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Sums of Powers of the Primitive Roots of a Prime

In [1], the construction of regular polygons by a ruler
and a compass is discussed. In the last section of the
article, the notion of cyclotomic polynomials is employed
to evaluate the sum of the primitive roots of a prime p.
This turns out to be u(p — 1) where p is the Mdbius
function. The general question of evaluating the sum
of the m-th powers of the primitive roots is also raised.
Here, we answer this question in an elementary manner.
Recall that a natural number o is a primitive root of
a prime p if p — 1 is the smallest natural number for
which a? ! = 1 mod p. Let 1 < ri,rq,...,7c <p—1be
the integers that are co-prime to p — 1. Then if w is a
primitive root of p, we know that w™,w™,..., w"™ are
all the primitive roots.

k

We wish to evaluate the sum S = Y (w™)™. Let us note
i=1

that as primitive roots are defined only modulo p, this

sum will be evaluated only modulo p.
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Here and elsewhere in this proof, we write a = b to
mean a = bmod p. Thus S is simply the congruence

k
class modulo p to which Y (w™)™ belongs.
i=1
Let us start with the useful observation (here and else-
where (a,b) denotes the GCD of two natural numbers):

Lemma. For an integer q, let (p—1,q) =d. Then, ift
dividesp — 1,

CRE o [0 if BElp
e = Rt It
=1 t d

Proof. 1
w' = lép——lltqép—d-—lt
e=vf .
In thiscase Y w'=1+4+1+...+1=E8=
=1
If w'd # 1, then

(p-1)/t
wi = w4 e
=1
wh(wt 5 — 1)

wid —1

= 0.
We shall prove:

Theorem. The sum S of m-th powers of primitive roots
. . -1
for p is given by S = u(g)%g’-’@-Z where g = Fn%?'

Here ¢ and p are Euler’s phi function and the Mdébius
function respectively. We shall evaluate S by using the
inclusion-exclusion principle.

Proof. Let pq,ps,...,ps be the various distinct prime
divisors of p — 1. Thus
=1
k p—1 ] s Pj )
S = Z(wr;)m — wi™ — Z Z(wzp,-)m
i=1 i=1 j=1i=1
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(p-1 /(lepjz)

+ Z Z (wipjlpj2)m

J1<32 i=1
(p~1)/(Pj1 Piz--Piu)

— (= > > (wPirPizPiu )™

1< i=1
(p-1)/(p1p2--ps)
+...+(-1)° Z (w'PrP2--Paym Y
i=1

The above equality is deduced as follows. Let T =
{1,2,...,p — 1} and let Ty denote the subset of T' con-
sisting of those integers from 7" which are divisible by f.
Then by the inclusion-exclusion principle, one gets:

S = Z (wx)m — Z(wz)m _ { Z (w:z: m

(z,p—1)=1 zel z€Tp,
+ Z (w®)™} + Z Z (W)™ — ...
€Ty, i<j 2€(Tp;NTp;)

+(=1)° > (w®)™.

z€(Tp, NTp,N...NTp, )
Finally, as it is clear that

_ (=131 Pig---Psu)
_ Z (wz)m — Z (wzpjlpjz...pju)m

IE(Tle ﬂij2 ﬂ...ﬂTp].u) =1
we obtain the expression & for S.

Now {p1,p2,...,ps} is the set of all prime divisors of
p — 1. Consider its subset {p1,p2,...,p:}, the set of
prime divisors of g = ?Tn%' Then, by the lemma, a sum

(P=1)/(Pjy Pig-Piu)
of the form > (w'PirPiz~Piu )™ ig not equal
i=1
to 0 if and only if g|p;,pj, ... p;.. Clearly this happens
only if g is squarefree. Assume g is squarefree; then
g = p1p2...pt. So, in evaluating S, we only have to find

the sum of all terms of the form

(p—1)/(Pj1 Pig+-Piu)

(_l)u Z (wipjlpjz---l’ju )m

i=1
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where {1,2,...,t} C {j1,42,-..,5u}. But, the lemma Suggested Reading
gives us
[1] B Sury, Cyclotomy and
(p—1}/(Pj, PjyPiu) -1 cyclotomic polynomials,
(wipj1pi2"-1’ju)m — __p_... Resonance,Vol.4,No.12,
i=1 Pi1Pjg - - - Pju 1999.

whenever {1,2,...,t} C {j1,72,..-Ju}. Hence, we have
p—1
pip2...pt

(—l)t“[—————p—1 TR ik S ]
pP1P2 - - - PtPt+1 P1P2. - -PtPs

S = (-1)

-1 1 1 1
(-1 | E ( + TR )J
Pi1p2-..DPt \Pt+1Pt+2  Pi+1Pt+3 Ps—1Ds

p—1
Pip2.-..DPs

— 1 1
= (—1)tp—1— [1— (—-—+...+—)
pip2.--DPt Pi+1 Ps
1 1 (—1)"‘
+ +...+ +...+ —m———
DPt+1DPt4+2 Ps—1DPs Pt+1Pt+2 - - - Ps
-1 1 1 1
= (-1t (1——) (1— ——-) (1-—)
pip2...pt Pt+1 P42 Ds

_(_l)t( p—1 )(1—;11-)(1-%)...(1_.;_‘)
) -ha-h a1

+...4+(-1)°

DPipP2---Pt P
e =1 Nelp-1/p-1) _  é(p-1)
=D (mpz » .p,) s M9

since g = p1---p; and (—1)" = p(g))-

Thus whenever g is squarefree, S = ‘i@d%’ﬁlz. But, if ¢
is not squarefree, g cannot divide p;, pj, . ..pj,; so each

term of # is 0 and S = 0. Also p(g)%}l =0 if g is not
squarefree. Therefore, in all cases S = p(g)%.

~V~ .
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