1.9 Two-Dimensional Random Variables

Definition 1.14. Let Ω be a sample space and X_1 , X_2 be functions, each assigning a real number $X_1(\omega), X_2(\omega)$ to every outcome $\omega \in \Omega$, that is $X_1 : \Omega \to \mathcal{X}_1 \subset \mathbb{R}$ and $X_2 : \Omega \to \mathcal{X}_2 \subset \mathbb{R}$. Then the pair $\mathbf{X} = (X_1, X_2)$ is called a two-dimensional random variable. The induces sample space (range) of the two-dimensional random variable is

$$\mathcal{X} = \{ (x_1, x_2) : x_1 \in \mathcal{X}_1, \ x_2 \in \mathcal{X}_2 \} \subset \mathbb{R}^2.$$

We will denote two-dimensional random variables by bold capital letters.

Definition 1.15. The cumulative distribution function of a two-dimensional rv $\mathbf{X} = (X_1, X_2)$ is

$$F_{\mathbf{X}}(x_1, x_2) = P(X_1 \le x_1, X_2 \le x_2)$$
(1.10)

1.9.1 Discrete Two-Dimensional Random Variables

If all values of $\mathbf{X} = (X_1, X_2)$ are countable, i.e., the values are in the range

$$\mathcal{X} = \{(x_{1i}, x_{2j}), i = 1, 2, \dots, j = 1, 2, \dots\}$$

then the variable is discrete. The cdf of a discrete rv $\boldsymbol{X} = (X_1, X_2)$ is

$$F_{\mathbf{X}}(x_1, x_2) = \sum_{x_{2j} \le x_2} \sum_{x_{1i} \le x_1} p(x_{1i}, x_{2j})$$

where $p(x_{1i}, x_{2j})$ denotes the *joint probability mass function* and

$$p(x_{1i}, x_{2j}) = P(X_1 = x_{1i}, X_2 = x_{2j})$$

As in the univariate case, the joint pmf satisfies the following conditions.

- 1. $p(x_{1i}, x_{2j}) \ge 0$, for all i, j
- 2. $\sum_{\chi_2} \sum_{\chi_1} p(x_{1i}, x_{2j}) = 1$

Example 1.18. Consider an experiment of tossing two fair dice and noting the outcome on each die. The whole sample space consists of 36 elements, i.e.,

$$\Omega = \{(i, j) : i, j = 1, \dots, 6\}$$

Now, with each of these 36 elements associate values of two random variables, X_1 and X_2 , such that

$$X_1 \equiv sum \ of \ the \ outcomes \ on \ the \ two \ dice,$$

 $X_2 \equiv | \ difference \ of \ the \ outcomes \ on \ the \ two \ dice |.$

That is,

$$X(i,j) = (i+i, |i-j|) \ i, j = 1, 2, \dots, 6.$$

Then, the bivariate rv $\mathbf{X} = (X_1, X_2)$ has the following joint probability mass function (empty cells mean that the pmf is equal to zero at the relevant values of the rvs).

	2	3	4	5	<i>x</i> ₁ 6	7	8	9	10	11	12
$\begin{array}{c} 0\\1\\2\\x_2&3\\4\\5\end{array}$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{36}$ $\frac{1}{18}$	$\frac{1}{18}$ $\frac{1}{18}$	$\frac{\frac{1}{36}}{\frac{1}{18}}$ $\frac{\frac{1}{18}}{\frac{1}{18}}$	$\frac{\frac{1}{18}}{\frac{1}{18}}$ $\frac{\frac{1}{18}}{\frac{1}{18}}$	$\frac{\frac{1}{36}}{\frac{1}{18}}$ $\frac{1}{18}$	$\frac{1}{18}$ $\frac{1}{18}$	$\frac{\frac{1}{36}}{\frac{1}{18}}$	$\frac{1}{18}$	$\frac{1}{36}$

Expectations of functions of bivariate random variables are calculated the same way as of the univariate rvs. Let $g(x_1, x_2)$ be a real valued function defined on \mathcal{X} . Then $g(\mathbf{X}) = g(X_1, X_2)$ is a rv and its expectation is

$$\operatorname{E}[g(\boldsymbol{X})] = \sum_{\mathcal{X}} g(x_1, x_2) p(x_1, x_2).$$

Example 1.19. Let X_1 and X_2 be random variables as defined in Example 1.18. Then, for $g(X_1, X_2) = X_1 X_2$ we obtain

$$E[g(\mathbf{X})] = 2 \times 0 \times \frac{1}{36} + \ldots + 7 \times 5 \times \frac{1}{18} = \frac{245}{18}.$$

Marginal pmfs

Each of the components of the two-dimensional rv is a random variable and so we may be interested in calculating its probabilities, for example $P(X_1 = x_1)$. Such a uni-variate pmf is then derived in a context of the distribution of the other random variable. We call it the *marginal pmf*.

Theorem 1.12. Let $X = (X_1, X_2)$ be a discrete bivariate random variable with joint pmf $p(x_1, x_2)$. Then the marginal pmfs of X_1 and X_2 , p_{X_1} and p_{X_2} , are given respectively by

$$p_{X_1}(x_1) = P(X_1 = x_1) = \sum_{\mathcal{X}_2} p(x_1, x_2)$$
 and
 $p_{X_2}(x_2) = P(X_2 = x_2) = \sum_{\mathcal{X}_1} p(x_1, x_2).$

Proof. For X_1 :

Let us denote by $A_{x_1} = \{(x_1, x_2) : -\infty < x_2 < \infty\}$. Then, for any $x_1 \in \mathcal{X}_1$ we may write

$$P(X_1 = x_1) = P(X_1 = x_1, -\infty < x_2 < \infty)$$

= $P((X_1, X_2) \subseteq A_{x_1})$
= $\sum_{(x_1, x_2) \in A_{x_1}} P(X_1 = x_1, X_2 = x_2)$
= $\sum_{\chi_2} p(x_1, x_2).$

For X_2 the proof is similar.

Example 1.20. The marginal distributions of the variables X_1 and X_2 defined in Example 1.18 are following.

x_1	2	3	4	5	6	7	8	3	9	10	11	12
$P(X_1 = x_1$	$) \frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	<u>5</u>	<u>6</u>	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$
-												
_		x_2		0	1	2	3	4	5			
	P(X)	$x_{2} = x_{2}$	(2)	$\frac{1}{6}$	$\frac{5}{18}$	$\frac{2}{9}$	$\frac{1}{6}$	$\frac{1}{9}$	$\frac{1}{18}$	3		

Exercise 1.14. Students in a class of 100 were classified according to gender (G) and smoking (S) as follows:

			S		
		s	q	n	
G	male	20	32	8 25	60
	male female	10	5	25	40
		30	37	33	100

where s, q and n denote the smoking status: "now smokes", "did smoke but quit" and "never smoked", respectively. Find the probability that a randomly selected student

- 1. is a male;
- 2. is a male smoker;
- 3. is either a smoker or did smoke but quit;
- 4. is a female who is a smoker or did smoke but quit.

1.9.2 Continuous Two-Dimensional Random Variables

If the values of $\mathbf{X} = (X_1, X_2)$ are elements of an uncountable set in the Euclidean plane, then the variable is continuous. For example the values might be in the range

$$\mathcal{X} = \{ (x_1, x_2) : a \le x_1 \le b, c \le x_2 \le d \}$$

for some real a, b, c, d.

The cdf of a continuous rv $\boldsymbol{X} = (X_1, X_2)$ is defined as

$$F_{\mathbf{X}}(x_1, x_2) = \int_{-\infty}^{x_2} \int_{-\infty}^{x_1} f(t_1, t_2) dt_1 dt_2, \qquad (1.11)$$

where $f(x_1, x_2)$ is the probability density function such that

- 1. $f(x_1, x_2) \ge 0$ for all $(x_1, x_2) \in \mathbb{R}^2$
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, x_2) dx_1 dx_2 = 1.$

The equation (1.11) implies that

$$\frac{\partial^2 F(x_1, x_2)}{\partial x_1 \partial x_2} = f(x_1, x_2). \tag{1.12}$$

Also

$$P(a \le X_1 \le b, c \le X_2 \le d) = \int_c^d \int_a^b f(x_1, x_2) dx_1 dx_2.$$

The marginal pdfs of X_1 and X_2 are defined similarly as in the discrete case, here using integrals.

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_2, \text{ for } -\infty < x_1 < \infty,$$

$$f_{X_2}(x_2) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_1, \text{ for } -\infty < x_2 < \infty.$$

Example 1.21. Calculate $P(\mathbf{X} \subseteq A)$, where $A = \{(x_1, x_2) : x_1 + x_2 \ge 1\}$ and the joint pdf of $\mathbf{X} = (X_1, X_2)$ is defined by

$$f_{\mathbf{X}}(x_1, x_2) = \begin{cases} 6x_1 x_2^2 & \text{for } 0 < x_1 < 1, \ 0 < x_2 < 1, \\ 0 & \text{otherwise.} \end{cases}$$

The probability is a double integral of the pdf over the region A. The region is however limited by the domain in which the pdf is positive.

We can write

$$A = \{ (x_1, x_2) : x_1 + x_2 \ge 1, \ 0 < x_1 < 1, \ 0 < x_2 < 1 \}$$

= $\{ (x_1, x_2) : x_1 \ge 1 - x_2, \ 0 < x_1 < 1, \ 0 < x_2 < 1 \}$
= $\{ (x_1, x_2) : 1 - x_2 < x_1 < 1, \ 0 < x_2 < 1 \}.$

Hence, the probability is

$$P(\mathbf{X} \subseteq A) = \int \int_{A} f(x_1, x_2) dx_1 dx_2 = \int_0^1 \int_{1-x_2}^1 6x_1 x_2^2 dx_1 dx_2 = 0.9$$

Also, we can calculate marginal pdfs.

$$f_{X_1}(x_1) = \int_0^1 6x_1 x_2^2 dx_2 = 2x_1 x_2^3 \mid_0^1 = 2x_1,$$

$$f_{X_2}(x_2) = \int_0^1 6x_1 x_2^2 dx_1 = 3x_1^2 x_2^2 \mid_0^1 = 3x_2^2.$$

These functions allow us to calculate probabilities involving only one variable. For example

$$P\left(\frac{1}{4} < X_1 < \frac{1}{2}\right) = \int_{\frac{1}{4}}^{\frac{1}{2}} 2x_1 dx_1 = \frac{3}{16}.$$

Similarly to the case of a univariate rv the following linear property for the expectation holds.

$$\operatorname{E}[ag(\boldsymbol{X}) + bh(\boldsymbol{X}) + c] = a \operatorname{E}[g(\boldsymbol{X})] + b \operatorname{E}[h(\boldsymbol{X})] + c, \qquad (1.13)$$

where a, b and c are constants and g and h are some functions of the bivariate rv $\mathbf{X} = (X_1, X_2)$.

1.9.3 Conditional Distributions and Independence

Definition 1.16. Let $X = (X_1, X_2)$ denote a discrete bivariate rv with joint pmf $p_X(x_1, x_2)$ and marginal pmfs $p_{X_1}(x_1)$ and $p_{X_2}(x_2)$. For any x_1 such that $p_{X_1}(x_1) > 0$, the conditional pmf of X_2 given that $X_1 = x_1$ is the function of x_2 defined by

$$p_{X_2}(x_2|x_1) = \frac{p_{\mathbf{X}}(x_1, x_2)}{p_{X_1}(x_1)}.$$

Analogously, we define the conditional pmf of X_1 given $X_2 = x_2$

$$p_{X_1}(x_1|x_2) = \frac{p_{\mathbf{X}}(x_1, x_2)}{p_{X_2}(x_2)}.$$

It is easy to check that these functions are indeed pdfs. For example,

$$\sum_{\chi_2} p_{X_2}(x_2|x_1) = \sum_{\chi_2} \frac{p_{\mathbf{X}}(x_1, x_2)}{p_{X_1}(x_1)} = \frac{\sum_{\chi_2} p_{\mathbf{X}}(x_1, x_2)}{p_{X_1}(x_1)} = \frac{p_{X_1}(x_1)}{p_{X_1}(x_1)} = 1.$$

Example 1.22. Let X_1 and X_2 be defined as in Example 1.18. The conditional pmf of X_2 given $X_1 = 5$, is

Exercise 1.15. Let S and G denote the *smoking status* an *gender* as defined in Exercise 1.14. Calculate the probability that a randomly selected student is

- 1. a smoker given that he is a male;
- 2. female, given that the student smokes.

Analogously to the conditional distribution for discrete rvs, we define the conditional distribution for continuous rvs.

Definition 1.17. Let $\mathbf{X} = (X_1, X_2)$ denote a continuous bivariate rv with joint $pdf f_{\mathbf{X}}(x_1, x_2)$ and marginal $pdfs f_{X_1}(x_1)$ and $f_{X_2}(x_2)$. For any x_1 such that $f_{X_1}(x_1) > 0$, the conditional pdf of X_2 given that $X_1 = x_1$ is the function of x_2 defined by

$$f_{X_2}(x_2|x_1) = \frac{f_{\mathbf{X}}(x_1, x_2)}{f_{X_1}(x_1)}.$$

Analogously, we define the conditional p.d.f. of X_1 given $X_2 = x_2$

$$f_{X_1}(x_1|x_2) = \frac{f_{\mathbf{X}}(x_1, x_2)}{f_{X_2}(x_2)}.$$

Here too, it is easy to verify that these functions are pdfs. For example,

$$\int_{\mathcal{X}_2} f_{X_2}(x_2|x_1) dx_2 = \int_{\mathcal{X}_2} \frac{f_{\mathbf{X}}(x_1, x_2)}{f_{X_1}(x_1)} dx_2$$
$$= \frac{\int_{\mathcal{X}_2} f_{\mathbf{X}}(x_1, x_2) dx_2}{f_{X_1}(x_1)}$$
$$= \frac{f_{X_1}(x_1)}{f_{X_1}(x_1)} = 1.$$

Example 1.23. For the random variables defined in Example 1.21 the conditional pdfs are $f_{\mathbf{X}}(x_1, x_2) = 6x_1x_2^2$

$$f_{X_1}(x_1|x_2) = \frac{f_{X_1}(x_1, x_2)}{f_{X_2}(x_2)} = \frac{6x_1x_2}{3x_2^2} = 2x_1$$
$$f_{X_2}(x_2|x_1) = \frac{f_{X_1}(x_1, x_2)}{f_{X_1}(x_1)} = \frac{6x_1x_2^2}{2x_1} = 3x_2^2.$$

and

The conditional pdfs allow us to calculate conditional expectations. The condi-

tional expected value of a function
$$g(X_2)$$
 given that $X_1 = x_1$ is defined by

$$E[g(X_2)|x_1] = \begin{cases} \sum_{\chi_2} g(x_2)p_{X_2}(x_2|x_1) & \text{for a discrete r.v.,} \\ \int_{\chi_2} g(x_2)f_{X_2}(x_2|x_1)dx_2 & \text{for a continuous r.v..} \end{cases}$$
(1.14)

1.9. TWO-DIMENSIONAL RANDOM VARIABLES

Example 1.24. The conditional mean and variance of the X_2 given a value of X_1 , for the variables defined in Example 1.21 are

$$\mu_{X_2|x_1} = \mathcal{E}(X_2|x_1) = \int_0^1 x_2 3x_2^2 dx_2 = \frac{3}{4},$$

and

$$\sigma_{X_2|x_1}^2 = \operatorname{var}(X_2|x_1) = \operatorname{E}(X_2^2|x_1) - [\operatorname{E}(X_2|x_1)]^2 = \int_0^1 x_2^2 3x_2^2 dx_2 - \left(\frac{3}{4}\right)^2 = \frac{3}{80}.$$

Definition 1.18. Let $X = (X_1, X_2)$ denote a continuous bivariate rv with joint $pdf f_X(x_1, x_2)$ and marginal $pdfs f_{X_1}(x_1)$ and $f_{X_2}(x_2)$. Then X_1 and X_2 are called *independent random variables* if, for every $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$

$$f_{\mathbf{X}}(x_1, x_2) = f_{X_1}(x_1) f_{X_2}(x_2).$$
(1.15)

We define independent discrete random variables analogously.

If X_1 and X_2 are independent, then the conditional pdf of X_2 given $X_1 = x_1$ is

$$f_{X_2}(x_2|x_1) = \frac{f_{\mathbf{X}}(x_1, x_2)}{f_{X_1}(x_1)} = \frac{f_{X_1}(x_1)f_{X_2}(x_2)}{f_{X_1}(x_1)} = f_{X_2}(x_2)$$

regardless of the value of x_1 . Analogous property holds for the conditional pdf of X_1 given $X_2 = x_2$.

Example 1.25. It is easy to notice that for the variables defined in Example 1.21 we have

$$f_{\mathbf{X}}(x_1, x_2) = 6x_1x_2^2 = 2x_13x_2^2 = f_{X_1}(x_1)f_{X_2}(x_2).$$

So, the variables X_1 and X_2 are independent.

In fact, two rvs are independent if and only if there exist functions $g(x_1)$ and $h(x_2)$ such that for every $x_1 \in \mathcal{X}_1$ and $x_2 \in \mathcal{X}_2$,

$$f_{\mathbf{X}}(x_1, x_2) = g(x_1)h(x_2).$$

Theorem 1.13. Let X_1 and X_2 be independent random variables. Then

1. For any $A \subset \mathbb{R}$ *and* $B \subset \mathbb{R}$

$$P(X_1 \subseteq A, X_2 \subseteq B) = P(X_1 \subseteq A)P(X_2 \subseteq B),$$

that is, $\{X_1 \subseteq A\}$ and $\{X_2 \subseteq B\}$ are independent events.

2. For $g(X_1)$, a function of X_1 only, and for $h(X_2)$, a function of X_2 only, we have

$$\operatorname{E}[g(X_1)h(X_2)] = \operatorname{E}[g(X_1)]\operatorname{E}[h(X_2)].$$

Proof. Assume that X_1 and X_2 are continuous random variables. To prove the theorem for discrete rvs we follow the same steps with sums instead of integrals.

1. We have

$$P(X_{1} \subseteq A, X_{2} \subseteq B) = \int_{B} \int_{A} f_{\mathbf{X}}(x_{1}, x_{2}) dx_{1} dx_{2}$$

$$= \int_{B} \int_{A} f_{X_{1}}(x_{1}) f_{X_{2}}(x_{2}) dx_{1} dx_{2}$$

$$= \int_{B} \left(\int_{A} f_{X_{1}}(x_{1}) dx_{1} \right) f_{X_{2}}(x_{2}) dx_{2}$$

$$= \int_{A} f_{X_{1}}(x_{1}) dx_{1} \int_{B} f_{X_{2}}(x_{2}) dx_{2}$$

$$= P(X_{1} \subseteq A) P(X_{2} \subseteq B).$$

2. Similar arguments as in Part 1 give

$$E[g(X_1)h(X_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_1)h(x_2)f_{\mathbf{X}}(x_1, x_2)dx_1dx_2$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_1)h(x_2)f_{X_1}(x_1)f_{X_2}(x_2)dx_1dx_2$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} g(x_1)f_{X_1}(x_1)dx_1\right)h(x_2)f_{X_2}(x_2)dx_2$$

$$= \left(\int_{-\infty}^{\infty} g(x_1)f_{X_1}(x_1)dx_1\right)\left(\int_{-\infty}^{\infty} h(x_2)f_{X_2}(x_2)dx_2\right)$$

$$= E[g(X_1)]E[h(X_2)].$$

In the following theorem we will apply this result for the moment generating function of a sum of independent random variables.

1.9. TWO-DIMENSIONAL RANDOM VARIABLES

Theorem 1.14. Let X_1 and X_2 be independent random variables with moment generating functions $M_{X_1}(t)$ and $M_{X_2}(t)$, respectively. Then the moment generating function of the sum $Y = X_1 + X_2$ is given by

$$M_Y(t) = M_{X_1}(t)M_{X_2}(t).$$

Proof. By the definition of the mgf and by Theorem 1.13, part 2, we have $M_Y(t) = \operatorname{E} e^{tY} = \operatorname{E} e^{t(X_1+X_2)} = \operatorname{E} \left(e^{tX_1} e^{tX_2} \right) = \operatorname{E} \left(e^{tX_1} \right) \operatorname{E} \left(e^{tX_2} \right) = M_{X_1}(t) M_{X_2}(t).$

Note that this result can be easily extended to a sum of any number of mutually independent random variables.

Example 1.26. Let $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$. What is the distribution of $Y = X_1 + X_2$?

Using Theorem 1.14 we can write

$$M_Y(t) = M_{X_1}(t)M_{X_2}(t)$$

= exp{ $\mu_1 t + \sigma_1^2 t^2/2$ } exp{ $\mu_2 t + \sigma_2^2 t^2/2$ }
= exp{ $(\mu_1 + \mu_2)t + (\sigma_1^2 + \sigma_2^2)t^2/2$ }.

This is the mgf of a normal rv with $E(Y) = \mu_1 + \mu_2$ and $var(Y) = \sigma_1^2 + \sigma_2^2$.

Exercise 1.16. A part of an electronic system has two types of components in joint operation. Denote by X_1 and X_2 the random length of life (measured in hundreds of hours) of component of type I and of type II, respectively. Assume that the joint density function of two rvs is given by

$$f_{\mathbf{X}}(x_1, x_2) = \frac{1}{8} x_1 \exp\left\{-\frac{x_1 + x_2}{2}\right\} I_{\mathcal{X}},$$

where $\mathcal{X} = \{(x_1, x_2) : x_1 > 0, x_2 > 0\}.$

- 1. Calculate the probability that both components will have a life length longer than 100 hours, that is, find $P(X_1 > 1, X_2 > 1)$.
- 2. Calculate the probability that a component of type II will have a life length longer than 200 hours, that is, find $P(X_2 > 2)$.
- 3. Are X_1 and X_2 independent? Justify your answer.
- 4. Calculate the expected value of so called relative efficiency of the two components, which is expressed by

$$\operatorname{E}\left(\frac{X_2}{X_1}\right).$$