Platform for adaptive optimal design of nonlinear mixed effect models

Andrew C. Hooker (1)
Associate Professor of Pharmacometrics

J. G. Coen van Hasselt (2)

(1) Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
(2) Department of Clinical Pharmacology, Netherlands Cancer Institute, Amsterdam, Netherlands
Model based drug development
Outline

• Robust optimal design
• Adaptive optimal design (AOD)
• Platform for testing and performing AOD trials (DDMORE)
• Exploring AOD
 – Pediatric bridging studies (PK)
Robust optimal design

• Standard optimal design requires knowledge about the underlying model and parameter values for that model

\[FIM(\text{models }_{\text{fixed}}, \text{parameters }_{\text{fixed}}, \text{design}) \]

• What if we don’t know the model or we don’t have a good guess for the parameters of a model?
Robust optimal design (2)

- Assume your parameters have distributions
 - (“E-family”, e.g. ElnD)
- Problems if:
 - Distribution does not overlap the true value
 - One region of parameter values “drive” the design

Robust optimal design (3)

• Incorporate multiple models into your optimization

\[\Psi_{P-D} = \arg \max_{\xi} \left(\sum_{i} \log \left(|FIM(\xi, \Phi_i)^{\alpha_i} \left| p_i \right| \right) \right) \]

m=model #, \(\alpha_i \) = weighting and \(p_i \) = # of parameters

• Problems if:
 – “true” model is not one of the candidate models.
 – Parameters are not near the “truth”

Hooker and Vicini, J. AAPS, 2005
Waterhouse and Duffull, JPKPD, 2005
Problems with robust design

• If you have too much uncertainty or too many potential models:
 – Rich design covering entire design space is needed

• Are there other ways to deal with uncertainty?
Adaptive Optimal Designs (AOD)

• Another type of robust design

• Adapt and update your understanding of the system (the model) at intermediate steps within a trial, then re-optimize
Some previous work with AOD

- A recent survey has found that for 10 European pharmaceutical companies the importance of AOD for NLMEM was ranked, on average, 4 on a scale of 5 (Mentre et al. CPT:PSP, 2013).
- Previous work has demonstrated the usefulness of AOD in
 - PET occupancy studies (Zamuner et al. CPT, 2010).
 - population PK in children (Dumont et al. PAGE, 2012).
Design of future studies 1

Model guesses M_{G0}
Param. guesses P_0
Param. uncertainty $P_{se,0}$
Prior$_0$ = FIM$_0$

Optimal Design

Design (Q_1)

STUDY

Cohort 1

Data (Y_1)
Prior$_0$

Estimation

Possible models (M_1)
Estimates (P_1, $P_{se,1}$)
Obs. FIM (FIM$_{obs,1}$)

Stop criterion achieved?

…

Design of future studies 2

M_1, P_1, $P_{se,1}$
FIM$_{obs,1}$, Prior$_1$
New model guesses $M_{G,2}$

Optimal Design

Design (Q_2)

STUDY

Cohort 2

Data ($Y_2 \pm Y_1$)
Prior$_1$

Estimation

Possible models (M_2)
Estimates (P_2, $P_{se,2}$)
Obs. FIM (FIM$_{obs,2}$)

Stop criterion achieved?

…

Design of future studies N_c

M_{Nc-1}, P_{Nc-1}, $P_{se,Nc-1}$
FIM$_{obs,Nc-1}$, Prior$_{Nc-1}$
$M_{G,Nc-1}$

Optimal Design

Design (Q_{Nc})

STUDY

Cohort N_c

Data ($Y_1 \pm Y_1 \ldots Y_{Nc-1}$)
Prior$_{Nc-1}$

Estimation

Possible models (M_{Nc})
Estimates (P_{Nc}, $P_{se,Nc}$)
Obs. FIM (FIM$_{obs,Nc}$)

Stop criterion achieved?

…
AOD the good and the bad

• Good
 – Allows for adjustment of uncertainty in models and parameters
 – Adjustment in misspecification if present

• Bad
 – If you are not wrong from the beginning then adaptations may just introduce error.
 – Adjustments being driven by a small group of patients…may lead to bias.
PLATFORM FOR TESTING AND PERFORMING AOD TRIALS (DDMORE)
Design of future studies 1

Model guesses M_G^0
Param. guesses P_0
Param. uncertainty $P_{se,0}$
Prior $\text{Prior}_0 = \text{FIM}_0$

Optimal Design
Design (Q_1)

STUDY

Cohort 1
Data (Y_1)
Prior Prior_0

Estimation
Possible models (M_1)
Estimates $(P_1, P_{se,1})$
Obs. FIM $(\text{FIM}_{obs,1})$

Stop criterion achieved?

Design of future studies 2

$M_1, P_1, P_{se,1}$
FIM$_{obs,1}$, Prior_1
New model guesses $M_{G,2}$

Optimal Design
Design (Q_2)

STUDY

Cohort 2
Data $(Y_2 \pm Y_1)$
Prior Prior_1

Estimation
Possible models (M_2)
Estimates $(P_2, P_{se,2})$
Obs. FIM $(\text{FIM}_{obs,2})$

Stop criterion achieved?

Design of future studies N_c

$M_{Nc-1}, P_{Nc-1}, P_{se,Nc-1}$
FIM$_{obs,Nc-1}$, Prior_{Nc-1}
$M_{G,Nc-1}$

Optimal Design
Design (Q_{Nc})

STUDY

Cohort N_c
Data $(Y_1 \pm Y_1 \ldots Y_{Nc-1})$
Prior Prior_{Nc-1}

Estimation
Possible models (M_{Nc})
Estimates $(P_{Nc}, P_{se,Nc})$
Obs. FIM $(\text{FIM}_{obs,Nc})$

Stop criterion achieved?
Design of future studies 1

Model guesses M_{G0}
Param. guesses P_0
Param. uncertainty $P_{se,0}$
Prior$_0$=FIM$_0$

Design (Q_1)

PopED

Cohort 1

Data (Y_1)
Prior$_0$

Estimation
Possible models (M_1)
Estimates (P_1, $P_{se,1}$)
Obs. FIM (FIM$_{obs,1}$)

Stop criterion achieved?

Design of future studies 2

M_1, P_1, $P_{se,1}$
FIM$_{obs,1}$, Prior$_1$
New model guesses $M_{G,2}$

Design (Q_2)

PopED

Cohort 2

Data (Y_2 ± Y_1)
Prior$_1$

Estimation
Possible models (M_2)
Estimates (P_2, $P_{se,2}$)
Obs. FIM (FIM$_{obs,2}$)

Stop criterion achieved?

Design of future studies N_c

M_{Nc-1}, P_{Nc-1}, $P_{se,Nc-1}$
FIM$_{obs,Nc-1}$, Prior$_{Nc-1}$
$M_{G,Nc-1}$

Design (Q_{Nc})

PopED

Cohort N_c

Data (Y_1 ± Y_1 … Y_{Nc-1})
Prior$_{Nc-1}$

Estimation
Possible models (M_{Nc})
Estimates (P_{Nc}, $P_{se,Nc}$)
Obs. FIM (FIM$_{obs,Nc}$)

Stop criterion achieved?

…
Design of future studies 1

Model guesses M_{G0}
Param. guesses P_0
Param. uncertainty $P_{se,0}$
Prior$_0$=FIM$_0$

\rightarrow PopED
Design (Q_1)

Cohort 1
Data (Y_1)
Prior$_0$

\rightarrow NONMEM (PsN)
Possible models (M_1)
Estimates $(P_{1}, P_{se,1})$
Obs. FIM (FIM$_{obs,1}$)

Stop criterion achieved?

Design of future studies 2

M_1, P_1, $P_{se,1}$
FIM$_{obs,1}$, Prior$_1$
New model guesses $M_{G,2}$

\rightarrow PopED
Design (Q_2)

Cohort 2
Data $(Y_2 \pm Y_1)$
Prior$_1$

\rightarrow NONMEM (PsN)
Possible models (M_2)
Estimates $(P_2, P_{se,2})$
Obs. FIM (FIM$_{obs,2}$)

Stop criterion achieved?

Design of future studies N_c

M_{Nc-1}, P_{Nc-1}, $P_{se,Nc-1}$
FIM$_{obs,Nc-1}$, Prior$_{Nc-1}$

\rightarrow PopED
Design (Q_{Nc})

Cohort N_c
Data $(Y_1 \pm Y_1 \ldots Y_{Nc-1})$
Prior$_{Nc}$

\rightarrow NONMEM (PsN)
Possible models (M_{Nc})
Estimates $(P_{Nc}, P_{se,Nc})$
Obs. FIM (FIM$_{obs,Nc}$)

Stop criterion achieved?
Design of future studies 1
Model guesses M_{G0}
Param. guesses P_0
Param. uncertainty $P_{se,0}$
Prior$_0$ = FIM$_0$

PopED
Design (Q_1)

Study
Cohort 1
Possible models (M_1)
Estimates (P_1, $P_{se,1}$)
Obs. FIM (FIM$_{obs,1}$)

Stop criterion achieved?

Design of future studies 2
M_1, P_1, $P_{se,1}$
FIM$_{obs,1}$, Prior$_1$
New model guesses M_{new}

PopED
Design (Q_{new})

Study
Cohort 2
Data ($Y_2 \pm Y_1$)
Prior$_1$

NONMEM (PsN)
Possible models (M_2)
Estimates (P_2, $P_{se,2}$)
Obs. FIM (FIM$_{obs,2}$)

Stop criterion achieved?

...
Design of future studies 1
Model guesses M_{G0}
Param. guesses P_0
Param. uncertainty $P_{se,0}$
Prior$_0$ = FIM$_0$

PopED

Design (Q_1)

Cohort 1
Data (Y_1)
Prior$_0$

NONMEM (PsN)
Possible models (M_1)
Estimates ($P_{1,1}$, $P_{se,1}$)
Obs. FIM (FIM$_{obs,1}$)

Stop criterion achieved?

Simulate data NONMEM (PsN)

Cohort 2
Data $(Y_2 \pm Y_1)$
Prior$_1$

NONMEM (PsN)
Possible models (M_2)
Estimates ($P_{2,1}$, $P_{se,2}$)
Obs. FIM (FIM$_{obs,2}$)

Stop criterion achieved?

Cohort N_c
Data $(Y_1 \pm Y_1 \ldots Y_{N_c-1})$
Prior$_{N_c-1}$

NONMEM (PsN)
Possible models (M_{Nc})
Estimates ($P_{Nc,1}$, $P_{se,Nc}$)
Obs. FIM (FIM$_{obs,Nc}$)

Stop criterion achieved?

...
Evaluating AODs – Multiple simulations

- Simulate entire process many times (R and PsN)
- Evaluate results in some way (R and PsN)

Design of future studies 1

- Model guesses M_{G0}
- Param. guesses P_0
- Param. uncertainty $P_{se,0}$
- Prior $= \text{FIM}_0$

- Design (Q_1)

- PopED

- Simulate data NONMEM (PsN)

Cohort 1

- Data (Y_1)
- Prior $= \text{Prior}_0$

- NONMEM (PsN)

- Possible models (M_1)
- Estimates ($P_{1r}, P_{se,1}$)
- Obs. FIM ($\text{FIM}_{\text{obs},1}$)

Stop criterion achieved?

Design of future studies 2

- $M_1, P_1, P_{se,1}$
- FIM$_{\text{obs},1}$, Prior$_1$
- New model guesses M_{G2}

- Design (Q_2)

- PopED

- Simulate data NONMEM (PsN)

Cohort 2

- Data ($Y_2 \pm Y_1$)
- Prior $= \text{Prior}_1$

- NONMEM (PsN)

- Possible models (M_2)
- Estimates ($P_{2r}, P_{se,2}$)
- Obs. FIM ($\text{FIM}_{\text{obs},2}$)

Stop criterion achieved?

Design of future studies N_c

- $M_{Nc-1}, P_{Nc-1}, P_{se,Nc-1}$
- FIM$_{\text{obs},Nc-1}$, Prior$_{Nc-1}$
- New model guesses $M_{G,Nc-1}$

- Design (Q_{Nc})

- PopED

- Simulate data NONMEM (PsN)

Cohort N_c

- Data ($Y_1 \pm Y_1 \ldots Y_{Nc-1}$)
- Prior $= \text{Prior}_{Nc-1}$

- NONMEM (PsN)

- Possible models (M_{Nc})
- Estimates ($P_{Nc}, P_{se,Nc}$)
- Obs. FIM ($\text{FIM}_{\text{obs},Nc}$)

Stop criterion achieved?

• Simulate entire process many times (R and PsN)
• Evaluate results in some way (R and PsN)
For the coming example

- Simulate entire process many times (R and PsN)

- Evaluate results in some way (R and PsN)
PopED

- Optimal experimental design software
- Flexible description of models
- Flexible description of design space
- Flexible design optimization
- Written in Matlab

poped.sf.net

PsN

- Perl Speaks NONMEM
- Aids in running nonmem
- Automatic evaluation of complex statistical techniques
- Extraction of important results from NONMEM

psn.sf.net
AOD prototype

- Modular so that the calls to PopED, PsN and NONMEM can be switched out for other programs.
- General so that “any” model (and adaptation) can be used.
- DDMoRe (www.ddmore.eu)
 - Platform for AOD
 - Investigate optimal strategies for AOD

Van Hasselt and Hooker, PAGE, 2013

Veronese et al. AODware: a model-based application for optimal and adaptive optimal experimental design exploration, ACOP, 2013
Exploring AOD – Pediatric PK bridging studies

• Several model types to describe PK changes in children
 – Empirical: \(CL_i = CL_{std,i} \cdot \left(\frac{WT_i}{70} \right)^\theta \cdot ... \)
 – Holfordian: \(CL_i = CL_{std,i} \cdot \left(\frac{WT_i}{70} \right)^{0.75} \cdot \frac{PMA_i^\gamma}{PMA_i^\gamma + TM_{50}^\gamma} \cdot F_{organ,i} \cdot ... \)
 – PBPK ...

Pediatric PK bridging study

• For this example we chose a somewhat simplistic approach:

\[y_{ij} = \frac{DOSE_i}{V_i} e^{\left(\frac{CL_i}{V_i}\right)t_{ij}} \cdot (1 + \epsilon_{1ij}) + \epsilon_{2ij} \]

\[CL_i = CL_{BASE,i} + \frac{CL_{MAX} \cdot WT_i^\gamma}{WT^{50^\gamma} + WT_i^\gamma} \]

\[V_i = V_{STD,i} \cdot \left(\frac{WT_i}{70}\right) \]

\[CL_{BASE,i}, \ V_{STD,i} \in \text{LogNormal} \]

\[DOSE_i = 1000 \cdot \left(\frac{WT_i}{70}\right) \]
Pediatric bridging study

- Cohorts optimized on
 - Weights to include in cohort
 - Sampling times.

- Compared the performance of two study design approaches:
 - Fixed optimized design (D-optimal)
 - Adaptive optimized designs (D-optimal).

- For each design approach we evaluated:
 - Different levels of parameter misspecification

- The resulting study designs were evaluated based on:
 - Parameter bias and precision
 - Predicted exposure (AUC).
Fixed D-optimal design with misspecification of WT50

Prior: WT50 = 5
Truth: WT50 = 25
Fixed D-optimal design with misspecification of WT50

Prior: WT50 = 5
Truth: WT50 = 25
Fixed D-optimal design with misspecification of WT50

Prior: WT50 = 5
Truth: WT50 = 25
Fixed D-optimal design with misspecification of WT50
Adaptive D-optimal design with misspecification of WT50

Prior: WT50 = 5
Truth: WT50 = 25
Adaptive D-optimal design with misspecification of WT50

Prior: WT50 = 5
Truth: WT50 = 25

Cohort 1

Clearance

Prior: WT50 = 5
Truth: WT50 = 25
Adaptive D-optimal design with misspecification of WT50
REE (%) of Parameter estimates
REE (%) of Parameter estimates

![Graph showing REE (%) of Parameter estimates for AOD and FIXED-OD parameters.]

- AOD parameters: thCl, thE50, thHill, thMax, thV
- FIXED-OD parameters: thCl, thE50, thHill, thMax, thV
Prediction of AUC for a fixed dose
No Misspecification

AOD

Parameter

REE (%)
No Misspecification
EMAX misspecification

Prior: EMAX = 0.01
Truth: EMAX = 2
EMAX misspecification

Prior: EMAX = 0.01
Truth: EMAX = 2
Comparing different AOD strategies.
Comparing different AOD strategies (2).
Conclusions

• We successfully developed an initial implementation of a modular and flexible AOD computational platform, which will be available as freeware when released.

• In many cases AOD can improve parameter precision and accommodate for initial model misspecification compared to standard optimal design techniques.

• If no adaptation is needed or if the adaptation process is not carefully chosen a decrease in parameter precision or even parameter bias can be introduced, demonstrating the need for prior investigation, through simulation, of the AOD process.
Acknowledgements

This work was supported in part by the DDMoRe project (www.ddmore.eu)

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° 115156, resources of which are composed of financial contributions from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution. The DDMoRe project is also financially supported by contributions from Academic and SME partners.