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In [1], the  cons t ruc t ion  of regular  polygons  by a ruler  
and  a compass  is discussed. In the  last sect ion of the  
article, t he  no t ion  of cyclotomic po lynomia l s  is employed  
to evaluate  the  s u m  of the  pr imi t ive  roots  of a p r ime  p. 

This  tu rns  out  to be # ( p -  1) where  # is the  MSbius 
function.  The  general quest ion of evaluat ing the  sum 
of the  m - t h  powers of the  pr imi t ive  roots  is also raised. 
Here, we answer this quest ion in an e lementa ry  manner .  
Recall t ha t  a na tura l  number  a is a pr imi t ive  root  of 

a pr ime p if p - 1 is the  smallest  na tu ra l  n u m b e r  for 
which a p-1 _-- 1 m o d  p. Let 1 < r l , r 2 , . . .  , r k  _< p - 1 be 
the  integers t ha t  are co-prime to p - 1. T h e n  if w is a 
pr imit ive  root  of p, we know tha t  w r~, w r 2 , . . . ,  w TM are 
all the  pr imi t ive  roots.  

k 
We wish to evaluate  the  sum S = ~ (wrY) 'n. Let us note  

i=1 
tha t  as pr imi t ive  roots  are defined only modu lo  p, this  
sum will be evaluated  only modu lo  p. 
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Here and elsewhere in this  proof, we wri te  a -- b to 
m e a n  a -= bmod p. T h u s  S is s imply the  congruence 

k 
class modulo  p to which ~ (wrY) m belongs. 

i----1 

Let us s tar t  wi th  the  useful observa t ion  (here and else- 
where  (a, b) denotes  the  GCD of two na tu ra l  numbers) :  

L e m m a .  For an integer  q, let (p - 1, q) = d. Then, i f t  

divides p - 1, 

E wtql 0 i f  
= v-1 if ~=1 t 

P r o o f .  

In this  case 

If w tq # 1, then  

(p-1)lt 
E t q~ w 
~=1 

W tq --~ 1 ** p - l l tq  ** t 

(p-1)/t _ 
wtq~= 1 + 1 +  + 1  = r-1 

1 ~ = 1  " " " t " 

_.~ wtq + W 2tq + . . .  + W (p-1)q 

w ~ ( w ( t q ) ' ~  - 1) 
w tq - 1 

~-- O. 

We shall prove: 

T h e o r e m .  The s u m  S of  m - t h  powers  of  pr imi t i ve  roots 

is given b~ S = . ( g ) ~ , - ~  where g = ~ /or P 

Here r and  # are Euler ' s  phi  funct ion  and  the  MSbius 
func t ion  respectively. We shall evaluate S by using the  
inclusion-exclusion principle. 

P r o o f .  Let P l , P 2 , . . .  ,Ps be the  various dis t inct  pr ime 
divisors of p -  1. T h u s  

k p - 1  s Pj 

s = E ( ~ , , )  ~ = Z ;  ~ ' '  - E C ( ~ " )  ~ 
i=1  i=1  j = l  i----1 
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(P-1)/(PjlPj 2) 

j l  <j2 i=  1 

(p-1)/@~p~2 ...pj,) 
- - . . . - ' t ' -  (-i) u E E (W~PJlPJ2""PJu)~ 

Jl <... < J,~ i=1 

(p-1) / (plp2...p, ) 
:k...-t-(--1) s E (w'P'P='"P') m 

i=1 

The above equality is deduced as follows. Let T = 
{ 1 , 2 , . . . , p  - 1} and let T I  denote the subset of T con- 
sisting of those integers from T which are divisible by f .  
Then by the inclusion-exclusion principle, one gets: 

s = X~ ('-"")" = E ~ ( " ~ ' ) " - {  X~ ( xy , ,+ . . .  
( x , p - 1 ) : l  zET xETpl 

+ X: ('-"~)"} + X~ X~ (~"1"-. . .  
xETpo i<j xe(TpinT~, j ) 

+ ( - i )  ~ X~ (~")'. 
ze(Tpi nTp2n...nTp, ) 

Finally, as it is clear that  

(P--1)/(PJl PJ2 ""Piu ) 
- ~  (~)~ = ~ (~"~,"~ "~',)~ 

x6(Tpj 1 NTpj 2 N...nTpj~, ) i=1 

we obtain the expression db for S. 

Now { P l , P 2 , . . .  , P s }  is the set of all prime divisors of 
p -  1. Consider its subset {p l ,p2 , . . - ,p t} ,  the set of 

- 1  prime divisors of g = ~ .  Then, by the lemma, a sum 
(p-1)/(pjlpj2...pj,) 

of the form E (wiPJlP~2PJ-) m is not equal 
i=1 

to 0 if and only if g l P j l P j 2 . . . P j k .  Clearly this happens 
only if g is squarefree. Assume g is squarefree; then 
g = p i p 2 .  �9 �9 pt .  So, in evaluating S, we only have to find 
the sum of all terms of the form 

(v-1)/@j~pj2...p~.) 
(-i) ~ ~ (W'JlPJ2""PJu) ~ 

i=1  

A 
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where { 1 , 2 , . . . , t }  C_ { J t , J 2 , . . . , j ~ , } .  But,  t h e l e m m a  
gives us 

(p- 1 )/(Ph PJ2""PJ,~ ) 
( w i p h  P'2""Pr )m  = p - 1 

i=1 PjlPj2  �9 �9 �9 Ps 

whenever { 1 , 2 , . . . , t }  _C { J l , j 2 , . . . j = } .  Hence, we have 

1 p -  
s = (-i)' 

P t P 2 . . .  Pt 
+ 

p - 1  

(--1)t+1 [ P l P I :  [ - P t P t +  ! 

+ . .  + p - 1  ,] 
PlP2  �9 �9 P tPs  ] 

[ , 1 ( 1  1 1)] 
+ + . . . + - -  

+ ( -1 ) t+2  P l P 2 : . - . P ,  Pt+lP,+2 Pt+lPt+3 P s - l P s  

+ . . .  + ( - 1 ) '  p-1 
PlP2  �9 �9 �9 Ps 

= - + . . . +  
PlP2 �9 �9 �9 Pt  Pt+l 

+ + . . . + - -  + . . . +  . . . .  
Pt+lPt+2 P s - l P s  Pt+lPt+2 �9 �9 Ps J 

p t+ l' 1 . . .  1 - 

�9 �9 �9 P . , 2  

=(-1/' pl)-;i..-p, (1 -~ ) (1 -  1 . . . 0 -  1 

( p - 1 )  ~(p- 1)/(,- ~) (~ ~) 
= (--1)'  P ( ' P 2 : . : P t  ~b(g"~" -- # (g) r  (g) 

since g -- P l " " P t  and ( - 1 ) t  = ~t(g)). 

Thus whenever g is squarefree, S - ~(a)r r . But, i f g  
is not squarefree, g cannot  divide P J l P J 2 . . . P j , , ;  so each 

term of 4, is 0 and S = 0. Also #(g) r  = 0 if g is not 

squarefree. Therefore, in all cases S = #(g) r  
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