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1.10.5 Covariance and Correlation

Covariance and correlation are two measures of the strengthof a relationship be-
tween two r.vs.

We will use the following notation.
E(X1) = µX1

E(X2) = µX2

var(X1) = σ2
X1

var(X2) = σ2
X2

Also, we assume thatσ2
X1

andσ2
X2

are finite positive values. A simplified notation
µ1, µ2, σ

2
1, σ

2
2 will be used when it is clear which rvs we refer to.

Definition 1.19. The covariance ofX1 andX2 is defined by

cov(X1, X2) = E[(X1 − µX1
)(X2 − µX2

)]. (1.16)

�

Some useful properties of the covariance and correlation are given in the following
two theorems.

Theorem 1.15.LetX1 andX2 denote random variables and leta, b, c, . . . denote
some constants. Then, the following properties hold.

1. cov(X1, X2) = E(X1X2)− µX1
µX2

.

2. If random variablesX1 andX2 are independent then

cov(X1, X2) = 0.

3. var(aX1 + bX2) = a2 var(X1) + b2 var(X2) + 2ab cov(X1, X2).

4. ForU = aX1 + bX2 + e and forV = cX1 + dX2 + f we can write

cov(U, V ) = ac var(X1) + bd var(X2) + (ad+ bc) cov(X1, X2).
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Proof. We will show property 4.

cov(U, V ) = E
[(

(aX1 + bX2 + e)− E(aX1 + bX2 + e)
)

×
(

(cX1 + dX2 + f)− E(cX1 + dX2 + f)
)]

= E
[(

a(X1 − EX1) + b(X2 − EX2)
)(

c(X1 − EX1) + d(X2 − EX2)
)]

= E
[

ac(X1 − EX1)
2 + bd(X2 − EX2)

2 + (ad+ bc)(X1 − EX1)(X2 − EX2)
]

= ac varX1 + bd varX2 + (ad+ bc) cov(X1, X2).

�

Property 2 says that if two variables are independent, then their covariance is
zero. This does not always work both ways, that is it does not mean that if the
covariance is zero then the variables must be independent. The following small
example shows this fact.

Example1.27. Let X ∼ U(−1, 1) and letY = X2. Then

E(X) = 0

E(Y ) = E(X2) =

∫ 1

−1

x2 1

2
dx =

1

3

E(XY ) = E(X3) = 0.

Hence,
cov(X, Y ) = E(XY )− E(X) E(Y ) = 0,

butY is a function ofX, so these two variables are not independent.

�

Another measure of strength of relationship of two rvs is correlation. It is defined
as

Definition 1.20. The correlation ofX1 andX2 is defined by

ρ(X1,X2) =
cov(X1, X2)

σX1
σX2

. (1.17)

�

Correlation is a dimensionless measure and it expresses thestrength of linearly
related variables as shown in the following theorem.
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Theorem 1.16.For any random variablesX1 andX2

1. −1 ≤ ρ(X1,X2) ≤ 1,

2. |ρ(X1,X2)| = 1 iff there exist numbersa 6= 0 andb such that

P (X2 = aX1 + b) = 1.

If ρ(X1,X2) = 1 thena > 0, and ifρ(X1,X2) = −1 thena < 0.
�

Exercise1.17. Prove Theorem 1.16. Hint: Consider roots (and so the discrimi-
nant) of the quadratic function oft:

g(t) = E[(X − µX)t+ (Y − µY )]
2.

Example1.28. Let the joint pdf ofX, Y be

fX,Y (x, y) = 1 on the support{(x, y) : 0 < x < 1, x < y < x+ 1}.

The two rvs are not independent as the range ofY depends onx. We will calculate
the correlation betweenX andY . For this we need to obtain the marginal pdfs,
fX(x) andfY (y). The marginal pdf forX is

fX(x) =

∫ x+1

x

1dy = y|x+1
x = 1, on support{x : 0 < x < 1}.

Note that to obtain the marginal pdf for the rvY the range ofX has to be consid-
ered separately fory ∈ (0, 1) and fory ∈ [1, 2). Wheny ∈ (0, 1) thenx ∈ (0, y).
Wheny ∈ [1, 2), thenx ∈ (y − 1, 1). Hence,

fY (y) =















∫ y

0
1dx = x|y0 = y, for y ∈ (0, 1);

∫ 1

y−1
1dx = x|1y−1 = 2− y, for y ∈ [1, 2);

0, otherwise.

These give

µX =
1

2
, σ2

X =
(b− a)2

12
=

1

12
;

µY = 1 σ2
Y = E(Y 2)− [E(Y )]2 =

7

6
− 1 =

1

6
,
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where

E(Y 2) =

∫ 1

0

y2ydy +

∫ 2

1

y2(2− y)dy =
7

6
.

Also,

E(XY ) =

∫ 1

0

∫ x+1

x

xy1dydx =
7

12
.

Hence,

cov(X, Y ) = E(XY )− E(X) E(Y ) =
7

12
− 1

2
× 1 =

1

12
.

Finally,

ρ(X,Y ) =
cov(X, Y )

σXσY

=
1
12

√

1
12

1
6

=
1√
2
.

The linear relationship betweenX andY is not very strong.

Note: We can make an interesting comparison of this value of the correlation with
the correlation ofX andY having a joint uniform distribution on{(x, y) : 0 <
x < 1, x < y < x + 0.1}, which is a ’narrower strip’ of values then previously.
Then,fX,Y (x, y) = 10 and it can be shown, thatρ(X, Y ) = 10/

√
101, which is

close to 1. The linear relationship betweenX andY is very strong in this case.

�

1.10.6 Bivariate Normal Distribution

Here we use matrix notation. A bivariate rv is treated as a random vector

X =

(

X1

X2

)

.

The expectation of a bivariate random vector is written as

µ = EX = E

(

X1

X2

)

=

(

µ1

µ2

)

and its variance-covariance matrix is

V =

(

var(X1) cov(X1, X2)
cov(X2, X1) var(X2)

)

=

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

.
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Figure 1.2: Bivariate Normal pdf

Then the joint pdf of a normal bi-variate rvX is given by

fX(x) =
1

2π
√

det(V )
exp

{

−1

2
(x− µ)TV −1(x− µ)

}

, (1.18)

wherex = (x1, x2)
T.

The determinant ofV is

detV = det

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

= (1− ρ2)σ2
1σ

2
2.

Hence, the inverse ofV is

V −1 =
1

detV

(

σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

)

=
1

1− ρ2

(

σ−2
1 −ρσ−1

1 σ−1
2

−ρσ−1
1 σ−1

2 σ−2
2

)

.

Then the exponent in formula (1.18) can be written as

− 1

2
(x− µ)TV −1(x− µ) =

= − 1

2(1− ρ2)
(x1 − µ1, x2 − µ2)

(

σ−2
1 −ρσ−1

1 σ−1
2

−ρσ−1
1 σ−1

2 σ−2
2

)(

x1 − µ
x2 − µ

)

= − 1

2(1− ρ2)

(

(x1 − µ1)
2

σ2
1

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

)

.
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So, the joint pdf of the two-dimensional normal rvX is

fX(x) =
1

2πσ1σ2

√

(1− ρ2)

× exp

{ −1

2(1− ρ2)

(

(x1 − µ1)
2

σ2
1

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2

+
(x2 − µ2)

2

σ2
2

)}

.

Note that whenρ = 0 it simplifies to

fX(x) =
1

2πσ1σ2
exp

{

−1

2

(

(x1 − µ1)
2

σ2
1

+
(x2 − µ2)

2

σ2
2

)}

,

which can be written as a product of the marginal distributions ofX1 andX2.
Hence, ifX = (X1, X2)

T has a bivariate normal distribution andρ = 0 then the
variablesX1 andX2 are independent.

1.10.7 Bivariate Transformations

Theorem 1.17.Let X andY be jointly continuous random variables with joint
pdf fX,Y (x, y) which has support onS ⊆ R

2. Consider random variablesU =
g(X, Y ) andV = h(X, Y ), whereg(·, ·) andh(·, ·) form a one-to-one mapping
fromS toD with inversesx = g−1(u, v) andy = h−1(u, v)which have continuous
partial derivatives. Then, the joint pdf of(U, V ) is

fU,V (u, v) = fX,Y

(

g−1(u, v), h−1(u, v)
)

|J |,

where, the Jacobian of the transformationJ is

J = det

(

∂g−1(u,v)
∂u

∂g−1(u,v)
∂v

∂h−1(u,v)
∂u

∂h−1(u,v)
∂v

)

for all (u, v) ∈ D
�

Example1.29. Let X, Y be independent rvs andX ∼ Exp(λ) andY ∼ Exp(λ).
Then, the joint pdf of(X, Y ) is

fX,Y (x, y) = λe−λxλe−λy = λ2e−λ(x+y)

on supportS = {(x, y) : x > 0, y > 0}.
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We will find the joint pdf for(U, V ), whereU = g(X, Y ) = X + Y andV =
h(X, Y ) = X/Y . This transformation and the support for(X, Y ) give the support
for (U, V ). This is{(u, v) : u > 0, v > 0}.

The inverse functions are

x = g−1(u, v) =
uv

1 + v
andy = h−1(u, v) =

u

1 + v
.

The Jacobian of the transformation is equal to

J = det

(

∂g−1(u,v)
∂u

∂g−1(u,v)
∂v

∂h−1(u,v)
∂u

∂h−1(u,v)
∂v

)

= det

(

v
1+v

u
(1+v)2

1
1+v

− u
(1+v)2

)

=
−u

(1 + v)2
.

Hence, by Theorem 1.17 we can write

fU,V (u, v) = fX,Y

(

g−1(u, v), h−1(u, v)
)

|J |

= λ2 exp

{

−λ

(

uv

1 + v
+

u

1 + v

)}

× u

(1 + v)2

=
λ2ue−λu

(1 + v)2
,

for u, v > 0.
�

These transformed variables are independent. In a simpler situation whereg(x) is
a function ofx only andh(y) is function ofy only, it is easy to see the following
very useful result.

Theorem 1.18.LetX andY be independent rvs and letg(x) be a function ofx
only andh(y) be function ofy only. Then the functionsU = g(X) andV = h(Y )
are independent.

�

Proof. (Continuous case) For anyu ∈ R andv ∈ R, define

Au = {x : g(x) ≤ u} and Av = {y : h(y) ≤ v}.

Then, we can obtain the joint cdf of(U, V ) as follows

FU,V (u, v) = P (U ≤ u, V ≤ v) = P (X ∈ Au, Y ∈ Av)

= P (X ∈ Au)P (Y ∈ Av) asX andY are independent.
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The mixed partial derivative with respect tou andv will give us the joint pdf for
(U, V ). That is,

fU,V (u, v) =
∂2

∂u∂v
FU,V (u, v) =

(

d

du
P (X ∈ Au)

)(

d

dv
P (Y ∈ Av)

)

as the first factor depends onu only and the second factor onv only. Hence, the
rvsU = g(X) andV = h(Y ) are independent.

�

Exercise1.18. Let (X, Y ) be a two-dimensional random variable with joint pdf

fX,Y (x, y) =

{

8xy, for 0 ≤ x < y ≤ 1;
0, otherwise.

LetU = X/Y andV = Y .

(a) Are the variablesX andY independent? Explain.

(b) Calculate the covariance ofX andY .

(c) Obtain the joint pdf of(U, V ).

(d) Are the variablesU andV independent? Explain.

(e) What is the covariance ofU andV ?

Exercise1.19. LetX andY be independent random variables such that

X ∼ Exp(λ) and Y ∼ Exp(λ).

(a) Find the joint probability density function of(U, V ), where

U =
X

X + Y
and V = X + Y.

(b) Are the variablesU andV independent? Explain.

(c) Show thatU is uniformly distributed on(0, 1).

(d) What is the distribution ofV ?


