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1.9 Two-Dimensional Random Variables

Definition 1.14. Let(2 be a sample space and,, X, be functions, each assigning
a real numberX; (w), Xs(w) to every outcome € Q, thatisX; : Q@ — &} C R
and X, : Q — A, C R. Then the paitX = (X, X3) is called a two-dimensional
random variable. The induces sample space (range) of thedtmensional ran-
dom variable is

X ={(z1,19) 1 21 € Xy, 15 € Xy} C R

We will denote two-dimensional random variables by bolditzetters.

Definition 1.15. The cumulative distribution function of a two-dimensional
X - (X17 XQ) iS

Fx(z1,29) = P(Xy <21, X < 29) (1.10)

OJ

1.9.1 Discrete Two-Dimensional Random Variables
If all values of X = (X, X) are countable, i.e., the values are in the range
X = {(Qfli,l'gj), = 1,2,..., j = 1,2,}

then the variable is discrete. The cdf of a discret&Xr« (X, X5) is

FX(9€1,3?2)= Z Z p(«%’u,ﬂ?m)

T2 <x2 T1;<T1
wherep(xy;, 22;) denotes thgoint probability mass functioand
p@lz‘;@j) = P(X) =21, Xy = $2j)'
As in the univariate case, the joint pmf satisfies the follmywonditions.
1. p(w1, w95) > 0, forall4, j

2.3 2, Do P15, 25) =1
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Examplel.18 Consider an experiment of tossing two fair dice and notirg th
outcome on each die. The whole sample space consists ofiBémdg, i.e.,

Q={(,§):4,7=1,...,6}

Now, with each of these 36 elements associate values of tmadom variables,
X, and X5, such that

X1 = sum of the outcomes on the two dice,
X

|dif ference of the outcomes on the two dice |.

That is,
X(i,5) = (i+i,li—j]) i,j=1,2,...,6.

Then, the bivariate nX = (X, Xy) has the following joint probability mass
function (empty cells mean that the pmf is equal to zero atetevant values of
the rvs).

2 3 4 5 6 7 8 9 10 11 12

0 1
1 36 N 36 N 36 1 36 1 36 1 36
18 18 18 18 18
2 1 1 1 1
18 18 18 18
o 3 1 1 1
2 18 L 18 . 18
4 w1
5 1

4

Expectations of functions of bivariate random variables @lculated the same
way as of the univariate rvs. Letz,, x2) be a real valued function defined an
Theng(X) = g(X1, X») is arv and its expectation is

Elg(X)] =Y g(ar, z2)p(a1, z2).
X
Examplel.19 Let X; and X, be random variables as defined in Example 1.18.

Then, fOI’g(Xl, XQ) = X1X2 we obtain

1 1 245
Elg(X)] =2 —+... — =
[g(X)] ><0><36+ +7><5><18 s
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Marginal pmfs

Each of the components of the two-dimensional rv is a randarable and so
we may be interested in calculating its probabilities, fearaple P(X; = ).
Such a uni-variate pmf is then derived in a context of therithistion of the other
random variable. We call it theaarginal pmf

Theorem 1.12.Let X = (X;, X;,) be a discrete bivariate random variable with
joint pmfp(z1, z5). Then the marginal pmfs of; and X, px, andpy,, are given
respectively by

Px, (1‘1) Xl = xl Zp l‘l,i‘g and
pX2($2) X2 = $2 ZP $1>$2

Proof. For X:
Let us denote byl,, = {(x1,22) : —00 < 9 < co}. Then, for anyr; € A} we
may write

P(Xlsz'l):P(XlzlL'l,—OO<fL’2 <OO)

= P((X1,X,) C A,,)
== Z P(Xlzl'l,XQ:l'Q)

(z1,22)€EAL,
- Z p($1, :E?)'
X2

For X the proof is similar. 0

Examplel.20 The marginal distributions of the variablé§ and X, defined in
Example 1.18 are following.

T 2 3 4 5 6 7 8 9 10 11 12

P bk h b b ks ok ok
X9 0 1 2 3 4 5
Pu=m) LB 31 b &

Exercisel.14 Students in a class of 100 were classified according to géader
and smoking §) as follows:
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S
s g n
G male |20 32 8| 60

female| 10 5 25| 40
30 37 33| 100

wheres, ¢ andn denote the smoking status: “now smokes”, “did smoke but quit
and “never smoked”, respectively. Find the probabilitytthaandomly selected
student

1. isamale;
2. is a male smoker;
3. is either a smoker or did smoke but quit;

4. is a female who is a smoker or did smoke but quit.

1.9.2 Continuous Two-Dimensional Random Variables

If the values ofX = (X, X,) are elements of an uncountable set in the Euclidean
plane, then the variable is continuous. For example theegamight be in the
range

X ={(x1,29) ra <z <bc<zy<d}

for some reakh, b, ¢, d.

The cdf of a continuous X' = (X3, X5) is defined as
o 1
Fx(xy,13) = / / f(t1, to)dt dty, (1.11)

wheref(x1, x2) is the probability density function such that
1. f(xy,25) > 0forall (xy,25) € R
2. ffooo ffooo f(xy, zo)dxydry = 1.

The equation (1.11) implies that

82F(ZL‘1, ZL‘Q)

07101 = f(z1,22). (1.12)
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Also .
P(a S X1 S b,C S X2 S d) = / / f([L‘l,ZL'Q)dZL‘ldeQ.

The marginal pdfs oK, and X, are defined similarly as in the discrete case, here
using integrals.

Ix, (1) :/ f(xy, z)dxe, fOr — oo <y < o0,

Ixo(w2) :/ f(xy, z0)dry, for —oo < g < o0.

Examplel.21 CalculateP (X C A), whereA = {(z,25) : 21 + 2, > 1} and
the joint pdf of X = (X, X») is defined by

6z125 for 0 <oy <1, 0<ay <1,
0 otherwise

fX(l’l,l’z) = {

The probability is a double integral of the pdf over the regib The region is
however limited by the domain in which the pdf is positive.

We can write
A={(x,z2) tx1+a2>1, 0<a; <1, 0 <9 <1}
={(x1,m) 01 >1—29, 0< 21 <1, 0 <29 < 1}
={(r1,m): 1l -y <x1 <1, 0 <9 <1},

Hence, the probability is

1 1
P(XCA) = //Af(xl,xg)dxldxg :/0 /1 62 25dx dry = 0.9
o

Also, we can calculate marginal pdfs.

1
fx,(z1) = / 671 75dwy = 22175 |§= 211,
0

1
fx,(z2) = / 671 75dr, = 3xias |3= 323.
0

These functions allow us to calculate probabilities inuadvonly one variable.

For example
1 1 3
Pl-<X <<= 2 = —.
(4 < X1 < 2) /A11 z1dxy 16

=
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Similarly to the case of a univariate rv the following lingaoperty for the expec-
tation holds.

Elag(X) + bh(X) + ¢| = aE[g(X)] + bE[A(X)] + ¢, (1.13)
wherea, b andc are constants anglandh are some functions of the bivariate rv
X - (Xl, XQ)

1.9.3 Conditional Distributions and Independence

Definition 1.16. Let X = (X;, X,) denote a discrete bivariate rv with joint
pmfpx(zi, z5) and marginal pmfex, (1) and px,(x2). For anyz; such that
px, (z1) > 0, the conditional pmf o, given thatX; = x; is the function ofi,
defined by

px (w1, 72)
S\ T2|r1) = ————.
bx ( 2‘ 1) pX1(x1>
Analogously, we define the conditional pmfgfgiven X, = xo
px (w1, 72)
(x1]xn) = ———.
bx ( 1‘ 2) sz(x2>

It is easy to check that these functions are indeed pdfs. ¥ample,

1, T
prg(l'g‘xl) _ pr(th) _ Z)QPX( 1 2) B le(l'l) L
Xo Xs

px, (1) px, (1) B px, (1)

Examplel.22 Let X; and X, be defined as in Example 1.18. The conditional
pmf of X, givenX; =5, is

) ‘

0
0

2 3 4 5
P (2215) | 0L 00

t

Exercisel.15 Let S and G denote thesmoking statusn genderas defined in
Exercise 1.14. Calculate the probability that a randomlgcied student is

1. a smoker given that he is a male;

2. female, given that the student smokes.
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Analogously to the conditional distribution for discretesywe define the condi-
tional distribution for continuous rvs.

Definition 1.17. Let X = (X3, X5) denote a continuous bivariate rv with joint
pdf fx(xi,z2) and marginal pdfsfx, (z1) and fx,(z2). For anyx; such that
fx,(z1) > 0, the conditional pdf ofX, given thatX; = z; is the function ofr,
defined by

- fx(il?l,l’z)

S Ta|1) = .
Ixo (w2|1) (1)
Analogously, we define the conditional p.d.fXgfgiven X, = x5

_ fx (1, 22)

Fotebee) = o)

Here too, it is easy to verify that these functions are pdés.gxample,

_ [ fx(ns)
X2sz(£2|~’U1)d952— “ Fxi(@)

B fxg fX(l’hlUQ)dlUQ

B le(xl)

_ fX1<x1)
fx, (1)

dl‘g

=1.

Examplel.23 For the random variables defined in Example 1.21 the comditio
pdfs are
 [x(x, @) 6aqa)

fa(mlee) = =5 73" = 3 =20

and fxl ) )
x (21,22 6x125 9
f— p— f— 3 .
fxal@zlar) fx, (1) 21, 2

The conditional pdfs allow us to calculate conditional estpgons. The condi-
tional expected value of a functigni X,) given thatX; = z; is defined by

> " g(w2)px, (as|z1) for a discrete r.v.
X

Elg(Xy)|x] = (1.14)

/ 9(x2) fx, (xe|z1)dzy for a continuous r.v.
X
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Examplel.24 The conditional mean and variance of thie given a value ofX1,
for the variables defined in Example 1.21 are

1
3
,UXQ\:El = E(Xz‘x‘l) :/ sz?)l’%dl‘g = Z’
0

and

1 2
3 3
Rate, = var(CXefer) = ECGlon) ~ ke = [ adsadan— (3) =
0
0

Definition 1.18. Let X = (X;, X») denote a continuous bivariate rv with joint
pdf fx(x1,22) and marginal pdfsfx, (z1) and fx,(z2). ThenX; and X, are
calledindependent random variablesif, for everyz; € X} andz, € X,

Ix(x1,22) = fx, (@1) fx,(22). (1.15)

t

We define independent discrete random variables analogousl

If X; and X, are independent, then the conditional pdfgfgiven X; = z; is

_ Ix(@n ) fx (@) fx () -
fx,(xa|z1) = @) fem) fx,(x2)

regardless of the value af. Analogous property holds for the conditional pdf of
X1 givenX2 = X9.

Examplel.25 It is easy to notice that for the variables defined in Examp®d. 1
we have

[x(z1,22) = 63125 = 231323 = fx, (21) fx, (22).

So, the variables(; and X, are independent. 0

In fact, two rvs are independent if and only if there existdtionsg(x;) andh(xs)
such that for every;; € X; andz, € A%,

fx(x1,22) = g(z1)h(12).



34 CHAPTER 1. ELEMENTS OF PROBABILITY DISTRIBUTION THEORY

Theorem 1.13.Let X; and X, be independent random variables. Then
1. ForanyA Cc RandB C R

P(X1 € A, X, CB)=P(X; CA)P(X; C B),
thatis,{X; C A} and{X, C B} are independent events.

2. Forg(X), a function ofX; only, and forh(X,), a function ofX, only, we
have
E[Q(Xl)h(X2)] = E[Q(Xl)] E[h(X2)]-

Proof. Assume thatX; and X, are continuous random variables. To prove the
theorem for discrete rvs we follow the same steps with sustead of integrals.

1. We have

P(X; CAX,CB)= / / Ix (21, z2)dxdxs
BJA

- /B /A P () ey (2) iy
- / ( / fxl<:c1>dx1) Fa(ws)drs
/ e, (21)ds / Fr, (2)ds

= P(X; CA)P(X, C B).

2. Similar arguments as in Part 1 give
E[g(Xl)h(XQ)] = /OO /OO g(z1)h(x2) fx (21, 22)d21d2o
[ [ st o) )i

[ ([ st eian ) e i

= ([ stenssoin) ([ ntea s,

= E[g(X1)] E[h(X2)].
L]

In the following theorem we will apply this result for the ment generating func-
tion of a sum of independent random variables.
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Theorem 1.14.Let X; and X, be independent random variables with moment
generating functiond/y, (¢) and My, (¢), respectively. Then the moment gener-
ating function of the suri = X; + X is given by

My (t) = Mx, () Mx,(t).
Proof. By the definition of the mgf and by Theorem 1.13, part 2, we have
My (t) =Ee" = E!NH%2) = F (1e2) = E (1) E (%) = My, (t)Mx,(1).

4

Note that this result can be easily extended to a sum of anyoauwrf mutually
independent random variables.

Examplel.26 Let X; ~ N (i1, 0}) andXy ~ N (u9, 03). Whatiis the distribution
Using Theorem 1.14 we can write
My (t) = Mx, (t)Mx, ()
= exp{ut + oit?/2} exp{pat + o3t?/2}
= exp{ (s + p2)t + (o + 03)t/2}.
This is the mgf of a normal rv with(Y) = 1y + pe andvar(Y) = o7 + o3.

Exercisel.16 A part of an electronic system has two types of componentsiir |
operation. Denote by; and X, the random length of life (measured in hundreds
of hours) of component of type | and of type Il, respectivélgsume that the joint
density function of two rvs is given by

1 A i
fx(x17x2)=§xle><p{— ! ) 2}[2(7

whereX = {(x,z2) : 1 > 0,29 > 0}.

1. Calculate the probability that both components will havéedléngth longer
than 100 hours, that s, find(X; > 1, X, > 1).

2. Calculate the probability that a component of type Il wilvea life length
longer than 200 hours, that is, fide{ X, > 2).

3. Are X; and X, independent? Justify your answer.

4. Calculate the expected value of so called relative effigiefithe two com-
ponents, which is expressed by

(3)



