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Abstract. We give a short and “soft” proof of the asymptotic orthog-
onality of Fourier coefficients of Poincaré series for classical modular
forms as well as for Siegel cusp forms, in a qualitative form.

1. Introduction

The Petersson formula (see, e.g., [2, Ch. 14]) is one of the most basic tools
in the analytic theory of modular forms on congruence subgroups of SL(2,Z).
One of its simplest consequences, which explains its usefulness, is that it
provides the asymptotic orthogonality of distinct Fourier coefficients for an
orthonormal basis in a space of cusp forms, when the analytic conductor
is large (e.g., when the weight or the level is large). From the proof of
the Petersson formula, we see that this orthonormality is equivalent (on a
qualitative level) to the assertion that the n-th Fourier coefficient of the
m-th Poincaré series is essentially the Kronecker symbol δ(m,n).

In this note, we provide a direct “soft” proof of this fact in the more gen-
eral context of Siegel modular forms when the main parameter is the weight
k. Although this is not sufficient to derive the strongest applications (e.g., to
averages of L-functions in the critical strip), it provides at least a good mo-
tivation for the more quantitative orthogonality relations required for those.
And, as we show in our paper [4] concerning the local spectral equidistri-
bution of Satake parameters for certain families of Siegel modular forms of
genus g = 2, the “soft” proof suffices to derive some basic consequences,
such as the analogue of “strong approximation” for cuspidal automorphic
representations, and the determination of the conjectural “symmetry type”
of the family. See Corollary 3 for a simple example of this when g = 1.

Acknowledgements. Thanks to M. Burger for helpful remarks concern-
ing the geometry of the Siegel fundamental domain.

2. Classical modular forms

In this section, we explain the idea of our proof for classical modular
forms; we hope this will be useful as a comparison point in the next section,
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especially for readers unfamiliar with Siegel modular forms. Let k > 2 be
an even integer, m > 1 an integer. The m-th Poincaré series of weight k is
defined by

Pm,k(z) =
∑

γ∈Γ∞\Γ

(cz + d)−ke(mγ · z),

where Γ = SL(2,Z), acting on the Poincaré upper half-plane H,

Γ∞ =
{
±
(

1 n
0 1

)
: n ∈ Z

}
is the stabilizer of the cusp at infinity, and we write

γ =

(
a b
c d

)
, (a, b, c, d) ∈ Z4.

It is well known that for k > 4, m > 1, this series converges absolutely
and uniformly on compact sets, and that it defines a cusp form of weight k
for Γ = SL(2,Z). We denote by pm,k(n), n > 1, the Fourier coefficients of
this Poincaré series, so that

Pm,k(z) =
∑
n>1

pm,k(n)e(nz)

for all z ∈ H.

Proposition 1 (Asymptotic orthogonality of Fourier coefficients of Poincaré
series). With notation as above, for fixed m > 1, n > 1, we have

lim
k→+∞

pm,k(n) = δ(m,n).

Proof. The idea is to use the definition of Fourier coefficients as

pm,k(n) =

∫
U
Pm,k(z)e(−nz)dz

where U is a suitable horizontal interval of length 1 in H, and dz is the
Lebesgue measure on such an interval; we then let k → +∞ under the
integral sign, using the definition of the Poincaré series to understand that
limit.

We select
U = {x+ iy0 | |x| 6 1/2}

for some fixed y0 > 1. The Lebesgue measure is then of course dx.
Consider a term

(cz + d)−ke(mγ · z)
in the Poincaré series as k → +∞. We have∣∣∣(cz + d)−ke(mγ · z)

∣∣∣ 6 |cz + d|−k

for all z ∈ H and γ ∈ SL(2,Z), since m > 0 and γ · z ∈ H. But for z ∈ U ,
we find

(1) |cz + d|2 = (cx+ d)2 + c2y2
0 > c

2y2
0.
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If c 6= 0, since c is an integer, the choice of y0 > 1 leads to c2y2
0 > 1, and

hence ∣∣∣(cz + d)−ke(mγ · z)
∣∣∣→ 0

as k → +∞, uniformly for z ∈ U and γ ∈ Γ with c 6= 0. On the other hand,
if c = 0, we have γ ∈ Γ∞; this means this corresponds to a single term which
we take to be γ = Id, and we then have

(cz + d)−ke(mγ · z) = e(mz)

for all k and z ∈ U .
Moreover, all this shows also that∣∣∣(cz + d)−ke(mγ · z)

∣∣∣ 6 |cz + d|−4

for k > 4 and γ ∈ Γ∞\Γ. Since the right-hand converges absolutely and
uniformly on compact sets, we derive by dominated convergence that

Pm,k(z)→ e(mz)

for all z ∈ U . The above inequality gives further

|Pm,k(z)| 6
∑

γ∈Γ∞\Γ

|cz + d|−4

for k > 4 and z ∈ U . Since U is compact, we can integrate by dominated
convergence again to obtain∫

U
Pm,k(z)e(−nz)dz −→

∫
U
e((m− n)z)dz = δ(m,n)

as k → +∞. �

It turns out that the same basic technique works for the other most im-
portant parameter of cusp forms, the level. For q > 1 and m > 1 integers,
let now

Pm,q(z) =
∑

γ∈Γ∞\Γ0(q)

(cz + d)−ke(mγ · z)

be the m-th Poincaré series of weight k for the Hecke group Γ0(q), and let
pm,q(n) denote its Fourier coefficients.

Proposition 2 (Orthogonality with respect to the level). With notation as
above, for k > 4 fixed, for any fixed m and n, we have

lim
q→+∞

pm,q(n) = δ(m,n).

Proof. We start with the integral formula

pm,q(n) =

∫
U
Pq,m(z)e(−nz)dz
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as before. To proceed, we observe that Γ∞\Γ0(q) is a subset of Γ∞\Γ, and
hence we can write

Pm,q(z) =
∑

γ∈Γ∞\Γ

∆q(γ)(cz + d)−ke(mγ · z),

where

∆q

((
a b
c d

))
=

{
1 if c ≡ 0 (mod q),

0 otherwise.

We let q → +∞ in each term of this series. Clearly, we have ∆q(γ) = 0
for all q > c, unless if c = 0, in which case ∆q(γ) = 1. Thus

∆q(γ)(cz + d)−ke(mγ · z)→ 0

if c 6= 0, and otherwise

∆q(γ)(cz + d)−ke(mγ · z) = e(mz).

Moreover, we have obviously∣∣∣∆q(γ)(cz + d)−ke(mγ · z)
∣∣∣ 6 |cz + d|−k

and since k > 4, this defines an absolutely convergent series for all z. We
therefore obtain

Pm,q(z)→ e(mz)

for any z ∈ U . Finally, the function

z 7→
∑

γ∈Γ∞\Γ

|cz + d|−k

being integrable on U , we obtain the result after integrating. �

Here is a simple application to show that such qualitative statements are
not entirely content-free:

Corollary 3 (“Strong approximation” for GL(2)-cusp forms). Let A be the
adèle ring of Q. For each irreducible, cuspidal, automorphic representation
π of GL(2,A) and each prime p, let πp be the unitary, admissible represen-
tation of GL(2,Qp) that is the local component of π at p. Then, for any
finite set of primes S, as π runs over the cuspidal spectrum of GL(2,A)
unramified at primes in S, the set of tuples (πp)p∈S is dense in the product
over p ∈ S of the unitary tempered unramified spectrum Xp of GL(2,Qp).

Proof. This is already known, due to Serre [6] (if one uses holomorphic
forms) or Sarnak [8] (using Maass forms), but we want to point out that
this is a straightforward consequence of Proposition 1; for more details, see
the Appendix to [4]. We first recall that the part of unitary unramified
spectrum of GL(2,Qp) with trivial central character can be identified with
[−2
√
p, 2
√
p] via the map sending Satake parameters (α, β) to α + β. The

subset Xp can then be identified with [−2, 2], and for π = π(f) attached
to a cuspidal primitive form unramified at p, the local component πp(f)
corresponds to the normalized Hecke eigenvalue λf (p).
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Now the (well-known) point is that for any integer of the form

m =
∏
p∈S

pn(p) > 1,

and any cusp form f of weight k with Fourier coefficients n(k−1)/2λf (n), the
characteristic property

〈f, Pm,k(·)〉 =
Γ(k − 1)

(4πm)k−1
m(k−1)/2λf (m)

of Poincaré series (see, e.g., [2, Lemma 14.3]) implies that

pm,k(1) =
∑
f∈Hk

ωfλf (m) =
∑
f∈Hk

ωf
∏
p∈S

Un(p)(λf (p)), ωf =
Γ(k − 1)

(4π)k−1

1

‖f‖2
,

where Hk is the Hecke basis of weight k and level 1, Un denotes Chebychev
polynomials, and ‖f‖ is the Petersson norm. Because the linear combina-

tions of Chebychev polynomials are dense in C([−2p1/2, 2p1/2]) for any prime
p, the fact that

lim
k→+∞

pm,k(1) = δ(m, 1) =

{
1 if all n(p) are zero,

0 otherwise,

(given by Proposition 1) shows, using the Weyl equidistribution criterion,
that (πp(f))f∈Hk

, when counted with weight ωf , becomes equidistributed
as k → +∞ with respect to the product of Sato-Tate measures over p ∈ S.
Since each factor has support equal to [−2, 2] = Xp, this implies trivially
the result. �

3. Siegel modular forms

We now proceed to generalize the previous result to Siegel cusp forms;
although some notation will be recycled, there should be no confusion. For
g > 1, let Hg denote the Siegel upper half-space of genus g

Hg = {z = x+ iy ∈M(g,C) | tz = z, y is positive definite},
on which the group Γg = Sp(2g,Z) acts in the usual way

γ · z = (az + b)(cz + d)−1

(see, e.g., [3, Ch. 1] for such basic facts; we always write

γ =

(
a b
c d

)
for symplectic matrices, where the blocks are themselves g×g matrices). Let
Ag denote the set of symmetric, positive-definite matrices in M(g,Z) with
integer entries on the main diagonal and half-integer entries off it. Further,
let

Γ∞ =
{
±
(

1 s
0 1

)
: s ∈M(g,Z), s = ts

}
.
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For k > 2, even,1 and a matrix s ∈ Ag, the Poincaré series Ps,k is defined
by

Ps,k(z) =
∑

γ∈Γ∞\Γg

det(cz + d)−ke(Tr(s (γ · z)))

for z in Hg. This series converges absolutely and uniformly on compact sets
of Hg for k > 2g; indeed, as shown by Maass [5, (32), Satz 1]), the series

Ms,k(z) =
∑

γ∈Γ∞\Γg

|det(cz + d)|−k exp(−2πTr(s Im(γ · z)))

which dominates it termwise converges absolutely and uniformly on compact
sets (see also [3, p. 90]; note that, in contrast with the case of SL(2,Z),
one can not ignore the exponential factor here to have convergence). The
Poincaré series Ps,k is then a Siegel cusp form of weight k for Γg. Therefore,
it has a Fourier expansion

Ps,k(z) =
∑
t∈Ag

ps,k(t)e(Tr(tz)),

which converges absolutely and uniformly on compact subsets of Hg.

Theorem 4 (Orthogonality for Siegel-Poincaré series). With notation as
above, for any fixed s, t ∈ Ag, we have

lim
k→+∞

ps,k(t) = δ′(s, t)
|Aut(s)|

2
,

where the limit is over even weights k, δ′(s, t) is the Kronecker delta for the
GL(g,Z)-equivalence classes of s and t, and where Aut(s) = O(s,Z) is the
finite group of integral points of the orthogonal group of the quadratic form
defined by s.

This result suggests to define the Poincaré series with an additional con-
stant factor 2/|Aut(s)|, in which case this theorem is exactly analogous to
Proposition 1. And indeed, this is how Maass defined them [5].

Proof. We adapt the previous argument, writing first

ps,k(t) =

∫
Ug

Ps,k(z)e(−Tr(tz))dz

where Ug = Ug(y0) will be taken to be the (compact) set of matrices

Ug(y0) = Ug + iy0Id,

for some real number y0 > 1 to be selected later, where

Ug = {x ∈M(g,R) | x symmetric and |xi,j | 6 1/2 for all 1 6 i, j 6 g}
the measure dz is again Lebesgue measure.

1 Forms of odd weight k do exist if g is even, but behave a little bit differently, and we
restrict to k even for simplicity.
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Before proceeding, we first recall that

(2) |e(Tr(sγ · z))| 6 1

for all s ∈ Ag, γ ∈ Γg and z ∈ Hg. Indeed, since s is a real matrix, we have

|e(Tr(sγ · z))| = exp(−2πTr(s Im(γ · z)))
and the result follows from the fact that

Tr(sy) > 0

for any s ∈ Ag and y positive definite. To see the latter, we write y = tqq
for some matrix q, and we then have

sy = stqq = q−1tq

with t = qstq; then t is still positive, while Tr(sy) = Tr(t), so Tr(sy) > 0.
We then have the following Lemma:2

Lemma 5. For any integer g > 1, there exists a real number y0 > 1,
depending only on g, such that for any γ ∈ Γg written

γ =

(
a b
c d

)
, (a, b, c, d) ∈M(g,Z),

with c 6= 0 and for all z ∈ Ug(y0), we have

(3) |det(cz + d)| > 1

whereas if c = 0, we have |det(cz + d)| = 1.

Assuming the truth of this lemma, we find that

(4) |det(cz+d)−ke(Tr(sγ ·z))| 6 |det(cz+d)|−2g−1 exp(−2πTr(s Im(γ ·z)))
for any k > 2g, all z ∈ Ug and γ ∈ Γ∞\Γg, and also that

(5) det(cz + d)−ke(Tr(sγ · z)) −→ 0 as k → +∞,
for all z ∈ Ug and all γ with c 6= 0. On the other hand, if c = 0, we have

γ =

(
a 0
0 ta−1

)
,

up to Γ∞-equivalence, where a ∈ GL(g,Z) and hence

det(cz + d)−ke(Tr(sγ · z)) = e(Tr(sazta))) = e(Tr(aztas))

= e(Tr(tasaz)) = e(Tr((a · s)z))

where a · s = tasa (we use here that k is even).
Using (4), (5) and the absolute convergence of Ms,2g+1(z), we find that

Ps,k(z) −→
∑

a∈GL(g,Z)/±1

e(Tr((a · s)z))

2 This statement is used to replace the inequality (1), which has no obvious analogue
when g > 2.
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as k → +∞, for all z ∈ Ug. (The series converges as a subseries of the
Poincaré series.)

Then we multiply by e(−Tr(tz)) and integrate over Ug, using (4) and
the fact that Ms,2g+1 is bounded on Ug to apply the dominated convergence
theorem, and obtain

ps,k(t) −→
∑
a·s=t

1,

a number which is either 0, if s and t are not equivalent, or has the same
cardinality as Aut(s)/2 if they are. This completes the proof of Theorem 4.

�

We still need to prove Lemma 5. We are going to use the description of
the Siegel fundamental domain Fg for the action of Γg on Hg. Precisely, Fg
is the set of z ∈ Hg satisfying all the following conditions:

(1) For all γ ∈ Γg, we have

| det(cz + d)| > 1;

(2) The imaginary part Im(z) is Minkowski-reduced;
(3) The absolute value of all coefficients of Re(z) are 6 1/2.

Siegel showed that the first condition can be weakened to a finite list of
inequalities (see, e.g., [3, Prop. 3.3, p. 33]): there exists a finite subset
Cg ⊂ Γg, such that z ∈ Hg belongs to Fg if and only if z satisfies (2), (3)
and

(6) |det(cz + d)| > 1 for all γ ∈ Cg with c 6= 0.

Moreover, if (6) holds with equality sign for some γ ∈ Cg, then z is in the
boundary of Fg; if this is not the case, then |det(cz + d)| > 1 for all γ ∈ Γg
with c 6= 0.

Proof of Lemma 5. First, we show that if y0 > 1 is chosen large enough, the
matrix iy0Id is in Fg. The only condition that must be checked is (6) when
γ ∈ Cg satisfies c 6= 0, since the other two are immediate (once the definition
of Minkowski-reduced is known; it holds for y0Id when y0 > 1). For this,
we use the following fact, due to Siegel [7, Lemma 9] (see also [3, Lemma
3.3, p. 34]): for any fixed z = x + iy ∈ Hg and any γ ∈ Γg with c 6= 0, the
function

α 7→ |det(c(x+ iα) + d)|2

is strictly increasing on [0,+∞[ and has limit +∞ as α → +∞. Taking
z = i, we find that

lim
y→+∞

|det(iyc+ d)| = +∞

for every γ ∈ Cg. In particular, since Cg is finite, there exists y0 > 1 such
that

| det(cz0 + d)| > 1

for z0 = iy0 and γ ∈ Cg, which is (6) for iy0.
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Because Ug is compact, it is now easy to also extend this to z = x + iy0

with x ∈ Ug. Precisely, for fixed γ ∈ Γg with c 6= 0, the function{
Ug×]0,+∞[→ R

(x, α) 7→ |det(c(x+ iα) + d)|2

is a polynomial in the variables (x, α). As a polynomial in α, as observed by
Siegel, it is in fact a polynomial in α2 with non-negative coefficients, and it
is non-constant because c 6= 0. (It is not difficult to check that the degree,
as polynomial in α, is 2 rank(c)). This explains the limit

lim
y→+∞

|det(c(x+ iy) + d)|2 = +∞,

but it shows also that it is uniform over the compact set Ug, and over the
γ ∈ Cg with c 6= 0. Therefore we can find y0 large enough so that (6) holds
for all z ∈ Ug, and indeed holds with the strict condition | det(cz + d)| > 1
on the right-hand side. By the remark after (6), this means that z is not in
the boundary of Fg, and hence (3) holds for all γ with c 6= 0. �

Remark 6. The argument is very clear when det(c) 6= 0: we write

det(c(x+ iy) + d) = det(iyc) det(1− iy−1c−1(cx+ d))

= (iy)g det(c)(1 +O(y−1))

for fixed (c, d), uniformly for x ∈ Ug.

Remark 7. It would be interesting to know the optimal value of y0 in
Lemma 5. For g = 1, any y0 > 1 is suitable. For g = 2, Gottschling [1,
Satz 1] has determined a finite set C2 which determines as above the Siegel
fundamental domain, consisting of 19 pairs of matrices (c, d); there are 4 in
which c has rank 1, c is the identity for the others. Precisely: for c of rank
1, (c, d) belongs to{((

1 0
0 0

)
,

(
0 0
0 1

))
,
((

0 0
0 1

)
,

(
1 0
0 0

))
,
((

1 −1
0 0

)
,

(
1 0 or 1
−2 1

))}
,

and for c of rank 2, we have c = 1 and d belongs to{
0,

(
s 0
0 0

)
,

(
0 0
0 s

)
,

(
s 0
0 s

)
,

(
s 0
0 −s

)
,

(
0 s
s 0

)
,

(
s s
s 0

)
,

(
0 s
s s

)}
where s ∈ {−1, 1}. It should be possible to deduce a value of y0 using this
information. Indeed, quick numerical experiments suggest that, as in the
case g = 1, any y0 > 1 would be suitable.

Remark 8. Analogues of Corollary 3 can not be derived immediately in the
setting of Siegel modular forms because the link between Fourier coefficients
and Satake parameters is much more involved; the case g = 2 is considered,
together with further applications and quantitative formulations, in [4].
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[5] H. Maass: Über die Darstellung der Modulformen n-ten Grades durch Poincarésche
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