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THE MANIN CONSTANT AND THE MODULAR DEGREE

KESTUTIS CESNAVICIUS, MICHAEL NEURURER, AND ABHISHEK SAHA

ABSTRACT. The Manin constant ¢ of an elliptic curve E over Q is the nonzero integer that scales
the differential wy determined by the normalized newform f associated to E into the pullback of
a Néron differential under a minimal parametrization ¢: Xo(N)g — E. Manin conjectured that
¢ = =£1 for optimal parametrizations, and we prove that in general ¢ | deg(¢) under a minor
assumption at 2 and 3 that is not needed for cube-free N or for parametrizations by Xi(N)g.
Since c is supported at the additive reduction primes, which need not divide deg(¢), this improves
the status of the Manin conjecture for many E. Our core result that gives this divisibility is the
containment wy € H°(Xo(N),), which we establish by combining automorphic methods with
techniques from arithmetic geometry; here the modular curve Xo(N) is considered over Z and € is
its relative dualizing sheaf over Z. We reduce this containment to p-adic bounds on denominators
of the Fourier expansions of f at all the cusps of Xo(/N)c and then use the recent basic identity for
the p-adic Whittaker newform to establish stronger bounds in the more general setup of newforms
of weight k& on Xo(N). To overcome obstacles at 2 and 3, we analyze nondihedral supercuspidal
representations of GL2(Q2) and exhibit new cases in which Xo(N)z has rational singularities.
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1. INTRODUCTION

By the Shimura-Taniyama conjecture settled in [Wil95], [TW95], and [BCDTO1], for every elliptic
curve E over Q of conductor N and every subgroup I'1 (V) C I' C I'g(IV) of GL2(Z), there is a

surjection ¢: (Xr)g - E from the modular curve (Xr)g.

Most commonly, I" is T'o(V) or I'1(N), so that Xp is Xo(N) or X1(N), but for different I" different
E may be more canonical within the same isogeny class: for instance, X;(11)g and Xo(11)qg are
distinct isogenous elliptic curves. The multiplicity one theorem ensures that the ¢-pullback of a
Néron differential wg is a nonzero multiple of the differential w; € H((Xt)qg, Q') associated to the
normalized newform f whose Hecke eigenvalues agree with the Frobenius traces of E:

¢*(wE) = ¢y -wy for a unique ¢y € Q*,

and one knows that! ¢y € Z (we abuse notation: wg is nonunique, so ¢ determines only +c4). For
fixed I" and F there are many ¢, so it is common to normalize ¢ to be optimal, that is, deg(¢) to be
the least possible as E varies in its isogeny class and T is fixed (any ¢ factors through an optimal one,
see the proof of Lemma 6.5 and use multiplicity one). For optimal ¢, Manin conjectured that

?
cy = *1,

see [Man71, 10.3].2 From the theoretical point of view, the natural approach to the Manin conjecture
is to argue that p { ¢4 for every prime p: geometrically, this p-adic statement translates to studying
the arithmetic properties of the “reduction modulo p” of the parametrization ¢. This is not so in
the computational approach, where for explicit £ one computes with modular symbols to check
“directly” that ¢4 = +1: indeed, Cremona used the computational approach to prove in [Cre22]
that the Manin conjecture holds whenever N < 500000. The divergence of the two approaches gives
this overwhelming computational evidence for the Manin conjecture even more weight.

The initial theoretical results on the Manin conjecture were based on exactness properties of Néron
models and showed that p { ¢4 for those p > 2 at which F has semistable reduction, see [Maz78| (and
[AU96|, [ARSO6] for some sharpenings). By passing to a minimal extension K of Q, over which E
acquires semistable reduction and analyzing a stable integral model of Xo(N )@p, Edixhoven was able

to extend this approach to some primes p at which E has additive reduction: in [Edi91, Thm. 3],
he showed that p { ¢y for any prime p > 11 at which E does not have an additive potentially
ordinary reduction of Kodaira type II, III, or IV.? In these geometric approaches, the key input to
the required exactness properties is Raynaud’s result from [Ray74| on uniqueness of commutative,
finite, flat group schemes with a fixed generic fiber over a complete discrete valuation ring of mixed
charcateristic (0, p) and absolute ramification index e < p—1. Raynaud’s results were later subsumed
into integral p-adic Hodge theory but the requirement e < p — 1 for exactness properties persisted,
so there seems to be little hope that this approach is the “right” one for the Manin conjecture.

The conclusion p { ¢4 was established for all primes p of semistable reduction for E by a different
method in [6(518] The key novelty was to analyze the Hecke module structure of the Lie algebra
of the Néron model of Jy(N) using a multiplicity one result in characteristic p, and this showed
that automorphic rather than purely algebro-geometric techniques that were tried previously may be

11t seems that the integrality of ¢, was first noticed by Gabber during his PhD studies. To establish it, one reduces
to the case I' = I'1 (N) and then uses g-expansions, see Lemma 6.5 and its proof.
2Manin considered T' = I'o(N), and this implies the general case by Lemma 6.5. In [Ste89], Stevens argued that
minimal degree parametrizations by X (NN)g are the most natural ones, and he conjectured that ¢y = £1 for them.
3In the unfinished manuscript [Edi01], he attempted to remove this assumption on Kodaira types (still for p > 11).
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better suited for the Manin conjecture. The latter is most interesting in the remaining case of a prime
p of additive reduction for F, since then the relevant arithmetic geometry is the most delicate.

In this article, we combine automorphic methods with those of arithmetic geometry to settle a
subconjecture of the Manin conjecture, reviewed as (x) below. We then show that this subconjecture
has the following divisibility consequences for the Manin constant.

Theorem 1.1 (Corollary 7.3). For an elliptic curve E over Q of conductor N, every surjection

¢: X1(N)g - £ satisfies cq | deg(o).

Theorem 1.2 (Theorem 7.2). For an elliptic curve E over Q of conductor N, and for a level T’
with T1(N) C T C To(N), every surjection

¢: (Xr)g —» E  satisfies ¢y | 6 - deg(o),

and if N is cube-free (that is, if 84 N and 271 N), then even

ce | deg(o).

More precisely, under these assumptions, for every prime p we have

1 if p=2 with valay(N) > 3 and there is no p' | N with p’ = 3 mod 4,
valy(cg) < valp(deg(¢)) +9 1 if p=3 with valg(N) > 3 and there is no p’ | N with p’ = 2 mod 3,
0 otherwise,

and, more generally, if for some T' C TV C Ty(N) the singularities of (X]_“/)Z(p) are rational, then

val, (cg) < val,(deg(©)).

The modular degree deg(¢) is often even, for instance, if I' = T'y(IN) and ¢ factors through some
Atkin—Lehner quotient, but otherwise it is somewhat mysterious. In particular, for many E this
degree is coprime with N, to the effect that the new upper bound val,(cy) < val,(deg(¢)) supplied
by Theorems 1.1 and 1.2 eliminates* some additive primes that could divide cg for optimal ¢.

To illustrate, in the following figure we plotted in green the fraction of those isogeny classes of E
over Q of conductor N < 300000 that have an odd additive prime p but for which no such p divides
deg ¢, where ¢ is the optimal parametrization by Xo(N)q; if p = 3 with valg(/N) > 3, then we also
require that there exist a p’ | N with p’ = 2 mod 3. Theorem 1.2 shows that the Manin constant for
such E is a power of 2 (the semistable primes are eliminated by earlier results, as reviewed above).
Furthermore, we plotted in yellow the fraction of those isogeny classes as above for which some odd
p of additive reduction does not divide deg ¢ and some other does, with the same caveat for p = 3,
so that Theorem 1.2 eliminates at least one odd additive prime. Even though in all of these small
conductor cases the full Manin conjecture is known by Cremona’s verification [Cre22], the figure
shows the scope of the improvement supplied by Theorems 1.1 and 1.2.

4The bounds in Theorems 1.1 and 1.2 hold for any parametrization ¢, although it is only for optimal ¢ that the
Manin constant ¢, is conjectured to equal +1 (and known to be divisible only by the primes of additive reduction). For
example, when E equals the elliptic curve with Cremona label 11a3, which is a model of X1 (11)g, and ¢: Xo(N)g - E
is the isogeny of least degree, one has ¢, = deg(¢) = 5, which is consistent with our bounds.
3
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The key input to Theorems 1.1 and 1.2 and the core result of this article is the following integrality
property of wy that follows from the Manin conjecture. Namely, we argue in Theorem 5.15 that

wy lies in the Z-lattice H(Xo(N),Q) € HY(Xo(N)g, ), (%)

where the modular curve Xo(N) is over Z and {2 is its relative dualizing sheaf over Z. In addition
to being implied by the Manin conjecture, the containment (x) is actually necessary for attacking
it: except for unforeseen radically new approaches, all indications point to (x) being used in future
work on the remaining cases of the Manin conjecture.

The containment (%) is straight-forward in the semistable case, that is, for squarefree N, thanks
to g-expansions and the Atkin-Lehner involution. More generally, since the formal completion
of Xo(N) along oo is Spf(Z[q])), the weaker containment wy € H(Xo(N)>, Q') amounts to the
integrality of the Fourier expansion of f at oo, where Xo(N)>® C Xo(N) is the (Z-smooth) open
complement of those Z-fibral irreducible components that do not meet the Z-point given by the
cusp oo. Similarly, () amounts to certain bounds on the p-adic valuations of the denominators of
the Fourier coefficients of f at all the cusps of Xo(N)c—at least up to difficulties caused by the
lack of a modular interpretation of the coarse space Xo(N) that we overcome in §5 by exploiting
the Deligne-Mumford stack Z,(/V) and its “relative dualizing” sheaf Q2. We compute the precise
required bounds in Proposition 5.14, and an important step for this is to compute the differents of
the extensions of discrete valuation rings obtained by localizing the finite flat cover Zo(N) — 27 (1)
at the generic points of the Fp-fiber of Z((N), which we do in Proposition 5.12.

To show that the required bounds are met, we use automorphic methods to establish the following
stronger bounds. In Example 4.8 we show that these bounds are sharp in the case of newforms
associated to elliptic curves (and p < 11) and we discuss their computational potential.

Theorem 1.3 (Theorem 4.6 and Lemma 51_3) For a prime p, a cuspidal, normalized newform f
of weight k on I'o(N), an isomorphism C ~ Q,, the resulting val,: C — QU {oo} with val,(p) =1
and a cusp ¢ € Xo(N)(C) of denominator L (see §4.1), the Fourier coefficients ay(r;c) satisfy

) =
))_1 val( ) > 2,
alp(N) =

if val,(ged(L, %
LN
L

0
0 if val,(ged(L
. k N )
valy(ay(r:0) 2 = fvaly (i )+ Ly i val, (L) = kv

1 — Lvaly(ged(L, ) otherwise,



as well as the following stronger bounds in the case p = 2:

if vala(L) = ,

if Valg(L) 2V&12(N) S {2, 3, 4},
+1— Lvaly(N) if valy(L) =

if vala(ged(L, &) = 3, valp(N) > 6.

valp(ag(r;c)) > —%VBJQ (ﬁa]\,)) +

O vl O

Moreover, min,(val,(as(r;¢))) only depends on f and L, and not on the cusp ¢ with denominator L.

To argue the above bounds we pass to the automorphic side by expressing the “p-part” of az(r;c)
in terms of the local Whittaker newform W} , of the irreducible, admissible representation m¢ , of
GL2(Qp) determined by f (see Lemma 4.5 and its proof). Thus, Theorem 1.3 hinges on the p-adic
analysis of the values of Wy ,, which is a purely local question about 7f ,. To access these values,
we use the local Fourier expansion of Wy ,, and analyze the resulting local Fourier coefficients ¢; ¢(x)
with the help of the recent “basic identity” (reviewed in §3.5) that was derived by the third-named
author in [Sah16] from the GLgy local functional equation of Jacquet-Langlands [JL70].

The coefficients ¢; ¢(x) € C are indexed by characters x: Z,; — C* (the relevant ¢ and ¢ are
determined by N, L, and r), and reasonably explicit formulas for the ¢; ¢(x) were worked out in
special cases in [Sah16]| and appeared in general in the recent work of Assing [Ass19]. These formulas
involve the Jacquet—Langlands GLs local e-factors, which for p # 2 can be expressed in terms of the
GL1 local e-factors of Tate, equivalently, in terms of Gauss sums of characters of F* for at most
quadratic extensions F'//Q,. In effect, p-adically bounding the values of Wy ,, which is a problem on
GLg, reduces to p-adically bounding Gauss sums of characters, which is an approachable problem on
GL;. We study the latter in §2 and then bound the values of Wy ,, in the key Theorems 3.14 and 3.15.
Their most delicate case p = 2 uses a classification of nondihedral supercuspidal representations of
GL2(Q2) derived via the local Langlands correspondence (see Proposition 3.9) and, to go beyond
the naive bounds, takes into account cancellations between the ¢; ¢(x). Thanks in part to this
additional attention to p = 2, we obtain the integrality result (x) without any exceptions.

In a more restrictive setting and by a different method, bounds on p-adic valuations of Fourier
expansions were investigated by Edixhoven in §3 of his unfinished manuscript [Edi01]. There he
also hoped for a more conceptual approach that would be based on studying the Kirillov model of
71, p, and the work of our §§2-4 realizes this prediction (we use the Whittaker model instead).

The automorphic approach to (x) seems much sharper and more natural than those based on arith-
metic geometry alone. For instance, as explained in Conrad’s [BDP17, App. B|, one may use
intersection theory on the regular stacky arithmetic surface 2y(N) to bound the denominator of
ws with respect to the lattice HO(Xo(N),Q) = HY(Zy(N),Q) (see Corollary 5.4 for this identifi-
cation). The bounds obtained in this way are far from those needed for (x), but the intersection-
theoretic approach is not specific to wy—in essence it bounds the exponent of the finite group
HO(Xo(N)>, Q') /H°(Xo(N), Q). Loc. cit. carries it out® for the line bundle w®* in place of Q.

Turning back to Theorem 1.2, the only role of its rational singularity assumption is to ensure that
Picg(O(N)/Z is the Néron model Jy(V) of the Jacobian Jy(N) (here we chose I'' = I'g(NN) to simplify),

and so to deduce from (x) that wy lies in an even a priori smaller lattice H(Jo(IV), Q') that seems

5Unf0rtunately, beyond the case val,(N) = 1 treated in [DR73, VII, 3.19-3.20], the explicit bounds stated in
[BDP17, B.3.2.1] suffer from a typo in the values of the multiplicities of the components of 2Zo(N)r, stated in
[BDP17, B.3.1.3] (by [KMS85, 13.5.6], the correct multiplicity of the (a, b)-component for a,b > 0 is p™*(® =1 (p—1)).
Consequently, the asymptotic behavior in p of the stated bounds differs from the case val,(N) = 1.
5



otherwise inaccessible. We do not know any N for which this assumption fails, in fact, for a prime
p we show in Theorem 6.12 that Xo(IV )Z(p) has rational singularities in the following cases:

(i) if p > 5; or
(i) if p = 3 and either val,(N) < 2 or there is a prime p' | N with p’ = 2 mod 3; or
(iii) if p = 2 and either val,(N) < 2 or there is a prime p’ | N with p’ = 3 mod 4.

The bulk of this rational singularity criterion is due to Raynaud [Ray91], but we used low conductor
instances of the Manin conjecture to add the cases p < 3 with val,(/N) = 2. The technique we develop
for this also reduces the desired divisibility ¢4 | deg(¢) in its few still outstanding cases to a finite
computational problem (albeit not one we know how to solve completely), see Remark 6.13.

1.4. Notation and conventions. For a prime p, we let valy: @p — Q U {oo} be the p-adic
valuation with val,(p) = 1. For a nonarchimedean local field F', we let Op be its integer ring,
mp C Op the maximal ideal, wp € mp a uniformizer, Fp := O /mp the residue field, qp := #Fp
its order, and Wr C Gal(F/F) the Weil group. We normalize local class field theory by letting
geometric Frobenii map to uniformizers (see [BH06, §29.1]). We normalize the absolute value |- |p
on F by |wp|r = é. We set (p(s) := ——, for which we only need the values

1_q;sv
2
(r(1) = ;=7 and CF(Q):qg—il. (1.4.1)

For a (continuous) character x: F* — C*, we let a(x) be the conductor exponent: the smallest
n >0 with x(1+m}) = 1if x(O) # {1} and 0 if x(O) = {1} (in which case x is unramified). For
a nontrivial additive character 1: F — C*, we let c(¢) be the smallest® n € Z with ¢(m%) = {1}.

For an open subgroup I' C GLz(i), we let Zr be the level I' modular Deligne-Mumford Z-stack
defined in [DR73, IV, 3.3] via normalization, and Xr its coarse moduli space, so that Xp is the
usual projective modular curve over Z of level I' and, whenever I" is small enough, 21 = Xr (see
[Ces17, §4.1, 6.1-6.3] for a basic review of these objects). We let

Z) be the preimage of {(§*)} C GLo(Z/NZ), andset 2H(N) := Zro(NY;
) be the preimage of {({*)} C GL2(Z/NZ), andset Z1(N):= 21, n);

['(N) € GLy(Z) be the preimage of {({{)} C GLo(Z/NZ), andset Z(N):= 2.

We write Xo(N), X1(N), X(N) for the coarse spaces and use the j-invariant to identify X (1) with
PL (see [DR73, VI, 1.1 and VI, 1.3]). For a scheme X, we let X™ C X be the set of z € X with
Ox,, regular. If X is over a base §, we let X*™ C X be the open locus of S-smoothness. We
let Qﬁ( /s denote the Kéhler differentials. We let T be a geometric point over x and let ﬁggw or

ﬁ%f denote the resulting strict Henselization. We also use analogous notation when X is merely a
Deligne-Mumford stack.

We let Z be the integral closure of Z in C, set ¢, := ¢*™/" and let Zp) be the localization of Z
at the prime (p). We let ¢(m) := #((Z/mZ)*) be the Euler totient function. For a field, a ‘finite
extension’ means a finite field extension. Rings are assumed to be commutative. Both C and C
allow equality. We write 2 for canonical isomorphisms (identifications), ~ for noncanonical ones,
< for monomorphisms, — for epimorphisms, and — for isomorphisms (in categories in question).
Our representations and characters are continuous and over C, and 1 is the trivial character.

6In terms of the notation n(t) used in [Tat79, (3.2.6)] or [Del73b, 3.4], we have c(¢) = —n(1).
6
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2. p-ADIC PROPERTIES OF (GAUSS SUMS

Our ultimate source of p-adic properties of coefficients of g-expansions of newforms at cusps is the
p-adic properties of Gauss sums of characters, relatedly, of e-factors of GL(1). Thus, we begin by
explicating the latter in this section, especially, in Proposition 2.3 and Theorem 2.6.

2.1. Local field Gauss sums. For a finite extension F'/Q,, a multiplicative character y : F'’*—C*,
a nontrivial additive character ¢: F — C*, the Gauss sum of x with respect to v is defined by

Gy (z, x) = / () Y(zy)d*y for x € F*, with the normalization d*y = 1.
Op 0%
Since &y (x, x) only sees x| 0% it does not change when x is multiplied by an unramified character,
so we lose no generality if we assume that x lies in the set

X := {continuous character x: F* — C* with x(wp) = 1} = Homeont (O, C*).

Characters in X are unitary and of finite order, and we also consider subsets of fixed conductor
exponent:

X<p={xe€X|alx) <k} and Xj:={xeX|alx) ==k}

(to stress the underlying field, we also write Xp, Xp <k, and Xp ). The Gauss sum &y (x, x) is
related to the GL(1)-epsilon factors e(s, x, ) defined by Tate (see [Tat79, (3.2)] or [Sch02, §1.1]):
under the common normalization ¢(¢) = 0, by [CS18, Lemma 2.3|, for every x € X, we have

1 if a(x) = 0 and valp(x) > 0,
-1 if a(x) = 0 and valp(x) = —1,
Sy(z,x) = § %o B L (2.1.1)
fe——elg, x H¥)x(z™) if a(x) > 0 and valp(z) = —a(x),
0 otherwise.

We will use this together with properties of e-factors: for instance, for a multiplicative character
x: F* — C*, a nontrivial additive character ¢: F' — C*, and any s € C, by [Sch02, §1.1], we have

_ /1 (c(@)—a(x))(s—3) 1 o 1 x
6(57X71/)) - 5(2>X1 w)QF and 5(27X7a‘¢) - X(a)€(27X7w) fOF ac F ) (212)

where ap: F' — C* is the character z — 1 (ax). In particular, there is little harm in restricting to

s = % and assuming the common normalization ¢(¢) = 0, under which, by loc. cit., we have

e(2. XX ¥) = X' (wp)®™We(3,x,¥) and e(3,x,%) =1 whenever a(x’) =0, (2.1.3)

e(3.x:¥)e(3.x 1 9) = x(=1) and, if x is unitary, then [e(g,x,¥)| = 1. (2.1.4)
7



Due to (2.1.1), the only case in which the study of the p-adic properties of &,(x, x) has substance
is when y is ramified and valp(z) = —a(x). Moreover, by a change of variables,

a(x)7 X)-

We will analyze the latter below, and we begin in Proposition 2.3 with the case a(x) = 1, a case
whose study reduces to that of classical Gauss sums of multiplicative characters of finite fields.

Gy(zu, x) = x(u )By(z,x) for uwe OF, so it suffices to consider &y (wp

2.2. Finite field Gauss sums. For a finite extension F/F,, a character x : F* — C*, and a
nontrivial additive character ¢ : F — C*, the classical Gauss sum of x (with respect to 1) is

9y (x) = =2 uerx X(@)(a), sothat gy(x) € Z[Cur—1,p)-

By, for instance, [Was97, Lem. 6.1], we have

gp(1) =1 and gy(X)gu(x) = #F for x #1,
so the prime ideals of Q({xr—1,(p) that divide gy(x) all lie above p and
if x>=1, then gI/,(X)2 = x(—1) - #F. (2.2.1)

We will be interested in val,(gy(x)) for the p-adic valuation val, determined by a choice of an
isomorphism ¢: @p ~ C. Via Teichmiiller representatives, the latter determines a character

wp:F* — C* oforder #F —1 suchthat wp(a)=a mod p.

o

Thus, every x : F* — C* is of the form x = wp X for a unique 0 < a(x) < #F — 1, and we set

s(x) == EZ[EF)”]_l a;, where a(y)= Zgg”]_l a;p’, 0<a; <p—1, isthe base-p expansion

(s(x) and «a(x) depend on the implicitly fixed ¢; abusively, we also extend this notation to characters
X: F* — C* with a(X) < 1, where F//Q,, is a finite extension with residue field F). Certainly,

0 if and only if x =1,

0< <(p-1D|F:F ith = .
<s(x) < (p—D[F:Fp] with s(x) {(pnszp} iFpisodd, 2 =1, x #1.

(2.2.2)
By [Was97, Lem. 6.11, Prop. 6.13], we have

s(xx') = s(x) +s(x') mod p— 1, 0<s(xx) < s(x) +s(x). (2.2.3)
In particular, since, for a finite extension F' /I, both wy |r = wy and wpoNormg JF = HE]F:/E)F}_I (A;I(Fﬁﬁﬁﬂr)i7
5(€lpx) = s(€) mod p—1 and s(xoNormp r) = [F': Fls(x) mod p—1 for &: F™* — C*. (2.2.4)

By a special case of Stickelberger’s congruence, that is, by [Was97, Prop. 6.13 and before Lem. 6.11],

valp(g¢(x)) = 5275
and this key identity gives the following result.

Proposition 2.3. For a finite extension F/Qp, a multiplicative character x: F* — C* with
a(x) < 1, an additive character ¢: F — C* with c¢(yp) = 0, an x € w}l(’);, and an isomor-
phism C ~ Q,,

valy (G (z, X)) = 2,

and (qr — 1)®y(x, x) is an algebraic integer in Q(Cqp—1,Cp) that is a unit away from p.
8




Proof. Since a(x) < 1, we may view x as a nontrivial character of Fj. Moreover, since ¢(¢)

=0,

the character ¢ defines a nontrivial additive character ¥: F — C* by (¢ mod mp) := w(wglt).
95(x) 0

qr—1"

The definitions reviewed in §§2.1-2.2 give (5¢(wl?1, X)=— so §2.2 gives the claims.

A similar analysis of Q5¢,(w;a(X), x) for a(x) > 2 in Theorem 2.6 will use the following lemmas
whose goal is to express this Gauss sum more or less explicitly.

Lemma 2.4. For a finite extension F/Qp, a multiplicative character x: F* — C* with a(x) > 2,
and an additive character ¢: F — C* with ¢(y)) = 0, there is a u € OF such that
(i) if a(x) is even, then

x(1+ w;(X)/zx) = w(uw;a(X)/zx) for all x € Op;

(ii) of a(x) is odd, then

x(1+ wgﬁl(XHl)/%) = ¢(uw;(a(X)_1)/2x) forall z € Op;

(iii) if both p and a(x) are odd, then

—1
x(1+ w;?(X)_l)/Qac) = w(u(w;(a(XHl)/Qx - wFTxQ)) for all z € Op.

Proof. We set € := 0if a(x) is even and € := 1 if a(x) is odd, so that the map x X(1+w§?(X)+6)/2x)
is an additive character #: F' — C* with ¢(0) = (a(x) — €)/2. All such characters have the form

x w(uw;(a(X)_E)/Qx) for some u € O (see [BHO6, §1.7, Prop.]), so (i) and (ii) follow.

For (iii), let U C OF be a set of representatives of Oy /(1 + mgg(X)H)/Q) and consider the maps
Xu: 1+ mgf(X)_l)m = C* for weU

defined by

1.2 wgg(x)*l)/2x)2

Xu(1 + wg‘l(X)*l)/Zx) — Q[)(u(,zﬂgv(tl(X)Jrl)/Qx _ WETJC)) _ w(uw;a(x)(w;:z(x)fl)/Qx (

Thanks to the power series expansion z — % + ... of log(1 + z), the function x,, is a multiplicative
character that is trivial on 1 + m‘}(X) but not on 1 + maF(X)_l. Moreover, since the characters

()| ~aco+1)/2 are pairwise distinct (compare with the proof of [BHOG, §1.7, Prop.]), so are the
F

Xu- Thus, since #U = ql(zg(X)_l)/2<QF — 1), the x, exhaust the set of those multiplicative characters

on (1+ mgg(X)fl)/Q)/(l + maF(X)) that are nontrivial on 1+ miﬂ(X)*l. Consequently, x = x, for some
u, as desired, and, certainly, this u is also a valid choice for part (ii). O

Lemma 2.5. For a finite extension F/Qp, a multiplicative character x: F* — C* with a(x) > 2,
an additive character : F — C* with c(¢) =0, and a uw € OF as in Lemma 2.4,

(i) if a(x) is even, then




(ii) if a(x) is odd, then
(X) —(a(x)—1)/2

X) =L v(—uwt ) S x(—u—utw TRy (—ute 0TI

tEOF/mF

&y (wp"

—1
where we sum over coset representatives (their choice does not affect the summands).

Proof. We again set € := 0 if a() is even and € := 1 if a(x) is odd. Letting d*y and dy be the Haar
measures on F'* and F' normalized by fox d*y =1 and fOF dy = 1, respectively, we then have
F

&y (@™, x) = /eox W(@p"™y)x(y)d*y
yelp

_ —a(x) x
=X O ey

veO /(14m{eI T2

where the sum is over some fized coset representatives v € (’);. The integral in this sum equals

qr —a(x)
p— /y€(1+mgg(x)+€)/2)¢(w]:‘ vy)x(y)dy
1—(a(x)+€)/2
q —a —\a —€ a €
_ I W7y / P00 2 (1 4 @00+ g
qr — 1 yGOF
1—(a(x)+¢€)/2
2.4 4 —a —(a(x)—e¢
L i@ ) [ (@ ok wy)dy.
qr — 1 yeOp
The latter vanishes unless the integrand defines the trivial additive character of Op, that is, unless,
v = —u mod mg?(")‘f)/? If a(x) is even, this happens precisely when v is in the coset —u(1+maF(X)/2),
and (i) follows. If a(x) is odd, then the same happens precisely when v is in a coset of the form
(—u+ tw&?(X)fl)/Q)(l + mgg(XHl)/Q) with ¢ € Op, and two such cosets are distinct if and only if the

corresponding t are distinct modulo mp. Thus, by choosing coset representatives t for Op /mp and
readjusting our choices of coset representatives v, for odd a(x) we obtain

1 (a(x)+1)/2
—a q a — —a a —
Bum o) = S (a0 ) g (0 eff ).
ar tEOF/mF

To conclude (ii), it remains to adjust the representatives ¢ by replacing them by —ut. Finally, by
Lemma 2.4 (ii), the summands in (ii) are independent of the coset representatives for Op/mp. 0O

Theorem 2.6. For a finite extension F//Qy, a multiplicative character x: F* — C* with a(x) > 2,
and an additive character ¢: F — C* with c¢(¢) = 0,

q;H“(X)/Q(qF —1)&y(z,x) is a root of unity for every x € w;a(X)Ofﬂ.

Proof. The case of an even a(x) follows from Lemma 2.5 (i) (with (2.1.1) to replace x by w;a(X)).

Thus, we assume that a(x) is odd, choose a u € O as in Lemma 2.4, and, by Lemma 2.5 (ii), need

to show that qgl/ T is a root of unity where
T =Y rcopmp F(t) with  F(t) = x(1 + tewle @) p(—ut, “OTD2),
so that F'(t) only depends on the class in O /mp of the representative ¢. For odd p, by Lemma 2.4 (iii),
2wy’
T = Yieop/me ¥ (—55) -

10




-1
Thus, for odd p, letting ¢': Fp — C* be the nontrivial additive character ¢ — (—W;F ) and

x': Fz — C* the unique nontrivial quadratic character, we have
T =14 e 0(2) = 1+ Ty (K1) + V(1) = —g00 ().
Consequently, (2.2.1) shows that q;1/2T is a root of unity for odd p.

In the remaining case p = 2, we instead let ¢': Fp — {£1} C C* be the nontrivial additive

character t — x(1 + tw%(X)_l) and seek to conclude by showing that ql;lT2 is a root of unity. For

this, we first note that, since F'(2t) = F(0) = 1, the identity
FOF®) = x(1+ (t + )@@/ 4y 2001yt + )y @02y = pe 4ty (#t)
applied in the case t = t' shows that each F(t) is a fourth root of unity. We obtain

T2 = 5, e, FOF(W) = Xy pew, F(t+ 000 (1) = Syep, (F(9) S, /(2 +15))

where, since t + t? is an automorphism of Fr and ¢ is nontrivial, the inner sum vanishes for s = 0.
For s # 0, the kernel of the Fo-linear map Fr — Fp given by ¢ +— t2 4+ ts is {0, s}, so its image is an
Fa-hyperplane Hy C Fp, and hence the inner sum also vanishes if Hy # Ker(¢') and else equals gp.
Thus, we are reduced to showing that there is a unique s € Fp \ {0} with Hs; = Ker(¢)') or, since
the total number of Fo-hyperplanes in Fg is qp — 1, that the H, exhaust all such hyperplanes.

Scaling by a fixed r € F3 is an Fa-linear automorphism of Fp, and the nonzero orbits of this
automorphism all have the same order equal to the order m of r in the group F . Thus, scaling by r
fixes no Fa-hyperplane H C Fr unless r = 1: else m would divide the consecutive integers #(H \{0})
and #(Fp \ H). Consequently, by scaling, F . acts transitively on the set of Fo-hyperplanes H C Fp
and it remains to note that scaling by an r € Fy. brings Hy = {t*+st |t € Fp} to another hyperplane
of this form, namely, to H,/, for the unique ' € Fr with /2 = r. ]

The above analysis of Gauss sums &, (x, x) gives the following consequence for e-factors of GL(1).

Corollary 2.7. For a finite extension F/Q,, a multiplicative character x: F* — C* of finite order,
and a nontrivial additive character 1: F — C*, we have

(3. 9) € Z3* (2.7.1)
Moreover, for any isomorphism C ~ @p,
(i) if a(x) = 1, then, with the notation of §2.2,

. s(y—1
valy(e(3, X, ) = 502l 4 S0,

(ii) if x* =1 or a(x) > 1, then &(3, x, %) is a root of unity, and so val,(e(%,x,v)) = 0.
Proof. By (2.1.2), we may assume that ¢(1)) = 0. The twist by an unramified character formula

(2.1.3) then settles the case a(x) = 0 and also allows us to assume that x(wp) = 1, that is, that
X € X. In this remaining case of a x € X with a(x) > 0, by (2.1.1), we have

e(3x1) = 22 (w X T ().
F

In particular, Proposition 2.3 and Theorem 2.6 give 6(%, X,¥) € Z[%] % as well as (i) and the a(x) > 1
4

case of (ii). The remaining x? = 1 case of (ii) follows from (2.1.4). O
11



We conclude the section with an explicit analysis of the e-factors of quadratic characters of Q.
This will be useful for studying the 2-adic properties of Fourier expansions of newforms.

2.8. Quadratic characters of Q. There are eight characters 8: Q) — C* with 2 = 1:
X3 = {1, B0, B, BoBa, B, BoBs, BB, BoBaBa},

where 1 is the trivial character, 8y is nontrivial and unramified, the conductor exponents of Sy and
BofB2 are 2, and those of B3, Bof3, B283, and ByB283 are 3. To normalize for the sake of concreteness:
via local class field theory, By corresponds to the extension Qo(v/5)/Q2 and satisfies 5y(2) = —1,
whereas B2 corresponds to the extension Qq(v/—1) and satisfies 82(2) = 1, and B3 corresponds to

Q2(v/2)/Q2 and satisfies 43(2) = 1 (so B33 corresponds to Q2(v/—2)/Q2). In the notation of §2.1,
X1 =0, Xg2={B} Xq.3={Bs B0}

Lemma 2.9. For an additive character v : Qu — C* with c(¢p) = 0, there is an ay, € Z5 with
(3. B2,0) = Balay) -4, e(3,B3.%) = B3(ay), (5, B283,%) = (B253)(ay) - i.

Proof. The collection of ¢ with ¢(¢0) = 0 is a Zj-torsor via the action (ay))(x) = ¥ (az) (see
[BHO6, §1.7, Prop.]), so the e-factor transformation formula (2.1.2) reduces us to treating a single
1. We then choose the following v with ¢(¢) = 0 for which we will argue the claim with a, = 1:

Y(x) == exp(2miA(z)) where A: Q2 —» Q2/Zy = Q/Z = D 1ime p O/ Zp-
With the shorthand ¢, := e*™/" we obtain
Gy(102) = 5 (Ca- Bo(1) + G- B2(3)) = 5 (i +14) =
%@ﬁ@zﬂ@ﬂw»w3&@+@wm>+c6<»=%@—@ @+@%ﬁ%,
61&(%75263) - % (<8 ’ (5253)(1) + Cg ’ (5253)( )) % (CS + Cs - Cg Cs) 21/22
Thus, (2.1.1) gives the desired

e(3,B2,0) =i, &(3,830) =1, e(3,B030) =i. u

3. p-ADIC PROPERTIES OF LOCAL WHITTAKER NEWFORMS

As we will see in §4, the theory of Whittaker models translates the study of p-adic properties of
Fourier expansions of newforms f at cusps into the study of p-adic properties of the values of the
Whittaker newform of the p-component of the associated cuspidal automorphic representation .
This transforms a global problem into a purely local one, and in this section we place ourselves in
the resulting local setting. Namely, we use the theory of local Fourier expansions of the Whittaker
newform Wy , of an irreducible, admissible, infinite-dimensional representation 7 of GL2(Q,), the
recent basic identity (reviewed in §3.5) that explicates the resulting local Fourier coefficients, the
work of §2 on Gauss sums, and the classification of 7 to derive in Theorems 3.14 and 3.15 explicit
lower bounds on the p-adic valuations of values of W . We begin by reviewing the local Whittaker
newform Wr 4 in §3.2 and its Fourier expansions in §3.5.

3.1. Representations of GLy(F') and their conductors. Let p be any prime, F/Q, a finite
extension and 7 an irreducible, admissible, infinite-dimensional, complex representation of GLa(F)
with central character w, and contragredient 7. For a character y: F* — C*, the twist

X7 is the complex representation of GLo(F') given by g +— x(det(g)) ®c 7(g),
12



so that, for instance, w_ 7 ~ 7 (see [Del73a, 3.2.2.2]). For n > 0, we consider the subgroup
Ki(n):={(2%) € GL2(Op) | c € @wEOp, a € 1 + wpOp} C GLy(OF).

There is the smallest a(m) > 0, the conductor exponent of m, such that the space of Kj(a(m))-
fixed vectors in 7 is nonzero, and so necessarily is one-dimensional (see [Del73a, 2.2.6-2.2.7]). For
computing a(xm), we will use [CS18, Lem. 2.7|: for 7 and x as above with w, = 1, we have

a(xm) < max{a(m),2a(x)} (3.1.1)
a(m)

with equality if either a(x) # =5~ or 7 is twist-minimal in the sense that a(m) = min, (a(x)), so
that, in particular, a 7 with w,; = 1 is twist-minimal whenever a(r) is odd.

For a nontrivial additive character ¢: F' — C*, similarly to §2.1, we let £(s, m, 1) € C* be the local
e-factor of m (see [Sch02, §1.1] for its review) and abbreviate to (s, ) when 1 satisfies ¢(¢)) = 0
(see §1.4). This minor abuse is harmless when w, is unramified because, by loc. cit., we have

—a(m))(s—1
(s, m, ) :8(%,7T7’11Z))q?0(w) ™e=2)  4nd e(3,m a) = wr(a)e(3,m,¢p) for ae€ F>

(compare with (2.1.2)). With the common normalization ¢()) = 0, we also have (loc. cit.)

(s, |- 'n,9) = q}a(ﬂ)te(s,w,dj) for teC,

e(s,m)e(l — s,w tm ) = we(—1), so 5(%,7r,¢) =41 whenever w,; =1. (3.1.2)

3.2. The Whittaker newform of w. For a nontrivial additive character ¢: F' — C*, we set
Wy := {locally constant W: GLy(F) — C with W((1%)g) = ¢ (z)W(g) for x € F, g € GLo(F)}.

The group GLy(F) acts on the C-vector space Wy, by (¢'W)(g) := W (gg') and, by [Del73a, before
2.2.3|, each 7 as in §3.1 is isomorphic to the unique subspace Wy (m) C Wy, the Whittaker model
of m. The normalized Whittaker newform of  is the unique K (a(m))-invariant element

Wi € Wy(m) such that Wi (1) = 1.
For an unramified multiplicative character y: F* — C*, we have’
Wi w(9) = x(det(g))Wr y(g) forall g € GLa(F). (32.1)

3.3. The coset representatives g; s ,. The values of the Whittaker newform W , on the double
coset Z(F)U(F)gK(a(m)), where Z C GL3 is the center and U C GL3 the “upper right” unipotent
subgroup, are determined by W ,(g). We choose the representatives g as follows: we set

Gt 0,0 1= <W?1>(_11)(1”W#):< “r >€GL2(F) for t,£€Z and ve O

—¢
1 -1 —vwg

and recall from [Sah16, Lem. 2.13] that, letting v range over the indicated coset representatives,®

"The map ty: W — (g — x(det(g))W(g)) is a C-linear automorphism of W), such that
x(det(g"))(tx (9W)) = g'(ex (W) for g" € GLa(F).

Thus, ¢y, induces a GL2(F)-isomorphism 7y : Wy — x™'"Wy, 50 that 1, (Wy (1)) = Wy (x7) and 1 (Wr, ) = Wy, o

80ne argues the decomposition as follows. For the upper triangular Borel B C GLg, the valuative criterion of
properness for B\GLy and the vanishing H'(Or, B) = {*} show that GL2(Or) — (B\GL2)(F), and so give the Iwa-
sawa decomposition GLy(F) = B(F)GL2(OF), which one refines to GL2(F) = (Z(F)U(F) ({WGFO}GGZ (1’)) GL2(OF).
The advantage of the refinement is that the group encoding the nonuniqueness of the decomposition shrinks from
B(Or) = B(F) N GL2(OF) to Z(Op)U(OF) ={(§%) |2 € Of,u € Op}. This group acts on the primitive vectors
() with entries in Op/m% by left multiplication: ((§%),(y)) — (**#,*Y). The orbits are indexed by both the
“valuation” 0 < £ < n of y and, with the subsequent normalization y = w4, the class T of x in Op/(1 + mr;in(z’ n=h)y,
13



GLy(F) = | | | | || 2(P)U(F)gre0Ki(n).

0<t<n veO;/(l_'_mr;in(é,n—e)) teZ

This decomposition reduces us to studying the values Wy (gt ¢,v), and the following Atkin-Lehner
relation that results from [Sah16, Prop. 2.28]? and (3.1.2) halves the range of the ¢ that one needs
to consider: if wy =1 and ¢(¢)) = 0, then, for 0 < ¢ < a(m), there is a p-power root of unity ¢ with

Wi w(9t,6,0) = £C Wa g (Ge420—a(r), a(m)—t, —v)- (3.3.1)

As we now illustrate, this relation is useful for deducing a description of the p-adic valuations of the
elements Wy (¢, ¢,0) with £ € {0, a(7)}.

Proposition 3.4. For a finite extension F/Qy, an irreducible, admissible, infinite-dimensional rep-
resentation m of GLo(F) with a(m) > 1 and wy = 1, an additive character : F — C* with
c()=0,ateZ, an £ € {0,a(m)}, and a v € O, there is a p-power root of unity ¢ such that

:ECq;(l-‘rH—f) z'fa(7r) —1landt+0> 1,
W (9, 0,0) = { £ if a(r) > 1 and t + € = —a(x),

0 otherwise.

Proof. Since (3.3.1) swaps Wi 4(gt,0,0) and Wr y(9i—a(x), a(x), —v), We may assume that £ = a(m).
Then, in terms of the description in footnote 8, the matrices g 4(r),, and g := (w?%(”) 1) (“71 - )
have the same invariants, so Wi, (¢, o(r),») and Wr 4 (g) agree up to a factor that is a value of 1,
that is, up to a p-power root of unity. It then remains to recall from [CS18, Lem. 2.10] that
+qp" if a(m)=1, r >0,
Wﬂ,w(g):Wﬂ’w(<w%1>): 1 if a(r)>1, r=0,
0 otherwise. O

3.5. The Fourier expansion of Wy y(g: ¢,). In §3.3, for fixed t € Z and £ > 0, the function
OF v+ Wy y(gr.0,0) descends to the quotient OF /(1 +mb),

so, by Fourier inversion, there are constants c; ¢(x) € C for x € X<y (see §2.1) such that

W, (Gt 0,0) = Exefgz e o(x) x(v)  for every v e OF. (3.5.1)

To make use of this local Fourier expansion, it is key to explicate the Fourier coefficients ¢, ¢(x) € C.
This may be done in terms of e-factors of representations of GLo x GLj by using the basic identity

Since K1(n) is the stabilizer of (}) for the similar transitive left multiplication action of GL2(OF), these orbits cor-
respond to the double cosets Z(Op)U(Op)\GL2(OF)/K1(n). In conclusion, Z(F)U(F)\GL2(F)/K1(n) is indexed
by invariants £, T, and a as above, and it remains to note that for the element g ¢,, these invariants are ¢, v, and
t + 2¢, respectively: indeed, the matrix (;Z v) in GL2(Or) sends () to the primitive vector (;—é) (so its T and

¢ invariants are v~ ! and ¢, respectively) and can be written in the Bruhat decomposition as

-1 ot 1 —¢ Jp— —t—2¢ —1_t+e
(’UZ ): “WE . (_11)<1UwF ):( wF e)(wF )(lv @ )gtl'm
wg v —wb, 1 —wt 1 1 6

which gives the sufficient g;, ¢, € Z(F)U(F) (Wgw 1) (”7@1 )

WF v
9The proof of this relation does not use the blanket assumption of [Sahl16, §2] that 7 be unitarizable.
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of [Sah16, 2.23 and before 2.22]:!% if ¢(y)) = 0 and w, = 1, then, for 0 < ¢ < a(7) and x € X<,

£(3, x7)

(t+a(xm))(5-5)

Llsxm) 2 F 600 = ZimeTm 2 07 B (X)W ((=F.))
r>0

teZ

as Laurent polynomials in ¢}, with the Gauss sums &, as in §2.1. This method for accessing the
numbers ¢; ¢(x) was carried out in [Ass19, §2|, and we will cite the resulting formulas below. For a
discussion of related unpublished approaches of Templier and Hu, see [CS18, Rem. 2.20].

3.6. Classification of ramified 7 with w, = 1. Our analysis of the Fourier coefficients ¢; ¢(x) will
rest on the following well-known classification of the irreducible, admissible, infinite-dimensional,
representations 7 of GLg(F') that are ramified (that is, a(w) > 1) and whose central character is
trivial (that is, wy = 1). We refer to [JL70, §§2-3] and [Sch02, §1.2] (or [BH06, §9.11]) for its
justification, and when possible we also give formulas for a(w), L(s, x7) and &(s, x7) with x € X.

(1) 7 is supercuspidal. In this case, a(m) > 2 and L(s, x7) = 1 (see [Cas73, before Lemma on
p. 303 and middle of p. 304] and [BHOG, §24.5]).

(la)

(1b)

w is dihedral supercuspidal. Such a 7 is associated, via the Weil representation, to
a character £: E* — C* of a quadratic extension E/F such that £ does not factor
through Normpg,p, see [JL70, §4] or [Bum97, Thm. 4.8.6]. Equivalently, under the

local Langlands correspondence [BHOG, §33.4, §34.4] such a 7 corresponds to Indmw/g &
where ¢ becomes a character of the Weil group Wg via class field theory. By [JL70,
Thm. 4.7 (ii)], for such a 7 we have w; = &|pxXg/F, Where xg/p is the quadratic
character associated to E/F. In particular, w, = 1 forces

§|Im(Norm: EX—FXx) = 17 Whﬂev by assumption, é‘Ker(Norm: EX—FX) 7é 17 (361>

so that £ is of finite order. By [JL70, Thm 4.7 (i), (iii) and p. 8] the representation ym
is also dihedral supercuspidal, associated to £(x c Normg,p): E* — C*, and!!

e(s,xm) = ve(s,§(x o Normp ), o Traceg ) for some € {£1,4i}. (3.6.2)
With dg,/p being the valuation of the discriminant of £/F, by [Sch02, Thm. 2.3.2],

CL(TI’) = [IFE : Fp]a(f) + dE/F (3.6.3)

7 1s nondihedral supercuspidal. For such a 7, we have char(Fr) = 2 and a(m) > 2 (see
[Del73a, Prop. 3.1.4] and [Tun78, 3.5]), but there seems to be no simple expression for
(s, xm). For F = Qq, we describe such 7 in Proposition 3.9 below.

(2) 7 =~ pSt is the twist of the Steinberg representation by an unramified character p with p* = 1.
In this case, a(m) = 1, and, by [Bum97, §4.7, (7.10)| and [JL70, Prop. 3.6], we have

1/2

% iszl, —_ -5 —
L(s,xm—{l—u(wqu“ e<s,xﬂ>—{ wlmelar” " Tx=1,

1 otherwise, e(s,x)? otherwise.

10The cited claims do not use the blanket assumption of [Sah16, §2] that m be unitarizable.
UBy [JL70, Lem. 1.2] and (2.1.1) with (2.1.3)~(2.1.4), we have v = (3, xz/r), and so also 7 = xg,#(—1).
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(3) 7 =~ uSt is the twist of the Steinberg representation by a ramified character yu with p? = 1.
In this case, by [Bum97, §4.7, (7.10)] and [JL70, Prop. 3.6], we have a(7) = 2a(p) > 2 and
1 . o 1/2—s .
—— if a =0, — f =0,
L(s.xr) = 4 T Ca@na (xu) (s, ) = O (@r)ap ™ if alxp)
1 otherwise, (s, xm)?, otherwise.

(4) T~ p|- |5 Bul|-|z7 with o # £ is a principal series where the character p € X is ramified
with p? = 1. In this case, by [JL70, Prop. 3.5], we have a(7) = 2a(u) and

1

L ify=y oo
L(saxﬂ-) = (l_qF )(l_qF ) X a E(S,Xﬂ') = 1 9 lf X H’
1 otherwise, e(s,xp)? otherwise.

(5) 7=~ |- |%Bput |57 is a principal series where the character p € X is ramified with p* # 1.
In this case, by the same reasoning as in the previous case, a(m) = 2a(u) and

1 : +1
— = ifx=pu", oal(xu—1)—
L(s,xm) = { e X e(s,xm) = g0 DT O (s e, ).
1 otherwise,

We refer to these cases as m being of Type 1a, 1b, 2, 3, 4, or 5 (this numbering is not standard). Type
2 will not concern us much because our focus is the case a(m) > 2, and Types 1la, 3, 4, 5 are in some
sense similar, for instance, (s, 7) in these cases is expressed in terms of e-factors of characters.
Type 1b is the most subtle one, but it benefits from the more precise classification recorded in
Proposition 3.9 that uses the following lemma, which further explicates conductor exponents.

Lemma 3.7. For a supercuspidal representation m of GL2(Q2) with a(m) > 2 and wx, =1 (Type 1),
any twist-minimal twist my of ™ satisfies

= a(n) if a(m) is odd or if a(mw) =2,
a(mp) § < a(m) —1 if a(m) is even and a(m) >4,
€ {a(r) =2, a(r) =1} if a(mw) is even and a(mw) > 8.

Proof. A twist of a supercuspidal representation is supercuspidal, and hence has conductor exponent
> 2 (compare with §3.6), so the first case follows from (3.1.1). The second case may be deduced
from [AL78, Thm. 4.4 and the remark after it| by globalization, but we give a direct argument.

Suppose, for the sake of contradiction, that a(m) is even with 7 twist-minimal and a(7) > 4.
By [Tun78, 3.5|, such a 7 is dihedral, associated to some £ : E* — C* with EF/Qq unramified

quadratic. By (3.6.3), we have a(§) = a(;) > 1, so, by [BHO6, §18.1, Prop.], for any x € Xg,, a(c)
also a(x o Normpgq,) = a(§). In particular, both £ and x o Normpq, are nontrivial on the group

(1+2997105) /(1 + 29 0g) ~ (Z/27). (3.7.1)

However, x o Normgq, is trivial on its subgroup (1 + 20O=175) /(1 4 298 Zy) ~ Z/27, and so is
&: indeed, (3.6.1) gives £‘Im(Norm: EX Q) = 1, whereas Normp q, : 1 +20)-10p s 14200 ~17,
(see [Ser79, V, §2, Prop. 3 a)]). It follows that { and x o Normp/q, agree on the group (3.7.1), so
that a(£(x ™! o Normp/q,)) < a(§), and hence, by (3.6.3), also a(x~'m) < a(w), a contradiction.

Finally, suppose that a(m) is even with a(7) > 8 and write m ~ xmo, so that (3.1.1) and the just-
established inequality a(m) < a(m) — 1 give a(m) = 2a(y). Since w, = 1, the central character of
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7o is X2, to the effect that a(m) > 2a(x?) by [Tun78, 3.4]. Since a(x) > 4 and we are dealing with
Q2, we have a(x?) = a(x) — 1, and the desired a(m) > a(m) — 2 follows. O

Remark 3.8. In contrast, for an odd prime p and a finite extension F'/Q,, every supercuspidal
representation 7 of GLa(F) with w, = 1 is twist-minimal, see, for instance, [HNS19, Lem. 2.1].

Proposition 3.9. Up to isomorphism, there are 16 nondihedral supercuspidal (that is, Type 1b)
representations m of GLo(Qg) with wy = 1. Letting %?and be as in §2.8, such w are listed as

{83 : B € XL} | |{Bmr : B e XY
with the following conductor exponents:
a(ms) = a(fors) =3,  a(Bems) = a(Bofems) = 4,
a(Bsms) = a(B2P3m3) = a(BoPfsms) = a(Bof2B3m3) = 6,
a(m7) = a(forr) = a(Bamr) = a(Bofarr) = a(B3mr) = a(B2fs3m7) = a(Bofsmr) = a(Bofefsmr) = T.

In contrast, no dihedral supercuspidal representation 7' of GLo(Q2) with w,r = 1 has a(x') € {3,7}.

Proof. Via the local Langlands correspondence |[BHO0G, §33.4|, our supercuspidal m corresponds to
an irreducible, smooth representation o: Wy, — GL2(C), which has its associated projectivization
o: Wg, = PGL2(C). Since wy = 1, we have det(c) = 1, so o(Wg,) is a subgroup of SLy(C) that
is necessarily finite (see [BHOG, §28.6, Prop.|). Since 7 is nondihedral, o is not induced from a
subgroup. The projective image (Wg,) must be the symmetric group Ss: the only other finite,
solvable subgroups of PGLy(C) are cyclic, dihedral, and A4, and the first two cannot occur because
o is irreducible and not induced from a quadratic extension (compare with [Wei74, §13]), whereas
Weil proved in [Wei74, §34-§35] that o(Wgq,) # A4 (more precisely, o(Wq,) # As because A4 has
no irreducible, 2-dimensional representation, and o(Wg,) is not a central extension of A4 by Z/27Z
because the “Condition C with respect to A4” of [Wei74, §21] fails for Qq; see also [BR99, §8]).

Up to conjugation, there is a unique embedding of Sy into PGLy(C) (compare with [Wei74, §14]), so
we fix one such and, in the notation of op. cit., let Ag — Sy be the central extension by {41} obtained
by the preimage in SLo(C). Since Sy has no faithful, irreducible, 2-dimensional representations, by
conjugating we may assume that o(Wg,) = Ag. In particular, the Sy-extension K/Qq cut out by
7 extends to a Ag-extension K /Qy. Thus, by [Wei74, §24 (with §16 and §21)] (“Condition C with
respect to Ag” is equivalent to “Condition C with respect to A{”), this extension also extends to
a Al-extension K'/Qy with Al := GLy(F3) inside GLy(C) (note that GLy(F3)/{£1} ~ S,). By
[Wei74, §36] and [BR99, §8], this means that K is one of the two Sy-extensions of @y that extend
to GLa(F3)-extensions of Q2. In particular, since any two lifts of @ to a o: Wy, — GL2(C) are
twists by a character (compare with [Koc77, §1]), we have isolated two distinct families of twists of
2-dimensional, irreducible, smooth representations of Wy, that could contain o.

By [Cal78, Thm. 5|, there exist representations 73 and w7 of GL2(Qz2), each either supercuspidal
or a twist of Steinberg, such that wy, = wy, = 1 and a(m3) = 3, a(n7) = 7. To conclude it then
suffices to argue that these 7. are nondihedral supercuspidal: indeed, they will be twist-minimal
by Lemma 3.7, the representation 7 will be of the form A, with 3 € Z{?Ql;ad, all the latter will be
pairwise distinct by [BHO6, §51.5], and the formulas for the a(fm.) will follow from (3.1.1).

The formulas for the conductor exponents in §3.6 show that 7. is not a twist of Steinberg. Thus,

we assume that 7. is dihedral supercuspidal, associated to a quadratic extension E/Q2 and a

character £: E* — C* subject to (3.6.1). By [Tun78, 3.5], the extension E/Qq is ramified, so that
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a(§) = ¢ —dgg, € {¢—2,c— 3} (see §3.6 and §2.8). For ¢ = 3, this is already a contradiction:
indeed, since Fg = F9, the inequality a(§) < 1 gives a(£) = 0, which contradicts (3.6.1). For ¢ =7,
if dg/q, = 2, equivalently, if a(§) = 5, then, by (3.6.1) and [Ser79, IV, §1, Prop. 4 and V, §3, Cor. 3],
we have &|144z, = 1, so the inclusion 1 + m5O0p C (1 + 4Z2)(1 + m%,Op) contradicts a(¢) = 5. In
the remaining case ¢ = 7 with dg/g, = 3, we have a(§) = 4, so again {|1147, = 1, which, since
£ \QQX = XE/qQ. (see §3.6), contradicts the conductor-discriminant formula a(xg/q,) = dg/g, = 3. U

Remark 3.10. As we learned from Ralf Schmidt, the main assertion of Proposition 3.9 is due to
Nekljudova [Nek75] who obtained it by analyzing the Hecke algebra (see also [Nob78]). With the
local Langlands correspondence, it could also be deduced from results in [Zin79] or [Hen79|.

To prepare for a p-adic study of the values of W ,,, we begin by exhibiting a general integrality away
from p property of these values in Proposition 3.12. Its argument rests on the following lemma.

Lemma 3.11. For a finite extension E/Q,p, an m > 0, a Haar measure dx on the additive group

E™ with fO’” dr € Z[%], and a function f: (OF)™ — Z that is right multiplication invariant by
E

(1 4+ wEOg)™ for some n > 0 (that is, f(z) = f(xy) fory € (1 +wEOEp)™), we have
f(og)m f(x)de € Z[3]; (3.11.1)
or a Haar measure d”x on the multiplicative group Wk, wvm A% € Z[L , instea
for a H dx he multiplicati EX)™ with [ oxym d*x € Z[3 d
W f(o;)m flx)d*x € Z[;]. (3.11.2)

Proof. Due to (1.4.1), the first display implies the second one. For the former,

Jop dx
| wia= > Sl +whon)") = <k S S
©r) 20€(0%)™ /(14w 0p)™ B u0e(05)m /(14w 0p)m
and it remains to note that f takes values in Z. O

Proposition 3.12. For a finite extension F/Q,, an irreducible, admissible, infinite-dimensional
representation m of GLa(F) such that a(m) > 1 and wy = 1, an additive character ¢: F — C* with
c(¢) =0, and a g € GLy(F),

dihedral supercuspidal (Type 1a) or a twist of St (Types 2, 3), or

W, €Z] ifmi =
m.wl9) Bl s {princz’pal series x| - |5 Bx |57 (Types 4, 5) with ¢&° € Z[%].

In addition, if 7 is nondihedral supercuspidal (Type 1b) and F = Qq, then we have

57 ifa(r) =6, £ =3, tc {3, —4},

We w(g) €427 (3.12.1)
Z otherwise.

Proof. By §3.3, we may assume that g = g; ¢, forat € Z,a0 < ¢ < a(m), and av € Oj. For the first
assertion, by Proposition 3.4, we may assume that 7 is not of Type 2, and, to conclude, claim that
Wa w(Gt,0,0) is & Z[%]—linear combination of products of quantities f(og)m f(z)dz with f and dz as
in Lemma 3.11 for a finite extension E/F. This will follow from formulas for Wy (g+ ¢,) derived by
Assing in [Ass19, §3]. For referring to them below, we recall from (3.1.2) that e(,7) = e(3,7) = %1

and from (2.7.1) that e(3, x, 1) € Z[%]X for a character y: F’* — C* of finite order.
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Namely, [Ass19, Lem. 3.1| gives the desired description for 7 of Type la (with E/F quadratic and
m = 1; by (3.6.2), the quantity v there lies in {£1,4i}). To similarly treat 7 ~ uSt of Type 3,
we first twist by a finite order unramified character and use (3.2.1) to assume that u(wp) = 1, and
then apply [Ass19, Lem. 3.3]*? (now E = F and m € {1,2}; in the case of loc. cit. that involves Salié
sums, we use (3.11.2) instead of (3.11.1)). Finally, for 7 of Type 4 or 5, we combine the assumption
4’ € Z[%] with [Ass19, Lem. 3.6] (now E = F and m € {1,2}).

For the remaining (3.12.1), we assume that = is of Type 1b with F' = Q2 and use (3.3.1) with

Proposition 3.4 to reduce to 0 < £ < @ By the classification in Proposition 3.9, we have
a(m) <7, so the bound is 1 < ¢ < 3. We will use the local Fourier expansion

(3.5.1)

Wﬂ,w(gt,é,v) ZX€3E§4 Ct,E(X) X(U)

and the following formulas for the ¢; ¢(x) derived in [Ass19, §2.1] from the basic identity of §3.5:

e(%, ) if =1, t=—a(n), x =1,
cre(x) = § 2723, x)e(3, x 7 tm) i t=—a(xm), x € Xy,
0 otherwise.

Since 1 < ¢ < 3, the appearing x are quadratic (see §2.8), so 8(%, ), E(%, X), and 5(%,)( ) are all

roots of unity (see (2.1.4) and (3.1.2)). Thus, since 2'¢/2 € Z for ¢ < 2, we reduce to £ = 3, when
a(m) € {6,7} and, in the notation of §2.8, the only appearing x are 3 and f2fs. If a(7) = 6, then
for these x, by Proposition 3.9, we have a(xm) € {3,4}, and the claim follows. In the remaining
case a(m) = 7, we likewise have a(x7m) = 7, so we only need to consider the value

1

Wa (9-7,3.0) = 5073 (e(5, B3)e(5, B3m) B3(v) + (5, Baf)e (5, B2B3m) B2B3(v)).

Lemma 2.9 gives 6(%,53) = +1 and 5(%,5263) = +i, and (3.1.2) gives 6(%,637‘1’) = +1 and

e(3, B2Bsm) = £1. Thus, Wy y(g-7,3,0) lies in {:I:le‘% , 1211/;} and so is a root of unity in Z. O

A final preparation for Theorems 3.14 and 3.15 is the following vanishing result that draws heavily
on [CS18], which studied the phenomenon of exceptional vanishing of the values of Wy .

Proposition 3.13. For a finite extension F/Q,, an additive character 1: F — C* with c(1)
an irreducible, admissible, infinite-dimensional representation 7 of GLo(F) with a(r) > 2 and
wr =1, a twist-minimal twist 7y of w1, a 0 < £ < a(n), and a v € OF, we have

t < —max(a(m),2¢),
t > —max(a(w),2¢), ¢ 75 a(ﬁ) or
t > —a(m), mis supercuspzdal (Type 1), or

Wa,w(9t,6,0) =0 if

t # —max(a(r),20), p is odd, w is supercuspidal (Type 1).

12Even though the case £ = a(x) = 1 is omitted from the cited statement, it is treated in the proof: as is observed
in the beginning of the argument there, the subcase ¢ # —2 reduces to [Ass19, Lem. 2.1], whereas the subcase t = —2
is addressed before the phrase “If [ = 1 = a(x), we will leave this expression as it is.”
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Moreover, in the case F' = Qo we have the following additional vanishing for £ = a(;):

t < —a(rm), mw is supercuspidal (Type 1) with a(my) < a(m) — 1, or

t < —a(m)+1, 7 is supercuspidal (Type 1) with a(my) < a(m) — 2, or
W (9, a(ﬂw) =0 o <t<—a(r)+1, 7is a ramified twist of St (Type 3), or

t<—a(m)+1, 7= p|-|%Bul |7 witho #+%, u? =1 (Type 4), or

t < —a(m)+2, m=p| |FBut 7 with p? # 1 (Type 5).

Proof. The additional vanishing statements for ¢ = a(; ) follow from the rest and [CS18, Thm 2.14]

(with §2.8 and (3.1.1); for instance, for Type 5, one uses that a(u) > 4, so that also a(u?) = a(u)—1).

For the main statement, its last case follows from the rest: indeed, by Remark 3.8, if p is odd
and 7 is supercuspidal, then a(my) = a(m). Moreover, its case t < —max(a(m),2¢) follows from
[Sah17, Prop. 2.10 (1)],'? so we assume that ¢ > —max(a(n),2¢). In the remaining cases, we use
the Atkin—Lehner relation (3.3.1), which replaces ¢t by ¢t + 2¢ — a(w) and ¢ by a(w) — ¢, to reduce to

0<e< @, and we will conclude from (3.5.1) by arguing that ¢; ¢(x) = 0 for all x € X<,.

For this, we will use the basic identity reviewed in §3.5. By inspecting §3.6, in the remaining cases
in question we find that L(s, x7) = 1, and, by [CS18, Lem. 2.10],

r 1 lf r = 0

e (1)) =10 itr=0

™Y 1 0, ifr>o0.

In effect, the basic identity in the cases in question is the equality

t+a(xm 1 s _ _
5(%’X7T)Etezq1(<? O )Ct,e(X):ﬁw(er% Y

of Laurent polynomials in ¢%. In the case when ¢ < a(27r), by (3.1.1), we have a(xm) = a(w), so

the ¢; ¢(x) indeed vanish for ¢ # —a(7). In the remaining case when 7 is supercuspidal, we have
a(xm) > a(m), and the ¢ ¢(x) still vanish for t > —a(my) > —a(xm), as desired. O

In the remaining case a(m) > 2, for clarity, we split the sought bounds on val,(W; (gt ¢,+)) into the
case of an odd p (Theorem 3.14) and that of F' = Q2 (Theorem 3.15). To avoid additional technical
complications, we do not attempt to treat the case of a general finite extension of Q.

Theorem 3.14. For a finite extension F'/Q, with p odd, an irreducible, admissible, infinite-dimen-
sional representation m of GLo(F) with a(r) > 2 and wy = 1, an additive character ¢: F — C*
with (1) = 0, an isomorphism C~ Q,, at € Z, a 0 < £ < a(r), and a v € Oy, we have

0 if £€{0,a(m)},
0 if £€{l,a(r)—1}, a(m) > 2,
Valy (Wi (g1 > | [Fr 2 ] (1= 22510 if £¢{0,1,%% a(m) — L,a(m)},
—[Fp : F,] + min ([FF;FP], 1y ﬁ) i 0=1, a(m) =2, t = -2,
[Fr: ) (1 - %) if 0= a(n)>2, t=—a(n),
and, for £ = @ and an even a(w), the following additional bounds (see also Proposition 3.13):

13The proof does not use the assumption of [Sah17, §2.2] that 7 be unitarizable, compare with [CS18, Prop. 2.11].
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(i) if 7 is supercuspidal (Type 1) with a(w) = 2, then
val,(Wa ¢(91,1,0)) = —[Fr : Fp]

(ii) of 7 is a twist of Steinberg by a ramified quadratic character (Type 3), then a(w) = 2 and

valy(Wr, (9t,1,0)) = _%[FF : Fp] 4+ min <_[FF L ) (%) ’ % + z%)?

(iil) if 7 is a principal series p|-|% B p| |77 with p?> =1 (Type 4), then a(r) =2 and

valy(Wr, 4(gt,1,0)) = —[Fr : Fp] — (¢ + 2)|valy(¢f)| + min (—[FF : Fpl (i) 2t 5 >

(iv) if 7 is a principal series p|-|% B p=t |27 with p?* # 1 (Type 5), then
[Fp:Fp(t+4)

09 Ly L (¢ 2) vl (¢2)| if a(m) =2,
valp(WW,w(gt’@w)) Z{ [F p:F) max( t+§ (Dw)/2 2) — (t+a(n))|val,(¢F)|  if a(m) > 2.

Theorem 3.15. For an irreducible, admissible, infinite-dimensional, representation m of GL2(Q2)
with a(m) > 2 and wy = 1, an additive character ¢: Qo — C* with c(¢) = 0, an isomorphism
C~Q, ateZ,a0<{<a(n), and a v € Z;, we have

0 if £€{0,1,a(r)—1,a(m)},
valy(Wr, y(g1,0,0)) > { 1 — 2nle@=0 e p g 10,1, %% o(x) —1,a(n)}, (3.15.1)
0 if €€ {3,a(r)—3}, a(w) > 6,

and, for ¢ = @ and an even a(m) > 2, the following additional bounds (see also Proposition 3.13):
(i) iof ™ is supercuspidal (Type 1), then

valy (W, (9, acm ) > 1= G and, for a(x) € {6,8}, vala(Wr y(g )) > 0;

7&(71")4»1, a(27T)7U -

(i) if m is a twist of Steinberg by a ramified quadratic character (Type 3), then a(w) € {4,6},
(48 i 1> 2 a(m) =4,

—(t+1) if t>-2, a(r) =6,

-3 if t=—4, a(m) =6,

otherwise;

valy(Wr, 4(9, am ) =

g

(ili) of 7 is a principal series p|- |3, B pul - |qy with p? =1 (Type 4), then a(rn) € {4,6},

> B (4 2)valp(29)] if t> -2, a(r) =4,

> — t+5 — (t+2)|vala(279)| if t> -2, a(m)=6

l Wﬂ— a(m - - ’ ’

valo(Wr,p (9, o0 ,)) % if t=—4, a(r) =6,
= o0 otherwise;

(iv) if m is a principal series p|- |3, B pt lgy with p? # 1 (Type 5), then a(m) > 8,

Pt%a(ﬂ) — (t+a(m) —2)|vala(27)| if t> 7‘1(2”)’

valo(Wr (9, o)) 120l _ (¢4 a(m) — 2)vala(2°)]  if —a(m)+2<t< -2

00 if t<—a(m)+2.
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3.16. Proof of Theorems 3.14 and 3.15. Even though we have separated the cases of an odd p and
of p =2 with F' = Q4 into separate statements, we will prove them simultaneously.

For ¢ € {0,a(m)}, the assertion is that val,(Wr (gt ¢,+)) > 0, which follows from Proposition 3.4.

Each of the assertions that involves ¢ > @ allows any t € Z. Thus, we may use the Atkin—Lehner
relation (3.3.1) to switch ¢ and a(w) — £ if needed to assume from now on that

(1) 1<e< @ and, by also using Proposition 3.13, that if £ < a(;), then t = —a(m).

Moreover, 7 is not of Type 2 because a(m) > 2 (see §3.6). If 7 is of Type 1b (so that p = 2), then the
sought bounds follow from Proposition 3.9 and (3.12.1). Thus, we assume from now on that

(2) 7 is not of Type 1b or Type 2.
Our basic strategy is as follows: by the local Fourier expansion (3.5.1), we have
Wa p(9e,6,0) = 2oyex, ¢ e(X) x(0), so valp(Wa y(ge,,0)) = minyex_, (valp(cr,¢(x))), (3.16.1)

and we will bound valy (¢t ¢(x)) individually for each representation in the classification of §3.6 (in
exceptional cases individual bounds will not suffice and we will consider the full sum). Below we
omit our fixed 1 from the notation when forming e-factors with respect to it.

The case when 7 is of Type la. Such a 7 is associated to a character £: E* — C* for a
quadratic extension E/F. By [Ass19, §2.1], for 1 < /¢ < %ﬂ) and x € X<y,

_QFlfle(%’ﬂ—) if t= _a(ﬂ)a (=1, x =1,
—/ _ .
e i) = § —Lrap P e(d xTn) if t=—a(xw), x € X, (3.16.2)
0 otherwise.
In particular, ¢; ¢(1) = 0 unless t = —a(m) and £ = 1, in which case val,(c_q(x),1(1)) = 0 (see

(3.1.2)), and ¢ ¢(x) = 0 for x € X<, \ {1} unless x € X,. Since all the required bounds are
nonpositive for Type la when ¢ = 1, this reduces us to x € Xy with t = —a(x).

We begin with the case a(m) = 2, when ¢ = 1 and, since x € X;, also F' # Q2 (so that p is odd) and
t = —a(xm) = —2 (see (3.1.1)). By §3.6, the representation x ~!7 is dihedral supercuspidal associ-
ated to &(x 1o Normpg/p): £ — C*. By [Tun78, 3.5|, we may assume that £//F is unramified, so
that a(£(x~" o Normp/p)) = 1 by (3.6.3). Thus, by (3.6.2) and Corollary 2.7 (i),

s(£71(xoNormpg,p))
p—1 ’

valy(e(§, x ') = valy(e(5,£(x ™ o Normp ), ¢ o Traceg p)) = —[Fp : Fp) +
Consequently, (3.16.2) and Corollary 2.7 (i) give

! ~1(xoNorm
Valp(C_Q,]_(X)) = —[Fp: ]Fp] 4 s(x 1)+s(¢ p£>§ No E/F))‘

By (3.6.1), we have f‘o; = 1,50 (2.2.3) and (2.2.4) give p—1 | 2s(x ) +s(£ " (xoNormp,p)). Since
s(x!) and s(¢ 7! (xoNormpg, )) are positive, it follows that s(x ') +s(£ ! (xoNormp,/p)) > p—gl—i—l.
In conclusion, for a(m) = 2, we obtain the sufficient bound

valy(c-2,1(x)) > —[Fr : Fp] + § + 5.

We next turn to the case when a(7) > 2 with 1 </ < @, and y € X, with t = —a(x7) as above. By
(3.1.1), we have a(m) = a(x*'7), so that, by (3.6.3), also a(&(x*! oNormpg/p)) = a(§). In addition,
a(&) > 1: indeed, otherwise, by (3.6.1), we would have a(£) = 1 and, since, by (3.6.3),
[Fg:Frla(§) +dp/p = a(r) > 2,
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the quadratic extension E/F would be ramified (so that Fg = Fp), we would have p = 2 because
dp/p < 1 for odd p (see [Ser79, III, §6, Prop. 13]), and the simultaneous Frp = Fy and a(§) = 1
would give a contradiction. Thus, (3.16.2) together with Corollary 2.7 and (3.6.2) gives

> 1 if £=1
by(C-ar _ ’
valp(c_q(r), (X)) {: [Fr:Fpl(1— %) it ¢>1.

These bounds suffice in all cases with a(7) > 2 and ¢ < @ except when p = 2 with a(r) > 6 and
¢ = 3, when instead we seek to show that vala(Wr y(9—q(r),¢,0)) = 0 and bounding each val,(ct, ¢(x))

does not suffice. Instead, in the notation of §2.8, in this case (3.16.1) and (3.16.2) give
Wa (9—a(m),3,0) = 5077 (£(3, B3)e(5, Bam) B3(v) + (3, Baf3)e (5, Bafam) (B2fB3)(v)) . (3.16.3)

Since 3 = 33 = 1, Lemma 2.9 and (3.1.2) then give the sufficient W y(9_q(x),3,4) € {:I:;;; , :|:211_/§ }.

We turn to the remaining case when a(m) > 2 with ¢ = a(;), and xy € X, with t = —a(xm) as

above. If a(x~!'m) > 2 (for instance, if p is odd, see Remark 3.8), then, as above, (3.6.3) gives

a((x ' o Normpg,p)) > 1, to the effect that, by (3.6.2), (3.16.2), and Corollary 2.7 (i),

valy(€, atn (x)) = [Fr : Fp) (1 - alm)y (3.16.4)

)

If, in contrast, a(x~!7) = 2, then p = 2, Lemma 3.7 and §2.8 give 2 = 1 and so also Wy-1, = 1,

and (3.16.4) follows from (3.1.2), (3.16.2), and Corollary 2.7 (ii).

The equality (3.16.4) suffices for the desired bounds unless p = 2 and a(7) € {6,8}, when we seek

to show the additional bound Valg(Ww,¢(g_a(W)+1 a(m ,)) = 0. In this final case, by Lemma 3.7 and
7 2 )
— a(m)

(3.1.1), the minimal conductor twist mo of ™ ~ xomo satisfies a(m) < a(m) — 1 and a(xo) = 5.
Moreover, we may assume that a(mp) = a(m) — 1 because otherwise ij,(g_a(ﬂ)_i_l’w’v) =0
by Proposition 3.13. Then E/Qq is ramified by [Tun78, 3.5] and, for any x € Xaw), we have

2
a(r) a(mo)

a(xxo) < a(xo) —1 = =5> —1 < =5%, s0 also a(x7) = a((xxo0)m0) = a(m) = a(7) — 1 (see (3.1.1)).
Consequently, by (3.16.1) and (3.16.2),

_atn) B
27 Lxex, e(3,X)e(5, X 'm)x(v). (3.16.5)

WW7¢'(.g_a(ﬂ.)+1’ a;) 71)) =

If a(m) = 6, then, as after (3.16.3), Lemma 2.9 gives the sufficient Wy (9-5,3,4) € {:I:;f;; , :l:;;;}
If a(m) = 8, then, letting 84 € Xq,,4 be nonquadratic with 84(—1) = —1, we have

Xy 4= {Bs, B2fs, B 1, 528, '}, with  fa € Xqy 2, f2(—1) = —1 asin§28.
In this notation, (3.1.2) gives 5(%, 54_17r)€(%, Bam) = 1 and 6(%, Bgﬁ[lw)a(%, B2fam) = 1, so, with
= (g, Ba)e(5, By 'm)Ba(v) and @’ = (5, foBa)e(g, BoBy ') (B2Ba) (v),
by (2.1.4) and (3.16.5), we have
Wi w(9-7,4,0) = 3 (x —z7 +2’ +2/71). (3.16.6)

The characters 38, L and 6254_1 agree on 1 + 4Zs, so they satisfy Lemma 2.4 (i) with the same
u € Z5. Thus, Lemma 2.5 (i) gives &y (15, 81 ') = £G4 (&, B28; 1), so that, by (2.1.1), also

6(%, Ba) = :l:e(%, B284), where, by Corollary 2.7 (ii), both sides are roots of unity. (3.16.7)
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By §3.6, the representations ﬁ4_17r and 62@1_177 of conductor exponent 7 (see before (3.16.5)) are
dihedral supercuspidal associated to & (ﬁ4_1 o Normpg/q,) and § (6gﬁ4_1 o Normg/q,), respectively.
Thus, since E/Qy is ramified quadratic, and hence dg g, € {2, 3}, we obtain from (3.6.3) that

a(f(ﬂ;l o Normpg/q,)) = a(g(ﬁ25;1 o Normg/q,)) € {4,5}.

Since these two characters agree on 1+ w%Op = 1+ 20, we conclude as in (3.16.7), but now also
using (3.6.2) (with (2.1.2)) and the odd conductor exponent cases of Lemmas 2.4 and 2.5, that

6(%, 64_17r) = :l:z-:(%, 6254_177), where both sides are roots of unity.
Thus, x and 2’ are roots of unity, x = +2/, and (3.16.6) gives
Wa p(9-7,4,0) € {x, —3:_1}, so also the sought valy(Wr, y(9-7,4,4)) > 0.
The case when 7 is of Type 3. Such a 7 is uSt for a ramified character u with 2 = 1, and

a(m) = 2a(p). We twist by the unramified quadratic character if needed to assume that p(wp) = 1:
by (3.1.1) and (3.2.1), this changes neither a(m) nor val,(Wx 4(gt,¢,v)). By [Ass19, Lem. 2.1] and

(1.4.1), for 1 < £ < 27

(é,x‘ M)Q@p(w#,){_l) if x# u, t=—2a(uy),

C =
BEX _q3+t ®¢(w}7‘ ) 1) if X=pu,t=>-1,
0 otherwise.

By then using the formula (2.1.1) for ﬁw(w;e, x~1) together with (2.1.4), we obtain

/

'w)?e(,x) if x {1, u}, t=—2a(xp), = a(x),

qr— 1 F 5(%0(
)

qF (=1 if x=1, t=-2a(u), £=1,
e el() = § opap e (3o ) i x =g, t=—-2, 0=a(p), (3.16.8)
~(ar + D TP )i = t> -1, 0= alp),
0 otherwise.

We begin with the case of an odd p, when necessarily a(y) = 1, so that a(w) = 2, and ¢ = 1.
Since p? = 1, from (2.2.2) and (2.2.3) we obtain % | s(x~tu) + s(x), so, for x & {1, u}, also
2s(x ) + s(x) > % + 1. Since % = 1, Corollary 2.7 and (3.16.8) then give the sufficient

_[]FF]FP]—'_%—’_I% lfx¢{1nu‘}7t:_2a

0 if x=1,t=-2
val,(c > ’ ’ 3.16.9
plet,e()) 2 ~[Fp:F)t+3) if x=mp, t=-2 | )
00 otherwise.

For the remaining F' = Qy, in the notation of §2.8, we have p € {B2, 83, 8203}, so a(m) = 4 if u = Ba,
and a(m) = 6 if p € {3, B203}. It then suffices to use (3.16.1), the values (3.16.8), and Lemma 2.9
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to compute the only possible nonzero Wy (s, ¢0,,) for 1 < £ < a(p):

Wi w(gt.1,0) = —pu(—1) € {£1} if t = —a(m),
3¢(3.82)B2(v) € {£3} if =B, t=—2,

We, p(9t,2,0) = § —536(5, B2)B2(v) € {£55}  if p= o, t > -1,
6(%752/!)25(%,52)52( ) € {£i} if pe{Bs, 2B}, t = —6,
21/2 (2752) 5(%)62 )(BZU)( )E {:l:21/27 21/2} if e {/837/8263}7 t=—
Wi, p(9t,3,0) = 23%5(57/1«):“*(”) = {:t231/27 23/2} if e {Bs B2Ps}, t =~

—ﬁ&‘(%,ﬂ)ﬂ( ) € {i2t+7/27i2t+7/2} lf 1% € {ﬂ37/8253}7 t Z -1

The case when 7 is of Type 4. Such a mis u|-|%Bpu|- |57 for o # £ and a ramified p € X with
p? =1, and a(r) = 2a(p). By [Ass19, Lem. 2.2] and (1.4.1), for 1 < £ < a(ﬁ) and x € X<y,

e(Zx Tl [F)eox Tl %) By (wrt x ) if x #p, t=—2a(xp),
qLFQSwl(w;‘ewu)e if X = H t= _27
e o) = 4 g Ce(@r maE” + 0f) it x=p t=-1,
t+2 t —1 .
_q%th/Q 61/)(WF D) ( Gy T F( ) Zm:O q;rf(gmt)> if x=up, t>0,
0 otherwise.

By then using the formula (2.1.1) for @w(w#, x 1) and the formulas (2.1.3)—(2.1.4), we obtain

—Lrgp Pe(dx et ) it x ¢ {1n}, t=—2a(xp), £=a(x),
— (1) if =1, t=—2a(p), =1,
e (3, 1) i x = p b= -2, 0= a(p),
cto(X) = —qp e (L, 1) (g7 + q3) if x=p, t=—1, £=a(y),
qgi(/z%-’zﬁl/)z ( o‘(t1+2) + F(t+2) anzo %) it x=p, t>0, £=a(p),
0 otherwise.

If p# 2, then a(u) = 1, so a(m) = 2 and £ = 1, and, similarly to (3.16.9), we get the sufficient

~[Fr Tyl + 5+ i it x ¢ {Lu} t=-2
val,(c >
p( t,Z(X)) = —%[FF . Fp] _ (t + 2)‘Valp(q%)’ if xy=p, t>-2,
00 otherwise.

In the remaining case F' = Qq, similarly to Type 3, in the notation of §2.8, we have u € {52, 83, S23},
and we combine the above formulas for the ¢; ¢(x) with (3.16.1) and Lemma 2.9 to find the following
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sufficient formulas for the only possible nonzero W (gt ¢,») in the range in question:

W w(9e,1,0) € {1} if ¢ = —a(m),

{57277 +29)} if =0, t=-1,

Wﬂ7w(9t,2,v) € :t2 7 1 20’(t+2) t 1 if _
gz  gotermy T+ —Ym=0 5w ) [ i p=p, 120,
{%i} if pe {83,083}, t =—6,
({iﬁ7i21i/2} if we {183)/82/83}5 t= _47
+ L 4L if e {Bs, PP}, t=-2,

W, o (gt,3,0) € { 272 23{,2} o . p € {Pa, Bafa) B

{£3(55 +29), 5(55 +2 )}t if pe{Bs, PP}, t=—1,

s (grarey + 27000 =300 srmey) - {£L, i} if pe {B3, Bafis}, > 0.

The case when 7 is of Type 5. Such a 7 is u|-|% B =t |7 for a ramified p € X with p? # 1,
and a(m) = 2a(p). By [Ass19, Lem. 2.2],* (1.4.1), and (2.1.3), for 1 < £ < @ and x € X<y,

E(iga_<;i_—ll)>€-(§<;i>_>lm@w(w_g’X_l) if x #{p*'}, t=—alxp) —alxu™),
o o) = 7q;%ia(a(ﬂ2)—1)5(%’M¢2)6¢(W—Z’M¢1) ity = = —a(u?) — 1,
. iféi%iiuﬂ»@wﬁﬂ““%ﬁiﬂ>®w@ﬂﬁu¥l) if x =t > —a(u?),
L0 otherwise.

By then using the formula (2.1.1) for the appearing Gauss sums as well as (2.1.4), we obtain

—o it =1, t = —2a(y), £ =1,
ez, x a3 x e300 . -
(QFQ—1)q2/2*1+U%a(xu’1)fa2(xu)) if x ¢ {10} t=—alxu) —alxp™"), £=a(x),
F
(3, nT)e(z, pEY) .
e = _(qF_Sq(Z—n/zio(l—aw?)) if x=p, t=—a(u?) —1, {=a(p),
F
(b, 1F2)e(L i) . " )
q(t+l+i<u2>>/2;i(t+2a<u2>> if x=p"", t>—a(p?), £=a(p),
F
0 otherwise.

We begin with a(7) = 2, when £ = 1 and a(u) = 1, so p is odd and, since u? # 1, also a(u?) = 1.
By (2.2.3), both s(x ‘™) +s(x ') +2s(x) and s(uF?) +2s(u*!) are divisible by p— 1, so

s(x ) Fs(x ) Fs(x) > 2 +1 and s(uF?) 4 s(pth) > 250 41
These inequalities, the formulas for the ¢, ;(x), and Corollary 2.7 (i) imply the sufficient bound

valp(cy,1(x)) > — 4 [Fp: Fpl + 5 + z% — (t+2)|val,(¢%)| for x € X<1.

14We corrected a slight mistake in [Ass19, Lem. 2.2] (see also [Ass19¢]): when xi|ox # Xz2|ox, in the case
“f alux;) # a(pxs) = 0 for {j,i} = {1,2} and ¢t > —a(ux;)” of the formula for ¢;;(x) one should instead have
“Cr(1) 72 2 (@D )y (@ D) G D) iy ) Gl i)
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In the case a(m) > 2, that is, a(u) > 1, we begin with 1 < ¢ < a(pu) = @, so that t = —a(7) by

(1). In this case, the formulas above for the ¢; ¢(x) and Corollary 2.7 give

s if 0=1
val,(c_y(x =< p-l -
plC=a(m. (X)) {[IE‘F FJ1-%) if 1< (< %D

which reduces us further to the last setting of (3.15.1), in which, in addition, F' = Q9 and ¢ = 3. In
the notation of §2.8, the formulas above for the ¢; ¢(x) and (3.16.1) then give

Wﬁ,zﬁ(g—a(w),i’),v) = 21% ZBE{,B&,BQ,B:&} (5(%75)5(%’Bu)g(%jﬁufl)ﬁ(v)) .
Since (3, Bu)e(5, But) = (Bu)(—1) € {£1} by (2.1.4), Lemma 2.9 gives the sufficient
Wﬂ,w(g—a(w),&v) € {igll—‘;;i;l/;}

The remaining case is a(m) > 2, that is, a(p) > 1, with £ = @ = a(p), in which the above
formulas for the ¢; ¢(x) allow us to restrict to x with a(x) = a(p). For odd p, since a(p) > 1, we
have a(u?) = a(u), so if also a(xu*!) < a(u), then a(xu™) = a(xp™' - u72) = a(p). Thus, for odd
p, the above formulas for the ¢, ¢(x) combine with Corollary 2.7 to give the sufficient bounds

—[Fp: Fp) (U — 1) — |(a(xp™) — alxp))valy(q3)]

(6 an () > if a(xp),alxp™") > 1, t = —alxp) — alxp™"),
Valp(Cta(w)\X)) = Fpl(1—a s(xpt! -

rlfmal) 4 S0 ((a(p) — Dvaly(¢f)] if a(xp®) =1, t = —a(p) — 1,

[Fe BG4 a(0) - [+ 20()valp(af)] i x =t £ —alu) 1.

We are left with F' = Qq, when p? # 1 gives a(p) > 4 (see §2.8), so a(n) > 8 and a(u?) = a(p) — 1.

If x ¢ {u*'}, then, since a(x) = a(u), exactly one of a(xu) and a(xp™') equals a(u) — 1, and
the other one lies in [2,a(u) — 2] (compare with [CS18, Lem. 2.2|). Thus, for such x we have
—a(xp)—a(xp™") < —a(p)—1 and, furthermore, |a(xp™') — a(xp)| = 2a(p) —2—a(xp) —alxp™).
Thus, the formulas above for the ¢; ¢(x) and Corollary 2.7 give the sufficient final bounds

1— 2% (¢ + 2a(p) — 2)lvalz(27)|  if x # uil t=—alxp) —alxu™),
vala(cr, o (x)) > ¢ =2 W (a(y) — 2)|vala(27))| it x = u —a(p),
2t —a(p) = (t+2a(p) — 2)|val2(27)] if x = p* t > —a(u) +1. O

4. p-ADIC VALUATIONS OF FOURIER COEFFICIENTS AT CUSPS

We turn to global consequences of the local analysis of the preceding section, more precisely, to
Theorem 4.6 that p-adically bounds the Fourier expansions at cusps of holomorphic newforms on
['o(N). For this, we begin by reviewing notions that concern cusps and Fourier expansions.

4.1. Cusps. The group SL2(R) acts by Mobius transformations on the extended upper half-plane
H*:=HUPHQ) with $:={zeC: Im(z) >0}
and, for an N > 1, the set of cusps of T'o(IN) is the orbit space
cusps(T'o(N)) := (T'o(N) N SLa(Z)) \P*(Q).
Since SL2(Z) acts transitively on P!(Q) and the stabilizer of co € P1(Q) is {£ (! 1)}, we have

cusps(T'o(N)) = (T'o(N) N SL2(Z))\SLa(Z) /{=£ (' 1)},
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and the latter is the global analogue of the local double coset set ZU\GL2(F')/Ki(n) of §3.3. Via
the complex uniformization of X (N), that is, via the identification of Riemann surfaces

Xo(N)(C) = (T'g(N) N SLa(2))\9* (4.1.1)
(see [Roh97, §1.10, Prop. 7]), the cusps are the complement of the elliptic curve locus of Xo(N)c.

Concretely, each cusp ¢ of I'g(IV) is represented by an 7 € Q C PY(Q) with ged(m, N) =1 and a

uniquely determined denominator L | N of ¢ (compare with [DS05, 3.8.3]). For ¢ = (24) oo, we

have L = ged(c, N). The cusp oo is the unique one of denominator N and there are ¢(ged(L, &)
cusps of denominator L (see loc. cit.). The width of a cusp c is the smallest w(c) € Z~q such that

Y ((1) wgc)) v~ € Ty(N) for any fixed v € SLa(Z) with ¢ = oo, explicitly, w(c) = m.

4.2. Fourier expansions. For a function f: § — C, a k € Z~g, and a v = (g Z) € GLj (R),

. . E az
the function flgy: $ — C is defined by (f|x)(2) := det(v)?2 (cz—il-d)kf(CZiS)'

If theideal {h € Z : f = flx ( 1 ff)} C Z is nonzero, generated by a unique w € Z~g, then f descends

along the map ) — C* given by z — €*>™#/ to a function fy: C* — C. If then fy extends to a
holomorphic function at 0, then f is holomorphic at oo and we obtain its Fourier expansion at oo:
2winz

f(z) = ano af(n)e w
We say that such an f is cuspidal at oo if af(0) = 0.

(4.2.1)

For a subgroup I'1 (V) C T C GLg(z) and a k € Z~g, a modular form (resp., a cuspform) of weight
k on T is a holomorphic function f: $ — C such that both f|xy = f for v € TNSLy(Z) and f|xy is
holomorphic (resp., cuspidal) at oo for 7/ € SLy(Z). A cuspform f on I' is normalized if ay(1) = 1.
For instance, for I' = I'g(IN), choosing v = (~! _;) gives f(2) = (—1)*f(2), so k is even or f = 0.

For every modular form f of weight k on I'g(N) and every cusp ¢ = yoo with 7 € SLa(Z), we have
(Fle) e (t wgc)) = flxy, so (4.2.1) gives the Fourier expansion of f at c:

2minz

(f‘k:ﬁy)(z) = ZnZO af(n77)e w(©) )
which depends not only on ¢ but also on yv—explicitly, for any 7 € SLa(Z) with ¢ = +'o0,

2mint

ayp(n;y) = e v© ayp(n;q’) for some t€7Z that dependson ' 'y.

In particular, for any isomorphism @p ~ C and the resulting p-adic valuation val,: C — Q U {00},

val,(f|¢) := infp>o(val,(ar(n;y))) depends only on f and ¢, and not on +. (4.2.2)

4.3. The representation 7. For a normalized newform f on I'i(N) (see [Li75, p. 294]),'° the
Fourier coefficients af(n) are algebraic integers that generate a number field Ky (see, for instance,
[DI195, Cor. 12.4.5]). In particular, for a normalized newform f on I'g(/V) and every prime p, we have
valy(f|oo) = 0. For such an f, the Fourier coefficients af(n;~) at any cusp ¢ = yoo of denominator
L lie in Ky((n/r) (see [BN19, Thm 7.6], which even exhibits the possibly smaller number field
generated by the af(n;7)), and to study them p-adically we will use the adelic viewpoint.

15Here and throughout the paper, a ‘newform’ is implicitly assumed to be a (holomorphic) cuspform.
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Namely, for a newform f on I'y (), we let 7y be the cuspidal, irreducible, admissible, automorphic
GL2(Ag)-representation spanned by the GLa(Ag)-translates of the adelic newform associated to f
(see [Gel75, 5.19]). In the resulting factorization (compare with [Fla79, Thm. 3])

~ /
T ZE 700 © Qpeoo Tfop
each 7y ,, is an irreducible, admissible, infinite-dimensional representation of GL2(Q)) of conductor

exponent val,(N). If f is on T'g(NV), then wy, = 1, and if also val,(N) > 2, then 7, is of Type
1, 3, 4, or 5 in the classification of §3.6. In the last two cases, we have the following refinement.

Lemma 4.4. For a prime p and a newform f of weight k on I'o(N) with val,(N) > 2, if the
GL2(Qyp)-representation my , is of Type 4 or 5, that is, if

Tfp ™ - \ép Byt \@;’ for a ramified p € Xq, suchthat o # +5  when p?=1,

then o € iR and pio+% € Z, so that |val,(p?)| < %

Proof. By the Ramanujan—Petersson conjecture at all finite places (see, e.g., [Bla06, Thm. 1 and
Rem. on p. 46|), the characters u| - \@P and =1 |@: are unitary, so o € iR. By complex conjugation,

it then remains to show that piUJr% € Z. For this, we first globalize p to a finite order character

o A@/QX — C* (compare with [AT09, X, §2, Thm. 5]), set 7 := fimy, and let fbe the normalized

newform of weight k on I'; (N) for which T T (see [Gel75, 5.19]), so that af~(p) € 7Z (see §4.3).

If 7s,p is of Type 4, then 77 |1, B |@Z with o # +1, so [CS18, equation before (30)] gives

p =

[PSS14, (121)] k=1

E 5 ag —0
ap(p) =p2Wr 4, (("1)) Pz (07 +p),

where 1,: Q, — C* is an additive character with ¢(¢,) = 0 and Wﬁf .4, 18 the normalized
s P

k-1

Whittaker newform of 7w Fip (see §3.2). Checking prime by prime, we obtain the sought p~“* 2 € Z.

If 7y, is of Type 5, then my o~ p?|- |3 B |7 with p® # 1, so [CS18, (30)] gives
k
i) =2 War o, (P )Ty g W o (1)

with 9, and Wwﬁq,wq as before. Since (¥ ) = <8g> (1 ol ), the factors for ¢ # p are all roots of
k—1

unity (see §3.2), so [PSS14, (121)] now directly implies the sought p~ 7+ 2 € Z. O

The following key lemma uses the adelic point of view to link the global p-adic valuation val,(f|c) to
the local p-adic valuations valy,(Wr, 4, (9t,¢,4)) that were bounded in Theorems 3.14 and 3.15.

Lemma 4.5. For a prime p, a normalized newform f of weight k on I'o(N), and a cusp ¢ in
Xo(N)(C) of denominator L,

if ptN, then wvaly,(f|c)>0. (4.5.1)
If, in contrast, p | N, then, setting m := my, for brevity (see §4.3), for any additive character
: Qp — C* with c(y) = 0, with the notation of §§3.2-3.3, we have

valp(fle) > —5val, (m)‘i_mmrezzo,vez; (%5 + valp(Wr, 4 (97— max(valy(V), 2val, (L)), valy (£), 0))-
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Proof. We included (4.5.1) because it follows from the argument below, although [DI95, 12.3.5] gives
it, too. We fix addltlve characters 13: Q — C* with ¢(¢y) = 0 for each prime ¢ | N such that
¥p =1 in the case p | N, we fix a v = (’E 3) € SLy(Z) with ¢ = oo, and we consider a variable
Fourier coefficient ay(r;~v). By [CS18, Prop. 3.3], there are vy € Z; (that depend on r) such that
2mird 1 ( ) —val N

af(r fy) = af(ro)ew(C)L H (vaq " aLq(ng(LQ’N))>V[/v7rf,,;,,z/1q (gvalq(r)fmax(valq(N),2valq(L)),valq(L),vq)7
where 7o = [,y g, Since as(rg) € Z (see §4.3) and W, v, takes values in Z[%] (see
Proposition 3.12 with Lemma 4.4), it remains to take p-adic valuations and let r vary. U

We are ready to bound the p-adic valuations of Fourier expansions of newforms at cusps.

Theorem 4.6. For a prime p, a cuspform f that is a Z-linear combination of normalized newforms
of weight k on T'o(N), a cusp ¢ € Xo(N)(C) of denominator L, and an isomorphism C ~ Q,,

0 if val,(ged(L, ))

0 if val,(ged(L —)) = 1 val,(N) > 2
val > —kyal (L> + P 'L )
p(flo) = =avaby (e -1 if val,(L) = ival,(N) =1,
1 — Jvaly(ged(L, %)) otherwise,
as well as the following stronger bounds in the case p = 2:

if valy(L) = ivaly(N) =1,

if vala(L) = 3valp(N) € {2,3,4},
+1-— 7V8,12( ) if Valg(L) = 2V&12(N) > 4,

if vala(ged(L, &) = 3, valy(N) > 6.

vala(fle) > —Avaly (%) +

(=R EIN E el

Proof. We lose no generality by assuming that f is a normalized newform of weight k& on T'o(N), so
we set 7 := 7, (see §4.3) and fix an additive character ¢: Q, — C* with ¢(y)) = 0.

The case val,(N) = 0 follows from (4.5.1). In the case val,(N) = 1, we have val,(L) € {0,1} and
a(m) = 1, and Lemma 4.5 reduces us to showing that k—{—i—valp(Wme(gT,maX(l’ 2val, (L)), valy(L),v)) = 0
for every 7 € Z>o and v € Z), which follows from the first case of Proposition 3.4.

In the remaining case val,(N) > 2, by §4.3, the representation 7 is of Type 1, 3, 4, or 5 with
a(m) = valp(N), and Lemma 4.5 reduces us to showing that for 7 € Z>o and v € Z the quantity

k{ + Valp(WTl', P (97'—ma‘x(valp(N)7 2valp (L)), valp(L), ’U)) (46 1)
is at least the summand split into different cases in the desired inequalities. When val, (L) # %(N),

this is immediate from Theorems 3.14 and 3.15, so we assume from now on that val,(L) = %(N)
For 7 of Type 3, if p is odd, then Theorem 3.14 (ii) shows that val,(N) = 2 and gives the conclusion
(after plugging in the bounds from Theorem 3.14 (ii), the expression (4.6.1) becomes linear in T,
S0 its extrema are at the endpoints of the range for 7), and if p = 2, then Theorem 3.15 (ii) (with
§2.8) shows that vala(N) € {4,6} and gives the conclusion. For 7 ~ ,uH(‘ép @ H_IH@Z of Type 4 or

5, Lemma 4.4 shows that |val,(p®)| < 551, so Theorems 3.14 and 3.15 likewise give the conclusion.

In the remaining case when 7 is of Type 1, for odd p, by Proposition 3.13, we may restrict to

7 = 0, and then conclude by Theorem 3.14. In contrast, for p = 2, we combine Lemma 3.7 and

Proposition 3.13 to reduce either to a(w) = 2 with 7 = 0 or to 7 > 0, and then use Theorem 3.15. [
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We explicate the weight 2 case of Theorem 4.6 because it is the most relevant one for our goals.

Corollary 4.7. For a prime p, a Z-linear combination f of normalized newforms of weight 2 on
Lo(N), a cusp ¢ € Xo(N)(C) of denominator L, and an isomorphism C ~ Q,,

(0

max(%,p%l)
1

valy(fle) > —valp(§)+

3

1+ Jvaly(ged(

1+ jvaly(N)
2 + fvaly(N)

L, 1))

if val,(L) € {0,val,(NV)},

if valp(L) =1, val,(N) =
if val,(L) € {1, val,(IN) —

if p=2, vala(L) =
if p=2, valy(L) =

EVa.lQ (

7

1}, val,(N
€ {2 3,4},
%V&lg(

) > 2,

)
) >
if p=2, vala(L) € {3,vala(N) — 3} vala(N) > 6,

otherwise.

g

Example 4.8. In Tables 4.8.1 and 4.8.2, for newforms f associated to elliptic curves of conductor
N, we used the SageMath algorithm'® described in [DN18, §6] to compute the valuations valp(f|%)
P

for 0 < ¢ < Zval,(IN) (the restriction to this range is natural due to the Atkin-Lehner involutions).
The resulting examples illustrate the sharpness of Corollary 4.7.

Newform f Level | Label Valg(f|%) V&lg(f‘%) Valg(f’%) valg(f\l%)
q—2¢—¢° +2q +q +0(q") [ 22-5| 20a 0
q— ¢ —2¢° +¢° + 0(¢*?) 23.3 | 24a -1
q+q3—2q5+q9+0( 10) 24.3 | 48a -2 1
q—2¢° —3¢° + O(¢'%) 25 32a -3 -1
q+2¢° —3¢° + O(¢'%) 26 64a —4 -2 1
q—2¢3+2¢° +4¢" +¢° + O(¢*%) | 27 | 128b -5 -3 —1
q+4¢° — 3¢° + O(¢'%) 28 | 256¢ —6 —4 -2 1

TABLE 4.8.1. p-adic valuations of Fourier expansions for p = 2 and small levels

Newform f p | Level | Label | val,(f[1) | valy(f]|1)
P p

e+ —q¢*— ¢ =3¢+ 0(¢") 3| p2.-5| 45a -1
q—2¢" —q" +0(¢") 3| p3 | 27a —1

g+ +q*+3¢° — 44" + & + 0(¢*°) 3] 2.p*| 162d -2 0

q—2q¢* +5¢" + 0(¢'°) 3| p° | 243b -3 —1
g+ +¢@ -t +¢° -3¢+ ¢° +0(¢"?) 5 13-p%| 75b —3
- +2¢°+ ¢ —2¢° — ¢ + ¢° + O(¢"") 7|2:-p*| 98 —1
G+2¢% — P +2¢* +¢° —2¢5 +2¢" —2¢° + O(¢*%) | 11| p? | 121d -1

TABLE 4.8.2. p-adic valuations of Fourier expansions for 3 < p < 11 and small levels

16 Available at https://github.com/michaelneururer/products-of-eisenstein-series. A faster and more gen-
eral pari/gp algorithm for algebraically computing Fourier expansions at cusps is based on [Coh19], but we did not
use it because it is heuristic: to convert the numerically approximated Fourier coefficients to algebraic numbers, it
uses a heuristic application of the LLL-algorithm. Our denominator bounds could help make this algorithm rigorous.
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5. THE DIFFERENTIAL DETERMINED BY A NEWFORM LIES IN THE Z-LATTICE H?(Xo(N), Q)

Any cuspform f of weight 2 on I'g(/N) that has a rational Fourier expansion determines a differential
form wy on Xo(N)g. The goal of this section is to use the results of §4 to show in Theorem 5.15
that, in particular, if such an f is a normalized newform (that then corresponds to an isogeny class
of elliptic curves over Q), then wy is integral in the sense that it lies in the Z-lattice

H®(Xo(N),Q) € H(Xo(N)g, "),

where (2 is the relative dualizing sheaf. For arguing this, it is convenient to work with the regular
stack Zo(IV) that has both a modular interpretation and line bundles of modular forms instead of
the possibly singular scheme Xo(/N) whose scheme-theoretic points lack a clear modular description.
Thus, we begin by reviewing the definition of the “relative dualizing” sheaf in the stacky case. Some
material of this section overlaps with the appendix of the unpublished manuscript [Ces16].

5.1. “Relative dualizing sheaves” of Deligne—Mumford stacks. Let X — S be a flat and
locally of finite presentation morphism of schemes with Cohen-Macaulay fibers. By [SP, 02NM],
the scheme X is a disjoint union of clopen subschemes whose relative dimension over S is constant.
Thus, the theory of Grothendieck duality, specifically [Con00, bottom halves of p. 157 and p. 214],
supplies relative dualizing &x-module {2x /g that is quasi-coherent, locally finitely presented, S-flat,
and of formation compatible with base change in S. For instance, if X — S is smooth, then Qx /g is
simply the top exterior power of the vector bundle Qﬁ( /s The formation of {2x/g is compatible with

étale localization on X: for every étale S-morphism f: X’ — X one has a canonical isomorphism

Lf: f*(QX/S) LQX’/S (511)

supplied by [Con00, Thm. 4.3.3 and bottom half of p. 214]. Moreover, if f': X” — X’ is a further
étale S-morphism, then [Con00, (4.3.7) and bottom half of p. 214] supply the following compatibility:

tiopr = tpro (F) () (F)(f*(Qx/s)) — Qxnys. (5.1.2)
Let now 2" — S be a flat and locally of finite presentation morphism of Deligne-Mumford stacks
with Cohen-Macaulay fibers. By working étale locally on S, the compatibilities (5.1.2) ensure!”
that the Ox-modules Qg for étale morphisms X — 2 from a scheme X glue to a quasi-coherent,
locally finitely presented, S-flat &y-module 24 /g, the “relative dualizing sheaf” of 2~ — S, whose
formation is compatible with base change in S (see [Con00, Thm. 4.4.4 and bottom half of p. 214]
for the base change aspect). If 2" — S is smooth, then Q4,5 is the top exterior power of Qi@/s.

The quasi-coherent &y -module €2 5/ has full support and is S-fiberwise Cohen-Macaulay: indeed,
this reduces to the case when S is the spectrum of a field and 2" is a scheme, and in this case, by
[Har66, Remark on p. 291], the stalks of Q4 /s are dualizing modules for the corresponding stalks
of 09 and hence, by [SP, 0AWS], are Cohen-Macaulay of full support. Similarly, by [SP, 0DW9],
the module 24-/g is a line bundle if and only if the S-fibers of 2" are Gorenstein.

We draw attention to the case when 2~ — S is proper and £  is not a scheme, in which we do not
claim any dualizing properties of the &y -module €245 constructed above.

5.2. The case of modular curves. For us, the key case is when S = SpecZ and £ is either
the modular stack 27 or its coarse space Xp for an open subgroup I' C GLy(Z) (see §1.4). The
resulting 2~ — S is flat, of finite presentation, with Cohen—Macaulay fibers (the latter by the
normality of 2" and [EGA IV, 6.3.5 (i)]), so the discussion of §5.1 applies. Normality of 2" and

175ce [LMBO00, 12.2.1] for a discussion of analogous compatibilities and their relevance for glueing.
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[EGA TVy, 6.12.6 (i)] ensure that 27 is the complement of finitely many closed points of 2", and
hence contains Zg and is Z-fiberwise dense in 2". Since 2" is also Z-fiberwise Gorenstein (see
[Liu02, 6.3.18]), the coherent, Z-flat, Cohen-Macaulay & -module 2 g-res /7 of §5.1 is a line bundle.
In addition, (24,7 agrees with the line bundle Q%Z/ /z Over any Z-smooth open % C 2, for instance,

over 2, z(L) C 2 for an N > 1 with I(N) C T (see [DR73, IV, 6.7] and [Ces17, 6.4 (a)]).

The key advantages of {2 - /7 over the &y -module QI% /7 are its aforementioned pleasant properties
at the nonsmooth points. The following comparison relates (2 4;. /7 to the more concrete Q. /7.

Proposition 5.3. For an open subgroup I' C GLg(z), an N > 1 with I'(N) C T', and the coarse
space morphism 2t = Xr, we have an isomorphism of line bundles

1
RE WY

— (%[%1)*(91

(201, /) (5.3.1)

and for any open U C Xr such that % := 1w~ Y(U) 5 U is étale over a Z-fiberwise dense open of U,
H(U,Q) c H(Ug, Q') s identified by (5.3.1) with ~ H°(%,Q) C H* (%, Q).

Proof. The second assertion implies the first: indeed, for every open U C (XF)Z[ 1y, the map

7 Y (U) — U is étale over the complement of j = 0 and j = 1728 (see [Cesl?, last paragraph
of the proof of Prop. 6.4]). For the same reason, away from j = 0 and j = 1728 the pullback map

1 1
Qxryg/e = (M@)(L21)4/0) (5.3.2)

is an isomorphism: there it is the Q%Xp)@ /Q—twist of the coarse space isomorphism Oy, — m.(09;.).
To conclude that (5.3.2) is an isomorphism, we claim that so is its base change to the completion

ﬁ(séi(r)(@ ., of the strict Henselization of (Xr)q at any # € Xp(Q). We have

Oyee = Qt]  under which (Q(XF)@/@)W z:@[[t]]-dt,

and also, using the identification X1 (Q) = 21(Q) to view x in 21(Q),

ﬁ’A(S}&}KF)Q’m ~ Q[7] under which (Q%%F)Q/Q)ﬁd‘ ~ Q[r] - dr.

(Z71)g

Taking into account the action of the automorphism group of x € 3&%(@) we have, compatibly,

G
Orrare = (Ohiye,e)” and (M0)s(Yzig /o)) s = (Qayg/0)p,

Zr)Q

for some finite group G acting faithfully on ﬁ(s Yo , (see [DR73, 1, 8.2.1] or [Ols06, 2.12]). Since the

ramification of mg is tame, the faithfulness of the action implies by Galois theory that G ~ p4c(Q)
with, at the cost of changing the uniformizer 7 above, t = 7# and ¢ € puxg(Q) acts by 7+ (- 7
(see [Ser79, IV, §2, Prop. 8|). The desired Q[t] - dt — (Q[7] - d7)% follows.

To conclude the sought identification H(U, Q) = HY(% ,), we let U’ C U with preimage %' C %
be a Z-fiberwise dense open over which 7 is étale. The Ox.-module Q. /7 has depth 2 at the points
in U\ (U'UUg) (see §5.2), and similarly for 4, /7, so, by [EGA 1V3, 5.10.5], we have

HY(U,Q) = HY(U', Q) nH(Ug, Q') inside H(Ug, QY),

HY (%, Q) = HY (%', Q)N H (%, Q") inside H(%, Q).
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Therefore, the isomorphism (5.3.2) reduces us to the case when U = U’. Similarly, neither H°(U, §2)
nor H%(% ,Q) changes if we remove finitely many closed points from U, so we assume further that U
and 7% are regular, so that Q;;/7 and €4 /7 are line bundles (see §5.2). Then (7|4 )*(Qu/z) = Qg 2
by the étaleness of % — U (see (5.1.1)), to the effect that there is a pullback map

Quyz = (7|2 )+(Qyz)  that is the Qz-twist of the isomorphism Oy — (7| )«(O%),

and hence is an isomorphism. The sought identification follows by taking global sections. O

We conclude that the Z-lattice determined in the Q-space of cuspforms H°(X(N)g, 2!) by the rela-
tive dualizing sheaf Q on the stack Zy(N) agrees with its coarse space counterpart as follows.

Corollary 5.4. For an N > 1 and the map Zo(N) = Xo(N), we have an O xo(N)-module isomor-
phism Qx,(n)/z = T (Qay(3)z) that over Q is the pullback of Kdhler differentials. In particular,

H°(Xo(N),Q) = H*(20(N),Q) inside H°(Xo(N)g, ') = H(20(N)g, ). (5.4.1)

Proof. The map 7 is étale (even a Z/2Z-gerbe) over a Z-fiberwise dense open of Xo(N), for instance,
over the complement of j = 0 and j = 1728, see [Cesl7, proof of Thm. 6.7]. Thus, in the case
I' =To(N), Proposition 5.3 applies to every open U C X(V) and gives the claim. O

Due to the abstract nature of €, the lattice H(25(N), Q) is a priori inexplicit. To remedy this, in
particular, to relate this lattice to the integrality properties of Fourier expansions studied in §4, we
will use an integral version of the Kodaira—Spencer isomorphism presented in Proposition 5.6.

5.5. The line bundle w. The cotangent space at the identity section of the universal generalized
elliptic curve gives a line bundle w on 2°(1), which pulls back to a line bundle w on 21 for every
open subgroup I' C GLQ(Z). We write ‘cusps’ for the reduced complement of the elliptic curve
locus of 2T, so that ‘cusps’ restricts to a Weil divisor on the regular locus 21, which contains
(Z1)g and is Z-fiberwise dense in 27 (see §5.2). By [Del71, §2|, for every k € Z~o and every
I' C T'1(N), the space H((21)c,w®) (resp., HO((21)c,w®*(—cusps))) is canonically identified
with the C-vector space of modular forms (resp., cuspforms) of weight k on I' reviewed in §4.2, so
HO( 21, w®F) (resp., HO(2r,w®*(—cusps)) if 27 is regular) is a Z-lattice in this C-vector space.

Thanks to this algebraic description, one enlarges the scope of the definitions: in the rest of this
article, by a modular form (resp., cuspform) of weight k on I" over a scheme S we mean an element of
HO((27)s,w®) (resp., H((21)s,w®*(—cusps)); we will use the latter only when 27 is regular).

~

Proposition 5.6. For an open subgroup I' C GLo(Z), letting y range over the generic points of the
[F,-fibers of Zr for the set of primes p that divide every (equivalently, the smallest) N > 1 with
I'(N) C I, and letting d,, denote the valuation of the different ideal of the extension ﬁi?r y/ﬁzg(l) 7

of discrete valuation rings (see §1.4 for the notation), we have

Qgres 7, = w%eg(—cusps +> dy{y}).

Proof. 1t is indeed equivalent to consider the smallest N with I'(N) C I': if p | N but p { M for
some I'(M) C T, then, for N' := %, every element of T'(N') is congruent modulo p*?»(N) to an

element of T'(M), so I'(N’) Cc T(MN')T'(N) C T, contradicting the minimality of N.
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For the main assertion, since both sides are line bundles (see §5.1) and 27 is normal, by [EGA 1V,
5.10.5], it suffices to exhibit the desired isomorphism over the slightly smaller open % C 27 that
is the preimage of the open of 27(1) obtained by removing the images of the singular points of 2.
We will bootstrap the claim from its case for 2°(1) supplied by [Kat73, A1.3.17]:

Ql«%(1)/2 = W%u)(—CUSPS)- (5.6.1)

By working étale locally on 27(1) and using [Con00, Thm. 4.3.3, (4.3.7), bottom of p. 206], we get

Qo2 = Q12:01) @0y T (12, (5.6.2)

where m: % — 2 (1) is the forgetful map. Since 7 is finite locally free over 7(% ), by [Con00, bottom
half of p. 31 and pp. 137-139, esp. (VARG) on p. 139], the &z-module Qy 41y reviewed in §5.1,
is identified with #omg_ ., (7(O% ), Or)). Thus, since m is generically étale, the element

trace € HOmﬁﬂ(%)(ﬂ*(ﬁéj/), Onry) EV(U, Qy 20 (1)),
via the correspondence [SP, 01X0] (with [SP, 0AGO]), gives rise to the identification
Qujra) = ﬁ%(Zze\%ﬂﬂ) do{z}), (5.6.3)

where the sum is over the height 1 points z of 21 and d, is the order of vanishing of ‘trace’ at
ﬁz?l}rj. By considering the fractional multiples of ‘trace’ that still map ﬁ}l}rj into 6’2}1(1),5, we see
that d, is the valuation of the different ideal of ﬁ{%nf/ﬁ%}(l)j (see [Ser79, 111, §3]). Thus, d, =0
whenever this extension is étale, so each x that contributes to the sum either lies on the cusps of
(Z1)q or is the generic point of an irreducible component of an [F,-fiber of 21 — SpecZ such that
p | N for every I'(N) C T (see [DR73, IV, 3.2]). At the former, ramification is tame and d, = e; —1,
where e, is the ramification index of ﬁg}r E/ﬁi%}(l (see [Ser79, III, §6, Prop. 13]). Thus, since

W*(w%(l)(—cusps)) =) A > wecusps ex{x}), by (5.6.1)~(5.6.3) we obtain the desired

Qu j = wiy (—cusps + 3, dy{y}).- 0

~

Variant 5.7. For an open subgroup I' C GLo(Z) and the forgetful map m: Xr — X (1), letting y
range over the height 1 points of Xr and letting d; denote the valuation of the different ideal of the
extension Oxp. y/Ox 1), x(y) Of discrete valuation rings, we have

QX;eg/Z & (F*Qﬁ((l)/zﬂXl{‘eg (ZyGXI(}) d;@)

Proof. The proof is the same (but simpler) as that of Proposition 5.6. Namely, X (1) & P} is Z-
smooth, so Qx(1)/7 = Q%{(1)/Z7 and, similarly to there, one may restrict to the preimage U C Xt of
X (1) \ 7(Xt \ X1®) and then conclude by using the analogues of (5.6.2) and (5.6.3). O

For general I, it is tricky to directly compute the d, that appear in the integral Kodaira—Spencer
formula of Proposition 5.6 because the extension ﬁ}?r g/ ﬁi@h-(l) 7 involves imperfect residue fields
and may be wildly ramified. For I'g(N), we will compute the d,, in Proposition 5.12, and for this we
first argue that only the level at p matters and then describe ,%”O(pvalp(N )) along the cusps.
Lemma 5.8. For open subgroups I, T" C GLy(Z) with T(N) C T and T'(N') C I, a generic point
yrar of the Fy-fiber of Zrar with pt N', and its image yr in Zr, in Proposition 5.6 we have
d = dy,.
35
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Proof. By [DR73, IV, 3.8-3.9], the stack 211 agrees with the normalization!® of 27 X 21y 21
Thus, since the assumption p t N’ ensures that the map 21 — 2°(1) is étale at the image of
yrare (see [DR73, IV, 3.2ff]), the map Zrap — Zr is étale at ypary. In particular, letting ¥ be a
=d,., as desired. g

yro

. . h ~ h
geometric point above yrqrs, we have ﬁf@m —— ﬁf%’y, so that dy,_,

Y

5.9. The components of Z((N)r,. We recall from [KM85, 13.4.7] that the irreducible components
of Zo(N)r, correspond to pairs (a,b) of integers a,b > 0 with a + b = val,(N) in such a way that
on the (a,b)-component the p-primary part of the cyclic subgroup that is part of the modular
interpretation of 2o(N) is generically an extension of an étale group of order p® by the a-fold
relative Frobenius kernel. The ramification index e(q,j) of the strict Henselization of Zo(V) at the
generic point of the (a, b)-component of Zo(N)r, was determined in [KM85, 13.5.6]:

€(an) = G(p™n@0)), (5.9.1)

If p| N, then the forgetful map Zo(N)r, — %(%)Fp sends each (a,b)-component with b > 0 to
the (a,b — 1)-component and the (a,0)-component to the (a — 1,0)-component.

Lemma 5.10. For a prime p and an n > 0, the base change of the forgetful map Zo(p™) — Z (1)
along the map Spec(Z]q]) — Z (1) given by the Tate generalized elliptic curve over Z[q] is

Zo(P") X 271y Z[4] = Llfgz;;g Spec(Z[¢y][q]) U Ugigj’g Spec((Z[¢pe] [a]) [X]/(XP"" = Geq)),

a

where, without explicating the Z[q]-algebra structure, the last term is Z[(pe|[X]. After base change
to |y, the term indexed by (a,b) in this decomposition maps to the (a,b)-component of Zo(p")F, -

Proof. By [DRT73, VII, 2.2|, the finite, flat Z[q]-scheme Zo(p") x 2-(1) Z[q] is the normalization of
Z[q] in the finite Z((g))-scheme Zo(p") X 9-(1) Z((q)). The latter parametrizes cyclic (in the sense of
Drinfeld) subgroups of order p™ of the Tate elliptic curve over Z((q)), so, by [KM85, 13.6.6], it is

Spec(2(0) USpec(Z(a¥ ) U Llasyon Spec (Z(@) X1/ (0,51 ) )

where ®,(Z) := ZP~1 4 ..+ Z +1 is the p-th cyclotomic polynomial. More explicitly, if a > b > 1,
then X/ qpafb is a pb-th root of unity in the source of the surjection

Z(@)X)/(@p(X5r)) = ZGpl(a) sivenby X o (g

that must also be injective because its source and target are free Z((¢))-modules of rank p*~!(p—1).
Similarly, if 1 < a < b, then X /q is a p®-th root of unity in the source of the isomorphism

Z(@) X1/ (Bp(X5r)) = (2L (@) X/ (X" = Gea).

To conclude the claimed description of Zo(p™) X 2°(1) Z[q], it remains to note that both Z[(,][q]

b—a

for a > b and (Z[Cpe|[q]) [ X]/(XP" "~ — (paq) = Z[(pe][X] for a < b are normal (even regular). The
claim about the (a,b)-component follows from [KM85, 13.6.2 and the proof of 13.6.6]. O

Before proceeding to the promised formula for the d,, in Proposition 5.12, we record the following con-
sequence of Lemma 5.10 that relates the present section to the analytic considerations of §4.

18Note that for [DR73, 11, 3.9.1] to hold, one needs to take the normalization of its left side, see [Ces17, 4.5.3].
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Lemma 5.11. For L | N and a prime p, every cusp of Zo(N)c of denominator L (see §4.1 and
use Zo(N)(C) = Xo(N)(C)) reduces to the (val,(L), val,(£))-component of Zo(N)r, (see §5.9).

Proof. Points of Zy(N) and of its coarse space Xy(/V) valued in algebraically closed fields agree
and every cusp is a Q-point, so the statement makes sense. Moreover, the complex uniformizations
(4.1.1) are compatible with forgetting some of the level, so we may assume that N = p". For
L = N, the only cusp of Xo(N) of denominator L is co and its punctured analytic neighborhood
parametrizes pairs (C* /g%, (e2™/N)) with ¢ = €™ and Imz > 0 (see [Roh97, §1.10, Prop. 7|).
Thus, by the algebraic theory of the Tate curve with its canonical subgroup puy (see [DR73, VII,
§1, esp. VII, 1.12.3|), this cusp factors through the (n,0)-term of the right side decomposition of
Lemma 5.10, and hence reduces to the (n,0)-component. For the other cusps, we induct on n, so
we suppose that n > 0 and consider a cusp ¢ of denominator p’ with £ < n — 1. By induction,
the image of ¢ reduces to the (¢,n — ¢ — 1)-component of %(p"il)ﬂrp. Thus, if n —¢ -1 > 0,
then ¢ must reduce to the (¢,n — £)-component of Zo(p")r, (see §5.9). To bootstrap the remaining
qﬁ(pmm(”_l’ 1)) cusps with £ =n — 1 (see §4.1), it now remains to note that, by Lemma 5.10, there
are precisely ¢(p™™("=11) cusps that reduce to the (n — 1,1)-component of Zo(P")r,- O

Proposition 5.12. For an N > 1, a prime p, the generic point y of the (a,b)-component of Zo(N)r,
(see §5.9), and the valuation d(qy) of the different of the extension ﬁ;}}o(m g/ﬁ’f%i(l) _

y7
b ifa=0,
dia,py = § P 2@ pb—b—1) ifa,b>1, (5.12.1)
0 ifb=0.

Proof. By Lemma 5.8 and §5.9, we may forget level away from p to assume that N = p™. As in the
proof of Proposition 5.6, the different of a finite, generically separable extension R’/R of discrete
valuation rings is the annihilator of the R-module Homg(R’, R)/(traceg//g). The formation of this
annihilator commutes with flat base change in R (after which R and R’ may cease being discrete
valuation rings). We will apply this to ﬁ%o( N)@/ ﬁfﬂc}}(l)@ the valuation d(4 ) of whose different
we wish to compute. Namely, by [DR73, VII, 2.1|, the map Spec(Z[q]) — 2°(1) given by the
Tate generalized elliptic curve over Z[q] realizes its source as an étale double cover of the formal
completion of Z£7(1) along the cusps, and the flat base change map we will use is the resulting
ﬁf@}}(n,@ — Z[[q]]?;}), where the latter strict Henselization is at the generic point of the Fp-fiber of

Z[q]. In this notation, by Lemma 5.10, the resulting base change of ﬁf%llo(N),g is

ZiGpllaldy it a>b, and ((ZIGa)laD[X]/(X7" = Gua))y i a<b.

These are discrete valuation rings, and the extension Z[Cpb][[q]]?g) / Z[[q]]?;‘) is a flat base change of

Z[Cpb]?};)/ Z?g). Thus, the a > b case of (5.12.1) follows from the ramification theory of cyclotomic
fields [Was97, 2.1]. To similarly treat the a < b case, we will use subextension

a

S s b= S
Zlal(yy € ZlGellal(py € (Z[Ge)[aD) [X]/ (X7 = Goa)) (5.12.2)
and the tower formula for the different [Ser79, III, §4, Prop. 8] (that, notably, does not require

residue field extensions to be separable—an assumption not met here). Namely, letting dq,p) be
the valuation of the different of the top extension, [Was97, 2.1] now gives

a—1 :
~ p* t(pa—a—1) ifa>1,
d =d

(avb) (a,b) + {0 ifa =0.
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To compute c%l’ b), We note that the top subextension in (5.12.2) is of degree p’~®, does not change
the uniformizer 1 — (e, induces a purely inseparable residue field extension of degree p’~¢ and, as a

module, is generated by powers of X. Thus, since X, X2, ... ,XIDIHI_1 have trace 0 in this extension,
we conclude that d = (b — a)@(p®). The desired formula in the remaining case a < b follows. O

With the integral version of the Kodaira—Spencer isomorphism (Proposition 5.6) and the explicit for-
mulas for the d,, (Proposition 5.12) in hand, we are ready to characterize the Z-lattice H°(2(N), )
in terms of the p-adic properties of Fourier expansions at all cusps in Proposition 5.14.

Lemma 5.13. For a prime p, an f € HO(%(N)@p,w@)k) with k > 1, a cusp ¢ € Xo(N)(Q,) of
denominator L, and an isomorphism v: Q, ~ C, the valuation v := val,(¢(f)|,()) defined as in
(4.2.2) (see also §5.5) after pullback' to a cusp ¢ ENX(NJV)((C) above ¢ for a sufficiently divisible
N depends only on f and val,(L) (and not on ¢, v, N, orc): letting % C Zo(N)z, denote the open
complement of those irreducible components of Zo(N)r, that do not meet the reduction of c,

v s the largest rational number such that p~“f € HO(%zp,w®k). (5.13.1)

Proof. By Lemma 5.11, the irreducible component of Z4(N)p, that contains the reduction of ¢
depends only on val,(L), so the same holds for % and it suffices to establish (5.13.1). Moreover,
by scaling f, we may assume that v = 0. By the normality of Zy(N), the forgetful map

m: Z(NN) = Zo(N) satisfies Ogq(v) 2> (14(0 5 (yz))) TP VTED)

and this persists after flat base change, such as to Z,. Thus, ['o(N)/T'(N N) acts transitively on the
cusps ¢ € X(NN)(C) above ¢ and, letting % C 2 (NN)z, be the complement of those irreducible
components of 2 (N N )F, that do not meet the reduction of a fixed ¢, we reduce to showing that

: -’ 0(q, ,,®k
no v € Qs satisfies p Uf‘%‘(Nﬁ)@p € H(Uz,,w™"). (5.13.2)

In addition, limit arguments eliminate the artificial non-Noetherian aspects: they allow us to replace
Q, and Z, by a variable sufficiently large finite extension F'/Q, and its ring of integers OF.

For sufficiently divisible N, the stack 2" (NN) is a scheme (already 15 | N suffices, see [KM85, 2.7.2])
~ 1

and, by [KM85, 10.9.1], the formal completion of 2 (NN)p, along the closure of ¢ is Op[gN~].

Under a trivialization of the pullback of w®* to this formal completion, the pullback of f is described

1
by its g-expansion, which is an element of F[¢~N~N] that, via ¢, agrees with the analytic Fourier
expansion of f at ¢ constructed as in §4.2 (see [DR73, VII, 4.8]). Consequently, w% f with a € Z

extends to a section of w®* over a neighborhood of the closure of ¢ in 2 (NN)e, if and only if
a
er

such a neighborhood with 2" (N N) g is of codimension > 2, so, since 2 (N N)o,, is Cohen-Macaulay,
[EGA IV,, 5.10.5] ensures that w? f extends to a neighborhood of the closure of ¢ in Z'(NN)p,, if
and only if wl f € H(%o,,w®*). As F grows, this achieves the promised (5.13.2). O

> 0, where e is the absolute ramification index of F. The complement in %, of the union of

Proposition 5.14. For a prime p and a cuspform f € HO(%(N)@p,w@(—cusps)), the differential
wr € HO(XO(N)@ Q1Y) lies in the Zy-lattice H*(Xo(N)7 ,Q) = HY(25(N)z ,Q) (see (5.4.1)) if
P P P

19T he only role of the auxiliary level is to ensure that ,%(N]V)c is a scheme and hence admits a complex uni-
formization analogous to the one discussed in (4.1.1).
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and only if for every 0 < € < val,(N) and some (equivalently, any) cusp ¢ € Xo(N)(Q,) whose
denominator L satisfies ¢ = val,(L) and some (equivalently, any) isomorphism t: @p ~ C, we have

—valy(N) if val,(L) =0,
valy (L(f)ue) = —val, (%) + zﬁ if 0 <wval,(L) < valy(V), (5.14.1)
0 if val,(L) = val,(N).

For such an f defined over a number field K with ring of integers Ok, we have ws € H*(Xo(N)oy, )
if and only if (5.14.1) holds for all primes p and all embeddings K — @p.

Proof. The last assertion follows from the rest because any finite free Og-module M (such as
H(Xo(N)o,,Q) =2 H'(Xo(N),Q) ®z Ok, see §5.1) agrees with the set of m € M ®¢,. K whose
image in M ®o, @p lies in M ®o, Zj, for every prime p and every embedding K < @p. For (5.14.1)
itself, we begin by recalling the integral Kodaira—Spencer isomorphism of Propositions 5.6 and 5.12:
letting y range over the generic points of the irreducible components of Zo(N),, with d; as there,

Qay (N, /2, = w®?(—cusps + >y dy{y}).
Consequently, the characterization of val,(f|.) given in Lemma 5.13 together with [EGA IV, 5.10.5]
(applied as in the preceding proof) show that wy € HO(‘%(N)ZP’ Q) if and only if for every y and
some cusp ¢ that reduces modulo p on {y}, we have d, /e, > —val,(¢(f) |.(c)) Where e, is the absolute
ramification index of the discrete valuation ring ﬁ;?o( N)y° By Lemma 5.11, a cusp ¢ of denominator
L reduces to the (val,(L), Valp(%))-component of Zo(N), for which, by (5.9.1), the corresponding
ey is gb(pmin(valP(L)’Val”(%))). To arrive at (5.14.1), it then remains to use (5.12.1). O

We are ready for our main integrality result for normalized newforms.

Theorem 5.15. For a number field K and an f € H°(2o(N ), w®?(—cusps)) whose base change
along some K < C is a Z-linear combination of normalized newforms on To(N) (see §5.5),

wi € H(Xo(N)oy, Q) =2 H'(Z0(N)oy, Q) inside H°(Xo(N)g, Q") = H(Z5(N)k, Q)
(identification by flat base change and (5.4.1)), and, more generally, for any T'1(N) C T C T'o(N),
wr € H((X1)og, Q) € HY(XT)k, Q") and wp € H((21)ox, Q) € H'((27) K, QY.

Proof. A Galois conjugate of a newform is still a newform (see [D195, 12.4.5]), so the assumption on f
does not depend on the choice of an embedding K — C. For the first assertion, by Proposition 5.14,
we need to check that for every prime p, every embedding A: K — @p, every 0 < ¢ < val,(N), some
cusp ¢ € Xo(N)(C) whose denominator L satisfies val,(L) = ¢, and some isomorphism ¢: Q, ~ C,
the valuation val,(¢(A(f))|c) satisfies the bound (5.14.1). This, however, follows from Corollary 4.7.

To deduce that wy € H((X1)oy,) for an arbitrary T', since Qxp)o, /0x 18 a Cohen-Macaulay
ﬁ(Xr)oK -module of full support (see §5.1), by [EGA 1V, 5.10.5], it suffices to show the containment

wyr € HO((X[®)0x, ). Thus, Variant 5.7 and the settled case I' = I'g(IN) reduce us to showing
that for every height 1 point y € X1 with images y' € Xo(IV) and y” € X (1), the extensions

Ox1),y" C Oxy(Ny),y C Oxyp,y of discrete valuation rings satisfy dy yn > €y /sdyr/yn

where d, (resp., e,) is the valuation of the different (resp., the ramification index) of the indicated

subextension. This inequality is immediate from the tower formula for the different [Ser79, III, §4,

Prop. 8]. To likewise deduce that also wy € HY((2T)oy, 1), one uses Proposition 5.6 instead. [
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Remark 5.16. For a normalized cuspform f of weight 2 on I'g(NV), if wy lies in H?(Xo(N), ©2), then
it is a primitive (that is, not divisible by any m > 1) element of this Z-lattice. In fact, then it is
primitive even in the Z-lattice H(X$™, Q1) for every I'1(N) C T' C T'o(NN). Indeed, the finite maps
X1(N) = Xr — Xo(NV) are flat away from finitely many closed points (see [EGA 1V5, 6.1.5]), so
they restrict to maps X (N)™ — X™ — Xo(N)*™ away from these points. By [EGA 1V, 5.10.5],
removing finitely many closed points has no effect on H%((—)*™,Q!), so we obtain the inclusions

HY(Xo(N)™, QY ¢ HO(XP™, Q') ¢ HO(X(N)™,Qb), (5.16.1)
which reduce primitivity to the case I' = T'1 (V) settled as in [Ste89, proof of 1.6] via g-expansions.

6. RATIONAL SINGULARITIES OF X(V)

For studying the Manin constant, the Z-lattice H°(Jo(N),2!) given by the global differentials on
the Néron model Jp(V) of the modular Jacobian Jo(N) := Picg(O(N)Q/Q is more convenient than the
a priori larger HY(Xo(IN), Q) because it is functorial with respect to both a modular parametrization
Jo(N) — E and its dual E — Jy(IN). Thanks to this functoriality, the Manin conjecture implies
that the differential w; associated to the normalized newform f determined by E should lie in
HO(Jo(N),0Y), and we show this unconditionally in Corollary 6.14 whenever Xo(N) has rational
singularities. We show in Theorem 6.12 that this assumption holds in a vast number of cases.

6.1. Rational singularities. We recall from [Lip69, 1.1] that a Noetherian, normal, 2-dimensional,
local domain R has rational singularities if H'(Z,0z) = 0 for some proper, birational morphism
Z — Spec(R) with Z regular. In this case, by [Lip69, 1.2], we have H'(Z, 07) = 0 for every proper,
birational Z — Spec(R) with Z merely normal, and any such Z also has rational singularities.

The following result summarizes the relevance of rational singularities for our purposes.

Proposition 6.2. For an excellent discrete valuation ring R with fraction field K and residue field
k, a normal, proper, flat relative curve X over R such that Xz is irreducible and X*™ N Xy, # 0, the
Jacobian J = Pic&K/K, and its Néron model J over R, the map Picg(/R — JY is an isomorphism
if and only if the inclusion

HY(7J,0Y — HY(X,Q) is an equality inside H°(J, Q") = H°(X,Q), (6.2.1)

which happens if and only if X has rational singularities; more generally, letting w: Z — X be a
proper, birational morphism with Z reqular, H°(X,Q)/H(J,0") ~ HY(X, R'7.(07)).

Proof. We have R — HY(X, Ox) because this finite morphism of normal domains (see [SP, 0358])
is, by checking over K, an isomorphism. Thus, since X N X} # (), by [Ray70, 8.2.1], the map
X — Spec R is cohomologically flat and PicOX /R is a separated, smooth R-group scheme (see also
[BLR90, 8.4/2]). In particular, the Néron property supplies the map PicOX /R J. Moreover, the
deformation-theoretic [BLR90, 8.4/1] gives the identification H(X, &) = Lie(Pic% /) of finite
free R-modules. Consequently, by the Grothendieck—Serre duality (see [Con00, Thm. 5.1.2]),

HO(Pic% , Q') = Hompg(Lie(Pick ), R) = HO(X,Q) in H°(J,Q') = HO(Xg, Q).  (6.2.2)
Thus, there is the claimed inclusion H%(7, Q) < H°(X,Q), which, since all the global differentials
on J are translation invariant (see [BLRI0, 4.2/1-2]), is an equality if Pic% R=T 0. Conversely,

if the inclusion is an equality, then the separated morphism Picg( /R~ JY is an isomorphism on

Lie algebras, that is, it is étale (see [EGA 1V, 17.11.2]), and hence, by checking the triviality of its
kernel over K (see [EGA IV, 18.5.11 c)|), even an isomorphism.
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By Lipman’s [SP, 0BGP], a desingularization 7: Z — X exists (ensuring this is the only role
of the excellence of R). Moreover, by the above and the proof of [BLR90, 9.7/1], the map
7 HY(X,0x) — HYZ,0%) is identified with the map Lie(Picg(/R) — Lie(J). By forming
duals, the finite length cokernel of the latter is isomorphic to H?(X,Q)/H°(J,0Q!). On the other
hand, Grothendieck’s theorem on formal functions [EGA I11;, 4.1.7] shows that H2(X, 0x) = 0.
The above and the spectral sequence H(X, Rim,(0z)) = HVI(Z, 07) then give the claimed

HY(X,Q)/HY(J,Q" ~ HY(Z,07)/m*(H' (X, 0x)) = H*(X, R'n,.(02)).

Since R'm,.(07) is supported at the singular points of X and vanishes if and only if X has rational
singularities (see §6.1), the latter happens if and only if (6.2.1) holds. O

Example 6.3. Proposition 6.2 applies to R = Z,) and X = (XF)Z(p> for every prime p and every
L1 (N) CT CTo(N). Indeed, X1(N)™ N X1 (N)g, # 0 by [KM85, 13.5.6], so, since, by [EGA IVy,
6.1.5], the finite map X1(N) — Xr is flat away from finitely many points, also Xp™ N (X)r, # 0.
More generally, it also applies to any (X, )z, with I' as before and I'giag(M) C HcC GLQ(Z) the
preimages of subgroups {(™ 4, )|z € (Z/MZ)*} C H C GLo(Z/MZ) for some M coprime to N:

. . . -1 d <\ . -1
indeed, the identity (% 3) (24) (£8)7" = (4, 7 ) gives (% ) To(M2) (% 8) ™" = Taiag(M), 50,
by [DR73, IV, 3.19 (see also 3.14.1)], we obtain an isomorphism X ryar2) = Xrnry,, (). to the

effect that we may now instead use the resulting finite flat map

Xraro(m?) = Xrarg.,(m) = Xpqg  to conclude that  XP% =N (X z)r, # 0. (6.3.1)

By Proposition 6.2, controlling the lattice H°(Jy(N), ') relevant for the Manin constant hinges on
positively answering the pertinent cases of the following question considered by Raynaud [Ray91].

Question 6.4. Does Xo(N) have rational singularities for every N > 17

We know of no N for which the answer is negative, in fact, we exhibit a positive one for a large
class of N in Theorem 6.12, which subsumes [Ray91, Thm. 2|. The new cases in Theorem 6.12 will
come by bootstrapping from Proposition 6.6, whose proof uses the following lemma.

Lemma 6.5. For I'{(N) C I' C I" C T'o(N), the Jacobians Jr and Jp of (Xr)g and (X1)g, and
isogenous newform elliptic curve quotients®® w: Jp — E and 7' Jpv — E', if Ker(n) and Ker(n')
are connected, then there is an isogeny e: E — E' such that the Manin constants ¢, and cy satisfy

Cpr = Cq - # Coker(Lie £ Lo Tie &) where & and &' are the Néron models of E and E'.

Moreover, ¢, € Z for any newform elliptic curve quotient w: Jp — E (regardless of Ker(rw)).

Proof. Everything was settled in [60818, 2.12] except for the assertion that ¢, € Z in the case when
Ker(m) is nonconnected. To reduce the latter to the case when Ker(7) is connected, it suffices to
consider the factorization Jp — Jr/(Ker(7)?) — E of . O

~

Proposition 6.6. For the following T' C GLo(Z), the modular curve Xt has rational singularities:
(i) any I'1(N) C T C Tg(N) such that (Xr)g has genus < 1;

20We say that a surjection of abelian varieties : Jr — E is a newform quotient of Jp if Jr /(Ker(m)°) is associated
to a newform on I via the Eichler—Shimura construction (compare, for instance, with [Roh97, §3.7] or [DS05, 6.6.3]).
We call such an E a newform elliptic curve quotient if, in addition, E is an elliptic curve.
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(ii)) ' =Tp(9)N Cs with Cs C GLQ(Z) the preimage of the cyclic subgroup Cs C GLa(Z/27) ~ Ss.

Proof. We will use Proposition 6.2, which applies thanks to Example 6.3 (note that I'giag (2) = I'(2)),
so we let J be the Néron model over Z of the Jacobian of (Xr)g. In particular, we may assume
that the genus of (Xr)g is positive: indeed, in the genus 0 case the spaces in (6.2.1) vanish. Then
the genus of (Xr)g is 1: indeed, for (ii), the genus of Xy(36)q is 1, so, due to the surjection

Xo(36) (6.3.1) X

R (6.6.1)

that of (XP0(9)OC~“3)Q is <1 (in fact, it is 1, but we do not need to sidestep into showing this).

In (i), the map (Xr)g — Xo(IV)g is then an isogeny of elliptic curves over Q (see [Sch09, 1.2 (i)]),
so that N < 50 (compare with Example 6.7 below). By, for instance, Lemma 6.5 and Cremona’s
[ARS06, Thm. 5.2], the Manin conjecture holds for the optimal parametrization of the elliptic curve
(XT1)qg by the modular curve (X)g: the differential w associated to the unique normalized newform
on I'g(N) lies in H(7,Q'). However, by Theorem 5.15 and Remark 5.16, this wy is also a primitive
element of the lattice HO(Xi™, Q). Since HY(7J,Q') ¢ HY(X,Q) C HO(XF™, Q) (see (6.2.1)),
these Z-modules are then all generated by wy, so Proposition 6.2 gives (i).

In (ii), we have reduced to the Q-fiber of the map (6.6.1) being an isogeny of elliptic curves of
degree 3 (compare with [DS05, bottom of p. 66]). Thus, by [LMFDB, 36al], it must be the unique
degree 3 isogeny with source X¢(36)g. By [LMFDB, 36a3|, the Manin constant of the resulting
nonoptimal modular parametrization of the elliptic curve (XF0(9)m€*3)@ is 1, so the pullback of
the Néron differential wy is the differential w; associated to the unique normalized newform on
I'o(36). In particular, by Theorem 5.15 and Remark 5.16, this pullback is a primitive element of
H%(X((36)*™, Q') and, to conclude in the same way as for (i), we use the inclusions

(6.2.1)
C

H (7,01 HY(X

Fo(g)ﬁégg’Q) - HO( o Ql) - HO(X0(36)Sm7QI)7

Fo(g) N 63 )

the last one of which is obtained as (5.16.1) by using the map Xy(36) — Xro(9) 6y

0
Example 6.7. The Z-curve X((IV) has rational singularities for N =1,...,21,24, 25,27, 32, 36, 49:
these are the N for which X((V)g has genus < 1, that is, for which Proposition 6.6 (i) applies.

To upgrade the finite list of Proposition 6.6 to infinite families, in Proposition 6.10 we develop
general criteria for rational singularities of Xo(/N). For this, we use the following lemmas.

Lemma 6.8. For an action of a finite group G on a ring R, if both R and R® are complete, 2-
dimensional, Noetherian, normal, local domains (when #G is invertible in R, it suffices to assume
this for R) and R has rational singularities, then, for every proper birational Z — Spec(RG) with
Z normal, #G kills H'(Z, 0y), in particular, R® also has rational singularities when #G € R*.

Proof. We may assume that G acts faithfully and begin with the parenthetical claim, in which
#G € R* and we consider the R%-linear operator Z: r — # >_gec gr that fixes each a € RC. By
applying Z to any equality a = > r;a; with a,a; € RE and r; € R, we get R N IR = I for any
ideal I € R. In particular, R® inherits the ascending chain condition, so is a Noetherian domain.
The 0-dimensional localization R ® pe K@ of R is the fraction field K of R, so, by Galois theory,
it is a finite extension of the fraction field K¢ of R®. We choose a K%-basis rq,...,m, € R for K
and consider the R%-module map R — @}, R® given by r ~ (%(rr;))"_,. This map is injective
because the version of % for K cannot kill Y " | rr K ¢ = rK unless r = 0. Thus, R is a finite
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R%-module,?! so R < R is a finite, local map of Noetherian local domains that splits via Z as a
map of RE-modules, and hence RC is a complete, 2-dimensional, Noetherian, normal, local domain.

Returning to general G, for Z as in the statement we let Z - Spec R be the proper birational map
obtained by normalizing the base change Zp in K := Frac(R) (the finite type of Z over R follows
from [EGA 1Vy, 7.8.6 (ii)]). The G-action on R induces a compatible G-action on Z, for which the
integral map 7: Z — Zis equivariant (with G acting trivially on Z). Thus, since Z is normal, 7

induces an isomorphism Z /G =+ Z. Consequently, the trace map s + >. _~gs defines an Oz-

G
linear morphism 7.(&0) — 0z whose postcomposition with 07 — 7.(0%) isgriultiplication by #G
on Oz. The rational singularities assumption gives H'(Z,m.(05)) = 0 (see §6.1), so the induced
maps on H'(Z, —) show that #G kills the R“-module H'(Z, 0'7), as claimed. In particular, if #G
is a unit in R, so also in R®, then H'(Z, 07) = 0. By choosing a Z that is regular (see Lipman’s

[SP, 0BGP]), we then conclude that R® indeed has rational singularities. O

Lemma 6.9. For a prime p, we have p { #(Aut(z)/{£1}) for each x € Zo(N)(F,) whenever
(i) p > 5; or
(ii) p = 3 and there is a prime p' | N with p’ = 2 mod 3; or
(i) p =2 and there is a prime p' | N with p’ = 3 mod 4.

Proof. By [Ces17, proof of Thm. 6.7], for cuspidal  we have Aut(z) = {£1}, so we may assume that
x corresponds to an elliptic curve E over E, equipped with a cyclic (in the sense of Drinfeld) subgroup
C C E of order N. Thus, since Aut(z) C Aut(E) and #Aut(E) | 24 (see [KM85, 2.7.2]), we have
(i). For (ii) and (iii), we consider the action of Aut(x) on E[p'](F,). Firstly, if p’ is odd (resp., if
p’ = 2), then this action (resp., the induced action of Aut(x)/{%1}) is faithful, see [KM85, 2.7.2].
Thus, since it also preserves both the Weil pairing and the cyclic subgroup C’ := C'N E[p'] C E[p'],
any p-Sylow subgroup G of Aut(z) (resp., of Aut(z)/{%1}) acts semisimply on E[p/] and embeds
into Aut(C’) = (Z/p'Z)*. In particular, #G | p’—1, so that G = 1 in (ii) and G = {£1} in (iii). O

Proposition 6.10. For a prime p, an N € Z~g, and n := val,(N),
(i) if p>5; or
(ii) if p =3 and there is a p' | N with p’ = 2 mod 3; or
(i) if p = 3 and cither Xo(3" - Tz, or (X, g0,
subgroup Cs C GLo(Z) is the preimage of the cyclic subgroup Cs C GLo(Z/2Z); or

Z) has rational singularities where the
(iv) if p=2 and there is a p' | N with p’ = 3 mod 4; or
(v) if p=2 and Xo(2" - 5)z,, has rational singularities and N # 2"; or

(vi) if p =3 (resp., if p = 2) and for the level I'o(p") universal deformation ring R of (E,C),
where E/F, is the elliptic curve with j =0 and C C E the cyclic (in the sense of Drinfeld)
subgroup of order p™, and for every subgroup G' C G := Aut(F)/{%1} of p-power order,
RS has rational singularities (resp., same, but if N # 2™, then may restrict to cyclic G');

then XO(N)Z(p> has rational singularities.

21 Finite generation of R as an R%-module holds much more generally, even for noncommutative R, see [Mon80, 5.9].
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Proof. Since Xo(N)z,, is regular away from the F,-points z with j = 0 or j = 1728 (see [Ces17, 6.7]),
we need to show that Ox;(y), , has rational singularities for every such z. By Lipman’s [SP, 0BGP],
there is a proper birational map Z — Spec(Ox,(n),,) With Z regular and, by [EGA V3, 6.4.2,
7.8.3 (v)] (see also [Gre76, 5.6]), the 5’\32)(N)7I—base change of Z is regular. Thus, by checking the
vanishing H'(Z, 0z) = 0 after flat base change, & Xo(N),z has rational singularities if and only if so

does é’\%}(m,x. However, by [DR73, I, 8.2.1] (or [Ols06, 2.12]), we have

G a2 (G ) )N/ (6.10.1)

and 55%10(]\[) ., is regular by [KMS85, 6.6.1]. Thus, (i), (ii), and (iv) follow from Lemmas 6.8 and 6.9.

In (vi), the unique F is supersingular, C' is the kernel of the p™-fold relative Frobenius (see [KM8&5,
12.2.1]) and hence is preserved by Aut(E), and x maps to (E,C). Moreover, E[%] is étale, so its
subgroups ¢/ C E [pﬂn] deform uniquely, and hence R =2 ﬁ/\;}lo (N, by the modular interpretation of
Zo(N). Since G injects into (in fact, equals to) SLa(F3)/{£1} if p = 2 and SLa(F2) if p = 3 (see
[KM85, 2.7.2], also [Del75, 5.9 (IV)—(V), 7.4]), its p-Sylow subgroup G®) C G is normal. Thus, the
same holds for H := Aut(z)/{#1} C G, to the effect that R¥ = (RH(p))H/H(p). The assumption of
(vi) ensures that RH™ has rational singularities, so, by Lemma 6.8, so does R = ﬁg?o(N),x (see

(6.10.1)). To conclude (vi), we note that H is cyclic when p = 2 and N # 2": then the preimage of
H in Aut(FE) lies in the cyclic group (Z/p'Z)* for an odd prime p’ | N (see the proof of Lemma 6.9).

To show that (iii) and (v) follow from (vi), we set I' := T'o(3" - 7) or I := T'5(3") N Cs in (iii) and
[':=Ty(2"-5) in (v) and, in the view of the above, especially, the analogue of (6.10.1) for 21 and
the insensitivity of the universal deformation ring R of (E, C') in (vi) to tame level, need to show that
every cyclic subgroup G’ C Aut(E)/{£1} of p-power order is Aut(z)/{£1} for some z € 21 (F,).
For p = 3, the unique G’ of 3-power order is Z/3Z and its preimage G’ C Aut(E) is Z/6Z. Since F;
contains sixth roots of unity, the action of G' on E [7] is diagonalizable and either of the resulting
(-stable Fy-lines ¢’ C E[7] is the 7-primary part of a level structure that determines the desired
z for T'=T(3™ - 7). Similarly, the faithful action of G’ on F[2] determines a Cs-structure, and so
a desired z for T' = I'y(3") N Cs. For p = 2, the argument is analogous: now G’ is Z/27Z but is no
longer unique (the 2-Sylow of SLo(Fs)/{£1} is Z/2Z x Z/2Z), its preimage G’ is Z/AZ, and one
can diagonalize the action of G’ on E [5] because F5 contains fourth roots of unity. u

Remark 6.11. By the preceding proof, if N £ 2" then the p-Sylow subgroup of the exceptional
automorphism group at each Fy-point of Z5(V) is normal and either trivial or Z/pZ (the latter can
occur only for p = 2 and p = 3). In particular, Lemma 6.8 and the preceding proof show that for
any proper birational m: Z — Xo(N) with Z normal, the Ox,n)-module R'7.(Oy) is killed by 6.

A big portion of the following partial positive answer to Question 6.4 appeared in [Ray91, Thm. 2|:
our main improvement to loc. cit. is the inclusion of the cases val,(N) = 2 for p < 3.
Theorem 6.12. For a prime p, the modular curve (XO(N))Z(p) has rational singularities whenever
(a) p>5; or
(b) p =3 and either val,(N) < 2 or there is a prime p’ | N with p’ =2 mod 3; or

(c) p=2 and either val,(N) < 2 or there is a prime p' | N with p’ = 3 mod 4.
44


https://stacks.math.columbia.edu/tag/0BGP

Proof. Thanks to Proposition 6.10, it suffices to check is that Xo(7), X¢(21), and XF0(9) A&y 38 well
as Xo(5), X0(10), Xo(20), Xo(1), X0(2), and Xo(4) have rational singularities. We have already
done this in Proposition 6.6 (see also Example 6.7). O

Remark 6.13. The method would show that X((/V) has rational singularities for every N # 2"

equal to a conductor of an elliptic curve over Q if one knew that XF0(27)m5'3’ Xro(sl)még’ and
XF0(243)053 (or, if one prefers, X((27-7), Xo(81-7), and X((243-7)), as well as Xo(8-5), Xo(16-5),
X0(32-5), X0(64-5), X0(128-5), X(256-5), X(64), X0(128), and X((256) have rational singularities

(for well-known conductor exponent bounds for an elliptic curve over Q, see [Pap93, Cor. to Thm. 1]).

Corollary 6.14. For a normalized newform f € H°(2o(N)g,w®?(—cusps)) (see §5.5) and the
Néron model Jo(N) over Z of the Jacobian Jo(N) of Xo(N)q,

6-wyp e HY(Jo(N),QY),  where wy is the differential associated to f;

if Xo(N) has rational singularities, then even wy € HO(Jo(N),Q1).

Proof. The Manin conjecture for the quotient 7: Jo(N) — E with connected Ker(7) determined
by f predicts that w; is the pullback of a Néron differential wg of the elliptic curve E. By the
functoriality of Néron models, this pullback lies in H°(Jo(N),Q!), so, by, for instance, Cremona’s
[ARS06, Thm. 5.2| that verified the Manin conjecture for small N, we may assume that N # 2.
By Proposition 6.2, there is an inclusion H°(Jo(N), Q') — HY(Xo(N),Q) that is an isomorphism
if and only if X((/V) has rational singularities and, by Remark 6.11, in general its cokernel is killed
by 6. Thus, it remains to recall from Theorem 5.15 that wy € H(Xo(N), Q). O

7. A RELATION BETWEEN THE MANIN CONSTANT AND THE MODULAR DEGREE

Our final goal is to use the work above to establish Theorems 1.1 and 1.2. The following basic fact is
the underlying source of the relationship between the modular degree and the Manin constant.

Lemma 7.1. For a field k, a proper, smooth k-curve X with the Jacobian J = Picg(/k, a k-

surjection ¢: X — E onto an elliptic curve, a point P € X (k) with ¢(P) = 0, the closed immersion
ip: X — J given by Q — Ox(Q — P), and the homomorphism ©: J — E obtained from ¢ by the
Albanese functoriality of J, the composition mon": E — J — E is multiplication by deg ¢.

Proof. The existence of ¢ implies that X has genus > 0, and the map 7: J — FE is characterized by
Ox(Q — P) — ¢(Q), see [Mil86, 6.1]. Moreover, by [Mil86, 6.9 and 6.10 (c)], the map Pic%(ip) is
the negative of the inverse of the canonical principal polarization of J and the canonical principal
polarization of F sends a Q € E(k) to O #([0] — [Q]) (see also [Con04, 2.5]). In particular, the map

Pic’(¢) = Pic(ip) o 7V sends such a @ to ﬁxz([ﬁb_l((])] — [¢~1(Q)]) and, by taking into account
the canonical principal polarization of J, we find that m o 7" sends Q to deg¢ - Q. U

Theorem 7.2. For an elliptic curve E over Q of conductor N, a Néron differential wp € H(E,Q),
the normalized newform f determined by E, its associated wy € HO(XO(N)Q,Ql), a subgroup
[ (N) C I C Io(N), and a prime p, if for some subgroup I' C I C I'o(N) the curve (Xt)z,, has
rational singularities (see Theorem 6.12), then every surjection

¢: (Xr)go —» E  satisfies valy(cg) < valy(deg(¢)) with cy € Z defined by ¢*(wg) = ¢y - wy.
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Without the rational singularities assumption, we still have

1 if p=2 with valy(N) > 3 and there is no p’ | N with p’ = 3 mod 4,
val,(cy) < valy(deg(¢)) +< 1 if p=3 with val3(N) > 3 and there is no p' | N with p’ = 2 mod 3,

0 otherwise.

Proof. By Theorem 5.15, we have wy € H°(X71/,Q). Thus, by Proposition 6.2, the rational singu-
larity assumption ensures that wy € HO((jF/)Z(p) , Q') where Jr is the Néron model of the Jacobian
Jr of (Xrr)g. We choose a P € X1(Q), for instance, a rational cusp, and consider the resulting
embeddings (Xr)g < Jr and (Xr/)g — Jrv. By the Albanese functoriality of the Jacobian, the
map Xt — X induces a morphism Jr — Jrv, and we conclude by pullback that

wr € H((I1)z,), Q") (7.2.1)

(here we use the compatibility of the identification H°((Xp/)g, Q') = HO(Jr, Q) obtained by
pullback along (Xr/)g < Jrv with its counterpart obtained by Grothendieck—Serre duality as in
(6.2.2), see [Con00, Thm. B.4.1]). By postcomposing with a translation, we may assume that
¢(P) = 0, and we then let 7: Jp — E be the map that ¢ induces via the Albanese functoriality.
Lemma 7.1 ensures that 7o 7¥: E < Jpr — F is multiplication by deg(¢), so the same holds for
the induced €& — Jr — € on Néron models. Thus, by pullback, deg(¢) - wg = ¢4 - (1”)*(wy). Since
¢y € Z by Lemma 6.5 and (7¥)*(wy) € HO(E'Z(p),Ql) = Zp) - wE by (7.2.1), we obtain the sought

valy(cg) < valp(deg(e)).

Without the rational singularities assumption, by Corollary 6.14 and the Albanese functoriality as
above, we still have 6-wy € H(Jr, Q'), so the same argument gives val,(c,) < val,(deg(¢))+val,(6).
In particular, by also using Theorem 6.12, we obtain the claimed last display in the statement. [J

Since X7 (V) almost always agrees with the regular 27 (V), we now show that the above minor hypo-
thetical exceptions to the divisibility ¢4 | deg(¢) cannot occur for parametrizations by X1 (V)q.

Corollary 7.3. For an elliptic curve E over Q of conductor N, a Néron differential wg € HO(E, Q1),
the normalized newform f determined by E, and its associated wy € H°(X1(N)g,Q'), every sur-
jection

¢: X1(N)g - E satisfies cq | deg(¢) with cy € Z  defined by ¢*(wg) = cg - wy.

Proof. By Theorem 7.2, we have val,(cs) < valy(deg(¢)) for every prime p > 5. For the remaining
p =2 and p = 3, Theorem 7.2 applied with T' =T = I'1 (IV) gives the same as soon as X1(N)z<p) is

regular. By [KM85, 2.7.3, 5.5.1] and [éos]?, 4.1.3, 4.4.4], this happens whenever p’ | N for a prime
p’ > 5. Thus, we may assume that N = 2%-3° in fact, by the last aspect of Theorem 7.2, even that
N =2%0or N =3 (soa<8andb <5, see [Pap93, Cor. to Thm. 1]). For any isogeny 1: B/ — E,
since the composition with the dual isogeny is multiplication by deg(v), we have ¢*(wg) = ¢y - wgr
for some ¢y, € Z with ¢y | deg(¢). Thus, we may assume that ¢ does not factor through any
such 9. For low conductor curves, by Cremona’s [ARS06, Thm. 5.2], the Manin constant of such
optimal parametrizations by Xo(/V)g is #1. Thus, Lemma 6.5 allows us to conclude the same for
parametrizations by X1(N)g with N = 2% and N = 3%, so that indeed val,(cs) < valy(deg(¢)). O
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