Determination of modular forms by Fourier coefficients

Abhishek Saha

ETH, Zurich

16th February 2012

Setting

- $V=$ some set of "modular forms".
- $\mathcal{S}=$ a set that indexes "Fourier coefficients" of elements of V, i.e., for all $\Phi \in V$, have an expansion

$$
\Phi(z)=\sum_{n \in \mathcal{S}} \Phi_{n}(z)
$$

- $\mathcal{D}=$ an "interesting subset" of \mathcal{S}.

Setting

- $V=$ some set of "modular forms".
- $\mathcal{S}=$ a set that indexes "Fourier coefficients" of elements of V, i.e., for all $\Phi \in V$, have an expansion

$$
\Phi(z)=\sum_{n \in \mathcal{S}} \Phi_{n}(z) .
$$

- $\mathcal{D}=$ an "interesting subset" of \mathcal{S}.

We are interested in situations where the following implication is true for all $\Phi \in V$:

$$
\Phi_{n}=0 \forall n \in \mathcal{D} \quad \Rightarrow \quad \Phi=0
$$

or, equivalently:

$$
\Phi \neq 0 \quad \Rightarrow \quad \text { there exists } n \in \mathcal{D} \text { such that } \Phi_{n} \neq 0
$$

Another way of phrasing the question is:
When does an interesting subset of Fourier coefficients determine a modular form?

- Can take V to be a (finite dimensional) vector space, or a distinguished basis, consisting of Hecke eigenforms, of this space. Clearly the former problem is harder.

Another way of phrasing the question is:
When does an interesting subset of Fourier coefficients determine a modular form?

- Can take V to be a (finite dimensional) vector space, or a distinguished basis, consisting of Hecke eigenforms, of this space. Clearly the former problem is harder. Somewhere in the middle lies the case that V consists of those vectors that are a sum of (at most) two eigenforms.
- It is particularly interesting when the Fourier coefficients have deep arithmetic significance, e.g., are related to central L-values.

Another way of phrasing the question is:
When does an interesting subset of Fourier coefficients determine a modular form?

- Can take V to be a (finite dimensional) vector space, or a distinguished basis, consisting of Hecke eigenforms, of this space. Clearly the former problem is harder. Somewhere in the middle lies the case that V consists of those vectors that are a sum of (at most) two eigenforms.
- It is particularly interesting when the Fourier coefficients have deep arithmetic significance, e.g., are related to central L-values.

This talk will focus on the following types of modular forms:
(1) Modular forms of half-integral weight (automorphic forms on $\widetilde{S L}_{2}$)
(2) Siegel modular forms of degree 2 and trivial central character (automorphic forms on PGSp_{4})

Definition of Sp_{4}

For a commutative ring R, we denote by $\operatorname{Sp}_{4}(R)$ the set of 4×4 matrices A satisfying the equation $A^{t} J A=J$ where $J=\left(\begin{array}{cc}0 & I_{2} \\ -I_{2} & 0\end{array}\right)$.

Definition of \mathbb{H}_{2}

Let \mathbb{H}_{2} denote the set of 2×2 matrices Z such that $Z=Z^{t}$ and $\operatorname{Im}(Z)$ is positive definite.
\mathbb{H}_{2} is a homogeneous space for $\mathrm{Sp}_{4}(\mathbb{R})$ under the action

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): Z \mapsto(A Z+B)(C Z+D)^{-1}
$$

Definition of Sp_{4}

For a commutative ring R, we denote by $\operatorname{Sp}_{4}(R)$ the set of 4×4 matrices A satisfying the equation $A^{t} J A=J$ where $J=\left(\begin{array}{cc}0 & I_{2} \\ -I_{2} & 0\end{array}\right)$.

Definition of \mathbb{H}_{2}

Let \mathbb{H}_{2} denote the set of 2×2 matrices Z such that $Z=Z^{t}$ and $\operatorname{Im}(Z)$ is positive definite.
\mathbb{H}_{2} is a homogeneous space for $\operatorname{Sp}_{4}(\mathbb{R})$ under the action

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right): Z \mapsto(A Z+B)(C Z+D)^{-1}
$$

The congruence subgroup $\Gamma_{0}^{(2)}(N)$
Let $\Gamma_{0}^{(2)}(N) \subset \mathrm{Sp}_{4}(\mathbb{Z})$ denote the subgroup of matrices that are congruent to $\left(\begin{array}{cc}* & * \\ 0 & *\end{array}\right) \bmod N$.

The space $S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$

Siegel modular forms

A Siegel modular form of degree 2 , level N, trivial character and weight k is a holomorphic function F on \mathbb{H}_{2} satisfying

$$
F(\gamma Z)=\operatorname{det}(C Z+D)^{k} F(Z)
$$

for any $\gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{0}^{(2)}(N)$,
If in addition, F vanishes at the cusps, then F is called a cusp form.
We define $S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ to be the space of cusp forms as above.

The space $S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$

Siegel modular forms

A Siegel modular form of degree 2 , level N, trivial character and weight k is a holomorphic function F on \mathbb{H}_{2} satisfying

$$
F(\gamma Z)=\operatorname{det}(C Z+D)^{k} F(Z)
$$

for any $\gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{0}^{(2)}(N)$,
If in addition, F vanishes at the cusps, then F is called a cusp form.
We define $S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ to be the space of cusp forms as above.
Remark. As in the classical case, we have Hecke operators and a Petersson inner product.
Remark. Hecke eigenforms in $S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ give rise to cuspidal automorphic representations of $\mathrm{PGSp}_{4}(\mathbb{A})$

Let $F(Z) \in S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$. Note that

$$
F\left(Z+\left(\begin{array}{ll}
p & q \\
q & r
\end{array}\right)\right)=F(Z), \quad \text { for all } Z \in \mathbb{H}_{2},(p, q, r) \in \mathbb{Z}^{3}
$$

Let $F(Z) \in S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$. Note that

$$
F\left(Z+\left(\begin{array}{ll}
p & q \\
q & r
\end{array}\right)\right)=F(Z), \quad \text { for all } Z \in \mathbb{H}_{2},(p, q, r) \in \mathbb{Z}^{3}
$$

The Fourier expansion

$$
F(Z)=\sum_{S>0} a(F, S) e^{2 \pi i \operatorname{Tr} S Z}
$$

where S varies over all matrices $\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$ with $(a, b, c) \in \mathbb{Z}^{3}$ and $b^{2}<4 a c$. We denote $\operatorname{disc}(S)=b^{2}-4 a c$.

Remark. The Fourier coefficients $a(F, S)$ are mysterious objects and are conjecturally related to central L-values (when F is an eigenform).

Fourier coefficients with fundamental discriminant

 Recall the Fourier expansion $F(Z)=\sum_{S>0} a(F, S) e^{2 \pi i \operatorname{Tr} S Z}$.Note that $\left(\begin{array}{cc}A & 0 \\ 0 & \left(A^{t}\right)^{-1}\end{array}\right) \in \Gamma_{0}^{(2)}(N)$ for all $A \in \mathrm{SL}_{2}(\mathbb{Z})$.
$\mathrm{SL}_{2}(\mathbb{Z})$-invariance of Fourier coefficients
This shows that

$$
a\left(F, A S A^{t}\right)=a(F, S)
$$

for all $A \in \mathrm{SL}_{2}(\mathbb{Z})$

Fourier coefficients with fundamental discriminant

Recall the Fourier expansion $F(Z)=\sum_{S>0} a(F, S) e^{2 \pi i \operatorname{Tr} S Z}$.
Note that $\left(\begin{array}{cc}A & 0 \\ 0 & \left(A^{t}\right)^{-1}\end{array}\right) \in \Gamma_{0}^{(2)}(N)$ for all $A \in \mathrm{SL}_{2}(\mathbb{Z})$.

$\mathrm{SL}_{2}(\mathbb{Z})$-invariance of Fourier coefficients

This shows that

$$
a\left(F, A S A^{t}\right)=a(F, S)
$$

for all $A \in \mathrm{SL}_{2}(\mathbb{Z})$

We are interested in situations where F is determined by the Fourier coefficients a(F, S) with $\operatorname{disc}(S)<0$ a fundamental discriminant.

Recall: $d \in \mathbb{Z}$ is a fundamental discriminant if EITHER d is a squarefree integer congruent to $1 \bmod 4 \mathrm{OR} d=4 m$ where m is a squarefree integer congruent to 2 or $3 \bmod 4$.

The main result

The $U(p)$ operator
For all $p \mid N$, we have an operator $U(p)$ on $S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ defined by

$$
(U(p) F)(Z)=\sum_{S>0} a(F, p S) e^{2 \pi i T r S Z} .
$$

The main result

The $U(p)$ operator
For all $p \mid N$, we have an operator $U(p)$ on $S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ defined by

$$
(U(p) F)(Z)=\sum_{S>0} a(F, p S) e^{2 \pi i T r S Z} .
$$

Theorem 1 (S - Schmidt, 2011)

Let N be squarefree. Let $k>2$ be an integer, and if $N>1$ assume k even. Let $F \in S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ be non-zero and an eigenfunction of the $U(p)$ operator for all $p \mid N$. Then a($F, S) \neq 0$ for infinitely many S with $\operatorname{disc}(S)$ a fundamental discriminant.

The main result

The $U(p)$ operator

For all $p \mid N$, we have an operator $U(p)$ on $S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ defined by

$$
(U(p) F)(Z)=\sum_{S>0} a(F, p S) e^{2 \pi i \operatorname{Tr} S Z}
$$

Theorem 1 (S - Schmidt, 2011)

Let N be squarefree. Let $k>2$ be an integer, and if $N>1$ assume k even. Let $F \in S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ be non-zero and an eigenfunction of the $U(p)$ operator for all $p \mid N$. Then $a(F, S) \neq 0$ for infinitely many S with $\operatorname{disc}(S)$ a fundamental discriminant.

Remark. If $N=1$, no $U(p)$ condition.
Remark. In fact we can give the lower bound $X^{\frac{5}{8}-\epsilon}$ for the number of such non-vanishing Fourier coefficients with absolute discriminant less than X.

- $V=$ the elements of $S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ that are eigenfunctions of $U(p)$ for $p \mid N$.
- $\mathcal{S}=$ the set of matrices $\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$ with $(a, b, c) \in \mathbb{Z}^{3}$ and $b^{2}<4 a c$. For all $\Phi \in V$, we have a Fourier expansion

$$
\Phi(Z)=\sum_{n \in \mathcal{S}} \Phi_{n}(Z)
$$

- $\mathcal{D}=$ the subset of \mathcal{S} consisting of those matrices with $b^{2}-4 a c$ a fundamental discriminant.
- $V=$ the elements of $S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ that are eigenfunctions of $U(p)$ for $p \mid N$.
- $\mathcal{S}=$ the set of matrices $\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$ with $(a, b, c) \in \mathbb{Z}^{3}$ and $b^{2}<4 a c$. For all $\Phi \in V$, we have a Fourier expansion

$$
\Phi(Z)=\sum_{n \in \mathcal{S}} \Phi_{n}(Z)
$$

- $\mathcal{D}=$ the subset of \mathcal{S} consisting of those matrices with $b^{2}-4 a c$ a fundamental discriminant.

Theorem 1 says: For all $\Phi \in V$,

$$
\Phi_{n}=0 \forall n \in \mathcal{D} \quad \Rightarrow \quad \Phi=0
$$

or, equivalently:

$$
\Phi \neq 0 \quad \Rightarrow \quad \text { there exists } n \in \mathcal{D} \text { such that } \Phi_{n} \neq 0
$$

Theorem 1

Let N be squarefree. Let $k>2$ be an integer, and if $N>1$ assume k even. Let $F \in S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ be non-zero and an eigenfunction of the $U(p)$ operator for all $p \mid N$. Then $a(F, S) \neq 0$ for infinitely many S with $\operatorname{disc}(S)$ a fundamental discriminant.

Why do we care?
Key point: From the automorphic point of view, Fourier coefficients of Siegel modular forms are simultaneously

- Period integrals over Bessel subgroups
- (Conjecturally) Central L-values of quadratic twists of the relevant automorphic representation

As a result, non-vanishing of Fourier coefficients leads to very interesting consequences.

Why do we care? (contd.)

Let $F(Z) \in S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ be a newform. Let $-d<0$ be a fundamental discriminant and put $K=\mathbb{Q}(\sqrt{-d})$. Let Cl_{K} denote the ideal class group of K.

Why do we care? (contd.)

Let $F(Z) \in S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ be a newform. Let $-d<0$ be a fundamental discriminant and put $K=\mathbb{Q}(\sqrt{-d})$. Let Cl_{K} denote the ideal class group of K.
The following fact goes back to Gauss:

$$
\mathrm{SL}_{2}(\mathbb{Z}) \backslash\left\{S=\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right), \operatorname{disc}(S)=-d\right\} \cong \mathrm{Cl}_{K} .
$$

Recall that $a\left(F, A S A^{t}\right)=a(F, S)$ for all $A \in \mathrm{SL}_{2}(\mathbb{Z})$
So, for any character Λ of the finite group Cl_{K}, the following quantity is well-defined,

$$
R(F, d, \Lambda)=\sum_{\left.c \in \mathrm{C}\right|_{k}} a(F, c) \Lambda^{-1}(c)
$$

Why do we care? (contd.)

Let $F(Z) \in S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ be a newform. Let $-d<0$ be a fundamental discriminant and put $K=\mathbb{Q}(\sqrt{-d})$. Let Cl_{K} denote the ideal class group of K.
The following fact goes back to Gauss:

$$
\mathrm{SL}_{2}(\mathbb{Z}) \backslash\left\{S=\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right), \operatorname{disc}(S)=-d\right\} \cong \mathrm{Cl}_{K} .
$$

Recall that $a\left(F, A S A^{t}\right)=a(F, S)$ for all $A \in \mathrm{SL}_{2}(\mathbb{Z})$
So, for any character Λ of the finite group Cl_{K}, the following quantity is well-defined,

$$
R(F, d, \Lambda)=\sum_{c \in \mathrm{Cl}_{k}} a(F, c) \Lambda^{-1}(c)
$$

Corollary of Theorem 1

There are infinitely many d, Λ as above, so that $R(F, d, \Lambda) \neq 0$.

Interpretation as Bessel period

We have (up to some constants)

$$
R(F, d, \Lambda)=\int_{\mathbb{A} \times R(\mathbb{Q}) \backslash R(\mathbb{A})} \Phi_{F}(r) \Lambda^{-1}(r) d r
$$

where Φ_{F} is the automorphic form attached to F and $R \subset \mathrm{GSp}_{4}$ is the Bessel subgroup: $R=T U$ where $T \cong K^{\times}$is a non-split torus of $G L_{2}$ (embedded diagonally in GSp_{4}) and U is a unipotent subgroup.

Interpretation as Bessel period

We have (up to some constants)

$$
R(F, d, \Lambda)=\int_{\mathbb{A} \times R(\mathbb{Q}) \backslash R(\mathbb{A})} \Phi_{F}(r) \Lambda^{-1}(r) d r
$$

where Φ_{F} is the automorphic form attached to F and $R \subset \mathrm{GSp}_{4}$ is the Bessel subgroup: $R=T U$ where $T \cong K^{\times}$is a non-split torus of $G L_{2}$ (embedded diagonally in GSp_{4}) and U is a unipotent subgroup.

The automorphic representation Π_{F} of PGSp_{4} attached to F is non-generic. It does not have a Whittaker model. So many automorphic methods that rely on Whittaker models do not work for Siegel cusp forms. However the non-vanishing of $R(F, d, \Lambda)$ means that it has a Bessel model of a very nice type!

Why is this important?

The existence of a Bessel model as above is key to proving many important facts about Π_{F} related to algebraicity of special values, integral representations and analytic properties of L-functions.
In a pioneering paper, Furusawa (1993) proved an integral representation and special value results for GL_{2} twists of Π_{F} having such a nice Bessel model. Several subsequent papers by Pitale-Schmidt (2009), Saha (2009, 2010) and Pitale-Saha-Schmidt (2011) proved results for Π_{F} under the same assumption.

Why is this important?

The existence of a Bessel model as above is key to proving many important facts about Π_{F} related to algebraicity of special values, integral representations and analytic properties of L-functions.
In a pioneering paper, Furusawa (1993) proved an integral representation and special value results for GL_{2} twists of Π_{F} having such a nice Bessel model. Several subsequent papers by Pitale-Schmidt (2009), Saha (2009, 2010) and Pitale-Saha-Schmidt (2011) proved results for Π_{F} under the same assumption.

With Theorem 1, we now know that all those results hold unconditionally for Π_{F} coming from newforms in $S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$.

Central L-values

We continue to assume that $F(Z) \in S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ is a newform, $-d<0$ a fundamental discriminant, Λ an ideal class character of $K=\mathbb{Q}(\sqrt{-d})$ and $R(F, d, \Lambda)=\sum_{c \in \mathrm{Cl}_{K}} a(F, c) \Lambda^{-1}(c)$.

Recall: By Theorem 1 we can find d, Λ as above so that $R(F, d, \Lambda) \neq 0$.

Central L-values

We continue to assume that $F(Z) \in S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ is a newform, $-d<0$ a fundamental discriminant, Λ an ideal class character of $K=\mathbb{Q}(\sqrt{-d})$ and $R(F, d, \Lambda)=\sum_{c \in \mathrm{Cl}_{k}} a(F, c) \Lambda^{-1}(c)$.
Recall: By Theorem 1 we can find d, Λ as above so that $R(F, d, \Lambda) \neq 0$.
A generalization of a conjecture of Böcherer by several people (Böcherer, Furusawa, Shalika, Martin, Prasad, Takloo-Bighash), leads to the following very interesting Gross-Prasad type conjecture.

Conjecture

Suppose for some F, d, Λ as above, we have $R(F, d, \Lambda) \neq 0$. Then $L\left(\frac{1}{2}, \Pi_{F} \times \theta_{\Lambda}\right) \neq 0$, where $\theta_{\Lambda}=\sum_{0 \neq a \subset O_{K}} \Lambda(a) e^{2 \pi i N(a) z}$ is a holomorphic modular form of weight 1 and nebentypus $\left(\frac{-d}{*}\right)$ on $\Gamma_{0}(d)$.

Central L-values

We continue to assume that $F(Z) \in S_{k}\left(\Gamma_{0}^{(2)}(N)\right)$ is a newform, $-d<0$ a fundamental discriminant, Λ an ideal class character of $K=\mathbb{Q}(\sqrt{-d})$ and $R(F, d, \Lambda)=\sum_{c \in \mathrm{C}_{k}} a(F, c) \Lambda^{-1}(c)$.
Recall: By Theorem 1 we can find d, Λ as above so that $R(F, d, \Lambda) \neq 0$.
A generalization of a conjecture of Böcherer by several people (Böcherer, Furusawa, Shalika, Martin, Prasad, Takloo-Bighash), leads to the following very interesting Gross-Prasad type conjecture.

Conjecture

Suppose for some F, d, Λ as above, we have $R(F, d, \Lambda) \neq 0$. Then $L\left(\frac{1}{2}, \Pi_{F} \times \theta_{\Lambda}\right) \neq 0$, where $\theta_{\Lambda}=\sum_{0 \neq a \subset O_{K}} \Lambda(a) e^{2 \pi i N(a) z}$ is a holomorphic modular form of weight 1 and nebentypus $\left(\frac{-d}{*}\right)$ on $\Gamma_{0}(d)$.

The above conjecture is not proved in general; however it is known for certain special Siegel cusp forms that are lifts.

Yoshida lifts

- N_{1}, N_{2} : two squarefree integers that are not coprime.
- $N=\operatorname{lcm}\left(N_{1}, N_{2}\right)$.
- f : newform of weight 2 on $\Gamma_{0}\left(N_{1}\right)$.
- g : newform of weight $2 k$ on $\Gamma_{0}\left(N_{2}\right)$.
- Assume that for all $p \mid \operatorname{gcd}\left(N_{1}, N_{2}\right), f$ and g have the same Atkin-Lehner eigenvalue at p.

Yoshida lifts

- N_{1}, N_{2} : two squarefree integers that are not coprime.
- $N=\operatorname{lcm}\left(N_{1}, N_{2}\right)$.
- f : newform of weight 2 on $\Gamma_{0}\left(N_{1}\right)$.
- g : newform of weight $2 k$ on $\Gamma_{0}\left(N_{2}\right)$.
- Assume that for all $p \mid \operatorname{gcd}\left(N_{1}, N_{2}\right), f$ and g have the same Atkin-Lehner eigenvalue at p.

The Yoshida lift

Under the above assumptions, there exists a newform $F \in S_{k+1}\left(\Gamma_{0}^{(2)}(N)\right)$ such that

$$
L\left(s, \Pi_{F}\right)=L\left(s, \pi_{f}\right) L\left(s, \pi_{g}\right)
$$

Remark. In the language of automorphic representations, the Yoshida lift is a special case of Langlands functoriality, coming from the embedding of L-groups

$$
\mathrm{SL}_{2}(\mathbb{C}) \times \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \mathrm{Sp}_{4}(\mathbb{C})
$$

How is the Yoshida lift constructed?

The Yoshida lift is constructed via the theta correspondence. Suppose we start with classical newforms f, g as in the previous slide.
(1) First we fix a definite quaternion algebra D which is unramified at all finite primes outside $\operatorname{gcd}\left(N_{1}, N_{2}\right)$.
(2) Via the Jacquet-Langlands correspondence, we transfer π_{f}, π_{g} to representations $\pi_{f}^{\prime}, \pi_{g}^{\prime}$ on $D^{\times}(\mathbb{A})$.
(3) Using the isomorphism

$$
\left(D^{\times} \times D^{\times}\right) / \mathbb{Q}^{\times} \cong G S O(4)
$$

we obtain an automorphic representation $\pi_{f, g}^{\prime}$ on $G S O(4, \mathbb{A})$.
(9) Finally we use the theta lifting to transfer $\pi_{f, g}^{\prime}$ to the automorphic representation Π_{F} on $\operatorname{GSp}_{4}(\mathbb{A})$.

Let f, g be as before and $F \in S_{k+1}\left(\Gamma_{0}^{(2)}(N)\right)$ be the Yoshida lifting.

Let f, g be as before and $F \in S_{k+1}\left(\Gamma_{0}^{(2)}(N)\right)$ be the Yoshida lifting. Recall the conjecture stated earlier which is expected to hold for any Siegel newform F, a fundamental discriminant $-d$ and an ideal class character Λ of $\mathbb{Q}(\sqrt{-d})$.

Conjecture

Suppose we have $R(F, d, \Lambda) \neq 0$. Then $L\left(\frac{1}{2}, \Pi_{F} \times \theta_{\Lambda}\right) \neq 0$.

Let f, g be as before and $F \in S_{k+1}\left(\Gamma_{0}^{(2)}(N)\right)$ be the Yoshida lifting. Recall the conjecture stated earlier which is expected to hold for any Siegel newform F, a fundamental discriminant $-d$ and an ideal class character Λ of $\mathbb{Q}(\sqrt{-d})$.

Conjecture

Suppose we have $R(F, d, \Lambda) \neq 0$. Then $L\left(\frac{1}{2}, \Pi_{F} \times \theta_{\Lambda}\right) \neq 0$.

Theorem (Prasad-Takloo-Bighash)

The above conjecture is true when F is a Yoshida lifting.
Remark. If $\Lambda=1$, this is also proved in work of Böcherer-Schulze-Pillot. Remark. Note that when F is a Yoshida lifting, then

$$
L\left(\frac{1}{2}, \Pi_{F} \times \theta_{\Lambda}\right)=L\left(\frac{1}{2}, \pi_{f} \times \theta_{\Lambda}\right) L\left(\frac{1}{2}, \pi_{g} \times \theta_{\Lambda}\right)
$$

What we have so far

Yoshida lift

Given f, g classical newforms satisfying some compatibility conditions, there exists a newform $F \in S_{k+1}\left(\Gamma_{0}^{(2)}(N)\right)$ such that $L\left(s, \Pi_{F}\right)=L\left(s, \pi_{f}\right) L\left(s, \pi_{g}\right)$

What we have so far

Yoshida lift

Given f, g classical newforms satisfying some compatibility conditions, there exists a newform $F \in S_{k+1}\left(\Gamma_{0}^{(2)}(N)\right)$ such that $L\left(s, \Pi_{F}\right)=L\left(s, \pi_{f}\right) L\left(s, \pi_{g}\right)$

Corollary of Theorem 1

We can find infinitely many pairs (d, Λ) with $-d$ a fundamental discriminant and Λ an ideal class group character of $\mathbb{Q}(\sqrt{-d})$ such that $R(F, d, \Lambda) \neq 0$.

What we have so far

Yoshida lift

Given f, g classical newforms satisfying some compatibility conditions, there exists a newform $F \in S_{k+1}\left(\Gamma_{0}^{(2)}(N)\right)$ such that $L\left(s, \Pi_{F}\right)=L\left(s, \pi_{f}\right) L\left(s, \pi_{g}\right)$

Corollary of Theorem 1

We can find infinitely many pairs (d, Λ) with $-d$ a fundamental discriminant and Λ an ideal class group character of $\mathbb{Q}(\sqrt{-d})$ such that $R(F, d, \Lambda) \neq 0$.

Theorem of Prasad-Takloo-Bighash

$$
R(F, d, \Lambda) \neq 0 \quad \Rightarrow \quad L\left(\frac{1}{2}, \pi_{f} \times \theta_{\Lambda}\right) L\left(\frac{1}{2}, \pi_{g} \times \theta_{\Lambda}\right) \neq 0
$$

A simultaneous non-vanishing result

Putting together the three results of the previous slide, we obtain the following result:

Theorem 2 (S-Schmidt, 2011)

Let $k>1$ be an odd positive integer. Let N_{1}, N_{2} be two positive, squarefree integers such that $M=\operatorname{gcd}\left(N_{1}, N_{2}\right)>1$. Let f be a holomorphic newform of weight $2 k$ on $\Gamma_{0}\left(N_{1}\right)$ and g be a holomorphic newform of weight 2 on $\Gamma_{0}\left(N_{2}\right)$. Assume that for all primes p dividing M the Atkin-Lehner eigenvalues of f and g coincide. Then there exists an imaginary quadratic field K and a character $\chi \in \widehat{\mathrm{Cl}}_{K}$ such that $L\left(\frac{1}{2}, \pi_{f} \times \theta_{\chi}\right) \neq 0$ and $L\left(\frac{1}{2}, \pi_{g} \times \theta_{\chi}\right) \neq 0$.
Remark. Our proof shows, in fact, that there are at least $X^{\frac{5}{8}-\epsilon}$ such pairs (K, χ) with $\operatorname{disc}(K)<X$.

Thus we have seen that Theorem 1 leads to

- Existence of nice Bessel models for automorphic representations attached to Siegel newforms. This makes several old results of Furusawa, Pitale, Saha, Schmidt unconditional.
- Simultaneous non-vanishing of dihedral twists of two modular L-functions.

Thus we have seen that Theorem 1 leads to

- Existence of nice Bessel models for automorphic representations attached to Siegel newforms. This makes several old results of Furusawa, Pitale, Saha, Schmidt unconditional.
- Simultaneous non-vanishing of dihedral twists of two modular L-functions.

How is Theorem 1 proved?

Thus we have seen that Theorem 1 leads to

- Existence of nice Bessel models for automorphic representations attached to Siegel newforms. This makes several old results of Furusawa, Pitale, Saha, Schmidt unconditional.
- Simultaneous non-vanishing of dihedral twists of two modular L-functions.

How is Theorem 1 proved?
It turns out that the key step of proving Theorem 1 is a very similar result for modular forms of half-integral weight!

Classical modular forms of half-integral weight

Let N be a squarefree integer. For any non-negative integer k, let $S_{k+\frac{1}{2}}\left(\Gamma_{0}(4 N)\right)$ denote the space of cusp forms of weight $k+\frac{1}{2}$, level $4 N$ and trivial character.

Let $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ denote the Kohnen subspace of $S_{k+\frac{1}{2}}\left(\Gamma_{0}(4 N)\right)$.

Classical modular forms of half-integral weight

Let N be a squarefree integer. For any non-negative integer k, let $S_{k+\frac{1}{2}}\left(\Gamma_{0}(4 N)\right)$ denote the space of cusp forms of weight $k+\frac{1}{2}$, level $4 N$ and trivial character.

Let $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ denote the Kohnen subspace of $S_{k+\frac{1}{2}}\left(\Gamma_{0}(4 N)\right)$.

Fourier expansion

Any $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ has a Fourier expansion

$$
f(z)=\sum_{(-1)^{k} n \equiv 0,1(4)} a(f, n) e^{2 \pi i z} .
$$

Classical modular forms of half-integral weight

Let N be a squarefree integer. For any non-negative integer k, let $S_{k+\frac{1}{2}}\left(\Gamma_{0}(4 N)\right)$ denote the space of cusp forms of weight $k+\frac{1}{2}$, level $4 N$ and trivial character.

Let $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ denote the Kohnen subspace of $S_{k+\frac{1}{2}}\left(\Gamma_{0}(4 N)\right)$.

Fourier expansion

Any $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ has a Fourier expansion

$$
f(z)=\sum_{(-1)^{k} n \equiv 0,1(4)} a(f, n) e^{2 \pi i z} .
$$

Let \mathcal{D} be the set of integers $d>0$ such that $(-1)^{k} d$ is a fundamental discriminant.

Remark. If $f \in S_{k+1 / 2}^{+}\left(\Gamma_{0}(4 N)\right)$ is a newform, then Waldspurger's theorem (worked out precisely in this case by Kohen) implies that $|a(f, d)|^{2}$ is essentially equal to $L\left(1 / 2, \pi \times \chi_{d}\right)$.

Remark. If $f \in S_{k+1 / 2}^{+}\left(\Gamma_{0}(4 N)\right)$ is a newform, then Waldspurger's theorem (worked out precisely in this case by Kohen) implies that $|a(f, d)|^{2}$ is essentially equal to $L\left(1 / 2, \pi \times \chi_{d}\right)$.

We are interested in the situation when elements of $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ are determined by the Fourier coefficients $a(f, d)$ with $d \in \mathcal{D}$.

In the language of our setup,

- $V=$ some subset of $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ where N is squarefree, $k \geq 2$,

In the language of our setup,

- $V=$ some subset of $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ where N is squarefree, $k \geq 2$,
- $\mathcal{S}=$ the set of integers n such that $(-1)^{k} n$ is a discriminant (i.e. $n \equiv 0$ or $1 \bmod (4)$),

In the language of our setup,

- $V=$ some subset of $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ where N is squarefree, $k \geq 2$,
- $\mathcal{S}=$ the set of integers n such that $(-1)^{k} n$ is a discriminant (i.e. $n \equiv 0$ or $1 \bmod (4))$,
- $\mathcal{D}=$ the set of integers n such that $(-1)^{k} n$ is a fundamental discriminant.

In the language of our setup,

- $V=$ some subset of $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ where N is squarefree, $k \geq 2$,
- $\mathcal{S}=$ the set of integers n such that $(-1)^{k} n$ is a discriminant (i.e. $n \equiv 0$ or $1 \bmod (4))$,
- $\mathcal{D}=$ the set of integers n such that $(-1)^{k} n$ is a fundamental discriminant.

Easy version: $V=$ basis of $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ consisting of Hecke eigenforms

In the language of our setup,

- $V=$ some subset of $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ where N is squarefree, $k \geq 2$,
- $\mathcal{S}=$ the set of integers n such that $(-1)^{k} n$ is a discriminant (i.e. $n \equiv 0$ or $1 \bmod (4)$),
- $\mathcal{D}=$ the set of integers n such that $(-1)^{k} n$ is a fundamental discriminant.

Easy version: $V=$ basis of $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ consisting of Hecke eigenforms
Question: Suppose $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ is a (non-zero) Hecke eigenform. Does there exist $d \in \mathcal{D}$ so that $a(f, d) \neq 0$?

In the language of our setup,

- $V=$ some subset of $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ where N is squarefree, $k \geq 2$,
- $\mathcal{S}=$ the set of integers n such that $(-1)^{k} n$ is a discriminant (i.e. $n \equiv 0$ or $1 \bmod (4))$,
- $\mathcal{D}=$ the set of integers n such that $(-1)^{k} n$ is a fundamental discriminant.

Easy version: $V=$ basis of $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ consisting of Hecke eigenforms
Question: Suppose $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ is a (non-zero) Hecke eigenform.
Does there exist $d \in \mathcal{D}$ so that $a(f, d) \neq 0$?
Answer: Yes. Proved by Kohnen (1985).

Harder version: $V=\left\{v_{1}-v_{2}\right\}$ where v_{1}, v_{2} are Hecke eigenforms
Question: Suppose f and g are two Hecke eigenforms in $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$
and $a(f, d)=a(g, d)$ for all $d \in \mathcal{D}$. Is $f=g$?

Harder version: $V=\left\{v_{1}-v_{2}\right\}$ where v_{1}, v_{2} are Hecke eigenforms
Question: Suppose f and g are two Hecke eigenforms in $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$
and $a(f, d)=a(g, d)$ for all $d \in \mathcal{D}$. Is $f=g$?
Answer: Yes. Proved by Luo-Ramakrishnan (1997).
Remark. Luo and Ramakrishnan use the Waldspurger-Kohnen formula to reduce the problem to showing that the relevant automorphic representations are uniquely determined by the central L-values of quadratic twists.

Harder version: $V=\left\{v_{1}-v_{2}\right\}$ where v_{1}, v_{2} are Hecke eigenforms
Question: Suppose f and g are two Hecke eigenforms in $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ and $a(f, d)=a(g, d)$ for all $d \in \mathcal{D}$. Is $f=g$?

Answer: Yes. Proved by Luo-Ramakrishnan (1997).
Remark. Luo and Ramakrishnan use the Waldspurger-Kohnen formula to reduce the problem to showing that the relevant automorphic representations are uniquely determined by the central L-values of quadratic twists.

Hardest version: $V=S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$
Question: Suppose $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ is non-zero (but not necessarily an eigenform). Does there exist $d \in \mathcal{D}$ so that $a(f, d) \neq 0$?

Harder version: $V=\left\{v_{1}-v_{2}\right\}$ where v_{1}, v_{2} are Hecke eigenforms
Question: Suppose f and g are two Hecke eigenforms in $S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ and $a(f, d)=a(g, d)$ for all $d \in \mathcal{D}$. Is $f=g$?

Answer: Yes. Proved by Luo-Ramakrishnan (1997).
Remark. Luo and Ramakrishnan use the Waldspurger-Kohnen formula to reduce the problem to showing that the relevant automorphic representations are uniquely determined by the central L-values of quadratic twists.

Hardest version: $V=S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$
Question: Suppose $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ is non-zero (but not necessarily an eigenform). Does there exist $d \in \mathcal{D}$ so that $a(f, d) \neq 0$?

Answer: Yes!

Theorem $3(S, 2011)$
Let $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ where N is squarefree and $k \geq 2$. Assume $f \neq 0$.
Then $a(f, d) \neq 0$ for infinitely many d in \mathcal{D}.

Theorem $3(S, 2011)$
Let $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ where N is squarefree and $k \geq 2$. Assume $f \neq 0$.
Then $a(f, d) \neq 0$ for infinitely many d in \mathcal{D}.

Remark. Note that because f is not a Hecke eigenform, there is no way to reduce the problem to central L-values!

Remark. Actually the theorem I prove is stronger: N can be divisible by squares of primes, the nebentypus need not be trivial, one can work with the larger space $S_{k+\frac{1}{2}}\left(\Gamma_{0}(4 N)\right)$, and one can give a lower bound on the number of non-vanishing Fourier coefficients $a(f, d)$.

A quick recap of the two results

```
Theorem 1
Let }N\mathrm{ be squarefree. Let }k>2\mathrm{ be an integer, and if N>1 assume k
even. Let }F\in\mp@subsup{S}{k}{}(\mp@subsup{\Gamma}{0}{(2)}(N))\mathrm{ be non-zero and an eigenfunction of the U(p) operator for all \(p \mid N\). Then \(a(F, S) \neq 0\) for infinitely many \(S\) with \(\operatorname{disc}(S)\) a fundamental discriminant.
```


Theorem 3

Let $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ where N is squarefree and $k \geq 2$. Assume $f \neq 0$.
Then $a(f, d) \neq 0$ for infinitely many d in \mathcal{D}.

A quick recap of the two results

```
Theorem 1
Let }N\mathrm{ be squarefree. Let }k>2\mathrm{ be an integer, and if N>1 assume k
even. Let }F\in\mp@subsup{S}{k}{}(\mp@subsup{\Gamma}{0}{(2)}(N))\mathrm{ be non-zero and an eigenfunction of the U(p)
operator for all p|N. Then a(F,S) \not=0 for infinitely many S with disc(S) a fundamental discriminant.
```


Theorem 3

Let $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ where N is squarefree and $k \geq 2$. Assume $f \neq 0$.
Then $a(f, d) \neq 0$ for infinitely many d in \mathcal{D}.
Rest of this talk:

- why Theorem 3 implies Theorem 1.
- how Theorem 3 is proved.

Why does Theorem 3 imply Theorem 1?

For simplicity, let us restrict to the case $N=1$ and k even.

- Let $F(Z)=\sum_{S} a(F, S) e^{2 \pi i \operatorname{Tr} S Z} \in S_{k}\left(\Gamma_{0}^{(2)}(1)\right), \quad F \neq 0$.
- Need to find $S=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$ such that $b^{2}-4 a c$ is a fundamental discriminant and $a(F, S) \neq 0$.

Why does Theorem 3 imply Theorem 1?

For simplicity, let us restrict to the case $N=1$ and k even.

- Let $F(Z)=\sum_{S} a(F, S) e^{2 \pi i \operatorname{Tr} S Z} \in S_{k}\left(\Gamma_{0}^{(2)}(1)\right), \quad F \neq 0$.
- Need to find $S=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$ such that $b^{2}-4 a c$ is a fundamental discriminant and $a(F, S) \neq 0$.

Step 1. Using a result of Zagier, one can show that there exist a matrix $S^{\prime}=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & p\end{array}\right)$ such that $a\left(F, S^{\prime}\right) \neq 0$ and p is an odd prime number.

Why does Theorem 3 imply Theorem 1?

For simplicity, let us restrict to the case $N=1$ and k even.

- Let $F(Z)=\sum_{S} a(F, S) e^{2 \pi i \operatorname{Tr} S Z} \in S_{k}\left(\Gamma_{0}^{(2)}(1)\right), \quad F \neq 0$.
- Need to find $S=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$ such that $b^{2}-4 a c$ is a fundamental discriminant and $a(F, S) \neq 0$.

Step 1. Using a result of Zagier, one can show that there exist a matrix $S^{\prime}=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & p\end{array}\right)$ such that $a\left(F, S^{\prime}\right) \neq 0$ and p is an odd prime number.
Step 2. For each $n \geq 1$, define

$$
c(n)=a\left(F,\left(\begin{array}{cc}
\frac{n+b^{2}}{4 p} & b / 2 \\
b / 2 & p
\end{array}\right)\right)
$$

where b is any integer so that $4 p$ divides $n+b^{2}$,

Why does Theorem 3 imply Theorem 1?

For simplicity, let us restrict to the case $N=1$ and k even.

- Let $F(Z)=\sum_{S} a(F, S) e^{2 \pi i \operatorname{Tr} S Z} \in S_{k}\left(\Gamma_{0}^{(2)}(1)\right), \quad F \neq 0$.
- Need to find $S=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right)$ such that $b^{2}-4 a c$ is a fundamental discriminant and $a(F, S) \neq 0$.

Step 1. Using a result of Zagier, one can show that there exist a matrix $S^{\prime}=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & p\end{array}\right)$ such that $a\left(F, S^{\prime}\right) \neq 0$ and p is an odd prime number.
Step 2. For each $n \geq 1$, define

$$
c(n)=a\left(F,\left(\begin{array}{cc}
\frac{n+b^{2}}{4 p} & b / 2 \\
b / 2 & p
\end{array}\right)\right)
$$

where b is any integer so that $4 p$ divides $n+b^{2}$, and put

$$
h(z)=\sum_{n \geq 1} c(n) e^{2 \pi i n z}
$$

Why Theorem 3 implies Theorem 1 (contd.)

 Because of Step 1, it follows that $h(z)=\sum_{n \geq 1} c(n) e^{2 \pi i n z} \neq 0$.Why Theorem 3 implies Theorem 1 (contd.)
Because of Step 1, it follows that $h(z)=\sum_{n \geq 1} c(n) e^{2 \pi i n z} \neq 0$.
Theorem (Eichler-Zagier, Skoruppa)

$$
h(z) \in S_{k-\frac{1}{2}}^{+}(4 p)
$$

Remark. This Theorem is best understood as arising from the isomorphism between the space of Jacobi forms and modular forms of half-integral weight.

Remark. Note that even if F is a Hecke eigenform, $h(z)$ need not be!

Why Theorem 3 implies Theorem 1 (contd.)

Because of Step 1, it follows that $h(z)=\sum_{n \geq 1} c(n) e^{2 \pi i n z} \neq 0$.
Theorem (Eichler-Zagier, Skoruppa)

$$
h(z) \in S_{k-\frac{1}{2}}^{+}(4 p)
$$

Remark. This Theorem is best understood as arising from the isomorphism between the space of Jacobi forms and modular forms of half-integral weight.

Remark. Note that even if F is a Hecke eigenform, $h(z)$ need not be!
Step 3. It follows from Theorem 3 that $c(d) \neq 0$ for infinitely many d such that $-d$ is a fundamental discriminant. Since

$$
c(d)=a\left(F,\left(\begin{array}{cc}
\frac{d+b^{2}}{4 p} & b / 2 \\
b / 2 & p
\end{array}\right)\right)
$$

this proves Theorem 1.

How to prove Theorem 3?

- Let $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ be non-zero and \mathcal{D} be the set of integers d such that $(-1)^{k} d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal{D}$ with $a(f, d) \neq 0$.

How to prove Theorem 3?

- Let $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ be non-zero and \mathcal{D} be the set of integers d such that $(-1)^{k} d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal{D}$ with $a(f, d) \neq 0$.
- The key point is to consider the following quantity for any integer M, and any $X>0$,

$$
S(M, X ; f)=\sum_{\substack{d \in \mathcal{D} \\(d, M)=1}} d^{\frac{1}{2}-k}|a(f, d)|^{2} e^{-d / X}
$$

How to prove Theorem 3?

- Let $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ be non-zero and \mathcal{D} be the set of integers d such that $(-1)^{k} d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal{D}$ with $a(f, d) \neq 0$.
- The key point is to consider the following quantity for any integer M, and any $X>0$,

$$
S(M, X ; f)=\sum_{\substack{d \in \mathcal{D} \\(d, M)=1}} d^{\frac{1}{2}-k}|a(f, d)|^{2} e^{-d / X} .
$$

- We estimate $S(M, X ; f)$ by using a result of Duke and Iwaniec, a sieving procedure to get from all integers to \mathcal{D}, and a careful analysis involving Hecke operators and the Shimura correspondence.

How to prove Theorem 3?

- Let $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ be non-zero and \mathcal{D} be the set of integers d such that $(-1)^{k} d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal{D}$ with $a(f, d) \neq 0$.
- The key point is to consider the following quantity for any integer M, and any $X>0$,

$$
S(M, X ; f)=\sum_{\substack{d \in \mathcal{D} \\(d, M)=1}} d^{\frac{1}{2}-k}|a(f, d)|^{2} e^{-d / X} .
$$

- We estimate $S(M, X ; f)$ by using a result of Duke and Iwaniec, a sieving procedure to get from all integers to \mathcal{D}, and a careful analysis involving Hecke operators and the Shimura correspondence.
- We prove that there exists an integer M and a constant $C_{f}>0$ so that $S(M, X ; f)>C_{f} X$ for all sufficiently large X.

How to prove Theorem 3?

- Let $f \in S_{k+\frac{1}{2}}^{+}\left(\Gamma_{0}(4 N)\right)$ be non-zero and \mathcal{D} be the set of integers d such that $(-1)^{k} d$ is a fundamental discriminant. Need to show there exists $d \in \mathcal{D}$ with $a(f, d) \neq 0$.
- The key point is to consider the following quantity for any integer M, and any $X>0$,

$$
S(M, X ; f)=\sum_{\substack{d \in \mathcal{D} \\(d, M)=1}} d^{\frac{1}{2}-k}|a(f, d)|^{2} e^{-d / X}
$$

- We estimate $S(M, X ; f)$ by using a result of Duke and Iwaniec, a sieving procedure to get from all integers to \mathcal{D}, and a careful analysis involving Hecke operators and the Shimura correspondence.
- We prove that there exists an integer M and a constant $C_{f}>0$ so that $S(M, X ; f)>C_{f} X$ for all sufficiently large X.
- This shows that there are infinitely many $d \in \mathcal{D}$ such that $a(f, d) \neq 0$.

