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1.10 Two-Dimensional Random Variables

Definition 1.14. Let{2 be a sample space and, X, be functions, each assigning
a real numberX; (w), Xs(w) to every outcome € Q, thatisX; : Q@ - &} C R
and X, : Q — A, C R. Then the paitX = (X, X3) is called a two-dimensional
random variable. The induced sample space (range) of thedimensional ran-
dom variable is

X = {(.1'1,.1’2) 1T € Xl; To € XQ} g RQ.

OJ

We will denote two-dimensional (bi-variate) random valesiby bold capital let-
ters.

Definition 1.15. The cumulative distribution function of a two-dimensional
X - (X17 XQ) iS

FX(.CL'l,ZCQ) = P(X1 S .I'l,XQ § .CL'Q) (110)

0

1.10.1 Discrete Two-Dimensional Random Variables

If all values of X = (X, X,) are countable, i.e., the values are in the range
X = {(ZL‘U,?EQJ‘), 1= 1,2,..., ] = 1,2,}

then the variable is discrete. The cdf of a discret&Xr« (X, X5) is

Fx(zi,m) = Y > px(zi, 1)

z2j<x2 1, <71
wherepx (x1;, z2;) denotes thgoint probability mass functioand
px(ﬂfu',xzj) = P(Xl = T, X2 = l’zj)-

As in the univariate case, the joint pmf satisfies the follmywonditions.

1. px(l'h‘,l‘gj) >0, for all Z,j
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2. ), 2oy Px (w13, 1) = 1

Examplel.18 Consider an experiment of tossing two fair dice and notirgy th
outcome on each die. The whole sample space consists ofi3e®rie, i.e.,

Q={w;=(i,j):i,j=1,...,6}.

Now, with each of these 36 elements associate values of tmadom variables,
X, and X5, such that

X1 = sum of the outcomes on the two dice,

Xy = |dif ference of the outcomes on the two dice |.
That is,
X (wij) = (Xi(wig), Xo(wig)) = (i + 74, i —jl) 45=1,2,...,6.
Then, the bivariate nX = (X, Xy) has the following joint probability mass

function (empty cells mean that the pmf is equal to zero ate¢hevant values of
the rvs).

2 3 4 5 6 7 8 9 10 11 12

0 36 36 36 36 36 36
1 1 1 1 1 1
18 18 18 18 18
2 1 1 1 1
18 18 18 18
o 3 1 1 1
2 18 18 18
4 1 1
18 18
5 L

t

Expectations of functions of bivariate random variables @alculated the same
way as of the univariate rvs. Letz, x2) be a real valued function defined an
Theng(X) = g(X;, X3) is arv and its expectation is

Elg(X)] = Z g(w1, 22)px (71, T2).

X
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Examplel.19 Let X; and X, be random variables as defined in Example 1.18.
Then, forg(X;, X2) = X; X5 we obtain

1 1 245
Elg(X) =2 —+... — =
[9(X)] ><O><36+ +7><5><18 18

Marginal pmfs

Each of the components of the two-dimensional rv is a randarable and so
we may be interested in calculating its probabilities, fearaple P(X; = ).
Such a uni-variate pmf is then derived in a context of therithistion of the other
random variable. We call it thearginal pmf

Theorem 1.12.Let X = (X;, X;,) be a discrete bivariate random variable with
joint pmfpx (z1,25). Then the marginal pmfs of; and X, px, andpx,, are
given respectively by

px, (21) = P(X1 = 1) ZPX x1,72) and

pxg(lUQ) Xz = 5172 ZPX «%’17372

Proof. For X;:
Let us denote by, = {(z1,22) : 22 € X}. Then, for anyzr; € X; we may
write

P(Xl = .%‘1) = P(Xl =T1,%9 € Xg)

= P((X1, X2) C A,,)
= Y P(Xi=umz,X;=m1)

(x1,22)€EAL,

= pr(ﬂ,%)'
Xo

For X, the proof is similar. O

Examplel.20 The marginal distributions of the variablé§ and X, defined in
Example 1.18 are following.
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1 2 3 4 5 6 7 8 9 10 11 12

5 1 5 1 1 1 1

— 1 1 1 1 1
P(Xy = 1) 3 18 12 9 36 6 36 9 12 18 36

7 0 1 23 4 5
P(X;=w) § 1 5 © o 18

4

Exercisel.13 Students in a class of 100 were classified according to génder
and smoking §) as follows:

S
s q n
G male |20 32 8| 60

female| 10 5 25| 40
30 37 33| 100

wheres, ¢ andn denote the smoking status: “now smokes”, “did smoke buf’ quit
and “never smoked”, respectively. Find the probabilitytthaandomly selected

student

is a male;
is a male smoker;

is either a smoker or did smoke but quit;

I

. is a female who is a smoker or did smoke but quit.
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1.10.2 Continuous Two-Dimensional Random Variables

If the values ofX = (X, X,) are elements of an uncountable set in the Euclidean
plane, then the variable is jointly continuous. For exanipéevalues might be in

the range
X ={(x1,29):a <z <bc<uzy<d}

for some reak, b, ¢, d.

The cdf of a continuous "X = (X3, X5) is defined as

FX(IE1,$2)=/ / fx (t1, to)dt dts,

wherefx (z1, x2) is thejoint probability density functiosuch that

1. fx(fL'l,l'Q) >0 for all (ZL‘l,fEQ) e R?

2. f_oooo ffooo fx(l'l,l'g)dl'ldl'g =1.

The equation (1.11) implies that

O fx (21, 12)

021014 = fX(l’l,l’z)-

Also

d b
P(a S X1 S b,C S X2 S d) = / / fx(fL'l,l'Q)dlL'ldlL‘g.

(1.11)

(1.12)

The marginal pdfs oK; and X, are defined similarly as in the discrete case, here

using integrals.

le(fEl) :/ fx($1,9€2)d9€2, for — oo <2 < 00,

sz(fE2) :/ fx($1,9€2)d9€1, for — oo < 29 < 0.
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Examplel.21 CalculateP (X C A), whereA = {(z1,25) : 21 + 22 > 1} and
the joint pdf of X = (X, X») is defined by

6125 for 0 <z <1, 0< a9 < 1,

0 otherwise

fX(lUl,l’z) :{

The probability is a double integral of the pdf over the regih The region is
however limited by the domain in which the pdf is positive.

We can write
A={(x1,22) i1 +22>1, 0<21 <1, 0 <9 <1}
={(r1,m) ;21 > 1—29, 0< 21 <1, 0 <2y <1}
={(x1,m0): 1l =y <1 <1, 0 <9 <1}.

Hence, the probability is

(X C A // fX l‘l,l'g dl‘ldl'g / / 61’1[L‘2dl'1dl'2 =0.9

Also, we can calculate marginal pdfs.

1
fx,(x1) = / 6x1:pgdx2 = Qxlxg |(1): 211,
0

1
fx,(x2) = / 6x1:p2dx1 = 3x1x2 |0— 31‘2
0

These functions allow us to calculate probabilities inuadvonly one variable.
For example

1

1 1 2 3
Pl-<X — | = 2x1dr; = —.
(4 < X1 < 2) /4 104X 16
Analogously to the discrete case, the expectation of ailemeg{ X ) is given by

/ / fX iﬁlaxz)dlﬁld@

Similarly as in the case of univariate rvs the following lneproperty for the
expectation holds for bi-variate rvs.

Elag(X) + bh(X) + ] = aE[g(X)] + bE[R(X)] + ¢, (1.13)

wherea, b andc are constants angland/ are some functions of the bivariate rv
X = (X1, Xo).

[

4



34 CHAPTER 1. ELEMENTS OF PROBABILITY DISTRIBUTION THEORY

1.10.3 Conditional Distributions

Definition 1.16. Let X = (X;, X,) denote a discrete bivariate rv with joint
pmfpx (z1,z5) and marginal pmfex, (1) and px,(x2). For anyz; such that
px, (z1) > 0, the conditional pmf o, given thatX; = z; is the function ofc,
defined by
pX(Zlfl,iUQ)

px, (1)

Analogously, we define the conditional pmfgfgiven X, = xo

Pxo|xy (x2> =

pX(il?l,ZUQ)
Pxi|zo\T1) = ———F———
= 2( 1> pXQ(x2>

It is easy to check that these functions are indeed pdfs. ¥ample,

Zsz\xl(xz) _ ZPX(Zbl,l’z) - ZXQ px (21, x2) B px, (1) L

e pxi(z)  px(@) - px(an)

Examplel.22 Let X; and X, be defined as in Example 1.18. The conditional
pmf of X, givenX; =5, is

T |0 1 2 3 4 5
10 0 0

N[

D)X, =5(T2) ‘ 0
O

Exercisel.14 Let S andG denote thesmoking statusin genderas defined in
Exercise 1.13. Calculate the probability that a randomlgced student is

1. a smoker given that he is a male;

2. female, given that the student smokes.

Analogously to the conditional distribution for discretesywe define the condi-
tional distribution for continuous rvs.
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Definition 1.17. Let X = (X;, X,) denote a continuous bivariate rv with joint
pdf fx(x1,z2) and marginal pdfsfx, (z1) and fx,(z2). For anyz; such that
fx,(x1) > 0, the conditional pdf ofX, given thatX; = z; is the function ofi,
defined by

fx(9€17$2)
o (X)) = —/———.
fXQ‘ ( 2> le(xl)
Analogously, we define the conditional p.d.fXafgiven X, = x5
. fx(9€17$2)
fX1‘$2(ZL‘1) - fXQ(xQ) .

Here too, it is easy to verify that these functions are pdés.dxample,

[xalar (T2)dy = Md%

Xy v fxi (1)
- fXQ fX(llfl,l’z)dl’z
a fx, (1)
. le (951)
- Ix (951)

=1.

Examplel.23 For the random variables defined in Example 1.21 the comditio
pdfs are
 fx(@y,x0)  6x123

Pt (1) = Fx,(z)  3a2 =2

and

fx(l'l,l‘g) 6[L‘1.I’% 2
ol (T2) = = = 325.
Patal@e) = Zp 0N = 5y, =3

The conditional pdfs allow us to calculate conditional edtpgons. The condi-
tional expected value of a functigii X,) given thatX; = z; is defined by

> " 9(w2)pxsje (22) for a discrete r.v.
Blg(Xa)|ln] =1 7 (1.14)
/ 9(2) fx,)z, (x2)dxo fOr a continuous r.v.
Xo
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Examplel.24 The conditional mean and variance of thig given a value ofX,
for the variables defined in Example 1.21 are

1
3
Hxslzy = E(X2|$1) = / :p23:pgd:p2 — Z’
0

and

1 2
3 3
R, = wr(Xefer) = ECGlon) ~ ke = [ asaddan— (3) =
0

O

Lemma 1.2. For random variablesX andY defined on suppork’ and ), re-
spectively, and a functiof-) whose expectation exists, the following result holds

Elg(Y)] = E{E[g(Y)|X]}.

Proof. From the definition of conditional expectation we can write

E[g(Y)|X = 2] = Ag(y)fY|x(y)dy

This is a function ofcr whose expectation is

Ex{Ey[g(Y)|X]} = /{/ Y) fyie(y)d }fx(:c)dx
/ / D f)x @)y

—f(X Y)(CE Y)

_ / 9(y) / Foxw (@, y)dudy
y JX ,

=f;r(y)

= E[g(Y)].
O

Exercisel.15 Show the following two equalities which result from the abov
lemma.

1. E(Y) = E{E[Y|X]}:
2. var(Y) = E[var(Y|X)] + var(E[Y|X]).
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1.10.4 Independence of Random Variables

Definition 1.18. Let X = (X7, X5) denote a continuous bivariate rv with joint
pdf fx(z1,z2) and marginal pdfsfy, (z1) and fx,(z2). ThenX; and X, are
calledindependent random variablesif, for everyz; € X; andx, € A,

Ix(r1,22) = fx,(21) fx, (w2). (1.15)

4

We define independent discrete random variables analogousl|

If X; andX, are independent, then the conditional pdfgfgiven X; = z; is

_ fx (@ m) - fx (@) fx, (7)) -
fXQ‘xl(M) B fx, (21) B fxi (1) = Jxaln)

regardless of the value af. Analogous property holds for the conditional pdf of
X1 givenX2 = X9.

Examplel.25 It is easy to notice that for the variables defined in Examp#d. 1
we have

fx (1, 22) = 62105 = 221323 = fx, (21) fx, (22).

So, the variable(; and X, are independent. 0

In fact, two rvs are independent if and only if there existdionsg(z;) andh(zs)
such that for every;; € X} andx, € Xj,

fx (21, 22) = g(z1)h(22)

and the support for one variable does not depend on the sugfgbe other vari-
able.

Theorem 1.13.Let X; and X, be independent random variables. Then
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1. ForanyA Cc RandB C R
thatis,{X; C A} and{X, C B} are independent events.

2. Forg(X,), a function ofX; only, and forh(X5), a function ofX, only, we
have
E[g(X1)h(X2)] = E[g(X1)] E[R(X2)].

Proof. Assume thatX; and X, are continuous random variables. To prove the
theorem for discrete rvs we follow the same steps with sustead of integrals.

1. We have

P(X1 Q A,XQ Q B) = / / fx(l'l,l'g)dl'ldl'g
BJA

_ /B /A P (1) fy () dary s

-/ ( / fxl(xl)dﬂ) Fro(2)ds
/le T dxl/ fx,(x)dxs

= P(X; CA)P(X; C B).

2. Similar arguments as in Part 1 give
Bl = [ [ gt sx (o) dnds,
= [ stwm) s o) fraedondes

[ ([ stentsain) ntea) o),
_ < [
Elg(

"ot foin ) ([ htea) s, )

oo

g X1)] E[h(XQ)]'
L]

In the following theorem we will apply this result for the ment generating func-
tion of a sum of independent random variables.
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Theorem 1.14.Let X; and X, be independent random variables with moment
generating functiond/y, (¢t) and My, (¢), respectively. Then the moment gener-
ating function of the suri = X; + X is given by

My (t) = Mx, () Mx, (1).
Proof. By the definition of the mgf and by Theorem 1.13, part 2, we have

My(t) —REetY = Eet(X1+X2) —FE (etXleth) —F (etXI) E (etxz) — MX1 (t>MX2 (t)
0

Note that this result can be easily extended to a sum of anyoauwrf mutually
independent random variables.

Examplel.26 Let X; ~ N (i1, 0}) andXy ~ N (uo, 03). Whatiis the distribution
Using Theorem 1.14 we can write

My (t) = Mx, (t)Mx,(t)
= exp{t + oit?/2} exp{uat + o3t*/2}
= oxp{(p1 + po)t + (o} + 03)t*/2}.

This is the mgf of a normal rv witl(Y") = u; + po andvar(Y') = o + o3.
Exercisel.16 A part of an electronic system has two types of componentsi |
operation. Denote by; and X, the random length of life (measured in hundreds

of hours) of component of type | and of type Il, respectivélgsume that the joint
density function of two rvs is given by

1 e
Plion) = govesp { - 2E 2

2
whereX = {(x,z2) : 1 > 0,29 > 0}.
1. Calculate the probability that both components will haviésdléngth longer
than 100 hours, that is, fin#(X; > 1, Xy, > 1).

2. Calculate the probability that a component of type Il wilvba life length
longer than 200 hours, that is, fide{ X, > 2).

3. Are X; and X, independent? Justify your answer.
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4. Calculate the expected value of so called relative effigiei¢he two com-
ponents, which is expressed by

(%)



