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4.3 Moving Average Process MA(Q)

Definition 4.5. { X,} is amoving-average process of order q if
Xt == Zt —|— (912,5,1 + N —|— qut7q7 (49)

where
Zy ~ WN(0,0%)

andb,, ..., 0, are constants.

Remarl4.6. X, is a linear combination of + 1 white noise variables and we say
that it is¢-correlated, that is X, and X,, . are uncorrelated for all lags > ¢.

Remarkd.7. If Z, is an i.i.d process theR; is a strictly stationary TS since

(Zt7 try thq>T g (Zt+T7 T thquT)T

for all 7. Then it is called;-dependent that isX; and X, . are independent for
alllagst > q .

Remark4.8. Obviously,
e |ID noise is a 0-dependent TS.
e White noise is a 0-correlated TS.

e MA(1) is 1-correlated TS if it is a combination of WN r.vs, kendent if
it is a combination of IID r.vs.

Remark4.9. The MA(q) process can also be written in the following eqlawna

form
X, =0(B)Z, (4.10)

where themoving average operator
0(B)=1+0,B+0,B>+...+0,B (4.11)

defines a linear combination of values in the shift oper&or, = 7, ;.
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Example4.4. MA(2) process.
This process is written as

X, =2, +0.Zy 1+ 0:7,_5 = (14+6,B+ 0,B*)Z,. (4.12)

What are the properties of MA(2)? As it is a combination of eozmean white
noise, it also has zero mean, i.e.,

EXt - E(Zt + Qth_l + QQZt_Q) - O
It is easy to calculate the covarianceXof and X, .. We get

(1+ 6% +65)0* for =0,

(‘91 + 91‘92)0’2 for r = :|:1,
‘920’2 for r = :|:2,
0 for || > 2,

V(7)) = cov(Xy, Xiyr) =

which shows that the autocovariances depend on lag, butmtin@. Dividing
v(7) by v(0) we obtain the autocorrelation function,

1 for 7 =0,
01+6016 _
o(r) = 1i%i92§ for r = £1,
W for T=42
0 for || > 2.
MA(2) process is a weakly stationary, 2-correlated TS. 0

Figure 4.5 shows MA(2) processes obtained from the simdil@=ussian white
noise shown in Figure 4.1 for various values of the pararaéterd,).
The blue series is

Ty =2+ 0.52,1 + 0.52,_9,

while the purple series is
Ty = 2+ 9z1 + D22,

wherez, are realizations of an i.i.d. Gaussian noise.

As you can see very different processes can be obtainedfferatit sets of the
parameters. This is an important property of MA(q) processdich is a very
large family of models. This property is reinforced by thédaing Proposition.

Proposition 4.2. If { X} is a stationary g-correlated time series with mean zero,
then it can be represented as an MA(Q) process. 0
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Figure 4.5: Two simulated MA(2) processes, both from thet&vhbise shown in
Figure 4.1, but for different sets of parametdrs: 6;) = (0.5,0.5) and(6,, 62) =
(5,5).
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Figure 4.6: (a) Sample ACF far; = z; + 0.5z,_1 + 0.5z,_5 and (b) forx; =
Zt -+ 5Zt—1 -+ 5Zt—2'
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Also, the following theorem gives the form of ACF for a gerévid\(q).

Theorem 4.2. An MA(q) process (as in Definition 4.5) is a weakly station&8y
with the ACVF

o234y g, if |7] <
— i=0 Yi%+Irls =4 4.13
1) {o, if || > g, #13)

wheref, is defined to be 1. 0

The ACF of an MA(qg) has a distinct “cut-off” at lag = ¢. Furthermore, ify is
small the maximum value dp(1)| is well below unity. It can be shown that

|p(1)] < cos (m) . (4.14)

4.3.1 Non-uniqueness of MA Models

Consider an example of MA(1)

Xt - Zt + QZt—l

whose ACF is
1, if 7=0,
p(1) = H% if 7= 41,
0, if |7] > 1.

Forg = 1, formula (4.14) means that the maximum valuéxdt )| is 0.5. It can be
verified directly from the formula for the ACF above. Treatin(1) as a function
of & we can calculate its extrema. Denote

0
10) =174
Then e
f1(0) = REYHE

The derivative is equal to O & = +1 and the functionf attains maximum at
f = 1 and minimum at/ = —1. We have

1 1

==, f(=1)=—=.

JO) =3 F-1) =3

This fact can be helpful in recognizing MA(1) processes. datf MA(1) with
|0| = 1 may be uniquely identified from the autocorrelation funetio
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However, it is easy to see that the form of the ACF stays theedamy and
for 5. Take for example 5 anfl. In both cases

1 ifr7=0,
p(r) =< & if 7==1,
0 if |7] > 1.

Also, the pairs® = 1,0 = 5 gives the same ACVF as the pait = 25,0 = 1,
namely
(1+6%)0%=26, if 7=0,
(1) =< fo? =5, if 7=+1,
0, if |7 > 1.

Hence, the MA(1) processes
1
Xt = Zt + 5Zt—17 Zt ’\é./\/’(o, 25)
and
Xy =Yi+5Y, Y~ N(0,1)

are the same. We can observe the variablenot the noise variable, so we can not
distinguish between these two models. Except for the cagg of 1, a particular
autocorrelation function will be compatible with two moslel

To which of the two models we should restrict our attention?

4.3.2 Invertibility of MA Processes

The MA(1) process can be expressed in terms of lagged vafu€Eslny substitut-
ing repeatedly for lagged values Bf. We have

Zt - Xt - QZt—l'
The substitution yields
Zy =Xy — 02,4
=X, — 0(Xe-1 — 0Z;)
- Xt - (9th1 + 92Zt72

- Xt - eXt_l "‘ 82(Xt_2 - QZt_g)
- Xt - eXt_l ‘I— 02Xt—2 - 83Zt—3

— Xt - eXt_l ‘I— 02Xt—2 - 03Xt—3 ‘I— 04Xt—4 + N "‘ (_e)nZt_n
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This can be rewritten as

However, if|f| < 1, then

n—1 2
E (Zt —~ Z(-@)J’th> =E(0*Z2,) — 0

- n—0o0
j=0

and we say that the sum is convergent in the mean square s$te1see, we obtain
another representation of the model

oo

Zy =Y (=0 X, ;.

Jj=0

This is a representation of another class of models, catifagite autoregressive
(AR) models. So we inverted MA(1) to an infinite AR. It was pibés due to the
assumption thaff| < 1. Such a process is called awertible process This
is a desired property of TS, so in the example we would chdosenodel with

0% =25,0=1%.
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4.4 Linear Processes

Definition 4.6. The TS{X,} is called alinear processif it has the representation

X, = j?i b; Ze s, (4.15)

j=—o0

for all ¢, whereZ, ~ WN(0,0%) and{v,} is a sequence of constants such that

Remarkd4.1Q The condition> 7> [¢;| < oo ensures that the process converges
in the mean square sense, that is

E(X:— Y %Z;)" =0 asn— .

j=—n

Remark4.11 MA(oo) is a linear process withy; = 0 for j < 0 andy); = ¢, for
j > 0, that is MA(c) has the representation

Xt — Z eth_j,
j=0

wheref, = 1.

Note that the formula (4.15) can be written using the backivehift operator.
We have

Zi j=DBZ,.
Hence
Xy = Z VjZj = Z ;B Zy.
j=—o0 j==o0
Denoting
W(B)= > B, (4.16)

j=—o0



4.4. LINEAR PROCESSES 73

we can write the linear process in a neat way
Xt — w(B)Zt

The operator)(B) is a linear filter, which when applied to a stationary process
produces a stationary process. This fact is proved in theWoig proposition.

Proposition 4.3. Let{Y;} be a stationary TS with mean zero and autocovariance
functionyy. If 3772 [1;] < oo, then the process

X, = i VY = ¢(B)Y; (4.17)

j=—o0

is stationary with mean zero and autocovariance function

o0 o0

x(1) =D Y i (T — k+ ). (4.18)

j=—00 k=—00

Proof. The assumptioE;?‘;_OO |4;] < oo assures convergence of the series. Now,
sinceEY; = 0, we have

EX =E ( i @ij;_j) = i ¥ E(Y;) =0

j=—o00 j=—00

E(XtXt—l—T) =E [( i @/)jY;—j) < i ka;H-T—k)]

jzfoo k=—o00

= > G E(YiYie )

Jj=—00 k=—00

= Z Z Vi (T =k + 7).

Jj=—00 k=—00
It means thaf X;} is a stationary TS with the autocavarianxe function given by
formula (4.18). 0

Corrolary 4.1. If {Y;} is a white noise process, theiX,;} given by(4.17)is a
stationary linear process with zero mean and the ACVF

Yx(1) =Y a0, (4.19)

j==o0

t



