1.9 Two-Dimensional Random Variables

Definition 1.14. Let Ω be a sample space and X_{1}, X_{2} be functions, each assigning a real number $X_{1}(\omega), X_{2}(\omega)$ to every outcome $\omega \in \Omega$, that is $X_{1}: \Omega \rightarrow \mathcal{X}_{1} \subset \mathbb{R}$ and $X_{2}: \Omega \rightarrow \mathcal{X}_{2} \subset \mathbb{R}$. Then the pair $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ is called a two-dimensional random variable. The induces sample space (range) of the two-dimensional random variable is

$$
\mathcal{X}=\left\{\left(x_{1}, x_{2}\right): x_{1} \in \mathcal{X}_{1}, x_{2} \in \mathcal{X}_{2}\right\} \subset \mathbb{R}^{2} .
$$

We will denote two-dimensional random variables by bold capital letters.
Definition 1.15. The cumulative distribution function of a two-dimensional $r v$ $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ is

$$
\begin{equation*}
F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}\right) \tag{1.10}
\end{equation*}
$$

1.9.1 Discrete Two-Dimensional Random Variables

If all values of $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ are countable, i.e., the values are in the range

$$
\mathcal{X}=\left\{\left(x_{1 i}, x_{2 j}\right), i=1,2, \ldots, j=1,2, \ldots\right\}
$$

then the variable is discrete. The cdf of a discrete rv $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ is

$$
F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=\sum_{x_{2 j} \leq x_{2}} \sum_{x_{1 i} \leq x_{1}} p\left(x_{1 i}, x_{2 j}\right)
$$

where $p\left(x_{1 i}, x_{2 j}\right)$ denotes the joint probability mass function and

$$
p\left(x_{1 i}, x_{2 j}\right)=P\left(X_{1}=x_{1 i}, X_{2}=x_{2 j}\right) .
$$

As in the univariate case, the joint pmf satisfies the following conditions.

1. $p\left(x_{1 i}, x_{2 j}\right) \geq 0$, for all i, j
2. $\sum_{\mathcal{X}_{2}} \sum_{\mathcal{X}_{1}} p\left(x_{1 i}, x_{2 j}\right)=1$

Example 1.18. Consider an experiment of tossing two fair dice and noting the outcome on each die. The whole sample space consists of 36 elements, i.e.,

$$
\Omega=\{(i, j): i, j=1, \ldots, 6\} .
$$

Now, with each of these 36 elements associate values of two random variables, X_{1} and X_{2}, such that
$X_{1} \equiv$ sum of the outcomes on the two dice,
$X_{2} \equiv \mid$ difference of the outcomes on the two dice \mid.

That is,

$$
\boldsymbol{X}(i, j)=(i+i,|i-j|) \quad i, j=1,2, \ldots, 6 .
$$

Then, the bivariate rv $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ has the following joint probability mass function (empty cells mean that the pmf is equal to zero at the relevant values of the rvs).

		2	3	4	5	x_{1} 6	7	8	9	10	11	12
		$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{36}$$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{36}$	$\frac{1}{18}$		$\frac{1}{18}$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{36}$
	1											
	2					$\frac{1}{18}$		$\frac{1}{18}$		$\frac{1}{18}$		
x_{2}	3				18		$\frac{1}{18}$		$\frac{1}{18}$			
	4					$\frac{1}{18}$		$\frac{1}{18}$				
	5						1					

Expectations of functions of bivariate random variables are calculated the same way as of the univariate rvs. Let $g\left(x_{1}, x_{2}\right)$ be a real valued function defined on \mathcal{X}. Then $g(\boldsymbol{X})=g\left(X_{1}, X_{2}\right)$ is a rv and its expectation is

$$
\mathrm{E}[g(\boldsymbol{X})]=\sum_{\mathcal{X}} g\left(x_{1}, x_{2}\right) p\left(x_{1}, x_{2}\right) .
$$

Example 1.19. Let X_{1} and X_{2} be random variables as defined in Example 1.18. Then, for $g\left(X_{1}, X_{2}\right)=X_{1} X_{2}$ we obtain

$$
\mathrm{E}[g(\boldsymbol{X})]=2 \times 0 \times \frac{1}{36}+\ldots+7 \times 5 \times \frac{1}{18}=\frac{245}{18}
$$

Marginal pmfs

Each of the components of the two-dimensional rv is a random variable and so we may be interested in calculating its probabilities, for example $P\left(X_{1}=x_{1}\right)$. Such a uni-variate pmf is then derived in a context of the distribution of the other random variable. We call it the marginal pmf.

Theorem 1.12. Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ be a discrete bivariate random variable with joint pmf $p\left(x_{1}, x_{2}\right)$. Then the marginal pmfs of X_{1} and $X_{2}, p_{X_{1}}$ and $p_{X_{2}}$, are given respectively by

$$
\begin{aligned}
& p_{X_{1}}\left(x_{1}\right)=P\left(X_{1}=x_{1}\right)=\sum_{\mathcal{X}_{2}} p\left(x_{1}, x_{2}\right) \quad \text { and } \\
& p_{X_{2}}\left(x_{2}\right)=P\left(X_{2}=x_{2}\right)=\sum_{\mathcal{X}_{1}} p\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Proof. For X_{1} :
Let us denote by $A_{x_{1}}=\left\{\left(x_{1}, x_{2}\right):-\infty<x_{2}<\infty\right\}$. Then, for any $x_{1} \in \mathcal{X}_{1}$ we may write

$$
\begin{aligned}
P\left(X_{1}=x_{1}\right) & =P\left(X_{1}=x_{1},-\infty<x_{2}<\infty\right) \\
& =P\left(\left(X_{1}, X_{2}\right) \subseteq A_{x_{1}}\right) \\
& =\sum_{\left(x_{1}, x_{2}\right) \in A_{x_{1}}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right) \\
& =\sum_{\mathcal{X}_{2}} p\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

For X_{2} the proof is similar.

Example 1.20. The marginal distributions of the variables X_{1} and X_{2} defined in Example 1.18 are following.

x_{1}	2	3	4	5	6	7	8	9	10	11	12
$P\left(X_{1}=x_{1}\right)$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$
	x_{2}	0	1	2	3	4	5				
	$P\left(X_{2}=x_{2}\right)$	$\frac{1}{6}$	$\frac{5}{18}$	$\frac{2}{9}$	$\frac{1}{6}$	$\frac{1}{9}$	$\frac{1}{18}$				

Exercise 1.14. Students in a class of 100 were classified according to gender (G) and smoking (S) as follows:

		S			
		s	q	n	
G	male	20	32	8	60
	female	10	5	25	40
		30	37	33	100

where s, q and n denote the smoking status: "now smokes", "did smoke but quit" and "never smoked", respectively. Find the probability that a randomly selected student

1. is a male;
2. is a male smoker;
3. is either a smoker or did smoke but quit;
4. is a female who is a smoker or did smoke but quit.

1.9.2 Continuous Two-Dimensional Random Variables

If the values of $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ are elements of an uncountable set in the Euclidean plane, then the variable is continuous. For example the values might be in the range

$$
\mathcal{X}=\left\{\left(x_{1}, x_{2}\right): a \leq x_{1} \leq b, c \leq x_{2} \leq d\right\}
$$

for some real a, b, c, d.
The cdf of a continuous rv $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ is defined as

$$
\begin{equation*}
F_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=\int_{-\infty}^{x_{2}} \int_{-\infty}^{x_{1}} f\left(t_{1}, t_{2}\right) d t_{1} d t_{2} \tag{1.11}
\end{equation*}
$$

where $f\left(x_{1}, x_{2}\right)$ is the probability density function such that

1. $f\left(x_{1}, x_{2}\right) \geq 0$ for all $\left(x_{1}, x_{2}\right) \in R^{2}$
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=1$.

The equation (1.11) implies that

$$
\begin{equation*}
\frac{\partial^{2} F\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}}=f\left(x_{1}, x_{2}\right) \tag{1.12}
\end{equation*}
$$

Also

$$
P\left(a \leq X_{1} \leq b, c \leq X_{2} \leq d\right)=\int_{c}^{d} \int_{a}^{b} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} .
$$

The marginal pdfs of X_{1} and X_{2} are defined similarly as in the discrete case, here using integrals.

$$
\begin{aligned}
& f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2}, \text { for }-\infty<x_{1}<\infty, \\
& f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1}, \text { for }-\infty<x_{2}<\infty
\end{aligned}
$$

Example 1.21. Calculate $P(\boldsymbol{X} \subseteq A)$, where $A=\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2} \geq 1\right\}$ and the joint pdf of $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ is defined by

$$
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=\left\{\begin{array}{l}
6 x_{1} x_{2}^{2} \text { for } 0<x_{1}<1,0<x_{2}<1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

The probability is a double integral of the pdf over the region A. The region is however limited by the domain in which the pdf is positive.

We can write

$$
\begin{aligned}
A & =\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2} \geq 1,0<x_{1}<1,0<x_{2}<1\right\} \\
& =\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 1-x_{2}, 0<x_{1}<1,0<x_{2}<1\right\} \\
& =\left\{\left(x_{1}, x_{2}\right): 1-x_{2}<x_{1}<1,0<x_{2}<1\right\} .
\end{aligned}
$$

Hence, the probability is

$$
P(\boldsymbol{X} \subseteq A)=\iint_{A} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\int_{0}^{1} \int_{1-x_{2}}^{1} 6 x_{1} x_{2}^{2} d x_{1} d x_{2}=0.9
$$

Also, we can calculate marginal pdfs.

$$
\begin{aligned}
& f_{X_{1}}\left(x_{1}\right)=\int_{0}^{1} 6 x_{1} x_{2}^{2} d x_{2}=\left.2 x_{1} x_{2}^{3}\right|_{0} ^{1}=2 x_{1} \\
& f_{X_{2}}\left(x_{2}\right)=\int_{0}^{1} 6 x_{1} x_{2}^{2} d x_{1}=\left.3 x_{1}^{2} x_{2}^{2}\right|_{0} ^{1}=3 x_{2}^{2}
\end{aligned}
$$

These functions allow us to calculate probabilities involving only one variable. For example

$$
P\left(\frac{1}{4}<X_{1}<\frac{1}{2}\right)=\int_{\frac{1}{4}}^{\frac{1}{2}} 2 x_{1} d x_{1}=\frac{3}{16} .
$$

Similarly to the case of a univariate rv the following linear property for the expectation holds.

$$
\begin{equation*}
\mathrm{E}[a g(\boldsymbol{X})+b h(\boldsymbol{X})+c]=a \mathrm{E}[g(\boldsymbol{X})]+b \mathrm{E}[h(\boldsymbol{X})]+c, \tag{1.13}
\end{equation*}
$$

where a, b and c are constants and g and h are some functions of the bivariate rv $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$.

1.9.3 Conditional Distributions and Independence

Definition 1.16. Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ denote a discrete bivariate $r v$ with joint pmf $p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)$ and marginal pmfs $p_{X_{1}}\left(x_{1}\right)$ and $p_{X_{2}}\left(x_{2}\right)$. For any x_{1} such that $p_{X_{1}}\left(x_{1}\right)>0$, the conditional pmf of X_{2} given that $X_{1}=x_{1}$ is the function of x_{2} defined by

$$
p_{X_{2}}\left(x_{2} \mid x_{1}\right)=\frac{p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)} .
$$

Analogously, we define the conditional pmf of X_{1} given $X_{2}=x_{2}$

$$
p_{X_{1}}\left(x_{1} \mid x_{2}\right)=\frac{p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{p_{X_{2}}\left(x_{2}\right)} .
$$

It is easy to check that these functions are indeed pdfs. For example,

$$
\sum_{\mathcal{X}_{2}} p_{X_{2}}\left(x_{2} \mid x_{1}\right)=\sum_{\mathcal{X}_{2}} \frac{p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)}=\frac{\sum_{\mathcal{X}_{2}} p_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{p_{X_{1}}\left(x_{1}\right)}=\frac{p_{X_{1}}\left(x_{1}\right)}{p_{X_{1}}\left(x_{1}\right)}=1 .
$$

Example 1.22. Let X_{1} and X_{2} be defined as in Example 1.18. The conditional pmf of X_{2} given $X_{1}=5$, is

x_{2}	0	1	2	3	4	5
$p_{X_{2}}\left(x_{2} \mid 5\right)$	0	$\frac{1}{2}$	0	$\frac{1}{2}$	0	0

Exercise 1.15. Let S and G denote the smoking status an gender as defined in Exercise 1.14. Calculate the probability that a randomly selected student is

1. a smoker given that he is a male;
2. female, given that the student smokes.

Analogously to the conditional distribution for discrete rvs, we define the conditional distribution for continuous rvs.

Definition 1.17. Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ denote a continuous bivariate $r v$ with joint $p d f f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)$ and marginal pdfs $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$. For any x_{1} such that $f_{X_{1}}\left(x_{1}\right)>0$, the conditional pdf of X_{2} given that $X_{1}=x_{1}$ is the function of x_{2} defined by

$$
f_{X_{2}}\left(x_{2} \mid x_{1}\right)=\frac{f_{\mathbf{X}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)} .
$$

Analogously, we define the conditional p.d.f. of X_{1} given $X_{2}=x_{2}$

$$
f_{X_{1}}\left(x_{1} \mid x_{2}\right)=\frac{f_{\mathbf{X}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)} .
$$

Here too, it is easy to verify that these functions are pdfs. For example,

$$
\begin{aligned}
\int_{\mathcal{X}_{2}} f_{X_{2}}\left(x_{2} \mid x_{1}\right) d x_{2} & =\int_{\mathcal{X}_{2}} \frac{f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)} d x_{2} \\
& =\frac{\int_{\mathcal{X}_{2}} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{2}}{f_{X_{1}}\left(x_{1}\right)} \\
& =\frac{f_{X_{1}}\left(x_{1}\right)}{f_{X_{1}}\left(x_{1}\right)}=1 .
\end{aligned}
$$

Example 1.23. For the random variables defined in Example 1.21 the conditional pdfs are

$$
f_{X_{1}}\left(x_{1} \mid x_{2}\right)=\frac{f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}=\frac{6 x_{1} x_{2}^{2}}{3 x_{2}^{2}}=2 x_{1}
$$

and

$$
f_{X_{2}}\left(x_{2} \mid x_{1}\right)=\frac{f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=\frac{6 x_{1} x_{2}^{2}}{2 x_{1}}=3 x_{2}^{2} .
$$

The conditional pdfs allow us to calculate conditional expectations. The conditional expected value of a function $g\left(X_{2}\right)$ given that $X_{1}=x_{1}$ is defined by

$$
\mathrm{E}\left[g\left(X_{2}\right) \mid x_{1}\right]=\left\{\begin{array}{l}
\sum_{\mathcal{X}_{2}} g\left(x_{2}\right) p_{X_{2}}\left(x_{2} \mid x_{1}\right) \text { for a discrete r.v., } \tag{1.14}\\
\int_{\mathcal{X}_{2}} g\left(x_{2}\right) f_{X_{2}}\left(x_{2} \mid x_{1}\right) d x_{2} \text { for a continuous r.v.. }
\end{array}\right.
$$

Example 1.24. The conditional mean and variance of the X_{2} given a value of X_{1}, for the variables defined in Example 1.21 are

$$
\mu_{X_{2} \mid x_{1}}=\mathrm{E}\left(X_{2} \mid x_{1}\right)=\int_{0}^{1} x_{2} 3 x_{2}^{2} d x_{2}=\frac{3}{4},
$$

and
$\sigma_{X_{2} \mid x_{1}}^{2}=\operatorname{var}\left(X_{2} \mid x_{1}\right)=\mathrm{E}\left(X_{2}^{2} \mid x_{1}\right)-\left[\mathrm{E}\left(X_{2} \mid x_{1}\right)\right]^{2}=\int_{0}^{1} x_{2}^{2} 3 x_{2}^{2} d x_{2}-\left(\frac{3}{4}\right)^{2}=\frac{3}{80}$.

Definition 1.18. Let $\boldsymbol{X}=\left(X_{1}, X_{2}\right)$ denote a continuous bivariate rv with joint $p d f f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)$ and marginal pdfs $f_{X_{1}}\left(x_{1}\right)$ and $f_{X_{2}}\left(x_{2}\right)$. Then X_{1} and X_{2} are called independent random variables if, for every $x_{1} \in \mathcal{X}_{1}$ and $x_{2} \in \mathcal{X}_{2}$

$$
\begin{equation*}
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) . \tag{1.15}
\end{equation*}
$$

We define independent discrete random variables analogously.
If X_{1} and X_{2} are independent, then the conditional pdf of X_{2} given $X_{1}=x_{1}$ is

$$
f_{X_{2}}\left(x_{2} \mid x_{1}\right)=\frac{f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=\frac{f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=f_{X_{2}}\left(x_{2}\right)
$$

regardless of the value of x_{1}. Analogous property holds for the conditional pdf of X_{1} given $X_{2}=x_{2}$.

Example 1.25. It is easy to notice that for the variables defined in Example 1.21 we have

$$
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=6 x_{1} x_{2}^{2}=2 x_{1} 3 x_{2}^{2}=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) .
$$

So, the variables X_{1} and X_{2} are independent.

In fact, two rvs are independent if and only if there exist functions $g\left(x_{1}\right)$ and $h\left(x_{2}\right)$ such that for every $x_{1} \in \mathcal{X}_{1}$ and $x_{2} \in \mathcal{X}_{2}$,

$$
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=g\left(x_{1}\right) h\left(x_{2}\right)
$$

Theorem 1.13. Let X_{1} and X_{2} be independent random variables. Then

1. For any $A \subset \mathbb{R}$ and $B \subset \mathbb{R}$

$$
P\left(X_{1} \subseteq A, X_{2} \subseteq B\right)=P\left(X_{1} \subseteq A\right) P\left(X_{2} \subseteq B\right)
$$

that is, $\left\{X_{1} \subseteq A\right\}$ and $\left\{X_{2} \subseteq B\right\}$ are independent events.
2. For $g\left(X_{1}\right)$, a function of X_{1} only, and for $h\left(X_{2}\right)$, a function of X_{2} only, we have

$$
\mathrm{E}\left[g\left(X_{1}\right) h\left(X_{2}\right)\right]=\mathrm{E}\left[g\left(X_{1}\right)\right] \mathrm{E}\left[h\left(X_{2}\right)\right] .
$$

Proof. Assume that X_{1} and X_{2} are continuous random variables. To prove the theorem for discrete rvs we follow the same steps with sums instead of integrals.

1. We have

$$
\begin{aligned}
P\left(X_{1} \subseteq A, X_{2} \subseteq B\right) & =\int_{B} \int_{A} f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\int_{B} \int_{A} f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) d x_{1} d x_{2} \\
& =\int_{B}\left(\int_{A} f_{X_{1}}\left(x_{1}\right) d x_{1}\right) f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =\int_{A} f_{X_{1}}\left(x_{1}\right) d x_{1} \int_{B} f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =P\left(X_{1} \subseteq A\right) P\left(X_{2} \subseteq B\right) .
\end{aligned}
$$

2. Similar arguments as in Part 1 give

$$
\begin{aligned}
\mathrm{E}\left[g\left(X_{1}\right) h\left(X_{2}\right)\right] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}\right) h\left(x_{2}\right) f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}\right) h\left(x_{2}\right) f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) d x_{1} d x_{2} \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} g\left(x_{1}\right) f_{X_{1}}\left(x_{1}\right) d x_{1}\right) h\left(x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =\left(\int_{-\infty}^{\infty} g\left(x_{1}\right) f_{X_{1}}\left(x_{1}\right) d x_{1}\right)\left(\int_{-\infty}^{\infty} h\left(x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2}\right) \\
& =\mathrm{E}\left[g\left(X_{1}\right)\right] \mathrm{E}\left[h\left(X_{2}\right)\right] .
\end{aligned}
$$

In the following theorem we will apply this result for the moment generating function of a sum of independent random variables.

Theorem 1.14. Let X_{1} and X_{2} be independent random variables with moment generating functions $M_{X_{1}}(t)$ and $M_{X_{2}}(t)$, respectively. Then the moment generating function of the sum $Y=X_{1}+X_{2}$ is given by

$$
M_{Y}(t)=M_{X_{1}}(t) M_{X_{2}}(t) .
$$

Proof. By the definition of the mgf and by Theorem 1.13, part 2, we have

$$
M_{Y}(t)=\mathrm{E} e^{t Y}=\mathrm{E} e^{t\left(X_{1}+X_{2}\right)}=\mathrm{E}\left(e^{t X_{1}} e^{t X_{2}}\right)=\mathrm{E}\left(e^{t X_{1}}\right) \mathrm{E}\left(e^{t X_{2}}\right)=M_{X_{1}}(t) M_{X_{2}}(t) .
$$

Note that this result can be easily extended to a sum of any number of mutually independent random variables.

Example 1.26. Let $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$. What is the distribution of $Y=X_{1}+X_{2}$?

Using Theorem 1.14 we can write

$$
\begin{aligned}
M_{Y}(t) & =M_{X_{1}}(t) M_{X_{2}}(t) \\
& =\exp \left\{\mu_{1} t+\sigma_{1}^{2} t^{2} / 2\right\} \exp \left\{\mu_{2} t+\sigma_{2}^{2} t^{2} / 2\right\} \\
& =\exp \left\{\left(\mu_{1}+\mu_{2}\right) t+\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) t^{2} / 2\right\} .
\end{aligned}
$$

This is the mgf of a normal rv with $\mathrm{E}(Y)=\mu_{1}+\mu_{2}$ and $\operatorname{var}(Y)=\sigma_{1}^{2}+\sigma_{2}^{2}$.
Exercise 1.16. A part of an electronic system has two types of components in joint operation. Denote by X_{1} and X_{2} the random length of life (measured in hundreds of hours) of component of type I and of type II, respectively. Assume that the joint density function of two rvs is given by

$$
f_{\boldsymbol{X}}\left(x_{1}, x_{2}\right)=\frac{1}{8} x_{1} \exp \left\{-\frac{x_{1}+x_{2}}{2}\right\} I_{\mathcal{X}},
$$

where $\mathcal{X}=\left\{\left(x_{1}, x_{2}\right): x_{1}>0, x_{2}>0\right\}$.

1. Calculate the probability that both components will have a life length longer than 100 hours, that is, find $P\left(X_{1}>1, X_{2}>1\right)$.
2. Calculate the probability that a component of type II will have a life length longer than 200 hours, that is, find $P\left(X_{2}>2\right)$.
3. Are X_{1} and X_{2} independent? Justify your answer.
4. Calculate the expected value of so called relative efficiency of the two components, which is expressed by

$$
\mathrm{E}\left(\frac{X_{2}}{X_{1}}\right) .
$$

