1.10 Two-Dimensional Random Variables

Definition 1.14. Let Ω be a sample space and X_{1}, X_{2} be functions, each assigning a real number $X_{1}(\omega)$, $X_{2}(\omega)$ to every outcome $\omega \in \Omega$, that is $X_{1}: \Omega \rightarrow \mathcal{X}_{1} \subset \mathbb{R}$ and $X_{2}: \Omega \rightarrow \mathcal{X}_{2} \subset \mathbb{R}$. Then the pair $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ is called a two-dimensional random variable. The induced sample space (range) of the two-dimensional random variable is

$$
\mathcal{X}=\left\{\left(x_{1}, x_{2}\right): x_{1} \in \mathcal{X}_{1}, x_{2} \in \mathcal{X}_{2}\right\} \subseteq \mathbb{R}^{2}
$$

We will denote two-dimensional (bi-variate) random variables by bold capital letters.

Definition 1.15. The cumulative distribution function of a two-dimensional $r v$ $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ is

$$
\begin{equation*}
F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right) \tag{1.10}
\end{equation*}
$$

1.10.1 Discrete Two-Dimensional Random Variables

If all values of $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ are countable, i.e., the values are in the range

$$
\mathcal{X}=\left\{\left(x_{1 i}, x_{2 j}\right), i=1,2, \ldots, j=1,2, \ldots\right\}
$$

then the variable is discrete. The cdf of a discrete rv $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ is

$$
F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=\sum_{x_{2 j} \leq x_{2}} \sum_{x_{1 i} \leq x_{1}} p_{\boldsymbol{X}}\left(x_{1 i}, x_{2 j}\right)
$$

where $p_{\boldsymbol{X}}\left(x_{1 i}, x_{2 j}\right)$ denotes the joint probability mass function and

$$
p_{\boldsymbol{X}}\left(x_{1 i}, x_{2 j}\right)=P\left(X_{1}=x_{1 i}, X_{2}=x_{2 j}\right)
$$

As in the univariate case, the joint pmf satisfies the following conditions.

1. $p_{\boldsymbol{X}}\left(x_{1 i}, x_{2 j}\right) \geq 0$, for all i, j
2. $\sum_{\mathcal{X}_{2}} \sum_{\mathcal{X}_{1}} p_{\boldsymbol{X}}\left(x_{1 i}, x_{2 j}\right)=1$

Example 1.18. Consider an experiment of tossing two fair dice and noting the outcome on each die. The whole sample space consists of 36 elements, i.e.,

$$
\Omega=\left\{\omega_{i j}=(i, j): i, j=1, \ldots, 6\right\} .
$$

Now, with each of these 36 elements associate values of two random variables, X_{1} and X_{2}, such that

$$
\begin{aligned}
& X_{1} \equiv \text { sum of the outcomes on the two dice, } \\
& X_{2} \equiv \mid \text { difference of the outcomes on the two dice } \mid .
\end{aligned}
$$

That is,

$$
\boldsymbol{X}\left(\omega_{i, j}\right)=\left(X_{1}\left(\omega_{i, j}\right), X_{2}\left(\omega_{i, j}\right)\right)=(i+j,|i-j|) \quad i, j=1,2, \ldots, 6 .
$$

Then, the bivariate rv $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ has the following joint probability mass function (empty cells mean that the pmf is equal to zero at the relevant values of the rvs).

Expectations of functions of bivariate random variables are calculated the same way as of the univariate rvs. Let $g\left(x_{1}, x_{2}\right)$ be a real valued function defined on \mathcal{X}. Then $g(\boldsymbol{X})=g\left(X_{1}, X_{2}\right)$ is a rv and its expectation is

$$
\mathrm{E}[g(\boldsymbol{X})]=\sum_{\mathcal{X}} g\left(x_{1}, x_{2}\right) p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)
$$

Example 1.19. Let X_{1} and X_{2} be random variables as defined in Example 1.18. Then, for $g\left(X_{1}, X_{2}\right)=X_{1} X_{2}$ we obtain

$$
\mathrm{E}[g(\boldsymbol{X})]=2 \times 0 \times \frac{1}{36}+\ldots+7 \times 5 \times \frac{1}{18}=\frac{245}{18} .
$$

Marginal pmfs

Each of the components of the two-dimensional rv is a random variable and so we may be interested in calculating its probabilities, for example $P\left(X_{1}=x_{1}\right)$. Such a uni-variate pmf is then derived in a context of the distribution of the other random variable. We call it the marginal pmf.

Theorem 1.12. Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ be a discrete bivariate random variable with joint pmf $p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)$. Then the marginal pmfs of X_{1} and $X_{2}, p_{X_{1}}$ and $p_{X_{2}}$, are given respectively by

$$
\begin{aligned}
& p_{X_{1}}\left(x_{1}\right)=P\left(X_{1}=x_{1}\right)=\sum_{\mathcal{X}_{2}} p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) \quad \text { and } \\
& p_{X_{2}}\left(x_{2}\right)=P\left(X_{2}=x_{2}\right)=\sum_{\mathcal{X}_{1}} p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Proof. For X_{1} :
Let us denote by $A_{x_{1}}=\left\{\left(x_{1}, x_{2}\right): x_{2} \in \mathcal{X}_{2}\right\}$. Then, for any $x_{1} \in \mathcal{X}_{1}$ we may write

$$
\begin{aligned}
P\left(X_{1}=x_{1}\right) & =P\left(X_{1}=x_{1}, x_{2} \in \mathcal{X}_{2}\right) \\
& =P\left(\left(X_{1}, X_{2}\right) \subseteq A_{x_{1}}\right) \\
& =\sum_{\left(x_{1}, x_{2}\right) \in A_{x_{1}}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \\
& =\sum_{\mathcal{X}_{2}} p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

For X_{2} the proof is similar.

Example 1.20. The marginal distributions of the variables X_{1} and X_{2} defined in Example 1.18 are following.

x_{1}	2	3	4	5	6	7	8	9	10	11	12
$P\left(X_{1}=x_{1}\right)$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

x_{2}	0	1	2	3	4	5
$P\left(X_{2}=x_{2}\right)$	$\frac{1}{6}$	$\frac{5}{18}$	$\frac{2}{9}$	$\frac{1}{6}$	$\frac{1}{9}$	$\frac{1}{18}$

Exercise 1.13. Students in a class of 100 were classified according to gender (G) and smoking (S) as follows:

		S			
		s	q	n	
G	male	20	32	8	60
	female	10	5	25	40
		30	37	33	100

where s, q and n denote the smoking status: "now smokes", "did smoke but quit" and "never smoked", respectively. Find the probability that a randomly selected student

1. is a male;
2. is a male smoker;
3. is either a smoker or did smoke but quit;
4. is a female who is a smoker or did smoke but quit.

1.10.2 Continuous Two-Dimensional Random Variables

If the values of $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ are elements of an uncountable set in the Euclidean plane, then the variable is jointly continuous. For example the values might be in the range

$$
\mathcal{X}=\left\{\left(x_{1}, x_{2}\right): a \leq x_{1} \leq b, c \leq x_{2} \leq d\right\}
$$

for some real a, b, c, d.

The cdf of a continuous rv $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ is defined as

$$
\begin{equation*}
F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=\int_{-\infty}^{x_{2}} \int_{-\infty}^{x_{1}} f_{\boldsymbol{X}}\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \tag{1.11}
\end{equation*}
$$

where $f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)$ is the joint probability density function such that

1. $f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) \geq 0$ for all $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=1$.

The equation (1.11) implies that

$$
\begin{equation*}
\frac{\partial^{2} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}}=f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) \tag{1.12}
\end{equation*}
$$

Also

$$
P\left(a \leq X_{1} \leq b, c \leq X_{2} \leq d\right)=\int_{c}^{d} \int_{a}^{b} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

The marginal pdfs of X_{1} and X_{2} are defined similarly as in the discrete case, here using integrals.

$$
\begin{aligned}
& f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{2}, \text { for }-\infty<x_{1}<\infty, \\
& f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{1}, \text { for }-\infty<x_{2}<\infty .
\end{aligned}
$$

Example 1.21. Calculate $P(\boldsymbol{X} \subseteq A)$, where $A=\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2} \geq 1\right\}$ and the joint pdf of $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ is defined by

$$
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}
6 x_{1} x_{2}^{2} \text { for } 0<x_{1}<1,0<x_{2}<1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

The probability is a double integral of the pdf over the region A. The region is however limited by the domain in which the pdf is positive.

We can write

$$
\begin{aligned}
A & =\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2} \geq 1,0<x_{1}<1,0<x_{2}<1\right\} \\
& =\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 1-x_{2}, 0<x_{1}<1,0<x_{2}<1\right\} \\
& =\left\{\left(x_{1}, x_{2}\right): 1-x_{2}<x_{1}<1,0<x_{2}<1\right\} .
\end{aligned}
$$

Hence, the probability is

$$
P(\boldsymbol{X} \subseteq A)=\iint_{A} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\int_{0}^{1} \int_{1-x_{2}}^{1} 6 x_{1} x_{2}^{2} d x_{1} d x_{2}=0.9
$$

Also, we can calculate marginal pdfs.

$$
\begin{aligned}
& f_{X_{1}}\left(x_{1}\right)=\int_{0}^{1} 6 x_{1} x_{2}^{2} d x_{2}=\left.2 x_{1} x_{2}^{3}\right|_{0} ^{1}=2 x_{1}, \\
& f_{X_{2}}\left(x_{2}\right)=\int_{0}^{1} 6 x_{1} x_{2}^{2} d x_{1}=\left.3 x_{1}^{2} x_{2}^{2}\right|_{0} ^{1}=3 x_{2}^{2} .
\end{aligned}
$$

These functions allow us to calculate probabilities involving only one variable. For example

$$
P\left(\frac{1}{4}<X_{1}<\frac{1}{2}\right)=\int_{\frac{1}{4}}^{\frac{1}{2}} 2 x_{1} d x_{1}=\frac{3}{16} .
$$

Analogously to the discrete case, the expectation of a function $g(\boldsymbol{X})$ is given by

$$
\mathrm{E}[g(\boldsymbol{X})]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(\boldsymbol{X}) f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}
$$

Similarly as in the case of univariate rvs the following linear property for the expectation holds for bi-variate rvs.

$$
\begin{equation*}
\mathrm{E}[a g(\boldsymbol{X})+b h(\boldsymbol{X})+c]=a \mathrm{E}[g(\boldsymbol{X})]+b \mathrm{E}[h(\boldsymbol{X})]+c, \tag{1.13}
\end{equation*}
$$

where a, b and c are constants and g and h are some functions of the bivariate rv $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$.

1.10.3 Conditional Distributions

Definition 1.16. Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ denote a discrete bivariate $r v$ with joint pmf $p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)$ and marginal pmfs $p_{X_{1}}\left(x_{1}\right)$ and $p_{X_{2}}\left(x_{2}\right)$. For any x_{1} such that $p_{X_{1}}\left(x_{1}\right)>0$, the conditional pmf of X_{2} given that $X_{1}=x_{1}$ is the function of x_{2} defined by

$$
p_{X_{2} \mid x_{1}}\left(x_{2}\right)=\frac{p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)} .
$$

Analogously, we define the conditional pmf of X_{1} given $X_{2}=x_{2}$

$$
p_{X_{1} \mid x_{2}}\left(x_{1}\right)=\frac{p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{p_{X_{2}}\left(x_{2}\right)}
$$

It is easy to check that these functions are indeed pdfs. For example,

$$
\sum_{\mathcal{X}_{2}} p_{X_{2} \mid x_{1}}\left(x_{2}\right)=\sum_{\mathcal{X}_{2}} \frac{p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)}=\frac{\sum_{\mathcal{X}_{2}} p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)}=\frac{p_{X_{1}}\left(x_{1}\right)}{p_{X_{1}}\left(x_{1}\right)}=1 .
$$

Example 1.22. Let X_{1} and X_{2} be defined as in Example 1.18. The conditional pmf of X_{2} given $X_{1}=5$, is

$$
\begin{array}{c|cccccc}
x_{2} & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline p_{X_{2} \mid X_{1}=5}\left(x_{2}\right) & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0
\end{array}
$$

Exercise 1.14. Let S and G denote the smoking status an gender as defined in Exercise 1.13. Calculate the probability that a randomly selected student is

1. a smoker given that he is a male;
2. female, given that the student smokes.

Analogously to the conditional distribution for discrete rvs, we define the conditional distribution for continuous rvs.

Definition 1.17. Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ denote a continuous bivariate rv with joint $p d f f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)$ and marginal pdfs $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$. For any x_{1} such that $f_{X_{1}}\left(x_{1}\right)>0$, the conditional pdf of X_{2} given that $X_{1}=x_{1}$ is the function of x_{2} defined by

$$
f_{X_{2} \mid x_{1}}\left(x_{2}\right)=\frac{f_{\mathbf{X}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}
$$

Analogously, we define the conditional p.d.f. of X_{1} given $X_{2}=x_{2}$

$$
f_{X_{1} \mid x_{2}}\left(x_{1}\right)=\frac{f_{\mathbf{X}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}
$$

Here too, it is easy to verify that these functions are pdfs. For example,

$$
\begin{aligned}
\int_{\mathcal{X}_{2}} f_{X_{2} \mid x_{1}}\left(x_{2}\right) d x_{2} & =\int_{\mathcal{X}_{2}} \frac{f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)} d x_{2} \\
& =\frac{\int_{\mathcal{X}_{2}} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{2}}{f_{X_{1}}\left(x_{1}\right)} \\
& =\frac{f_{X_{1}}\left(x_{1}\right)}{f_{X_{1}}\left(x_{1}\right)}=1 .
\end{aligned}
$$

Example 1.23. For the random variables defined in Example 1.21 the conditional pdfs are

$$
f_{X_{1} \mid x_{2}}\left(x_{1}\right)=\frac{f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}=\frac{6 x_{1} x_{2}^{2}}{3 x_{2}^{2}}=2 x_{1}
$$

and

$$
f_{X_{2} \mid x_{1}}\left(x_{2}\right)=\frac{f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=\frac{6 x_{1} x_{2}^{2}}{2 x_{1}}=3 x_{2}^{2} .
$$

The conditional pdfs allow us to calculate conditional expectations. The conditional expected value of a function $g\left(X_{2}\right)$ given that $X_{1}=x_{1}$ is defined by

$$
\mathrm{E}\left[g\left(X_{2}\right) \mid x_{1}\right]=\left\{\begin{array}{l}
\sum_{\mathcal{X}_{2}} g\left(x_{2}\right) p_{X_{2} \mid x_{1}}\left(x_{2}\right) \text { for a discrete r.v., } \tag{1.14}\\
\int_{\mathcal{X}_{2}} g\left(x_{2}\right) f_{X_{2} \mid x_{1}}\left(x_{2}\right) d x_{2} \text { for a continuous r.v.. }
\end{array}\right.
$$

Example 1.24. The conditional mean and variance of the X_{2} given a value of X_{1}, for the variables defined in Example 1.21 are

$$
\mu_{X_{2} \mid x_{1}}=\mathrm{E}\left(X_{2} \mid x_{1}\right)=\int_{0}^{1} x_{2} 3 x_{2}^{2} d x_{2}=\frac{3}{4},
$$

and
$\sigma_{X_{2} \mid x_{1}}^{2}=\operatorname{var}\left(X_{2} \mid x_{1}\right)=\mathrm{E}\left(X_{2}^{2} \mid x_{1}\right)-\left[\mathrm{E}\left(X_{2} \mid x_{1}\right)\right]^{2}=\int_{0}^{1} x_{2}^{2} 3 x_{2}^{2} d x_{2}-\left(\frac{3}{4}\right)^{2}=\frac{3}{80}$.

Lemma 1.2. For random variables X and Y defined on support \mathcal{X} and \mathcal{Y}, respectively, and a function $g(\cdot)$ whose expectation exists, the following result holds

$$
\mathrm{E}[g(Y)]=\mathrm{E}\{\mathrm{E}[g(Y) \mid X]\}
$$

Proof. From the definition of conditional expectation we can write

$$
\mathrm{E}[g(Y) \mid X=x]=\int_{\mathcal{Y}} g(y) f_{Y \mid x}(y) d y
$$

This is a function of x whose expectation is

$$
\begin{aligned}
\mathrm{E}_{X}\left\{\mathrm{E}_{Y}[g(Y) \mid X]\right\} & =\int_{\mathcal{X}}\left\{\int_{\mathcal{Y}} g(y) f_{Y \mid x}(y) d y\right\} f_{X}(x) d x \\
& =\int_{\mathcal{X}} \int_{\mathcal{Y}} g(y) \underbrace{f_{Y \mid x}(y) f_{X}(x)}_{=f_{(X, Y)}(x, y)} d y d x \\
& =\int_{\mathcal{Y}} g(y) \underbrace{\int_{\mathcal{X}} f_{(X, Y)}(x, y) d x}_{=f_{Y}(y)} d y \\
& =\mathrm{E}[g(Y)] .
\end{aligned}
$$

Exercise 1.15. Show the following two equalities which result from the above lemma.

1. $\mathrm{E}(Y)=\mathrm{E}\{\mathrm{E}[Y \mid X]\}$;
2. $\operatorname{var}(Y)=\mathrm{E}[\operatorname{var}(Y \mid X)]+\operatorname{var}(\mathrm{E}[Y \mid X])$.

1.10.4 Independence of Random Variables

Definition 1.18. Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ denote a continuous bivariate $r v$ with joint $p d f f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)$ and marginal pdfs $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$. Then X_{1} and X_{2} are called independent random variables if, for every $x_{1} \in \mathcal{X}_{1}$ and $x_{2} \in \mathcal{X}_{2}$

$$
\begin{equation*}
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) . \tag{1.15}
\end{equation*}
$$

We define independent discrete random variables analogously.

If X_{1} and X_{2} are independent, then the conditional pdf of X_{2} given $X_{1}=x_{1}$ is

$$
f_{X_{2} \mid x_{1}}\left(x_{2}\right)=\frac{f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=\frac{f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=f_{X_{2}}\left(x_{2}\right)
$$

regardless of the value of x_{1}. Analogous property holds for the conditional pdf of X_{1} given $X_{2}=x_{2}$.

Example 1.25. It is easy to notice that for the variables defined in Example 1.21 we have

$$
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=6 x_{1} x_{2}^{2}=2 x_{1} 3 x_{2}^{2}=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) .
$$

So, the variables X_{1} and X_{2} are independent.

In fact, two rvs are independent if and only if there exist functions $g\left(x_{1}\right)$ and $h\left(x_{2}\right)$ such that for every $x_{1} \in \mathcal{X}_{1}$ and $x_{2} \in \mathcal{X}_{2}$,

$$
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=g\left(x_{1}\right) h\left(x_{2}\right)
$$

and the support for one variable does not depend on the support of the other variable.

Theorem 1.13. Let X_{1} and X_{2} be independent random variables. Then

1. For any $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$

$$
P\left(X_{1} \subseteq A, X_{2} \subseteq B\right)=P\left(X_{1} \subseteq A\right) P\left(X_{2} \subseteq B\right)
$$

that is, $\left\{X_{1} \subseteq A\right\}$ and $\left\{X_{2} \subseteq B\right\}$ are independent events.
2. For $g\left(X_{1}\right)$, a function of X_{1} only, and for $h\left(X_{2}\right)$, a function of X_{2} only, we have

$$
\mathrm{E}\left[g\left(X_{1}\right) h\left(X_{2}\right)\right]=\mathrm{E}\left[g\left(X_{1}\right)\right] \mathrm{E}\left[h\left(X_{2}\right)\right] .
$$

Proof. Assume that X_{1} and X_{2} are continuous random variables. To prove the theorem for discrete rvs we follow the same steps with sums instead of integrals.

1. We have

$$
\begin{aligned}
P\left(X_{1} \subseteq A, X_{2} \subseteq B\right) & =\int_{B} \int_{A} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\int_{B} \int_{A} f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) d x_{1} d x_{2} \\
& =\int_{B}\left(\int_{A} f_{X_{1}}\left(x_{1}\right) d x_{1}\right) f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =\int_{A} f_{X_{1}}\left(x_{1}\right) d x_{1} \int_{B} f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =P\left(X_{1} \subseteq A\right) P\left(X_{2} \subseteq B\right) .
\end{aligned}
$$

2. Similar arguments as in Part 1 give

$$
\begin{aligned}
\mathrm{E}\left[g\left(X_{1}\right) h\left(X_{2}\right)\right] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}\right) h\left(x_{2}\right) f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}\right) h\left(x_{2}\right) f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) d x_{1} d x_{2} \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} g\left(x_{1}\right) f_{X_{1}}\left(x_{1}\right) d x_{1}\right) h\left(x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =\left(\int_{-\infty}^{\infty} g\left(x_{1}\right) f_{X_{1}}\left(x_{1}\right) d x_{1}\right)\left(\int_{-\infty}^{\infty} h\left(x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2}\right) \\
& =\mathrm{E}\left[g\left(X_{1}\right)\right] \mathrm{E}\left[h\left(X_{2}\right)\right] .
\end{aligned}
$$

In the following theorem we will apply this result for the moment generating function of a sum of independent random variables.

Theorem 1.14. Let X_{1} and X_{2} be independent random variables with moment generating functions $M_{X_{1}}(t)$ and $M_{X_{2}}(t)$, respectively. Then the moment generating function of the sum $Y=X_{1}+X_{2}$ is given by

$$
M_{Y}(t)=M_{X_{1}}(t) M_{X_{2}}(t)
$$

Proof. By the definition of the mgf and by Theorem 1.13, part 2, we have
$M_{Y}(t)=\mathrm{E} e^{t Y}=\mathrm{E} e^{t\left(X_{1}+X_{2}\right)}=\mathrm{E}\left(e^{t X_{1}} e^{t X_{2}}\right)=\mathrm{E}\left(e^{t X_{1}}\right) \mathrm{E}\left(e^{t X_{2}}\right)=M_{X_{1}}(t) M_{X_{2}}(t)$.

Note that this result can be easily extended to a sum of any number of mutually independent random variables.

Example 1.26. Let $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$. What is the distribution of $Y=X_{1}+X_{2}$?

Using Theorem 1.14 we can write

$$
\begin{aligned}
M_{Y}(t) & =M_{X_{1}}(t) M_{X_{2}}(t) \\
& =\exp \left\{\mu_{1} t+\sigma_{1}^{2} t^{2} / 2\right\} \exp \left\{\mu_{2} t+\sigma_{2}^{2} t^{2} / 2\right\} \\
& =\exp \left\{\left(\mu_{1}+\mu_{2}\right) t+\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) t^{2} / 2\right\} .
\end{aligned}
$$

This is the mgf of a normal rv with $\mathrm{E}(Y)=\mu_{1}+\mu_{2}$ and $\operatorname{var}(Y)=\sigma_{1}^{2}+\sigma_{2}^{2}$.
Exercise 1.16. A part of an electronic system has two types of components in joint operation. Denote by X_{1} and X_{2} the random length of life (measured in hundreds of hours) of component of type I and of type II, respectively. Assume that the joint density function of two rvs is given by

$$
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=\frac{1}{8} x_{1} \exp \left\{-\frac{x_{1}+x_{2}}{2}\right\} I_{\mathcal{X}},
$$

where $\mathcal{X}=\left\{\left(x_{1}, x_{2}\right): x_{1}>0, x_{2}>0\right\}$.

1. Calculate the probability that both components will have a life length longer than 100 hours, that is, find $P\left(X_{1}>1, X_{2}>1\right)$.
2. Calculate the probability that a component of type II will have a life length longer than 200 hours, that is, find $P\left(X_{2}>2\right)$.
3. Are X_{1} and X_{2} independent? Justify your answer.
4. Calculate the expected value of so called relative efficiency of the two components, which is expressed by

$$
\mathrm{E}\left(\frac{X_{2}}{X_{1}}\right)
$$

