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4.3 Moving Average Process MA(q)

Definition 4.5. {Xt} is amoving-average process of order q if

Xt = Zt + θ1Zt−1 + . . .+ θqZt−q, (4.9)

where
Zt ∼WN(0, σ2)

andθ1, . . . , θq are constants.

Remark4.6. Xt is a linear combination ofq+ 1 white noise variables and we say
that it isq-correlated, that isXt andXt+τ are uncorrelated for all lagsτ > q.

Remark4.7. If Zt is an i.i.d process thenXt is a strictly stationary TS since

(Zt, . . . , Zt−q)
T d

= (Zt+τ , . . . , Zt−q+τ )
T

for all τ . Then it is calledq-dependent, that isXt andXt+τ are independent for
all lagsτ > q .

Remark4.8. Obviously,

• IID noise is a 0-dependent TS.

• White noise is a 0-correlated TS.

• MA(1) is 1-correlated TS if it is a combination of WN r.vs, 1-dependent if
it is a combination of IID r.vs.

Remark4.9. The MA(q) process can also be written in the following equivalent
form

Xt = θ(B)Zt, (4.10)

where themoving average operator

θ(B) = 1 + θ1B + θ2B
2 + . . .+ θqB

q (4.11)

defines a linear combination of values in the shift operatorBkZt = Zt−k.
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Example4.4. MA(2) process.
This process is written as

Xt = Zt + θ1Zt−1 + θ2Zt−2 = (1 + θ1B + θ2B
2)Zt. (4.12)

What are the properties of MA(2)? As it is a combination of a zero mean white
noise, it also has zero mean, i.e.,

EXt = E(Zt + θ1Zt−1 + θ2Zt−2) = 0.

It is easy to calculate the covariance ofXt andXt+τ . We get

γ(τ) = cov(Xt, Xt+τ ) =















(1 + θ2
1 + θ2

2)σ
2 for τ = 0,

(θ1 + θ1θ2)σ
2 for τ = ±1,

θ2σ
2 for τ = ±2,

0 for |τ | > 2,

which shows that the autocovariances depend on lag, but not on time. Dividing
γ(τ) by γ(0) we obtain the autocorrelation function,

ρ(τ) =



















1 for τ = 0,
θ1+θ1θ2

1+θ2

1
+θ2

2

for τ = ±1,
θ2

1+θ2

1
+θ2

2

for τ = ±2

0 for |τ | > 2.

MA(2) process is a weakly stationary, 2-correlated TS.
�

Figure 4.5 shows MA(2) processes obtained from the simulated Gaussian white
noise shown in Figure 4.1 for various values of the parameters (θ1, θ2).
The blue series is

xt = zt + 0.5zt−1 + 0.5zt−2,

while the purple series is

xt = zt + 5zt−1 + 5zt−2,

wherezt are realizations of an i.i.d. Gaussian noise.
As you can see very different processes can be obtained for different sets of the
parameters. This is an important property of MA(q) processes, which is a very
large family of models. This property is reinforced by the following Proposition.

Proposition 4.2. If {Xt} is a stationary q-correlated time series with mean zero,
then it can be represented as an MA(q) process.

�
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Figure 4.5: Two simulated MA(2) processes, both from the white noise shown in
Figure 4.1, but for different sets of parameters:(θ1, θ2) = (0.5, 0.5) and(θ1, θ2) =
(5, 5).

Lag

A
C

F

0 5 10 15 20

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : GaussianWN$xt

Lag

A
C

F

0 5 10 15 20

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : GaussianWN$xt55

(a) (b)

Figure 4.6: (a) Sample ACF forxt = zt + 0.5zt−1 + 0.5zt−2 and (b) forxt =
zt + 5zt−1 + 5zt−2.
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Also, the following theorem gives the form of ACF for a general MA(q).

Theorem 4.2. An MA(q) process (as in Definition 4.5) is a weakly stationaryTS
with the ACVF

γ(τ) =

{

σ2
∑q−|τ |

j=0
θjθj+|τ |, if |τ | ≤ q,

0, if |τ | > q,
(4.13)

whereθ0 is defined to be 1.
�

The ACF of an MA(q) has a distinct “cut-off” at lagτ = q. Furthermore, ifq is
small the maximum value of|ρ(1)| is well below unity. It can be shown that

|ρ(1)| ≤ cos

(

π

q + 2

)

. (4.14)

4.3.1 Non-uniqueness of MA Models

Consider an example of MA(1)

Xt = Zt + θZt−1

whose ACF is

ρ(τ) =







1, if τ = 0,
θ

1+θ2 if τ = ±1,

0, if |τ | > 1.

Forq = 1, formula (4.14) means that the maximum value of|ρ(1)| is 0.5. It can be
verified directly from the formula for the ACF above. Treating ρ(1) as a function
of θ we can calculate its extrema. Denote

f(θ) =
θ

1 + θ2
.

Then

f ′(θ) =
1 − θ2

(1 + θ2)2
.

The derivative is equal to 0 atθ = ±1 and the functionf attains maximum at
θ = 1 and minimum atθ = −1. We have

f(1) =
1

2
, f(−1) = −

1

2
.

This fact can be helpful in recognizing MA(1) processes. In fact, MA(1) with
|θ| = 1 may be uniquely identified from the autocorrelation function.
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However, it is easy to see that the form of the ACF stays the same for θ and
for 1

θ
. Take for example 5 and1

5
. In both cases

ρ(τ) =







1 if τ = 0,
5

26
if τ = ±1,

0 if |τ | > 1.

Also, the pairσ2 = 1, θ = 5 gives the same ACVF as the pairσ2 = 25, θ = 1

5
,

namely

γ(τ) =







(1 + θ2)σ2 = 26, if τ = 0,
θσ2 = 5, if τ = ±1,
0, if |τ | > 1.

Hence, the MA(1) processes

Xt = Zt +
1

5
Zt−1, Zt ∼

iid
N (0, 25)

and
Xt = Yt + 5Yt−1, Yt ∼

iid
N (0, 1)

are the same. We can observe the variableXt, not the noise variable, so we can not
distinguish between these two models. Except for the case of|θ| = 1, a particular
autocorrelation function will be compatible with two models.

To which of the two models we should restrict our attention?

4.3.2 Invertibility of MA Processes

The MA(1) process can be expressed in terms of lagged values of Xt by substitut-
ing repeatedly for lagged values ofZt. We have

Zt = Xt − θZt−1.

The substitution yields

Zt = Xt − θZt−1

= Xt − θ(Xt−1 − θZt−2)

= Xt − θXt−1 + θ2Zt−2

= Xt − θXt−1 + θ2(Xt−2 − θZt−3)

= Xt − θXt−1 + θ2Xt−2 − θ3Zt−3

= . . .

= Xt − θXt−1 + θ2Xt−2 − θ3Xt−3 + θ4Xt−4 + . . .+ (−θ)nZt−n.
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This can be rewritten as

(−θ)nZt−n = Zt −
n−1
∑

j=0

(−θ)jXt−j .

However, if|θ| < 1, then

E

(

Zt −
n−1
∑

j=0

(−θ)jXt−j

)2

= E
(

θ2nZ2

t−n

)

−→
n→∞

0

and we say that the sum is convergent in the mean square sense.Hence, we obtain
another representation of the model

Zt =
∞
∑

j=0

(−θ)jXt−j .

This is a representation of another class of models, called infinite autoregressive
(AR) models. So we inverted MA(1) to an infinite AR. It was possible due to the
assumption that|θ| < 1. Such a process is called aninvertible process. This
is a desired property of TS, so in the example we would choose the model with
σ2 = 25, θ = 1

5
.
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4.4 Linear Processes

Definition 4.6. The TS{Xt} is called alinear process if it has the representation

Xt =
∞
∑

j=−∞

ψjZt−j, (4.15)

for all t, whereZt ∼ WN(0, σ2) and{ψj} is a sequence of constants such that
∑∞

j=−∞ |ψj | <∞.
�

Remark4.10. The condition
∑∞

j=−∞ |ψj | <∞ ensures that the process converges
in the mean square sense, that is

E
(

Xt −
n
∑

j=−n

ψjZt−j

)2
→ 0 asn→ ∞.

Remark4.11. MA(∞) is a linear process withψj = 0 for j < 0 andψj = θj for
j ≥ 0, that is MA(∞) has the representation

Xt =

∞
∑

j=0

θjZt−j ,

whereθ0 = 1.

Note that the formula (4.15) can be written using the backward shift operatorB.
We have

Zt−j = BjZt.

Hence

Xt =

∞
∑

j=−∞

ψjZt−j =

∞
∑

j=−∞

ψjB
jZt.

Denoting

ψ(B) =
∞
∑

j=−∞

ψjB
j, (4.16)
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we can write the linear process in a neat way

Xt = ψ(B)Zt.

The operatorψ(B) is a linear filter, which when applied to a stationary process
produces a stationary process. This fact is proved in the following proposition.

Proposition 4.3. Let{Yt} be a stationary TS with mean zero and autocovariance
functionγY . If

∑∞
j=−∞ |ψj | <∞, then the process

Xt =

∞
∑

j=−∞

ψjYt−j = ψ(B)Yt (4.17)

is stationary with mean zero and autocovariance function

γX(τ) =

∞
∑

j=−∞

∞
∑

k=−∞

ψjψkγY (τ − k + j). (4.18)

Proof. The assumption
∑∞

j=−∞ |ψj| <∞ assures convergence of the series. Now,
sinceEYt = 0, we have

EXt = E

(

∞
∑

j=−∞

ψjYt−j

)

=
∞
∑

j=−∞

ψj E(Yt−j) = 0

and

E(XtXt+τ ) = E

[(

∞
∑

j=−∞

ψjYt−j

)(

∞
∑

k=−∞

ψkYt+τ−k

)]

=

∞
∑

j=−∞

∞
∑

k=−∞

ψjψk E(Yt−jYt+τ−k)

=
∞
∑

j=−∞

∞
∑

k=−∞

ψjψkγY (τ − k + j).

It means that{Xt} is a stationary TS with the autocavarianxe function given by
formula (4.18).

�

Corrolary 4.1. If {Yt} is a white noise process, then{Xt} given by(4.17) is a
stationary linear process with zero mean and the ACVF

γX(τ) =

∞
∑

j=−∞

ψjψj+τσ
2. (4.19)

�


