not
stationary.

However, the first difference of random walk is stationarjt &sjust white noise,
namely

VXt - Xt - thl — Zt-

The differenced random walk and its sample ACF are shownguargi4.12.

4.5.3 Explosive AR(1) Model and Causality

As we have seen in the previous section, random walk, whidR{4) with¢ = 1
is not a stationary process. So, there is a question if aetatly AR(1) process
with |¢| > 1 exists? Also, what are the properties of AR(1) modelsfor 1?

Clearly, the sumy_""] ¢’ Z,_; will not converge in mean square sensé:as oo

and we will not get a linear process representation of thelARHowever, if

lp| > 1 then‘%‘ < 1 and we can express a past value of the TS in terms of a future
value rewriting

Xip1 = 0 Xy + Ziq

as
X =¢ " Xpp1 — ¢ ' Zpsr.
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Figure 4.13: Simulated Explosive AR(L); = 1.02z;_1 + 2.

Then, substituting foX;, ; several times we obtain

X =¢ "' Xop1 — ¢ Zi
=0 N0 Xpso — ¢ ' Ziya) — ¢ Zi
=0 X2 — & o — ¢ ' Zipa

k—1
=0 Xk — > 07 2y
j=1
Since|¢~!| < 1 we obtain
Xi=— Z O Zoyj,
j=1

which is a future dependent stationary TS. This howevers do¢ have any prac-
tical meaning because it requires knowledge of future \slag@redict the future.

When a process does not depend on the future, such as AR(h)|whe 1, we
say that it iscausal

Figure 4.13 shows a simulated serigs= 1.02z;_; + 2z;. As we can see the values
of the time series quickly become large in magnitude, evensfaust slightly
above 1. Such process is callecblosive This is not a causal TS.



