Determination of modular forms by Fourier coefficients

Abhishek Saha

ETH, Zurich

16th February 2012

Setting

- V = some set of "modular forms".
- S = a set that indexes "Fourier coefficients" of elements of V, i.e., for all $\Phi \in V$, have an expansion

$$\Phi(z) = \sum_{n \in \mathcal{S}} \Phi_n(z).$$

ullet $\mathcal{D}=$ an "interesting subset" of $\mathcal{S}.$

Setting

- V = some set of "modular forms".
- S = a set that indexes "Fourier coefficients" of elements of V, i.e., for all $\Phi \in V$, have an expansion

$$\Phi(z) = \sum_{n \in \mathcal{S}} \Phi_n(z).$$

• $\mathcal{D}=$ an "interesting subset" of $\mathcal{S}.$

We are interested in situations where the following implication is true for all $\Phi \in V$:

$$\Phi_n = 0 \ \forall \ n \in \mathcal{D} \qquad \Rightarrow \qquad \Phi = 0$$

or, equivalently:

 $\Phi \neq 0$ \Rightarrow there exists $n \in \mathcal{D}$ such that $\Phi_n \neq 0$.

Another way of phrasing the question is:

When does an interesting subset of Fourier coefficients determine a modular form?

 Can take V to be a (finite dimensional) vector space, or a distinguished basis, consisting of Hecke eigenforms, of this space.
 Clearly the former problem is harder. Another way of phrasing the question is:

When does an interesting subset of Fourier coefficients determine a modular form?

- Can take V to be a (finite dimensional) vector space, or a
 distinguished basis, consisting of Hecke eigenforms, of this space.
 Clearly the former problem is harder. Somewhere in the middle lies
 the case that V consists of those vectors that are a sum of (at most)
 two eigenforms.
- It is particularly interesting when the Fourier coefficients have deep arithmetic significance, e.g., are related to central *L*-values.

Another way of phrasing the question is:

When does an interesting subset of Fourier coefficients determine a modular form?

- Can take V to be a (finite dimensional) vector space, or a
 distinguished basis, consisting of Hecke eigenforms, of this space.
 Clearly the former problem is harder. Somewhere in the middle lies
 the case that V consists of those vectors that are a sum of (at most)
 two eigenforms.
- It is particularly interesting when the Fourier coefficients have deep arithmetic significance, e.g., are related to central *L*-values.

This talk will focus on the following types of modular forms:

- ${\color{red} \bullet}$ Modular forms of half-integral weight (automorphic forms on $\widetilde{SL_2})$
- ② Siegel modular forms of degree 2 and trivial central character (automorphic forms on $PGSp_4$)

Definition of Sp_4

For a commutative ring R, we denote by $\operatorname{Sp}_4(R)$ the set of 4×4 matrices A satisfying the equation $A^t J A = J$ where $J = \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix}$.

Definition of \mathbb{H}_2

Let \mathbb{H}_2 denote the set of 2×2 matrices Z such that $Z = Z^t$ and $\mathrm{Im}(Z)$ is positive definite.

 \mathbb{H}_2 is a homogeneous space for $\mathrm{Sp}_4(\mathbb{R})$ under the action

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} : Z \mapsto (AZ + B)(CZ + D)^{-1}$$

Definition of Sp_4

For a commutative ring R, we denote by $\operatorname{Sp}_4(R)$ the set of 4×4 matrices A satisfying the equation $A^t J A = J$ where $J = \begin{pmatrix} 0 & I_2 \\ -I_2 & 0 \end{pmatrix}$.

Definition of \mathbb{H}_2

Let \mathbb{H}_2 denote the set of 2×2 matrices Z such that $Z = Z^t$ and $\mathrm{Im}(Z)$ is positive definite.

 \mathbb{H}_2 is a homogeneous space for $\mathrm{Sp}_4(\mathbb{R})$ under the action

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} : Z \mapsto (AZ + B)(CZ + D)^{-1}$$

The congruence subgroup $\Gamma_0^{(2)}(N)$

Let $\Gamma_0^{(2)}(N)\subset \operatorname{Sp}_4(\mathbb{Z})$ denote the subgroup of matrices that are congruent to $\binom{*}{0} \stackrel{*}{*} \mod N$.

The space $S_k(\Gamma_0^{(2)}(N))$

Siegel modular forms

A Siegel modular form of degree 2, level N, trivial character and weight k is a holomorphic function F on \mathbb{H}_2 satisfying

$$F(\gamma Z) = \det(CZ + D)^k F(Z),$$

for any
$$\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0^{(2)}(N)$$
,

If in addition, F vanishes at the cusps, then F is called a cusp form.

We define $S_k(\Gamma_0^{(2)}(N))$ to be the space of cusp forms as above.

The space $S_k(\Gamma_0^{(2)}(N))$

Siegel modular forms

A Siegel modular form of degree 2, level N, trivial character and weight k is a holomorphic function F on \mathbb{H}_2 satisfying

$$F(\gamma Z) = \det(CZ + D)^k F(Z),$$

for any
$$\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_0^{(2)}(N)$$
,

If in addition, F vanishes at the cusps, then F is called a cusp form.

We define $S_k(\Gamma_0^{(2)}(N))$ to be the space of cusp forms as above.

Remark. As in the classical case, we have Hecke operators and a Petersson inner product.

Remark. Hecke eigenforms in $S_k(\Gamma_0^{(2)}(N))$ give rise to cuspidal automorphic representations of $\mathrm{PGSp}_4(\mathbb{A})$

Let $F(Z) \in S_k(\Gamma_0^{(2)}(N))$. Note that

$$F(Z+egin{pmatrix}p&q\q&r\end{pmatrix})=F(Z),\qquad ext{for all }Z\in\mathbb{H}_2,\;(p,q,r)\in\mathbb{Z}^3$$

Let $F(Z) \in S_k(\Gamma_0^{(2)}(N))$. Note that

$$F(Z + \begin{pmatrix} p & q \\ q & r \end{pmatrix}) = F(Z),$$
 for all $Z \in \mathbb{H}_2$, $(p, q, r) \in \mathbb{Z}^3$

The Fourier expansion

$$F(Z) = \sum_{S>0} a(F,S)e^{2\pi i \text{Tr} SZ}$$

where S varies over all matrices $\begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ with $(a,b,c) \in \mathbb{Z}^3$ and $b^2 < 4ac$. We denote $\mathrm{disc}(S) = b^2 - 4ac$.

Remark. The Fourier coefficients a(F, S) are mysterious objects and are conjecturally related to central L-values (when F is an eigenform).

Fourier coefficients with fundamental discriminant

Recall the Fourier expansion $F(Z) = \sum_{S>0} a(F, S)e^{2\pi i \text{Tr} SZ}$.

Note that $\begin{pmatrix} A & 0 \\ 0 & (A^t)^{-1} \end{pmatrix} \in \Gamma_0^{(2)}(N)$ for all $A \in \mathrm{SL}_2(\mathbb{Z})$.

$\mathrm{SL}_2(\mathbb{Z})$ -invariance of Fourier coefficients

This shows that

$$a(F, ASA^t) = a(F, S)$$

for all $A \in \mathrm{SL}_2(\mathbb{Z})$

Fourier coefficients with fundamental discriminant

Recall the Fourier expansion $F(Z) = \sum_{S>0} a(F, S)e^{2\pi i \text{Tr} SZ}$.

Note that $\begin{pmatrix} A & 0 \\ 0 & (A^t)^{-1} \end{pmatrix} \in \Gamma_0^{(2)}(N)$ for all $A \in \mathrm{SL}_2(\mathbb{Z})$.

$\mathrm{SL}_2(\mathbb{Z})$ -invariance of Fourier coefficients

This shows that

$$a(F, ASA^t) = a(F, S)$$

for all $A \in \mathrm{SL}_2(\mathbb{Z})$

We are interested in situations where F is determined by the Fourier coefficients a(F, S) with $\operatorname{disc}(S) < 0$ a fundamental discriminant.

Recall: $d \in \mathbb{Z}$ is a fundamental discriminant if EITHER d is a squarefree integer congruent to 1 mod 4 OR d=4m where m is a squarefree integer congruent to 2 or 3 mod 4.

The main result

The U(p) operator

For all p|N, we have an operator U(p) on $S_k(\Gamma_0^{(2)}(N))$ defined by

$$(U(p)F)(Z) = \sum_{S>0} a(F, pS)e^{2\pi i \operatorname{Tr} SZ}.$$

The main result

The U(p) operator

For all p|N, we have an operator U(p) on $S_k(\Gamma_0^{(2)}(N))$ defined by

$$(U(p)F)(Z) = \sum_{S>0} a(F, pS)e^{2\pi i \operatorname{Tr} SZ}.$$

Theorem 1 (S – Schmidt, 2011)

Let N be squarefree. Let k>2 be an integer, and if N>1 assume k even. Let $F\in S_k(\Gamma_0^{(2)}(N))$ be non-zero and an eigenfunction of the U(p) operator for all p|N. Then $a(F,S)\neq 0$ for infinitely many S with $\mathrm{disc}(S)$ a fundamental discriminant.

The main result

The U(p) operator

For all p|N, we have an operator U(p) on $S_k(\Gamma_0^{(2)}(N))$ defined by

$$(U(p)F)(Z) = \sum_{S>0} a(F, pS)e^{2\pi i \operatorname{Tr} SZ}.$$

Theorem 1 (S – Schmidt, 2011)

Let N be squarefree. Let k > 2 be an integer, and if N > 1 assume k even. Let $F \in S_k(\Gamma_0^{(2)}(N))$ be non-zero and an eigenfunction of the U(p) operator for all p|N. Then $a(F,S) \neq 0$ for infinitely many S with $\operatorname{disc}(S)$ a fundamental discriminant.

Remark. If N = 1, no U(p) condition.

Remark. In fact we can give the lower bound $X^{\frac{5}{8}-\epsilon}$ for the number of such non-vanishing Fourier coefficients with absolute discriminant less than X.

- V = the elements of $S_k(\Gamma_0^{(2)}(N))$ that are eigenfunctions of U(p) for p|N.
- $\mathcal{S}=$ the set of matrices $\begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ with $(a,b,c)\in\mathbb{Z}^3$ and $b^2<4ac$. For all $\Phi\in V$, we have a Fourier expansion

$$\Phi(Z) = \sum_{n \in \mathcal{S}} \Phi_n(Z).$$

• \mathcal{D} = the subset of \mathcal{S} consisting of those matrices with $b^2 - 4ac$ a fundamental discriminant.

- V = the elements of $S_k(\Gamma_0^{(2)}(N))$ that are eigenfunctions of U(p) for p|N.
- $\mathcal{S}=$ the set of matrices $\begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ with $(a,b,c)\in\mathbb{Z}^3$ and $b^2<4ac$. For all $\Phi\in V$, we have a Fourier expansion

$$\Phi(Z) = \sum_{n \in \mathcal{S}} \Phi_n(Z).$$

• \mathcal{D} = the subset of \mathcal{S} consisting of those matrices with $b^2 - 4ac$ a fundamental discriminant.

Theorem 1 says: For all $\Phi \in V$,

$$\Phi_n = 0 \ \forall \ n \in \mathcal{D}$$
 \Rightarrow $\Phi = 0$

or, equivalently:

 $\Phi \neq 0$ \Rightarrow there exists $n \in \mathcal{D}$ such that $\Phi_n \neq 0$.

Theorem 1

Let N be squarefree. Let k>2 be an integer, and if N>1 assume k even. Let $F\in S_k(\Gamma_0^{(2)}(N))$ be non-zero and an eigenfunction of the U(p) operator for all p|N. Then $a(F,S)\neq 0$ for infinitely many S with $\mathrm{disc}(S)$ a fundamental discriminant.

Why do we care?

Key point: From the automorphic point of view, Fourier coefficients of Siegel modular forms are simultaneously

- Period integrals over Bessel subgroups
- (Conjecturally) Central L-values of quadratic twists of the relevant automorphic representation

As a result, non-vanishing of Fourier coefficients leads to very interesting consequences.

Why do we care? (contd.)

Let $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ be a newform. Let -d < 0 be a fundamental discriminant and put $K = \mathbb{Q}(\sqrt{-d})$. Let Cl_K denote the ideal class group of K.

Why do we care? (contd.)

Let $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ be a newform. Let -d < 0 be a fundamental discriminant and put $K = \mathbb{Q}(\sqrt{-d})$. Let Cl_K denote the ideal class group of K.

The following fact goes back to Gauss:

$$\mathrm{SL}_2(\mathbb{Z})\setminus \{S=egin{pmatrix} a & b/2 \ b/2 & c \end{pmatrix}, \; \mathrm{disc}(S)=-d\} &\cong & \mathsf{Cl}_{\mathcal{K}}\,.$$

Recall that $a(F,ASA^t)=a(F,S)$ for all $A\in \mathrm{SL}_2(\mathbb{Z})$

So, for any character Λ of the finite group Cl_K , the following quantity is well-defined,

$$R(F, d, \Lambda) = \sum_{c \in \mathsf{Cl}_K} a(F, c) \Lambda^{-1}(c)$$

Why do we care? (contd.)

Let $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ be a newform. Let -d < 0 be a fundamental discriminant and put $K = \mathbb{Q}(\sqrt{-d})$. Let Cl_K denote the ideal class group of K.

The following fact goes back to Gauss:

$$\mathrm{SL}_2(\mathbb{Z})\setminus \{S=egin{pmatrix} a & b/2 \ b/2 & c \end{pmatrix}, \ \mathrm{disc}(S)=-d\} &\cong \ \mathsf{Cl}_{\mathcal{K}}\,.$$

Recall that $a(F,ASA^t)=a(F,S)$ for all $A\in \mathrm{SL}_2(\mathbb{Z})$

So, for any character Λ of the finite group Cl_K , the following quantity is well-defined,

$$R(F,d,\Lambda) = \sum_{c \in \mathsf{Cl}_K} a(F,c)\Lambda^{-1}(c)$$

Corollary of Theorem 1

There are infinitely many d, Λ as above, so that $R(F, d, \Lambda) \neq 0$.

Interpretation as Bessel period

We have (up to some constants)

$$R(F,d,\Lambda) = \int_{\mathbb{A}^{\times} R(\mathbb{Q}) \backslash R(\mathbb{A})} \Phi_{F}(r) \Lambda^{-1}(r) dr$$

where Φ_F is the automorphic form attached to F and $R \subset \mathrm{GSp}_4$ is the Bessel subgroup: R = TU where $T \cong K^\times$ is a non-split torus of GL_2 (embedded diagonally in GSp_4) and U is a unipotent subgroup.

Interpretation as Bessel period

We have (up to some constants)

$$R(F,d,\Lambda) = \int_{\mathbb{A}^{\times} R(\mathbb{Q}) \backslash R(\mathbb{A})} \Phi_{F}(r) \Lambda^{-1}(r) dr$$

where Φ_F is the automorphic form attached to F and $R \subset \mathrm{GSp}_4$ is the Bessel subgroup: R = TU where $T \cong K^\times$ is a non-split torus of GL_2 (embedded diagonally in GSp_4) and U is a unipotent subgroup.

The automorphic representation Π_F of PGSp_4 attached to F is non-generic. It does not have a Whittaker model. So many automorphic methods that rely on Whittaker models do not work for Siegel cusp forms. However the non-vanishing of $R(F,d,\Lambda)$ means that it has a Bessel model of a very nice type!

Why is this important?

The existence of a Bessel model as above is key to proving many important facts about Π_F related to algebraicity of special values, integral representations and analytic properties of L-functions.

In a pioneering paper, Furusawa (1993) proved an integral representation and special value results for GL_2 twists of Π_F having such a nice Bessel model. Several subsequent papers by Pitale-Schmidt (2009), Saha (2009, 2010) and Pitale-Saha-Schmidt (2011) proved results for Π_F under the same assumption.

Why is this important?

The existence of a Bessel model as above is key to proving many important facts about Π_F related to algebraicity of special values, integral representations and analytic properties of L-functions.

In a pioneering paper, Furusawa (1993) proved an integral representation and special value results for GL_2 twists of Π_F having such a nice Bessel model. Several subsequent papers by Pitale-Schmidt (2009), Saha (2009, 2010) and Pitale-Saha-Schmidt (2011) proved results for Π_F under the same assumption.

With Theorem 1, we now know that all those results hold unconditionally for Π_F coming from newforms in $S_k(\Gamma_0^{(2)}(N))$.

Central L-values

We continue to assume that $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ is a newform, -d < 0 a fundamental discriminant, Λ an ideal class character of $K = \mathbb{Q}(\sqrt{-d})$ and $R(F,d,\Lambda) = \sum_{c \in Cl_K} a(F,c)\Lambda^{-1}(c)$.

Recall: By Theorem 1 we can find d, Λ as above so that $R(F, d, \Lambda) \neq 0$.

Central L-values

We continue to assume that $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ is a newform, -d < 0 a fundamental discriminant, Λ an ideal class character of $K = \mathbb{Q}(\sqrt{-d})$ and $R(F,d,\Lambda) = \sum_{c \in \mathsf{Cl}_K} a(F,c)\Lambda^{-1}(c)$.

Recall: By Theorem 1 we can find d, Λ as above so that $R(F, d, \Lambda) \neq 0$.

A generalization of a conjecture of Böcherer by several people (Böcherer, Furusawa, Shalika, Martin, Prasad, Takloo-Bighash), leads to the following very interesting Gross-Prasad type conjecture.

Conjecture

Suppose for some F, d, Λ as above, we have $R(F,d,\Lambda) \neq 0$. Then $L(\frac{1}{2},\Pi_F \times \theta_\Lambda) \neq 0$, where $\theta_\Lambda = \sum_{0 \neq a \subset O_K} \Lambda(a) e^{2\pi i N(a)z}$ is a holomorphic modular form of weight 1 and nebentypus $(\frac{-d}{*})$ on $\Gamma_0(d)$.

Central L-values

We continue to assume that $F(Z) \in S_k(\Gamma_0^{(2)}(N))$ is a newform, -d < 0 a fundamental discriminant, Λ an ideal class character of $K = \mathbb{Q}(\sqrt{-d})$ and $R(F,d,\Lambda) = \sum_{c \in \mathsf{Cl}_K} a(F,c)\Lambda^{-1}(c)$.

Recall: By Theorem 1 we can find d, Λ as above so that $R(F, d, \Lambda) \neq 0$.

A generalization of a conjecture of Böcherer by several people (Böcherer, Furusawa, Shalika, Martin, Prasad, Takloo-Bighash), leads to the following very interesting Gross-Prasad type conjecture.

Conjecture

Suppose for some F, d, Λ as above, we have $R(F,d,\Lambda) \neq 0$. Then $L(\frac{1}{2},\Pi_F \times \theta_\Lambda) \neq 0$, where $\theta_\Lambda = \sum_{0 \neq a \subset O_K} \Lambda(a) e^{2\pi i N(a) z}$ is a holomorphic modular form of weight 1 and nebentypus $(\frac{-d}{*})$ on $\Gamma_0(d)$.

The above conjecture is not proved in general; however it is known for certain special Siegel cusp forms that are *lifts*.

Yoshida lifts

- N_1 , N_2 : two squarefree integers that are not coprime.
- $N = lcm(N_1, N_2)$.
- f: newform of weight 2 on $\Gamma_0(N_1)$.
- g : newform of weight 2k on $\Gamma_0(N_2)$.
- Assume that for all $p|\gcd(N_1, N_2)$, f and g have the same Atkin-Lehner eigenvalue at p.

Yoshida lifts

- N_1 , N_2 : two squarefree integers that are not coprime.
- $N = lcm(N_1, N_2)$.
- f: newform of weight 2 on $\Gamma_0(N_1)$.
- g : newform of weight 2k on $\Gamma_0(N_2)$.
- Assume that for all $p|\gcd(N_1, N_2)$, f and g have the same Atkin-Lehner eigenvalue at p.

The Yoshida lift

Under the above assumptions, there exists a newform $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ such that

$$L(s,\Pi_F)=L(s,\pi_f)L(s,\pi_g)$$

Remark. In the language of automorphic representations, the Yoshida lift is a special case of Langlands functoriality, coming from the embedding of *L*-groups

$$\mathrm{SL}_2(\mathbb{C}) \times \mathrm{SL}_2(\mathbb{C}) \to \mathrm{Sp}_4(\mathbb{C}).$$

How is the Yoshida lift constructed?

The Yoshida lift is constructed via the theta correspondence. Suppose we start with classical newforms f, g as in the previous slide.

- First we fix a definite quaternion algebra D which is unramified at all finite primes outside $gcd(N_1, N_2)$.
- ② Via the Jacquet-Langlands correspondence, we transfer π_f , π_g to representations π_f' , π_g' on $D^{\times}(\mathbb{A})$.
- Using the isomorphism

$$(D^{\times} \times D^{\times})/\mathbb{Q}^{\times} \cong GSO(4)$$

we obtain an automorphic representation $\pi'_{f,g}$ on $GSO(4,\mathbb{A})$.

3 Finally we use the theta lifting to transfer $\pi'_{f,g}$ to the automorphic representation Π_F on $\mathrm{GSp}_4(\mathbb{A})$.

Let f, g be as before and $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ be the Yoshida lifting.

Let f, g be as before and $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ be the Yoshida lifting.

Recall the conjecture stated earlier which is expected to hold for any Siegel newform F, a fundamental discriminant -d and an ideal class character Λ of $\mathbb{Q}(\sqrt{-d})$.

Conjecture

Suppose we have $R(F, d, \Lambda) \neq 0$. Then $L(\frac{1}{2}, \Pi_F \times \theta_{\Lambda}) \neq 0$.

Let f, g be as before and $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ be the Yoshida lifting.

Recall the conjecture stated earlier which is expected to hold for any Siegel newform F, a fundamental discriminant -d and an ideal class character Λ of $\mathbb{Q}(\sqrt{-d})$.

Conjecture

Suppose we have $R(F, d, \Lambda) \neq 0$. Then $L(\frac{1}{2}, \Pi_F \times \theta_{\Lambda}) \neq 0$.

Theorem (Prasad-Takloo-Bighash)

The above conjecture is true when F is a Yoshida lifting.

Remark. If $\Lambda = 1$, this is also proved in work of Böcherer–Schulze-Pillot. **Remark.** Note that when F is a Yoshida lifting, then

$$L(\frac{1}{2},\Pi_F \times \theta_{\Lambda}) = L(\frac{1}{2},\pi_f \times \theta_{\Lambda})L(\frac{1}{2},\pi_g \times \theta_{\Lambda}).$$

What we have so far

Yoshida lift

Given f, g classical newforms satisfying some compatibility conditions, there exists a newform $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ such that $L(s,\Pi_F) = L(s,\pi_f)L(s,\pi_g)$

What we have so far

Yoshida lift

Given f, g classical newforms satisfying some compatibility conditions, there exists a newform $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ such that $L(s, \Pi_F) = L(s, \pi_f)L(s, \pi_g)$

Corollary of Theorem 1

We can find infinitely many pairs (d, Λ) with -d a fundamental discriminant and Λ an ideal class group character of $\mathbb{Q}(\sqrt{-d})$ such that $R(F, d, \Lambda) \neq 0$.

What we have so far

Yoshida lift

Given f, g classical newforms satisfying some compatibility conditions, there exists a newform $F \in S_{k+1}(\Gamma_0^{(2)}(N))$ such that $L(s, \Pi_F) = L(s, \pi_f)L(s, \pi_g)$

Corollary of Theorem 1

We can find infinitely many pairs (d, Λ) with -d a fundamental discriminant and Λ an ideal class group character of $\mathbb{Q}(\sqrt{-d})$ such that $R(F, d, \Lambda) \neq 0$.

Theorem of Prasad-Takloo-Bighash

$$R(F,d,\Lambda) \neq 0 \quad \Rightarrow \quad L(\frac{1}{2},\pi_f \times \theta_{\Lambda})L(\frac{1}{2},\pi_g \times \theta_{\Lambda}) \neq 0.$$

A simultaneous non-vanishing result

Putting together the three results of the previous slide, we obtain the following result:

Theorem 2 (S-Schmidt, 2011)

Let k>1 be an odd positive integer. Let N_1 , N_2 be two positive, squarefree integers such that $M=\gcd(N_1,N_2)>1$. Let f be a holomorphic newform of weight 2k on $\Gamma_0(N_1)$ and g be a holomorphic newform of weight 2 on $\Gamma_0(N_2)$. Assume that for all primes p dividing M the Atkin-Lehner eigenvalues of f and g coincide. Then there exists an imaginary quadratic field K and a character $\chi\in\widehat{\text{Cl}_K}$ such that $L(\frac{1}{2},\pi_f\times\theta_\chi)\neq 0$ and $L(\frac{1}{2},\pi_g\times\theta_\chi)\neq 0$.

Remark. Our proof shows, in fact, that there are at least $X^{\frac{5}{8}-\epsilon}$ such pairs (K,χ) with $\mathrm{disc}(K) < X$.

Thus we have seen that Theorem 1 leads to

- Existence of nice Bessel models for automorphic representations attached to Siegel newforms. This makes several old results of Furusawa, Pitale, Saha, Schmidt unconditional.
- Simultaneous non-vanishing of dihedral twists of two modular L-functions.

Thus we have seen that Theorem 1 leads to

- Existence of nice Bessel models for automorphic representations attached to Siegel newforms. This makes several old results of Furusawa, Pitale, Saha, Schmidt unconditional.
- Simultaneous non-vanishing of dihedral twists of two modular L-functions.

How is Theorem 1 proved?

Thus we have seen that Theorem 1 leads to

- Existence of nice Bessel models for automorphic representations attached to Siegel newforms. This makes several old results of Furusawa, Pitale, Saha, Schmidt unconditional.
- Simultaneous non-vanishing of dihedral twists of two modular L-functions.

How is Theorem 1 proved?

It turns out that the key step of proving Theorem 1 is a very similar result for modular forms of half-integral weight!

Classical modular forms of half-integral weight

Let N be a squarefree integer. For any non-negative integer k, let $S_{k+\frac{1}{2}}(\Gamma_0(4N))$ denote the space of cusp forms of weight $k+\frac{1}{2}$, level 4N and trivial character.

Let $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ denote the Kohnen subspace of $S_{k+\frac{1}{2}}(\Gamma_0(4N))$.

Classical modular forms of half-integral weight

Let N be a squarefree integer. For any non-negative integer k, let $S_{k+\frac{1}{2}}(\Gamma_0(4N))$ denote the space of cusp forms of weight $k+\frac{1}{2}$, level 4N and trivial character.

Let $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ denote the Kohnen subspace of $S_{k+\frac{1}{2}}(\Gamma_0(4N))$.

Fourier expansion

Any $f \in S^+_{k+\frac{1}{\alpha}}(\Gamma_0(4N))$ has a Fourier expansion

$$f(z) = \sum_{(-1)^k n \equiv 0, 1(4)} a(f, n) e^{2\pi i z}.$$

Classical modular forms of half-integral weight

Let N be a squarefree integer. For any non-negative integer k, let $S_{k+\frac{1}{2}}(\Gamma_0(4N))$ denote the space of cusp forms of weight $k+\frac{1}{2}$, level 4N and trivial character.

Let $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ denote the Kohnen subspace of $S_{k+\frac{1}{2}}(\Gamma_0(4N))$.

Fourier expansion

Any $f \in S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ has a Fourier expansion

$$f(z) = \sum_{(-1)^k n \equiv 0, 1(4)} a(f, n) e^{2\pi i z}.$$

Let \mathcal{D} be the set of integers d > 0 such that $(-1)^k d$ is a fundamental discriminant.

Remark. If $f \in S_{k+1/2}^+(\Gamma_0(4N))$ is a newform, then Waldspurger's theorem (worked out precisely in this case by Kohen) implies that $|a(f,d)|^2$ is essentially equal to $L(1/2,\pi\times\chi_d)$.

Remark. If $f \in S_{k+1/2}^+(\Gamma_0(4N))$ is a newform, then Waldspurger's theorem (worked out precisely in this case by Kohen) implies that $|a(f,d)|^2$ is essentially equal to $L(1/2,\pi\times\chi_d)$.

We are interested in the situation when elements of $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ are determined by the Fourier coefficients a(f,d) with $d\in\mathcal{D}$.

• V= some subset of $S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ where N is squarefree, $k\geq 2$,

- $V = \text{some subset of } S^+_{k+\frac{1}{2}}(\Gamma_0(4N)) \text{ where } N \text{ is squarefree, } k \geq 2,$
- S = the set of integers n such that $(-1)^k n$ is a discriminant (i.e. $n \equiv 0$ or $1 \mod (4)$),

- $V = \text{some subset of } S^+_{k+\frac{1}{2}}(\Gamma_0(4N)) \text{ where } N \text{ is squarefree, } k \geq 2,$
- S = the set of integers n such that $(-1)^k n$ is a discriminant (i.e. $n \equiv 0$ or $1 \mod (4)$),
- \mathcal{D} = the set of integers n such that $(-1)^k n$ is a fundamental discriminant.

- V= some subset of $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ where N is squarefree, $k\geq 2$,
- S = the set of integers n such that $(-1)^k n$ is a discriminant (i.e. $n \equiv 0$ or 1 mod (4)),
- \mathcal{D} = the set of integers n such that $(-1)^k n$ is a fundamental discriminant.

Easy version: V= basis of $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ consisting of Hecke eigenforms

- $V = \text{some subset of } S^+_{k+\frac{1}{2}}(\Gamma_0(4N)) \text{ where } N \text{ is squarefree, } k \geq 2,$
- S = the set of integers n such that $(-1)^k n$ is a discriminant (i.e. $n \equiv 0$ or $1 \mod (4)$),
- \mathcal{D} = the set of integers n such that $(-1)^k n$ is a fundamental discriminant.

Easy version: V= basis of $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ consisting of Hecke eigenforms

Question: Suppose $f \in S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ is a (non-zero) Hecke eigenform. Does there exist $d \in \mathcal{D}$ so that $a(f,d) \neq 0$?

- $V = \text{some subset of } S_{k+\frac{1}{2}}^+(\Gamma_0(4N)) \text{ where } N \text{ is squarefree, } k \geq 2,$
- S = the set of integers n such that $(-1)^k n$ is a discriminant (i.e. $n \equiv 0$ or $1 \mod (4)$),
- \mathcal{D} = the set of integers n such that $(-1)^k n$ is a fundamental discriminant.

Easy version: V= basis of $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ consisting of Hecke eigenforms

Question: Suppose $f \in S^+_{k+\frac{1}{2}}(\Gamma_0(4N))$ is a (non-zero) Hecke eigenform.

Does there exist $d \in \mathcal{D}$ so that $a(f, d) \neq 0$?

Answer: Yes. Proved by Kohnen (1985).

Question: Suppose f and g are two Hecke eigenforms in $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ and a(f,d)=a(g,d) for all $d\in\mathcal{D}$. Is f=g?

Question: Suppose f and g are two Hecke eigenforms in $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$

and a(f,d) = a(g,d) for all $d \in \mathcal{D}$. Is f = g?

Answer: Yes. Proved by Luo-Ramakrishnan (1997).

Remark. Luo and Ramakrishnan use the Waldspurger–Kohnen formula to reduce the problem to showing that the relevant automorphic representations are uniquely determined by the central *L*-values of quadratic twists.

Question: Suppose f and g are two Hecke eigenforms in $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$

and a(f,d) = a(g,d) for all $d \in \mathcal{D}$. Is f = g?

Answer: Yes. Proved by Luo-Ramakrishnan (1997).

Remark. Luo and Ramakrishnan use the Waldspurger–Kohnen formula to reduce the problem to showing that the relevant automorphic representations are uniquely determined by the central *L*-values of quadratic twists.

Hardest version: $V = S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$

Question: Suppose $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ is non-zero (but not necessarily an eigenform). Does there exist $d \in \mathcal{D}$ so that $a(f,d) \neq 0$?

Question: Suppose f and g are two Hecke eigenforms in $S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ and a(f,d)=a(g,d) for all $d\in\mathcal{D}$. Is f=g?

Answer: Yes. Proved by Luo-Ramakrishnan (1997).

Remark. Luo and Ramakrishnan use the Waldspurger–Kohnen formula to reduce the problem to showing that the relevant automorphic representations are uniquely determined by the central *L*-values of quadratic twists.

Hardest version: $V = S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$

Question: Suppose $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ is non-zero (but not necessarily an eigenform). Does there exist $d \in \mathcal{D}$ so that $a(f,d) \neq 0$?

Answer: Yes!

Theorem 3 (S, 2011)

Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ where N is squarefree and $k \ge 2$. Assume $f \ne 0$. Then $a(f,d) \ne 0$ for infinitely many d in \mathcal{D} .

Theorem 3 (S, 2011)

Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ where N is squarefree and $k \geq 2$. Assume $f \neq 0$. Then $a(f,d) \neq 0$ for infinitely many d in \mathcal{D} .

Remark. Note that because f is not a Hecke eigenform, there is no way to reduce the problem to central L-values!

Remark. Actually the theorem I prove is stronger: N can be divisible by squares of primes, the nebentypus need not be trivial, one can work with the larger space $S_{k+\frac{1}{2}}(\Gamma_0(4N))$, and one can give a lower bound on the number of non-vanishing Fourier coefficients a(f,d).

A quick recap of the two results

Theorem 1

Let N be squarefree. Let k>2 be an integer, and if N>1 assume k even. Let $F\in S_k(\Gamma_0^{(2)}(N))$ be non-zero and an eigenfunction of the U(p) operator for all p|N. Then $a(F,S)\neq 0$ for infinitely many S with $\mathrm{disc}(S)$ a fundamental discriminant.

Theorem 3

Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ where N is squarefree and $k \geq 2$. Assume $f \neq 0$. Then $a(f,d) \neq 0$ for infinitely many d in \mathcal{D} .

A quick recap of the two results

Theorem 1

Let N be squarefree. Let k>2 be an integer, and if N>1 assume k even. Let $F\in S_k(\Gamma_0^{(2)}(N))$ be non-zero and an eigenfunction of the U(p) operator for all p|N. Then $a(F,S)\neq 0$ for infinitely many S with $\mathrm{disc}(S)$ a fundamental discriminant.

Theorem 3

Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ where N is squarefree and $k \geq 2$. Assume $f \neq 0$. Then $a(f,d) \neq 0$ for infinitely many d in \mathcal{D} .

Rest of this talk:

- why Theorem 3 implies Theorem 1.
- how Theorem 3 is proved.

For simplicity, let us restrict to the case N=1 and k even.

- Let $F(Z) = \sum_{S} a(F,S)e^{2\pi i \operatorname{Tr} SZ} \in S_k(\Gamma_0^{(2)}(1)), \ F \neq 0.$ Need to find $S = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ such that $b^2 4ac$ is a fundamental discriminant and $a(F, S) \neq 0$.

For simplicity, let us restrict to the case N=1 and k even.

- Let $F(Z) = \sum_S a(F,S)e^{2\pi i \operatorname{Tr} SZ} \in S_k(\Gamma_0^{(2)}(1))$, $F \neq 0$. Need to find $S = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ such that $b^2 4ac$ is a fundamental discriminant and $a(F, S) \neq 0$.

Step 1. Using a result of Zagier, one can show that there exist a matrix $S' = \begin{pmatrix} a & b/2 \\ b/2 & p \end{pmatrix}$ such that $a(F, S') \neq 0$ and p is an odd *prime* number.

For simplicity, let us restrict to the case N = 1 and k even.

- Let $F(Z) = \sum_{S} a(F, S) e^{2\pi i \operatorname{Tr} SZ} \in S_k(\Gamma_0^{(2)}(1)), \ F \neq 0.$
- Need to find $S = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ such that $b^2 4ac$ is a fundamental discriminant and $a(F,S) \neq 0$.

Step 1. Using a result of Zagier, one can show that there exist a matrix $S' = \begin{pmatrix} a & b/2 \\ b/2 & p \end{pmatrix}$ such that $a(F, S') \neq 0$ and p is an odd *prime* number.

Step 2. For each $n \ge 1$, define

$$c(n) = a \left(F, \begin{pmatrix} \frac{n+b^2}{4p} & b/2 \\ b/2 & p \end{pmatrix} \right)$$

where b is any integer so that 4p divides $n + b^2$,

For simplicity, let us restrict to the case N = 1 and k even.

- Let $F(Z) = \sum_{S} a(F, S) e^{2\pi i \operatorname{Tr} SZ} \in S_k(\Gamma_0^{(2)}(1)), \ F \neq 0.$
- Need to find $S = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$ such that $b^2 4ac$ is a fundamental discriminant and $a(F,S) \neq 0$.
- **Step 1.** Using a result of Zagier, one can show that there exist a matrix $S' = \begin{pmatrix} a & b/2 \\ b/2 & p \end{pmatrix}$ such that $a(F, S') \neq 0$ and p is an odd *prime* number.

Step 2. For each $n \ge 1$, define

$$c(n) = a \left(F, \begin{pmatrix} \frac{n+b^2}{4p} & b/2 \\ b/2 & p \end{pmatrix} \right)$$

where b is any integer so that 4p divides $n + b^2$, and put

$$h(z) = \sum_{n>1} c(n)e^{2\pi i n z}.$$

Why Theorem 3 implies Theorem 1 (contd.)

Because of Step 1, it follows that $h(z) = \sum_{n \ge 1} c(n)e^{2\pi i n z} \ne 0$.

Why Theorem 3 implies Theorem 1 (contd.)

Because of Step 1, it follows that $h(z) = \sum_{n \geq 1} c(n)e^{2\pi i n z} \neq 0$.

Theorem (Eichler-Zagier, Skoruppa)

$$h(z)\in S_{k-\frac{1}{2}}^+(4p)$$

Remark. This Theorem is best understood as arising from the isomorphism between the space of *Jacobi forms* and modular forms of half-integral weight.

Remark. Note that even if F is a Hecke eigenform, h(z) need not be!

Why Theorem 3 implies Theorem 1 (contd.)

Because of Step 1, it follows that $h(z) = \sum_{n \geq 1} c(n)e^{2\pi i n z} \neq 0$.

Theorem (Eichler-Zagier, Skoruppa)

$$h(z) \in S_{k-\frac{1}{2}}^+(4p)$$

Remark. This Theorem is best understood as arising from the isomorphism between the space of *Jacobi forms* and modular forms of half-integral weight.

Remark. Note that even if F is a Hecke eigenform, h(z) need not be!

Step 3. It follows from Theorem 3 that $c(d) \neq 0$ for infinitely many d such that -d is a fundamental discriminant. Since

$$c(d) = a \left(F, \begin{pmatrix} \frac{d+b^2}{4p} & b/2 \\ b/2 & p \end{pmatrix} \right)$$

this proves Theorem 1.

• Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ be non-zero and $\mathcal D$ be the set of integers d such that $(-1)^k d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal D$ with $a(f,d) \neq 0$.

- Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ be non-zero and \mathcal{D} be the set of integers d such that $(-1)^k d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal{D}$ with $a(f,d) \neq 0$.
- The key point is to consider the following quantity for any integer M, and any X > 0,

$$S(M,X;f) = \sum_{\substack{d \in \mathcal{D} \\ (d,M)=1}} d^{\frac{1}{2}-k} |a(f,d)|^2 e^{-d/X}.$$

- Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ be non-zero and \mathcal{D} be the set of integers d such that $(-1)^k d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal{D}$ with $a(f,d) \neq 0$.
- The key point is to consider the following quantity for any integer M, and any X > 0,

$$S(M,X;f) = \sum_{\substack{d \in \mathcal{D} \\ (d,M)=1}} d^{\frac{1}{2}-k} |a(f,d)|^2 e^{-d/X}.$$

• We estimate S(M, X; f) by using a result of Duke and Iwaniec, a sieving procedure to get from all integers to \mathcal{D} , and a careful analysis involving Hecke operators and the Shimura correspondence.

- Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ be non-zero and $\mathcal D$ be the set of integers d such that $(-1)^k d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal D$ with $a(f,d) \neq 0$.
- The key point is to consider the following quantity for any integer M, and any X > 0,

$$S(M,X;f) = \sum_{\substack{d \in \mathcal{D} \\ (d,M)=1}} d^{\frac{1}{2}-k} |a(f,d)|^2 e^{-d/X}.$$

- We estimate S(M, X; f) by using a result of Duke and Iwaniec, a sieving procedure to get from all integers to \mathcal{D} , and a careful analysis involving Hecke operators and the Shimura correspondence.
- We prove that there exists an integer M and a constant $C_f > 0$ so that $S(M, X; f) > C_f X$ for all sufficiently large X.

- Let $f \in S_{k+\frac{1}{2}}^+(\Gamma_0(4N))$ be non-zero and \mathcal{D} be the set of integers d such that $(-1)^k d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal{D}$ with $a(f,d) \neq 0$.
- The key point is to consider the following quantity for any integer M, and any X > 0,

$$S(M,X;f) = \sum_{\substack{d \in \mathcal{D} \\ (d,M)=1}} d^{\frac{1}{2}-k} |a(f,d)|^2 e^{-d/X}.$$

- We estimate S(M, X; f) by using a result of Duke and Iwaniec, a sieving procedure to get from all integers to \mathcal{D} , and a careful analysis involving Hecke operators and the Shimura correspondence.
- We prove that there exists an integer M and a constant $C_f > 0$ so that $S(M, X; f) > C_f X$ for all sufficiently large X.
- This shows that there are infinitely many $d \in \mathcal{D}$ such that $a(f, d) \neq 0$.