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1.10 Two-Dimensional Random Variables

Definition 1.14. LetΩ be a sample space andX1,X2 be functions, each assigning
a real numberX1(ω), X2(ω) to every outcomeω ∈ Ω, that isX1 : Ω → X1 ⊂ R

andX2 : Ω → X2 ⊂ R. Then the pairX = (X1, X2) is called a two-dimensional
random variable. The induced sample space (range) of the two-dimensional ran-
dom variable is

X = {(x1, x2) : x1 ∈ X1, x2 ∈ X2} ⊆ R
2.

�

We will denote two-dimensional (bi-variate) random variables by bold capital let-
ters.

Definition 1.15. The cumulative distribution function of a two-dimensionalrv
X = (X1, X2) is

FX(x1, x2) = P (X1 ≤ x1, X2 ≤ x2) (1.10)

�

1.10.1 Discrete Two-Dimensional Random Variables

If all values ofX = (X1, X2) are countable, i.e., the values are in the range

X = {(x1i, x2j), i = 1, 2, . . . , j = 1, 2, . . .}

then the variable is discrete. The cdf of a discrete rvX = (X1, X2) is

FX(x1, x2) =
∑

x2j≤x2

∑

x1i≤x1

pX(x1i, x2j)

wherepX(x1i, x2j) denotes thejoint probability mass functionand

pX(x1i, x2j) = P (X1 = x1i, X2 = x2j).

As in the univariate case, the joint pmf satisfies the following conditions.

1. pX(x1i, x2j) ≥ 0 , for all i, j
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2.
∑

X2

∑

X1
pX(x1i, x2j) = 1

Example1.18. Consider an experiment of tossing two fair dice and noting the
outcome on each die. The whole sample space consists of 36 elements, i.e.,

Ω = {ωij = (i, j) : i, j = 1, . . . , 6}.

Now, with each of these 36 elements associate values of two random variables,
X1 andX2, such that

X1 ≡ sum of the outcomes on the two dice,

X2 ≡ | difference of the outcomes on the two dice |.

That is,

X(ωi,j) = (X1(ωi,j), X2(ωi,j)) = (i+ j, |i− j|) i, j = 1, 2, . . . , 6.

Then, the bivariate rvX = (X1, X2) has the following joint probability mass
function (empty cells mean that the pmf is equal to zero at therelevant values of
the rvs).
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�

Expectations of functions of bivariate random variables are calculated the same
way as of the univariate rvs. Letg(x1, x2) be a real valued function defined onX .
Theng(X) = g(X1, X2) is a rv and its expectation is

E[g(X)] =
∑

X

g(x1, x2)pX(x1, x2).



30 CHAPTER 1. ELEMENTS OF PROBABILITY DISTRIBUTION THEORY

Example1.19. Let X1 andX2 be random variables as defined in Example 1.18.
Then, forg(X1, X2) = X1X2 we obtain

E[g(X)] = 2× 0×
1

36
+ . . .+ 7× 5×

1

18
=

245

18
.

�

Marginal pmfs

Each of the components of the two-dimensional rv is a random variable and so
we may be interested in calculating its probabilities, for exampleP (X1 = x1).
Such a uni-variate pmf is then derived in a context of the distribution of the other
random variable. We call it themarginal pmf.

Theorem 1.12.LetX = (X1, X2) be a discrete bivariate random variable with
joint pmf pX(x1, x2). Then the marginal pmfs ofX1 andX2, pX1 and pX2 , are
given respectively by

pX1(x1) = P (X1 = x1) =
∑

X2

pX(x1, x2) and

pX2(x2) = P (X2 = x2) =
∑

X1

pX(x1, x2).

Proof. ForX1:
Let us denote byAx1 = {(x1, x2) : x2 ∈ X2}. Then, for anyx1 ∈ X1 we may
write

P (X1 = x1) = P (X1 = x1, x2 ∈ X2)

= P
(
(X1, X2) ⊆ Ax1

)

=
∑

(x1,x2)∈Ax1

P (X1 = x1, X2 = x2)

=
∑

X2

pX(x1, x2).

ForX2 the proof is similar.
�

Example1.20. The marginal distributions of the variablesX1 andX2 defined in
Example 1.18 are following.
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�

Exercise1.13. Students in a class of 100 were classified according to gender(G)
and smoking (S) as follows:

S
s q n

G male 20 32 8 60
female 10 5 25 40

30 37 33 100

wheres, q andn denote the smoking status: “now smokes”, “did smoke but quit”
and “never smoked”, respectively. Find the probability that a randomly selected
student

1. is a male;

2. is a male smoker;

3. is either a smoker or did smoke but quit;

4. is a female who is a smoker or did smoke but quit.
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1.10.2 Continuous Two-Dimensional Random Variables

If the values ofX = (X1, X2) are elements of an uncountable set in the Euclidean
plane, then the variable is jointly continuous. For examplethe values might be in
the range

X = {(x1, x2) : a ≤ x1 ≤ b, c ≤ x2 ≤ d}

for some reala, b, c, d.

The cdf of a continuous rvX = (X1, X2) is defined as

FX(x1, x2) =

∫ x2

−∞

∫ x1

−∞

fX(t1, t2)dt1dt2, (1.11)

wherefX(x1, x2) is thejoint probability density functionsuch that

1. fX(x1, x2) ≥ 0 for all (x1, x2) ∈ R
2

2.
∫∞

−∞

∫∞

−∞
fX(x1, x2)dx1dx2 = 1.

The equation (1.11) implies that

∂2fX(x1, x2)

∂x1∂x2
= fX(x1, x2). (1.12)

Also

P (a ≤ X1 ≤ b, c ≤ X2 ≤ d) =

∫ d

c

∫ b

a

fX(x1, x2)dx1dx2.

The marginal pdfs ofX1 andX2 are defined similarly as in the discrete case, here
using integrals.

fX1(x1) =

∫ ∞

−∞

fX(x1, x2)dx2, for −∞ < x1 < ∞,

fX2(x2) =

∫ ∞

−∞

fX(x1, x2)dx1, for −∞ < x2 < ∞.
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Example1.21. CalculateP
(
X ⊆ A

)
, whereA = {(x1, x2) : x1 + x2 ≥ 1} and

the joint pdf ofX = (X1, X2) is defined by

fX(x1, x2) =

{

6x1x
2
2 for 0 < x1 < 1, 0 < x2 < 1,

0 otherwise.

The probability is a double integral of the pdf over the region A. The region is
however limited by the domain in which the pdf is positive.

We can write

A = {(x1, x2) : x1 + x2 ≥ 1, 0 < x1 < 1, 0 < x2 < 1}

= {(x1, x2) : x1 ≥ 1− x2, 0 < x1 < 1, 0 < x2 < 1}

= {(x1, x2) : 1− x2 < x1 < 1, 0 < x2 < 1}.

Hence, the probability is

P (X ⊆ A) =

∫ ∫

A

fX(x1, x2)dx1dx2 =

∫ 1

0

∫ 1

1−x2

6x1x
2
2dx1dx2 = 0.9

Also, we can calculate marginal pdfs.

fX1(x1) =

∫ 1

0

6x1x
2
2dx2 = 2x1x

3
2 |

1
0= 2x1,

fX2(x2) =

∫ 1

0

6x1x
2
2dx1 = 3x2

1x
2
2 |

1
0= 3x2

2.

These functions allow us to calculate probabilities involving only one variable.
For example

P

(
1

4
< X1 <

1

2

)

=

∫ 1
2

1
4

2x1dx1 =
3

16
.

�

Analogously to the discrete case, the expectation of a function g(X) is given by

E[g(X)] =

∫ ∞

−∞

∫ ∞

−∞

g(X)fX(x1, x2)dx1dx2.

Similarly as in the case of univariate rvs the following linear property for the
expectation holds for bi-variate rvs.

E[ag(X) + bh(X) + c] = aE[g(X)] + bE[h(X)] + c, (1.13)

wherea, b andc are constants andg andh are some functions of the bivariate rv
X = (X1, X2).
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1.10.3 Conditional Distributions

Definition 1.16. Let X = (X1, X2) denote a discrete bivariate rv with joint
pmf pX(x1, x2) and marginal pmfspX1(x1) and pX2(x2). For anyx1 such that
pX1(x1) > 0, the conditional pmf ofX2 given thatX1 = x1 is the function ofx2

defined by

pX2|x1(x2) =
pX(x1, x2)

pX1(x1)
.

Analogously, we define the conditional pmf ofX1 givenX2 = x2

pX1|x2(x1) =
pX(x1, x2)

pX2(x2)
.

�

It is easy to check that these functions are indeed pdfs. For example,

∑

X2

pX2|x1(x2) =
∑

X2

pX(x1, x2)

pX1(x1)
=

∑

X2
pX(x1, x2)

pX1(x1)
=

pX1(x1)

pX1(x1)
= 1.

Example1.22. Let X1 andX2 be defined as in Example 1.18. The conditional
pmf ofX2 givenX1 = 5, is

x2 0 1 2 3 4 5

pX2|X1=5(x2) 0 1
2

0 1
2

0 0
�

Exercise1.14. Let S andG denote thesmoking statusan genderas defined in
Exercise 1.13. Calculate the probability that a randomly selected student is

1. a smoker given that he is a male;

2. female, given that the student smokes.

Analogously to the conditional distribution for discrete rvs, we define the condi-
tional distribution for continuous rvs.
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Definition 1.17. Let X = (X1, X2) denote a continuous bivariate rv with joint
pdf fX(x1, x2) and marginal pdfsfX1(x1) and fX2(x2). For any x1 such that
fX1(x1) > 0, the conditional pdf ofX2 given thatX1 = x1 is the function ofx2

defined by

fX2|x1
(x2) =

fX(x1, x2)

fX1(x1)
.

Analogously, we define the conditional p.d.f. ofX1 givenX2 = x2

fX1|x2(x1) =
fX(x1, x2)

fX2(x2)
.

�

Here too, it is easy to verify that these functions are pdfs. For example,
∫

X2

fX2|x1(x2)dx2 =

∫

X2

fX(x1, x2)

fX1(x1)
dx2

=

∫

X2
fX(x1, x2)dx2

fX1(x1)

=
fX1(x1)

fX1(x1)
= 1.

Example1.23. For the random variables defined in Example 1.21 the conditional
pdfs are

fX1|x2
(x1) =

fX(x1, x2)

fX2(x2)
=

6x1x
2
2

3x2
2

= 2x1

and

fX2|x1(x2) =
fX(x1, x2)

fX1(x1)
=

6x1x
2
2

2x1
= 3x2

2.

�

The conditional pdfs allow us to calculate conditional expectations. The condi-
tional expected value of a functiong(X2) given thatX1 = x1 is defined by

E[g(X2)|x1] =







∑

X2

g(x2)pX2|x1
(x2) for a discrete r.v.,

∫

X2

g(x2)fX2|x1
(x2)dx2 for a continuous r.v..

(1.14)



36 CHAPTER 1. ELEMENTS OF PROBABILITY DISTRIBUTION THEORY

Example1.24. The conditional mean and variance of theX2 given a value ofX1,
for the variables defined in Example 1.21 are

µX2|x1
= E(X2|x1) =

∫ 1

0

x23x
2
2dx2 =

3

4
,

and

σ2
X2|x1

= var(X2|x1) = E(X2
2 |x1)− [E(X2|x1)]

2 =

∫ 1

0

x2
23x

2
2dx2−

(
3

4

)2

=
3

80
.

�

Lemma 1.2. For random variablesX andY defined on supportX andY , re-
spectively, and a functiong(·) whose expectation exists, the following result holds

E[g(Y )] = E{E[g(Y )|X ]}.

Proof. From the definition of conditional expectation we can write

E[g(Y )|X = x] =

∫

Y

g(y)fY |x(y)dy.

This is a function ofx whose expectation is

EX{EY [g(Y )|X ]} =

∫

X

{∫

Y

g(y)fY |x(y)dy

}

fX(x)dx

=

∫

X

∫

Y

g(y)fY |x(y)fX(x)
︸ ︷︷ ︸

=f(X,Y )(x,y)

dydx

=

∫

Y

g(y)

∫

X

f(X,Y )(x, y)dx

︸ ︷︷ ︸

=fY (y)

dy

= E[g(Y )].

�

Exercise1.15. Show the following two equalities which result from the above
lemma.

1. E(Y ) = E{E[Y |X ]};

2. var(Y ) = E[var(Y |X)] + var(E[Y |X ]).
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1.10.4 Independence of Random Variables

Definition 1.18. Let X = (X1, X2) denote a continuous bivariate rv with joint
pdf fX(x1, x2) and marginal pdfsfX1(x1) and fX2(x2). ThenX1 and X2 are
calledindependent random variables if, for everyx1 ∈ X1 andx2 ∈ X2

fX(x1, x2) = fX1(x1)fX2(x2). (1.15)

�

We define independent discrete random variables analogously.

If X1 andX2 are independent, then the conditional pdf ofX2 givenX1 = x1 is

fX2|x1
(x2) =

fX(x1, x2)

fX1(x1)
=

fX1(x1)fX2(x2)

fX1(x1)
= fX2(x2)

regardless of the value ofx1. Analogous property holds for the conditional pdf of
X1 givenX2 = x2.

Example1.25. It is easy to notice that for the variables defined in Example 1.21
we have

fX(x1, x2) = 6x1x
2
2 = 2x13x

2
2 = fX1(x1)fX2(x2).

So, the variablesX1 andX2 are independent.
�

In fact, two rvs are independent if and only if there exist functionsg(x1) andh(x2)
such that for everyx1 ∈ X1 andx2 ∈ X2,

fX(x1, x2) = g(x1)h(x2)

and the support for one variable does not depend on the support of the other vari-
able.

Theorem 1.13.LetX1 andX2 be independent random variables. Then
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1. For anyA ⊂ R andB ⊂ R

P (X1 ⊆ A,X2 ⊆ B) = P (X1 ⊆ A)P (X2 ⊆ B),

that is,{X1 ⊆ A} and{X2 ⊆ B} are independent events.

2. For g(X1), a function ofX1 only, and forh(X2), a function ofX2 only, we
have

E[g(X1)h(X2)] = E[g(X1)] E[h(X2)].

Proof. Assume thatX1 andX2 are continuous random variables. To prove the
theorem for discrete rvs we follow the same steps with sums instead of integrals.

1. We have

P (X1 ⊆ A,X2 ⊆ B) =

∫

B

∫

A

fX(x1, x2)dx1dx2

=

∫

B

∫

A

fX1(x1)fX2(x2)dx1dx2

=

∫

B

(∫

A

fX1(x1)dx1

)

fX2(x2)dx2

=

∫

A

fX1(x1)dx1

∫

B

fX2(x2)dx2

= P (X1 ⊆ A)P (X2 ⊆ B).

2. Similar arguments as in Part 1 give

E[g(X1)h(X2)] =

∫ ∞

−∞

∫ ∞

−∞

g(x1)h(x2)fX(x1, x2)dx1dx2

=

∫ ∞

−∞

∫ ∞

−∞

g(x1)h(x2)fX1(x1)fX2(x2)dx1dx2

=

∫ ∞

−∞

(∫ ∞

−∞

g(x1)fX1(x1)dx1

)

h(x2)fX2(x2)dx2

=

(∫ ∞

−∞

g(x1)fX1(x1)dx1

)(∫ ∞

−∞

h(x2)fX2(x2)dx2

)

= E[g(X1)] E[h(X2)].

�

In the following theorem we will apply this result for the moment generating func-
tion of a sum of independent random variables.
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Theorem 1.14.Let X1 andX2 be independent random variables with moment
generating functionsMX1(t) andMX2(t), respectively. Then the moment gener-
ating function of the sumY = X1 +X2 is given by

MY (t) = MX1(t)MX2(t).

Proof. By the definition of the mgf and by Theorem 1.13, part 2, we have

MY (t) = E etY = E et(X1+X2) = E
(
etX1etX2

)
= E

(
etX1

)
E
(
etX2

)
= MX1(t)MX2(t).

�

Note that this result can be easily extended to a sum of any number of mutually
independent random variables.

Example1.26. LetX1 ∼ N (µ1, σ
2
1) andX2 ∼ N (µ2, σ

2
2). What is the distribution

of Y = X1 +X2?

Using Theorem 1.14 we can write

MY (t) = MX1(t)MX2(t)

= exp{µ1t+ σ2
1t

2/2} exp{µ2t + σ2
2t

2/2}

= exp{(µ1 + µ2)t+ (σ2
1 + σ2

2)t
2/2}.

This is the mgf of a normal rv withE(Y ) = µ1 + µ2 andvar(Y ) = σ2
1 + σ2

2 .

Exercise1.16. A part of an electronic system has two types of components in joint
operation. Denote byX1 andX2 the random length of life (measured in hundreds
of hours) of component of type I and of type II, respectively.Assume that the joint
density function of two rvs is given by

fX(x1, x2) =
1

8
x1 exp

{

−
x1 + x2

2

}

IX ,

whereX = {(x1, x2) : x1 > 0, x2 > 0}.

1. Calculate the probability that both components will have a life length longer
than 100 hours, that is, findP (X1 > 1, X2 > 1).

2. Calculate the probability that a component of type II will have a life length
longer than 200 hours, that is, findP (X2 > 2).

3. AreX1 andX2 independent? Justify your answer.
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4. Calculate the expected value of so called relative efficiency of the two com-
ponents, which is expressed by

E

(
X2

X1

)

.


