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Abstract. The Manin constant c of an elliptic curve E over Q is the nonzero integer that scales
the differential ωf determined by the normalized newform f associated to E into the pullback of
a Néron differential under a minimal parametrization φ : X0(N)Q � E. Manin conjectured that
c = ±1 for optimal parametrizations, and we prove that in general c | deg(φ) under a minor
assumption at 2 and 3 that is not needed for cube-free N or for parametrizations by X1(N)Q.
Since c is supported at the additive reduction primes, which need not divide deg(φ), this improves
the status of the Manin conjecture for many E. Our core result that gives this divisibility is the
containment ωf ∈ H0(X0(N),Ω), which we establish by combining automorphic methods with
techniques from arithmetic geometry; here the modular curve X0(N) is considered over Z and Ω is
its relative dualizing sheaf over Z. We reduce this containment to p-adic bounds on denominators
of the Fourier expansions of f at all the cusps of X0(N)C and then use the recent basic identity for
the p-adic Whittaker newform to establish stronger bounds in the more general setup of newforms
of weight k on X0(N). To overcome obstacles at 2 and 3, we analyze nondihedral supercuspidal
representations of GL2(Q2) and exhibit new cases in which X0(N)Z has rational singularities.
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1. Introduction

By the Shimura–Taniyama conjecture settled in [Wil95], [TW95], and [BCDT01], for every elliptic
curve E over Q of conductor N and every subgroup Γ1(N) ⊂ Γ ⊂ Γ0(N) of GL2(Ẑ), there is a

surjection φ : (XΓ)Q � E from the modular curve (XΓ)Q.

Most commonly, Γ is Γ0(N) or Γ1(N), so that XΓ is X0(N) or X1(N), but for different Γ different
E may be more canonical within the same isogeny class: for instance, X1(11)Q and X0(11)Q are
distinct isogenous elliptic curves. The multiplicity one theorem ensures that the φ-pullback of a
Néron differential ωE is a nonzero multiple of the differential ωf ∈ H0((XΓ)Q,Ω

1) associated to the
normalized newform f whose Hecke eigenvalues agree with the Frobenius traces of E:

φ∗(ωE) = cφ · ωf for a unique cφ ∈ Q×,

and one knows that1 cφ ∈ Z (we abuse notation: ωE is nonunique, so φ determines only ±cφ). For
fixed Γ and E there are many φ, so it is common to normalize φ to be optimal, that is, deg(φ) to be
the least possible as E varies in its isogeny class and Γ is fixed (any φ factors through an optimal one,
see the proof of Lemma 6.5 and use multiplicity one). For optimal φ, Manin conjectured that

cφ
?
= ±1,

see [Man71, 10.3].2 From the theoretical point of view, the natural approach to the Manin conjecture
is to argue that p - cφ for every prime p: geometrically, this p-adic statement translates to studying
the arithmetic properties of the “reduction modulo p” of the parametrization φ. This is not so in
the computational approach, where for explicit E one computes with modular symbols to check
“directly” that cφ = ±1: indeed, Cremona used the computational approach to prove in [Cre22]
that the Manin conjecture holds whenever N ≤ 500000. The divergence of the two approaches gives
this overwhelming computational evidence for the Manin conjecture even more weight.

The initial theoretical results on the Manin conjecture were based on exactness properties of Néron
models and showed that p - cφ for those p > 2 at which E has semistable reduction, see [Maz78] (and
[AU96], [ARS06] for some sharpenings). By passing to a minimal extension K of Qp over which E
acquires semistable reduction and analyzing a stable integral model ofX0(N)Qp , Edixhoven was able
to extend this approach to some primes p at which E has additive reduction: in [Edi91, Thm. 3],
he showed that p - cφ for any prime p ≥ 11 at which E does not have an additive potentially
ordinary reduction of Kodaira type II, III, or IV.3 In these geometric approaches, the key input to
the required exactness properties is Raynaud’s result from [Ray74] on uniqueness of commutative,
finite, flat group schemes with a fixed generic fiber over a complete discrete valuation ring of mixed
charcateristic (0, p) and absolute ramification index e < p−1. Raynaud’s results were later subsumed
into integral p-adic Hodge theory but the requirement e < p− 1 for exactness properties persisted,
so there seems to be little hope that this approach is the “right” one for the Manin conjecture.

The conclusion p - cφ was established for all primes p of semistable reduction for E by a different
method in [Čes18]. The key novelty was to analyze the Hecke module structure of the Lie algebra
of the Néron model of J0(N) using a multiplicity one result in characteristic p, and this showed
that automorphic rather than purely algebro-geometric techniques that were tried previously may be

1It seems that the integrality of cφ was first noticed by Gabber during his PhD studies. To establish it, one reduces
to the case Γ = Γ1(N) and then uses q-expansions, see Lemma 6.5 and its proof.

2Manin considered Γ = Γ0(N), and this implies the general case by Lemma 6.5. In [Ste89], Stevens argued that
minimal degree parametrizations by X1(N)Q are the most natural ones, and he conjectured that cφ = ±1 for them.

3In the unfinished manuscript [Edi01], he attempted to remove this assumption on Kodaira types (still for p ≥ 11).
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better suited for the Manin conjecture. The latter is most interesting in the remaining case of a prime
p of additive reduction for E, since then the relevant arithmetic geometry is the most delicate.

In this article, we combine automorphic methods with those of arithmetic geometry to settle a
subconjecture of the Manin conjecture, reviewed as (?) below. We then show that this subconjecture
has the following divisibility consequences for the Manin constant.

Theorem 1.1 (Corollary 7.3). For an elliptic curve E over Q of conductor N , every surjection

φ : X1(N)Q � E satisfies cφ | deg(φ).

Theorem 1.2 (Theorem 7.2). For an elliptic curve E over Q of conductor N , and for a level Γ
with Γ1(N) ⊂ Γ ⊂ Γ0(N), every surjection

φ : (XΓ)Q � E satisfies cφ | 6 · deg(φ),

and if N is cube-free (that is, if 8 - N and 27 - N), then even

cφ | deg(φ).

More precisely, under these assumptions, for every prime p we have

valp(cφ) ≤ valp(deg(φ)) +


1 if p = 2 with val2(N) ≥ 3 and there is no p′ | N with p′ ≡ 3 mod 4,
1 if p = 3 with val3(N) ≥ 3 and there is no p′ | N with p′ ≡ 2 mod 3,
0 otherwise,

and, more generally, if for some Γ ⊆ Γ′ ⊆ Γ0(N) the singularities of (XΓ′)Z(p)
are rational, then

valp(cφ) ≤ valp(deg(φ)).

The modular degree deg(φ) is often even, for instance, if Γ = Γ0(N) and φ factors through some
Atkin–Lehner quotient, but otherwise it is somewhat mysterious. In particular, for many E this
degree is coprime with N , to the effect that the new upper bound valp(cφ) ≤ valp(deg(φ)) supplied
by Theorems 1.1 and 1.2 eliminates4 some additive primes that could divide cφ for optimal φ.

To illustrate, in the following figure we plotted in green the fraction of those isogeny classes of E
over Q of conductor N ≤ 300000 that have an odd additive prime p but for which no such p divides
deg φ, where φ is the optimal parametrization by X0(N)Q; if p = 3 with val3(N) ≥ 3, then we also
require that there exist a p′ | N with p′ ≡ 2 mod 3. Theorem 1.2 shows that the Manin constant for
such E is a power of 2 (the semistable primes are eliminated by earlier results, as reviewed above).
Furthermore, we plotted in yellow the fraction of those isogeny classes as above for which some odd
p of additive reduction does not divide deg φ and some other does, with the same caveat for p = 3,
so that Theorem 1.2 eliminates at least one odd additive prime. Even though in all of these small
conductor cases the full Manin conjecture is known by Cremona’s verification [Cre22], the figure
shows the scope of the improvement supplied by Theorems 1.1 and 1.2.

4The bounds in Theorems 1.1 and 1.2 hold for any parametrization φ, although it is only for optimal φ that the
Manin constant cφ is conjectured to equal ±1 (and known to be divisible only by the primes of additive reduction). For
example, when E equals the elliptic curve with Cremona label 11a3, which is a model ofX1(11)Q, and φ : X0(N)Q � E
is the isogeny of least degree, one has cφ = deg(φ) = 5, which is consistent with our bounds.
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The key input to Theorems 1.1 and 1.2 and the core result of this article is the following integrality
property of ωf that follows from the Manin conjecture. Namely, we argue in Theorem 5.15 that

ωf lies in the Z-lattice H0(X0(N),Ω) ⊂ H0(X0(N)Q,Ω
1), (?)

where the modular curve X0(N) is over Z and Ω is its relative dualizing sheaf over Z. In addition
to being implied by the Manin conjecture, the containment (?) is actually necessary for attacking
it: except for unforeseen radically new approaches, all indications point to (?) being used in future
work on the remaining cases of the Manin conjecture.

The containment (?) is straight-forward in the semistable case, that is, for squarefree N , thanks
to q-expansions and the Atkin–Lehner involution. More generally, since the formal completion
of X0(N) along ∞ is Spf(ZJqK), the weaker containment ωf ∈ H0(X0(N)∞,Ω1) amounts to the
integrality of the Fourier expansion of f at ∞, where X0(N)∞ ⊂ X0(N) is the (Z-smooth) open
complement of those Z-fibral irreducible components that do not meet the Z-point given by the
cusp ∞. Similarly, (?) amounts to certain bounds on the p-adic valuations of the denominators of
the Fourier coefficients of f at all the cusps of X0(N)C—at least up to difficulties caused by the
lack of a modular interpretation of the coarse space X0(N) that we overcome in §5 by exploiting
the Deligne–Mumford stack X0(N) and its “relative dualizing” sheaf Ω. We compute the precise
required bounds in Proposition 5.14, and an important step for this is to compute the differents of
the extensions of discrete valuation rings obtained by localizing the finite flat cover X0(N)→X (1)
at the generic points of the Fp-fiber of X0(N), which we do in Proposition 5.12.

To show that the required bounds are met, we use automorphic methods to establish the following
stronger bounds. In Example 4.8 we show that these bounds are sharp in the case of newforms
associated to elliptic curves (and p ≤ 11) and we discuss their computational potential.

Theorem 1.3 (Theorem 4.6 and Lemma 5.13). For a prime p, a cuspidal, normalized newform f
of weight k on Γ0(N), an isomorphism C ' Qp, the resulting valp : C→ Q ∪ {∞} with valp(p) = 1,
and a cusp c ∈ X0(N)(C) of denominator L (see §4.1), the Fourier coefficients af (r; c) satisfy

valp(af (r; c)) ≥ −k
2 valp

(
N

gcd(L2, N)

)
+


0 if valp(gcd(L, NL )) = 0,

0 if valp(gcd(L, NL )) = 1, valp(N) > 2,

−1
2 if valp(L) = 1

2valp(N) = 1,

1− 1
2valp(gcd(L, NL )) otherwise,
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as well as the following stronger bounds in the case p = 2:

val2(af (r; c)) ≥ −k
2 val2

(
N

gcd(L2, N)

)
+


0 if val2(L) = 1

2val2(N) = 1,
k
2 if val2(L) = 1

2val2(N) ∈ {2, 3, 4},
k
2 + 1− 1

4val2(N) if val2(L) = 1
2val2(N) > 4,

0 if val2(gcd(L, NL )) = 3, val2(N) > 6.

Moreover, minr(valp(af (r; c))) only depends on f and L, and not on the cusp c with denominator L.

To argue the above bounds we pass to the automorphic side by expressing the “p-part” of af (r; c)
in terms of the local Whittaker newform Wf, p of the irreducible, admissible representation πf, p of
GL2(Qp) determined by f (see Lemma 4.5 and its proof). Thus, Theorem 1.3 hinges on the p-adic
analysis of the values of Wf, p, which is a purely local question about πf, p. To access these values,
we use the local Fourier expansion ofWf, p and analyze the resulting local Fourier coefficients ct, `(χ)
with the help of the recent “basic identity” (reviewed in §3.5) that was derived by the third-named
author in [Sah16] from the GL2 local functional equation of Jacquet–Langlands [JL70].

The coefficients ct, `(χ) ∈ C are indexed by characters χ : Z×p → C× (the relevant t and ` are
determined by N , L, and r), and reasonably explicit formulas for the ct, `(χ) were worked out in
special cases in [Sah16] and appeared in general in the recent work of Assing [Ass19]. These formulas
involve the Jacquet–Langlands GL2 local ε-factors, which for p 6= 2 can be expressed in terms of the
GL1 local ε-factors of Tate, equivalently, in terms of Gauss sums of characters of F× for at most
quadratic extensions F/Qp. In effect, p-adically bounding the values ofWf, p, which is a problem on
GL2, reduces to p-adically bounding Gauss sums of characters, which is an approachable problem on
GL1. We study the latter in §2 and then bound the values ofWf, p in the key Theorems 3.14 and 3.15.
Their most delicate case p = 2 uses a classification of nondihedral supercuspidal representations of
GL2(Q2) derived via the local Langlands correspondence (see Proposition 3.9) and, to go beyond
the naïve bounds, takes into account cancellations between the ct, `(χ). Thanks in part to this
additional attention to p = 2, we obtain the integrality result (?) without any exceptions.

In a more restrictive setting and by a different method, bounds on p-adic valuations of Fourier
expansions were investigated by Edixhoven in §3 of his unfinished manuscript [Edi01]. There he
also hoped for a more conceptual approach that would be based on studying the Kirillov model of
πf, p, and the work of our §§2–4 realizes this prediction (we use the Whittaker model instead).

The automorphic approach to (?) seems much sharper and more natural than those based on arith-
metic geometry alone. For instance, as explained in Conrad’s [BDP17, App. B], one may use
intersection theory on the regular stacky arithmetic surface X0(N) to bound the denominator of
ωf with respect to the lattice H0(X0(N),Ω) ∼= H0(X0(N),Ω) (see Corollary 5.4 for this identifi-
cation). The bounds obtained in this way are far from those needed for (?), but the intersection-
theoretic approach is not specific to ωf—in essence it bounds the exponent of the finite group
H0(X0(N)∞,Ω1)/H0(X0(N),Ω). Loc. cit. carries it out5 for the line bundle ω⊗k in place of Ω.

Turning back to Theorem 1.2, the only role of its rational singularity assumption is to ensure that
Pic0

X0(N)/Z is the Néron model J0(N) of the Jacobian J0(N) (here we chose Γ′ = Γ0(N) to simplify),
and so to deduce from (?) that ωf lies in an even a priori smaller lattice H0(J0(N),Ω1) that seems

5Unfortunately, beyond the case valp(N) = 1 treated in [DR73, VII, 3.19–3.20], the explicit bounds stated in
[BDP17, B.3.2.1] suffer from a typo in the values of the multiplicities of the components of X0(N)Fp stated in
[BDP17, B.3.1.3] (by [KM85, 13.5.6], the correct multiplicity of the (a, b)-component for a, b > 0 is pmin(a, b)−1(p−1)).
Consequently, the asymptotic behavior in p of the stated bounds differs from the case valp(N) = 1.
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otherwise inaccessible. We do not know any N for which this assumption fails, in fact, for a prime
p we show in Theorem 6.12 that X0(N)Z(p)

has rational singularities in the following cases:

(i) if p ≥ 5; or

(ii) if p = 3 and either valp(N) ≤ 2 or there is a prime p′ | N with p′ ≡ 2 mod 3; or

(iii) if p = 2 and either valp(N) ≤ 2 or there is a prime p′ | N with p′ ≡ 3 mod 4.

The bulk of this rational singularity criterion is due to Raynaud [Ray91], but we used low conductor
instances of the Manin conjecture to add the cases p ≤ 3 with valp(N) = 2. The technique we develop
for this also reduces the desired divisibility cφ | deg(φ) in its few still outstanding cases to a finite
computational problem (albeit not one we know how to solve completely), see Remark 6.13.

1.4. Notation and conventions. For a prime p, we let valp : Qp → Q ∪ {∞} be the p-adic
valuation with valp(p) = 1. For a nonarchimedean local field F , we let OF be its integer ring,
mF ⊂ OF the maximal ideal, $F ∈ mF a uniformizer, FF := OF /mF the residue field, qF := #FF
its order, and WF ⊂ Gal(F/F ) the Weil group. We normalize local class field theory by letting
geometric Frobenii map to uniformizers (see [BH06, §29.1]). We normalize the absolute value | · |F
on F by |$F |F = 1

qF
. We set ζF (s) := 1

1−q−sF
, for which we only need the values

ζF (1) = qF
qF−1 and ζF (2) =

q2
F

q2
F−1

. (1.4.1)

For a (continuous) character χ : F× → C×, we let a(χ) be the conductor exponent : the smallest
n > 0 with χ(1+mn

F ) = 1 if χ(O×F ) 6= {1} and 0 if χ(O×F ) = {1} (in which case χ is unramified). For
a nontrivial additive character ψ : F → C×, we let c(ψ) be the smallest6 n ∈ Z with ψ(mn

F ) = {1}.

For an open subgroup Γ ⊂ GL2(Ẑ), we let XΓ be the level Γ modular Deligne–Mumford Z-stack
defined in [DR73, IV, 3.3] via normalization, and XΓ its coarse moduli space, so that XΓ is the
usual projective modular curve over Z of level Γ and, whenever Γ is small enough, XΓ = XΓ (see
[Čes17, §4.1, 6.1–6.3] for a basic review of these objects). We let

Γ0(N) ⊂ GL2(Ẑ) be the preimage of {( ∗ ∗0 ∗ )} ⊂ GL2(Z/NZ), and set X0(N) := XΓ0(N);

Γ1(N) ⊂ GL2(Ẑ) be the preimage of {( 1 ∗
0 ∗ )} ⊂ GL2(Z/NZ), and set X1(N) := XΓ1(N);

Γ(N) ⊂ GL2(Ẑ) be the preimage of {( 1 0
0 1 )} ⊂ GL2(Z/NZ), and set X (N) := XΓ(N).

We write X0(N), X1(N), X(N) for the coarse spaces and use the j-invariant to identify X(1) with
P1
Z (see [DR73, VI, 1.1 and VI, 1.3]). For a scheme X, we let Xreg ⊂ X be the set of x ∈ X with

OX,x regular. If X is over a base S, we let Xsm ⊂ X be the open locus of S-smoothness. We
let Ω1

X/S denote the Kähler differentials. We let x be a geometric point over x and let Osh
X,x or

Osh
X,x denote the resulting strict Henselization. We also use analogous notation when X is merely a

Deligne–Mumford stack.

We let Z be the integral closure of Z in C, set ζn := e2πi/n, and let Z(p) be the localization of Z
at the prime (p). We let φ(m) := #((Z/mZ)×) be the Euler totient function. For a field, a ‘finite
extension’ means a finite field extension. Rings are assumed to be commutative. Both ⊂ and ⊆
allow equality. We write ∼= for canonical isomorphisms (identifications), ' for noncanonical ones,
↪→ for monomorphisms, � for epimorphisms, and ∼−→ for isomorphisms (in categories in question).
Our representations and characters are continuous and over C, and 1 is the trivial character.

6In terms of the notation n(ψ) used in [Tat79, (3.2.6)] or [Del73b, 3.4], we have c(ψ) = −n(ψ).
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2. p-adic properties of Gauss sums

Our ultimate source of p-adic properties of coefficients of q-expansions of newforms at cusps is the
p-adic properties of Gauss sums of characters, relatedly, of ε-factors of GL(1). Thus, we begin by
explicating the latter in this section, especially, in Proposition 2.3 and Theorem 2.6.

2.1. Local field Gauss sums. For a finite extension F/Qp, a multiplicative character χ :F×→C×,
a nontrivial additive character ψ : F → C×, the Gauss sum of χ with respect to ψ is defined by

Gψ(x, χ) :=

∫
O×F

χ(y)ψ(xy) d×y for x ∈ F×, with the normalization
∫
O×F

d×y = 1.

Since Gψ(x, χ) only sees χ|O×F , it does not change when χ is multiplied by an unramified character,
so we lose no generality if we assume that χ lies in the set

X := {continuous character χ : F× → C× with χ($F ) = 1} ∼= Homcont(O×F ,C
×).

Characters in X are unitary and of finite order, and we also consider subsets of fixed conductor
exponent:

X≤k := {χ ∈ X | a(χ) ≤ k} and Xk := {χ ∈ X | a(χ) = k}
(to stress the underlying field, we also write XF , XF,≤k, and XF, k). The Gauss sum Gψ(x, χ) is
related to the GL(1)-epsilon factors ε(s, χ, ψ) defined by Tate (see [Tat79, (3.2)] or [Sch02, §1.1]):
under the common normalization c(ψ) = 0, by [CS18, Lemma 2.3], for every χ ∈ X, we have

Gψ(x, χ) =


1 if a(χ) = 0 and valF (x) ≥ 0,

− 1
qF−1 if a(χ) = 0 and valF (x) = −1,

q
1−a(χ)/2
F
qF−1 ε(1

2 , χ
−1, ψ)χ(x−1) if a(χ) > 0 and valF (x) = −a(χ),

0 otherwise.

(2.1.1)

We will use this together with properties of ε-factors: for instance, for a multiplicative character
χ : F× → C×, a nontrivial additive character ψ : F → C×, and any s ∈ C, by [Sch02, §1.1], we have

ε(s, χ, ψ) = ε(1
2 , χ, ψ)q

(c(ψ)−a(χ))(s− 1
2

)

F and ε(1
2 , χ, aψ) = χ(a)ε(1

2 , χ, ψ) for a ∈ F×, (2.1.2)

where aψ : F → C× is the character x 7→ ψ(ax). In particular, there is little harm in restricting to
s = 1

2 and assuming the common normalization c(ψ) = 0, under which, by loc. cit., we have

ε(1
2 , χχ

′, ψ) = χ′($F )a(χ)ε(1
2 , χ, ψ) and ε(1

2 , χ
′, ψ) = 1 whenever a(χ′) = 0, (2.1.3)

ε(1
2 , χ, ψ)ε(1

2 , χ
−1, ψ) = χ(−1) and, if χ is unitary, then |ε(1

2 , χ, ψ)| = 1. (2.1.4)
7



Due to (2.1.1), the only case in which the study of the p-adic properties of Gψ(x, χ) has substance
is when χ is ramified and valF (x) = −a(χ). Moreover, by a change of variables,

Gψ(xu, χ) = χ(u−1)Gψ(x, χ) for u ∈ O×F , so it suffices to consider Gψ($
−a(χ)
F , χ).

We will analyze the latter below, and we begin in Proposition 2.3 with the case a(χ) = 1, a case
whose study reduces to that of classical Gauss sums of multiplicative characters of finite fields.

2.2. Finite field Gauss sums. For a finite extension F/Fp, a character χ : F× → C×, and a
nontrivial additive character ψ : F→ C×, the classical Gauss sum of χ (with respect to ψ) is

gψ(χ) := −
∑

a∈F× χ(a)ψ(a), so that gψ(χ) ∈ Z[ζ#F−1, ζp].

By, for instance, [Was97, Lem. 6.1], we have

gψ(1) = 1 and gψ(χ)gψ(χ) = #F for χ 6= 1,

so the prime ideals of Q(ζ#F−1, ζp) that divide gψ(χ) all lie above p and

if χ2 = 1, then gψ(χ)2 = χ(−1) ·#F. (2.2.1)

We will be interested in valp(gψ(χ)) for the p-adic valuation valp determined by a choice of an
isomorphism ι : Qp ' C. Via Teichmüller representatives, the latter determines a character

ωF : F× → C× of order #F− 1 such that ωF(a) ≡ a mod p.

Thus, every χ : F× → C× is of the form χ = ω
−α(χ)
F for a unique 0 ≤ α(χ) < #F− 1, and we set

s(χ) :=
∑[F:Fp]−1

i=0 ai, where α(χ) =
∑[F:Fp]−1

i=0 aip
i, 0 ≤ ai ≤ p− 1, is the base-p expansion

(s(χ) and α(χ) depend on the implicitly fixed ι; abusively, we also extend this notation to characters
χ̃ : F× → C× with a(χ̃) ≤ 1, where F/Qp is a finite extension with residue field F). Certainly,

0 ≤ s(χ) ≤ (p− 1)[F : Fp] with s(χ) =

{
0 if and only if χ = 1,
(p−1)[F:Fp]

2 if p is odd, χ2 = 1, χ 6= 1.
(2.2.2)

By [Was97, Lem. 6.11, Prop. 6.13], we have

s(χχ′) ≡ s(χ) + s(χ′) mod p− 1, 0 ≤ s(χχ′) ≤ s(χ) + s(χ′). (2.2.3)

In particular, since, for a finite extension F′/F, both ωF′ |F = ωF and ωF◦NormF′/F =
∏[F′:F]−1
i=0 ω

(#F)i

F′ ,

s(ξ|F×) ≡ s(ξ) mod p− 1 and s(χ◦NormF′/F) ≡ [F′ : F]s(χ) mod p−1 for ξ : F′× → C×. (2.2.4)

By a special case of Stickelberger’s congruence, that is, by [Was97, Prop. 6.13 and before Lem. 6.11],

valp(gψ(χ)) = s(χ)
p−1 ,

and this key identity gives the following result.

Proposition 2.3. For a finite extension F/Qp, a multiplicative character χ : F× → C× with
a(χ) ≤ 1, an additive character ψ : F → C× with c(ψ) = 0, an x ∈ $−1

F O
×
F , and an isomor-

phism C ' Qp,

valp(Gψ(x, χ)) = s(χ)
p−1 ,

and (qF − 1)Gψ(x, χ) is an algebraic integer in Q(ζqF−1, ζp) that is a unit away from p.
8



Proof. Since a(χ) ≤ 1, we may view χ as a nontrivial character of F×F . Moreover, since c(ψ) = 0,
the character ψ defines a nontrivial additive character ψ : F → C× by ψ(t mod mF ) := ψ($−1

F t).

The definitions reviewed in §§2.1–2.2 give Gψ($−1
F , χ) = −gψ(χ)

qF−1 , so §2.2 gives the claims. �

A similar analysis of Gψ($
−a(χ)
F , χ) for a(χ) ≥ 2 in Theorem 2.6 will use the following lemmas

whose goal is to express this Gauss sum more or less explicitly.

Lemma 2.4. For a finite extension F/Qp, a multiplicative character χ : F× → C× with a(χ) ≥ 2,
and an additive character ψ : F → C× with c(ψ) = 0, there is a u ∈ O×F such that

(i) if a(χ) is even, then

χ(1 +$
a(χ)/2
F x) = ψ(u$

−a(χ)/2
F x) for all x ∈ OF ;

(ii) if a(χ) is odd, then

χ(1 +$
(a(χ)+1)/2
F x) = ψ(u$

−(a(χ)−1)/2
F x) for all x ∈ OF ;

(iii) if both p and a(χ) are odd, then

χ(1 +$
(a(χ)−1)/2
F x) = ψ(u($

−(a(χ)+1)/2
F x− $−1

F x2

2 )) for all x ∈ OF .

Proof. We set ε := 0 if a(χ) is even and ε := 1 if a(χ) is odd, so that the map x 7→ χ(1+$
(a(χ)+ε)/2
F x)

is an additive character θ : F → C× with c(θ) = (a(χ) − ε)/2. All such characters have the form
x 7→ ψ(u$

−(a(χ)−ε)/2
F x) for some u ∈ O×F (see [BH06, §1.7, Prop.]), so (i) and (ii) follow.

For (iii), let U ⊂ O×F be a set of representatives of O×F /(1 + m
(a(χ)+1)/2
F ) and consider the maps

χu : 1 + m
(a(χ)−1)/2
F → C× for u ∈ U

defined by

χu(1 +$
(a(χ)−1)/2
F x) := ψ(u($

−(a(χ)+1)/2
F x− $−1

F x2

2 )) = ψ(u$
−a(χ)
F ($

(a(χ)−1)/2
F x− ($

(a(χ)−1)/2
F x)2

2 )).

Thanks to the power series expansion z − z2

2 + . . . of log(1 + z), the function χu is a multiplicative
character that is trivial on 1 + m

a(χ)
F but not on 1 + m

a(χ)−1
F . Moreover, since the characters

(uψ)|
m
−(a(χ)+1)/2
F

are pairwise distinct (compare with the proof of [BH06, §1.7, Prop.]), so are the

χu. Thus, since #U = q
(a(χ)−1)/2
F (qF − 1), the χu exhaust the set of those multiplicative characters

on (1 + m
(a(χ)−1)/2
F )/(1 + m

a(χ)
F ) that are nontrivial on 1 + m

a(χ)−1
F . Consequently, χ = χu for some

u, as desired, and, certainly, this u is also a valid choice for part (ii). �

Lemma 2.5. For a finite extension F/Qp, a multiplicative character χ : F× → C× with a(χ) ≥ 2,
an additive character ψ : F → C× with c(ψ) = 0, and a u ∈ O×F as in Lemma 2.4,

(i) if a(χ) is even, then

Gψ($
−a(χ)
F , χ) =

q
1−a(χ)/2
F
qF−1 ψ(−u$−a(χ)

F )χ(−u).
9



(ii) if a(χ) is odd, then

Gψ($
−a(χ)
F , χ) =

q
−(a(χ)−1)/2
F
qF−1 ψ(−u$−a(χ)

F )
∑

t∈OF /mF
χ(−u−ut$(a(χ)−1)/2

F )ψ(−ut$−(a(χ)+1)/2
F )

where we sum over coset representatives (their choice does not affect the summands).

Proof. We again set ε := 0 if a(χ) is even and ε := 1 if a(χ) is odd. Letting d×y and dy be the Haar
measures on F× and F normalized by

∫
O×F

d×y = 1 and
∫
OF dy = 1, respectively, we then have

Gψ($
−a(χ)
F , χ) =

∫
y∈O×F

ψ($
−a(χ)
F y)χ(y)d×y

=
∑

v∈O×F /(1+m
(a(χ)+ε)/2
F )

χ(v)

∫
y∈(1+m

(a(χ)+ε)/2
F )

ψ($
−a(χ)
F vy)χ(y)d×y

where the sum is over some fixed coset representatives v ∈ O×F . The integral in this sum equals
qF

qF − 1

∫
y∈(1+m

(a(χ)+ε)/2
F )

ψ($
−a(χ)
F vy)χ(y)dy

=
q

1−(a(χ)+ε)/2
F

qF − 1
ψ($

−a(χ)
F v)

∫
y∈OF

ψ($
−(a(χ)−ε)/2
F vy)χ(1 +$

(a(χ)+ε)/2
F y)dy

2.4
=
q

1−(a(χ)+ε)/2
F

qF − 1
ψ($

−a(χ)
F v)

∫
y∈OF

ψ($
−(a(χ)−ε)/2
F (v + u)y)dy.

The latter vanishes unless the integrand defines the trivial additive character of OF , that is, unless,
v ≡ −u mod m

(a(χ)−ε)/2
F . If a(χ) is even, this happens precisely when v is in the coset−u(1+m

a(χ)/2
F ),

and (i) follows. If a(χ) is odd, then the same happens precisely when v is in a coset of the form
(−u+ t$

(a(χ)−1)/2
F )(1 +m

(a(χ)+1)/2
F ) with t ∈ OF , and two such cosets are distinct if and only if the

corresponding t are distinct modulo mF . Thus, by choosing coset representatives t for OF /mF and
readjusting our choices of coset representatives v, for odd a(χ) we obtain

Gψ($
−a(χ)
F , χ) =

q
1−(a(χ)+1)/2
F

qF − 1

∑
t∈OF /mF

χ
(
−u+ t$

(a(χ)−1)/2
F

)
ψ
(
$
−a(χ)
F (−u+ t$

(a(χ)−1)/2
F )

)
.

To conclude (ii), it remains to adjust the representatives t by replacing them by −ut. Finally, by
Lemma 2.4 (ii), the summands in (ii) are independent of the coset representatives for OF /mF . �

Theorem 2.6. For a finite extension F/Qp, a multiplicative character χ : F× → C× with a(χ) ≥ 2,
and an additive character ψ : F → C× with c(ψ) = 0,

q
−1+a(χ)/2
F (qF − 1)Gψ(x, χ) is a root of unity for every x ∈ $−a(χ)

F O×F .

Proof. The case of an even a(χ) follows from Lemma 2.5 (i) (with (2.1.1) to replace x by $−a(χ)
F ).

Thus, we assume that a(χ) is odd, choose a u ∈ O×F as in Lemma 2.4, and, by Lemma 2.5 (ii), need
to show that q−1/2

F T is a root of unity where

T :=
∑

t∈OF /mF F (t) with F (t) := χ(1 + t$
(a(χ)−1)/2
F )ψ(−ut$−(a(χ)+1)/2

F ),

so that F (t) only depends on the class inOF /mF of the representative t. For odd p, by Lemma 2.4 (iii),

T =
∑

t∈OF /mF ψ
(
−ut2$−1

F
2

)
.

10



Thus, for odd p, letting ψ′ : FF → C× be the nontrivial additive character t 7→ ψ
(
−ut$−1

F
2

)
and

χ′ : F×F → C× the unique nontrivial quadratic character, we have

T = 1 +
∑

t∈F×F
ψ′(t2) = 1 +

∑
t∈F×F

(χ′(t) + 1)ψ′(t) = −gψ′(χ′).

Consequently, (2.2.1) shows that q−1/2
F T is a root of unity for odd p.

In the remaining case p = 2, we instead let ψ′ : FF → {±1} ⊂ C× be the nontrivial additive
character t 7→ χ(1 + t$

a(χ)−1
F ) and seek to conclude by showing that q−1

F T 2 is a root of unity. For
this, we first note that, since F (2t) = F (0) = 1, the identity

F (t)F (t′) = χ(1 + (t+ t′)$
(a(χ)−1)/2
F + tt′$

a(χ)−1
F )ψ(−u(t+ t′)$

−(a(χ)+1)/2
F ) = F (t+ t′)ψ′(tt′)

applied in the case t = t′ shows that each F (t) is a fourth root of unity. We obtain

T 2 =
∑

t, t′∈FF F (t)F (t′) =
∑

t, t′∈FF F (t+ t′)ψ′(tt′) =
∑

s∈FF

(
F (s)

∑
t∈FF ψ

′(t2 + ts)
)
,

where, since t 7→ t2 is an automorphism of FF and ψ′ is nontrivial, the inner sum vanishes for s = 0.
For s 6= 0, the kernel of the F2-linear map FF → FF given by t 7→ t2 + ts is {0, s}, so its image is an
F2-hyperplane Hs ⊂ FF , and hence the inner sum also vanishes if Hs 6= Ker(ψ′) and else equals qF .
Thus, we are reduced to showing that there is a unique s ∈ FF \ {0} with Hs = Ker(ψ′) or, since
the total number of F2-hyperplanes in FF is qF − 1, that the Hs exhaust all such hyperplanes.

Scaling by a fixed r ∈ F×F is an F2-linear automorphism of FF , and the nonzero orbits of this
automorphism all have the same order equal to the order m of r in the group F×F . Thus, scaling by r
fixes no F2-hyperplaneH ⊂ FF unless r = 1: elsem would divide the consecutive integers #(H\{0})
and #(FF \H). Consequently, by scaling, F×F acts transitively on the set of F2-hyperplanes H ⊂ FF
and it remains to note that scaling by an r ∈ F×F brings Hs = {t2+st | t ∈ FF } to another hyperplane
of this form, namely, to Hr′s for the unique r′ ∈ FF with r′2 = r. �

The above analysis of Gauss sumsGψ(x, χ) gives the following consequence for ε-factors of GL(1).

Corollary 2.7. For a finite extension F/Qp, a multiplicative character χ : F× → C× of finite order,
and a nontrivial additive character ψ : F → C×, we have

ε(1
2 , χ, ψ) ∈ Z[1

p ]×. (2.7.1)

Moreover, for any isomorphism C ' Qp,

(i) if a(χ) = 1, then, with the notation of §2.2,

valp(ε(
1
2 , χ, ψ)) = − [FF :Fp]

2 + s(χ−1)
p−1 ;

(ii) if χ2 = 1 or a(χ) > 1, then ε(1
2 , χ, ψ) is a root of unity, and so valp(ε(

1
2 , χ, ψ)) = 0.

Proof. By (2.1.2), we may assume that c(ψ) = 0. The twist by an unramified character formula
(2.1.3) then settles the case a(χ) = 0 and also allows us to assume that χ($F ) = 1, that is, that
χ ∈ X. In this remaining case of a χ ∈ X with a(χ) > 0, by (2.1.1), we have

ε(1
2 , χ, ψ) = qF−1

q
1−a(χ)/2
F

Gψ($
−a(χ)
F , χ−1)χ($

a(χ)
F ).

In particular, Proposition 2.3 and Theorem 2.6 give ε(1
2 , χ, ψ) ∈ Z[1

p ]× as well as (i) and the a(χ) > 1

case of (ii). The remaining χ2 = 1 case of (ii) follows from (2.1.4). �
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We conclude the section with an explicit analysis of the ε-factors of quadratic characters of Q×2 .
This will be useful for studying the 2-adic properties of Fourier expansions of newforms.

2.8. Quadratic characters of Q×2 . There are eight characters β : Q×2 → C× with β2 = 1:

Xquad
Q2

:= {1, β0, β2, β0β2, β3, β0β3, β2β3, β0β2β3},

where 1 is the trivial character, β0 is nontrivial and unramified, the conductor exponents of β2 and
β0β2 are 2, and those of β3, β0β3, β2β3, and β0β2β3 are 3. To normalize for the sake of concreteness:
via local class field theory, β0 corresponds to the extension Q2(

√
5)/Q2 and satisfies β0(2) = −1,

whereas β2 corresponds to the extension Q2(
√
−1) and satisfies β2(2) = 1, and β3 corresponds to

Q2(
√

2)/Q2 and satisfies β3(2) = 1 (so β2β3 corresponds to Q2(
√
−2)/Q2). In the notation of §2.1,

XQ2,1 = ∅, XQ2,2 = {β2}, XQ2,3 = {β3, β2β3}.

Lemma 2.9. For an additive character ψ : Q2 → C× with c(ψ) = 0, there is an aψ ∈ Z×2 with

ε(1
2 , β2, ψ) = β2(aψ) · i, ε(1

2 , β3, ψ) = β3(aψ), ε(1
2 , β2β3, ψ) = (β2β3)(aψ) · i.

Proof. The collection of ψ with c(ψ) = 0 is a Z×2 -torsor via the action (aψ)(x) := ψ(ax) (see
[BH06, §1.7, Prop.]), so the ε-factor transformation formula (2.1.2) reduces us to treating a single
ψ. We then choose the following ψ with c(ψ) = 0 for which we will argue the claim with aψ := 1:

ψ(x) := exp(2πiλ(x)) where λ : Q2 � Q2/Z2 ↪→ Q/Z ∼=
⊕

prime pQp/Zp.

With the shorthand ζn := e2πi/n, we obtain

Gψ(1
4 , β2) = 1

2

(
ζ4 · β2(1) + ζ3

4 · β2(3)
)

= 1
2 (i+ i) = i,

Gψ(1
8 , β3) = 1

4

(
ζ8 · β3(1) + ζ3

8 · β3(3) + ζ5
8 · β3(5) + ζ7

8 · β3(7)
)

= 1
4

(
ζ8 − ζ3

8 − ζ5
8 + ζ7

8

)
= 1

21/2 ,

Gψ(1
8 , β2β3) = 1

4

(
ζ8 · (β2β3)(1) + . . .+ ζ7

8 · (β2β3)(7)
)

= 1
4

(
ζ8 + ζ3

8 − ζ5
8 − ζ7

8

)
= 1

21/2 i.

Thus, (2.1.1) gives the desired

ε(1
2 , β2, ψ) = i, ε(1

2 , β3, ψ) = 1, ε(1
2 , β2β3, ψ) = i. �

3. p-adic properties of local Whittaker newforms

As we will see in §4, the theory of Whittaker models translates the study of p-adic properties of
Fourier expansions of newforms f at cusps into the study of p-adic properties of the values of the
Whittaker newform of the p-component of the associated cuspidal automorphic representation πf .
This transforms a global problem into a purely local one, and in this section we place ourselves in
the resulting local setting. Namely, we use the theory of local Fourier expansions of the Whittaker
newform Wπ, ψ of an irreducible, admissible, infinite-dimensional representation π of GL2(Qp), the
recent basic identity (reviewed in §3.5) that explicates the resulting local Fourier coefficients, the
work of §2 on Gauss sums, and the classification of π to derive in Theorems 3.14 and 3.15 explicit
lower bounds on the p-adic valuations of values ofWπ, ψ. We begin by reviewing the local Whittaker
newform Wπ, ψ in §3.2 and its Fourier expansions in §3.5.

3.1. Representations of GL2(F ) and their conductors. Let p be any prime, F/Qp a finite
extension and π an irreducible, admissible, infinite-dimensional, complex representation of GL2(F )
with central character ωπ and contragredient π̃. For a character χ : F× → C×, the twist

χπ is the complex representation of GL2(F ) given by g 7→ χ(det(g))⊗C π(g),
12



so that, for instance, ω−1
π π ' π̃ (see [Del73a, 3.2.2.2]). For n ≥ 0, we consider the subgroup

K1(n) := {
(
a b
c d

)
∈ GL2(OF ) | c ∈ $n

FOF , a ∈ 1 +$n
FOF } ⊂ GL2(OF ).

There is the smallest a(π) ≥ 0, the conductor exponent of π, such that the space of K1(a(π))-
fixed vectors in π is nonzero, and so necessarily is one-dimensional (see [Del73a, 2.2.6–2.2.7]). For
computing a(χπ), we will use [CS18, Lem. 2.7]: for π and χ as above with ωπ = 1, we have

a(χπ) ≤ max{a(π), 2a(χ)} (3.1.1)

with equality if either a(χ) 6= a(π)
2 or π is twist-minimal in the sense that a(π) = minχ(a(χπ)), so

that, in particular, a π with ωπ = 1 is twist-minimal whenever a(π) is odd.

For a nontrivial additive character ψ : F → C×, similarly to §2.1, we let ε(s, π, ψ) ∈ C× be the local
ε-factor of π (see [Sch02, §1.1] for its review) and abbreviate to ε(s, π) when ψ satisfies c(ψ) = 0
(see §1.4). This minor abuse is harmless when ωπ is unramified because, by loc. cit., we have

ε(s, π, ψ) = ε(1
2 , π, ψ)q

(2c(ψ)−a(π))(s− 1
2

)

F and ε(1
2 , π, aψ) = ωπ(a)ε(1

2 , π, ψ) for a ∈ F×

(compare with (2.1.2)). With the common normalization c(ψ) = 0, we also have (loc. cit.)

ε(s, | · |tπ, ψ) = q
−a(π)t
F ε(s, π, ψ) for t ∈ C,

ε(s, π, ψ)ε(1− s, ω−1
π π, ψ) = ωπ(−1), so ε(1

2 , π, ψ) = ±1 whenever ωπ = 1. (3.1.2)

3.2. The Whittaker newform of π. For a nontrivial additive character ψ : F → C×, we set

Wψ := {locally constant W : GL2(F )→ C with W (( 1 x
1 ) g) = ψ(x)W (g) for x ∈ F, g ∈ GL2(F )}.

The group GL2(F ) acts on the C-vector space Wψ by (g′W )(g) := W (gg′) and, by [Del73a, before
2.2.3], each π as in §3.1 is isomorphic to the unique subspace Wψ(π) ⊂ Wψ, the Whittaker model
of π. The normalized Whittaker newform of π is the unique K1(a(π))-invariant element

Wπ, ψ ∈ Wψ(π) such that Wπ, ψ(1) = 1.

For an unramified multiplicative character χ : F× → C×, we have7

Wχπ, ψ(g) = χ(det(g))Wπ, ψ(g) for all g ∈ GL2(F ). (3.2.1)

3.3. The coset representatives gt, `, v. The values of the Whittaker newformWπ, ψ on the double
coset Z(F )U(F )gK1(a(π)), where Z ⊂ GL2 is the center and U ⊂ GL2 the “upper right” unipotent
subgroup, are determined by Wπ, ψ(g). We choose the representatives g as follows: we set

gt, `, v :=
(
$tF

1

) (
1

−1

) (
1 v$−`F

1

)
=
(

$tF
−1 −v$−`F

)
∈ GL2(F ) for t, ` ∈ Z and v ∈ O×F

and recall from [Sah16, Lem. 2.13] that, letting v range over the indicated coset representatives,8

7The map ιχ : W 7→ (g 7→ χ(det(g))W (g)) is a C-linear automorphism of Wψ such that

χ(det(g′))(ιχ(g′W )) = g′(ιχ(W )) for g′ ∈ GL2(F ).

Thus, ιχ induces a GL2(F )-isomorphism ι̃χ : Wψ
∼−→ χ−1Wψ, so that ιχ(Wψ(π)) =Wψ(χπ) and ιχ(Wπ, ψ) = Wχπ, ψ.

8One argues the decomposition as follows. For the upper triangular Borel B ⊂ GL2, the valuative criterion of
properness for B\GL2 and the vanishing H1(OF , B) = {∗} show that GL2(OF ) � (B\GL2)(F ), and so give the Iwa-
sawa decomposition GL2(F ) = B(F )GL2(OF ), which one refines to GL2(F ) =

(
Z(F )U(F )

(
{$a

F }a∈Z 0
0 1

))
GL2(OF ).

The advantage of the refinement is that the group encoding the nonuniqueness of the decomposition shrinks from
B(OF ) = B(F ) ∩ GL2(OF ) to Z(OF )U(OF ) = {( z u0 z ) | z ∈ O×F , u ∈ OF }. This group acts on the primitive vectors
( xy ) with entries in OF /mnF by left multiplication: (( z u0 z ) , ( xy )) 7→

(
zx+uy
zy

)
. The orbits are indexed by both the

“valuation” 0 ≤ ` ≤ n of y and, with the subsequent normalization y = $`
F , the class x of x in OF /(1 + m

min(`, n−`)
F ).
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GL2(F ) =
⊔

0≤`≤n

⊔
v∈O×F /(1+m

min(`, n−`)
F )

⊔
t∈Z

Z(F )U(F )gt, `, vK1(n).

This decomposition reduces us to studying the values Wπ, ψ(gt, `, v), and the following Atkin–Lehner
relation that results from [Sah16, Prop. 2.28]9 and (3.1.2) halves the range of the ` that one needs
to consider: if ωπ = 1 and c(ψ) = 0, then, for 0 ≤ ` ≤ a(π), there is a p-power root of unity ζ with

Wπ, ψ(gt, `, v) = ±ζ Wπ, ψ(gt+2`−a(π), a(π)−`,−v). (3.3.1)

As we now illustrate, this relation is useful for deducing a description of the p-adic valuations of the
elements Wπ, ψ(gt, `, v) with ` ∈ {0, a(π)}.

Proposition 3.4. For a finite extension F/Qp, an irreducible, admissible, infinite-dimensional rep-
resentation π of GL2(F ) with a(π) ≥ 1 and ωπ = 1, an additive character ψ : F → C× with
c(ψ) = 0, a t ∈ Z, an ` ∈ {0, a(π)}, and a v ∈ O×F , there is a p-power root of unity ζ such that

Wπ, ψ(gt, `, v) =


±ζq−(1+t+`)

F if a(π) = 1 and t+ ` ≥ −1,

±ζ if a(π) > 1 and t+ ` = −a(π),

0 otherwise.

Proof. Since (3.3.1) swaps Wπ, ψ(gt, 0, v) and Wπ, ψ(gt−a(π), a(π),−v), we may assume that ` = a(π).

Then, in terms of the description in footnote 8, the matrices gt, a(π), v and g :=
(
$
t+2a(π)
F

1

)(
v−1

v−1

)
have the same invariants, so Wπ, ψ(gt, a(π), v) and Wπ, ψ(g) agree up to a factor that is a value of ψ,
that is, up to a p-power root of unity. It then remains to recall from [CS18, Lem. 2.10] that

Wπ, ψ(g) = Wπ, ψ(
(
$rF

1

)
) =


±q−rF if a(π) = 1, r ≥ 0,

1 if a(π) > 1, r = 0,

0 otherwise. �

3.5. The Fourier expansion of Wπ, ψ(gt, `, v). In §3.3, for fixed t ∈ Z and ` ≥ 0, the function

O×F 3 v 7→Wπ, ψ(gt, `, v) descends to the quotient O×F /(1 + m`
F ),

so, by Fourier inversion, there are constants ct, `(χ) ∈ C for χ ∈ X≤` (see §2.1) such that

Wπ, ψ(gt, `, v) =
∑

χ∈X≤` ct, `(χ)χ(v) for every v ∈ O×F . (3.5.1)

To make use of this local Fourier expansion, it is key to explicate the Fourier coefficients ct, `(χ) ∈ C.
This may be done in terms of ε-factors of representations of GL2 ×GL1 by using the basic identity

Since K1(n) is the stabilizer of ( 1
0 ) for the similar transitive left multiplication action of GL2(OF ), these orbits cor-

respond to the double cosets Z(OF )U(OF )\GL2(OF )/K1(n). In conclusion, Z(F )U(F )\GL2(F )/K1(n) is indexed
by invariants `, x, and a as above, and it remains to note that for the element gt, `, v these invariants are `, v−1, and
t+ 2`, respectively: indeed, the matrix

(
v−1

$`
F v

)
in GL2(OF ) sends ( 1

0 ) to the primitive vector
(
v−1

$`
F

)
(so its x and

` invariants are v−1 and `, respectively) and can be written in the Bruhat decomposition as(
v−1

$`
F v

)
=

(
−$−`

F
−v−1

−$`
F

)(
1

−1

) (
1 v$−`

F
1

)
=
(
−$`

F

−$`
F

)(
$−t−2`

F
1

)(
1 v−1$t+`

F
1

)
gt, `, v,

which gives the sufficient gt, `, v ∈ Z(F )U(F )
(
$t+2`

F
1

)(
v−1

$`
F v

)
.

9The proof of this relation does not use the blanket assumption of [Sah16, §2] that π be unitarizable.
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of [Sah16, 2.23 and before 2.22]:10 if c(ψ) = 0 and ωπ = 1, then, for 0 ≤ ` ≤ a(π) and χ ∈ X≤`,

ε( 1
2
, χπ)

L(s, χπ)

∑
t∈Z

q
(t+a(χπ))( 1

2
−s)

F ct, `(χ) = 1
L(1−s, χ−1π)

∑
r≥0

q
−r( 1

2
−s)

F Gψ($r−`
F , χ−1)Wπ, ψ

((
$rF

1

))
as Laurent polynomials in qsF with the Gauss sums Gψ as in §2.1. This method for accessing the
numbers ct, `(χ) was carried out in [Ass19, §2], and we will cite the resulting formulas below. For a
discussion of related unpublished approaches of Templier and Hu, see [CS18, Rem. 2.20].

3.6. Classification of ramified π with ωπ = 1. Our analysis of the Fourier coefficients ct, `(χ) will
rest on the following well-known classification of the irreducible, admissible, infinite-dimensional,
representations π of GL2(F ) that are ramified (that is, a(π) ≥ 1) and whose central character is
trivial (that is, ωπ = 1). We refer to [JL70, §§2–3] and [Sch02, §1.2] (or [BH06, §9.11]) for its
justification, and when possible we also give formulas for a(π), L(s, χπ) and ε(s, χπ) with χ ∈ X.

(1) π is supercuspidal. In this case, a(π) ≥ 2 and L(s, χπ) = 1 (see [Cas73, before Lemma on
p. 303 and middle of p. 304] and [BH06, §24.5]).

(1a) π is dihedral supercuspidal. Such a π is associated, via the Weil representation, to
a character ξ : E× → C× of a quadratic extension E/F such that ξ does not factor
through NormE/F , see [JL70, §4] or [Bum97, Thm. 4.8.6]. Equivalently, under the
local Langlands correspondence [BH06, §33.4, §34.4] such a π corresponds to IndWF

WE
ξ

where ξ becomes a character of the Weil group WE via class field theory. By [JL70,
Thm. 4.7 (ii)], for such a π we have ωπ = ξ|F×χE/F , where χE/F is the quadratic
character associated to E/F . In particular, ωπ = 1 forces

ξ|Im(Norm: E×→F×) = 1, while, by assumption, ξ|Ker(Norm: E×→F×) 6= 1, (3.6.1)

so that ξ is of finite order. By [JL70, Thm 4.7 (i), (iii) and p. 8] the representation χπ
is also dihedral supercuspidal, associated to ξ(χ ◦NormE/F ) : E× → C×, and11

ε(s, χπ) = γε(s, ξ(χ ◦NormE/F ), ψ ◦ TraceE/F ) for some γ ∈ {±1,±i}. (3.6.2)

With dE/F being the valuation of the discriminant of E/F , by [Sch02, Thm. 2.3.2],

a(π) = [FE : FF ]a(ξ) + dE/F . (3.6.3)

(1b) π is nondihedral supercuspidal. For such a π, we have char(FF ) = 2 and a(π) > 2 (see
[Del73a, Prop. 3.1.4] and [Tun78, 3.5]), but there seems to be no simple expression for
ε(s, χπ). For F = Q2, we describe such π in Proposition 3.9 below.

(2) π ' µSt is the twist of the Steinberg representation by an unramified character µ with µ2 = 1.
In this case, a(π) = 1, and, by [Bum97, §4.7, (7.10)] and [JL70, Prop. 3.6], we have

L(s, χπ) =

{
1

1−µ($F )q
−1/2−s
F

if χ = 1,

1 otherwise,
ε(s, χπ) =

{
−µ($F )q

1/2−s
F if χ = 1,

ε(s, χ)2 otherwise.

10The cited claims do not use the blanket assumption of [Sah16, §2] that π be unitarizable.
11By [JL70, Lem. 1.2] and (2.1.1) with (2.1.3)–(2.1.4), we have γ = ε( 1

2
, χE/F ), and so also γ2 = χE/F (−1).
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(3) π ' µSt is the twist of the Steinberg representation by a ramified character µ with µ2 = 1.
In this case, by [Bum97, §4.7, (7.10)] and [JL70, Prop. 3.6], we have a(π) = 2a(µ) ≥ 2 and

L(s, χπ) =

{
1

1−(χµ)($F )q
−1/2−s
F

if a(χµ) = 0,

1 otherwise,
ε(s, χπ) =

−(χµ)($F )q
1/2−s
F if a(χµ) = 0,

ε(s, χµ)2, otherwise.

(4) π ' µ| · |σF � µ| · |−σF with σ 6= ±1
2 is a principal series where the character µ ∈ X is ramified

with µ2 = 1. In this case, by [JL70, Prop. 3.5], we have a(π) = 2a(µ) and

L(s, χπ) =

{
1

(1−q−σ−sF )(1−qσ−sF )
if χ = µ,

1 otherwise,
ε(s, χπ) =

{
1 if χ = µ,

ε(s, χµ)2 otherwise.

(5) π ' µ| · |σF�µ−1| · |−σF is a principal series where the character µ ∈ X is ramified with µ2 6= 1.
In this case, by the same reasoning as in the previous case, a(π) = 2a(µ) and

L(s, χπ) =

{
1

1−q±σF
if χ = µ±1,

1 otherwise,
ε(s, χπ) = q

σ(a(χµ−1)−a(χµ))
F ε(s, χµ)ε(s, χµ−1).

We refer to these cases as π being of Type 1a, 1b, 2, 3, 4, or 5 (this numbering is not standard). Type
2 will not concern us much because our focus is the case a(π) ≥ 2, and Types 1a, 3, 4, 5 are in some
sense similar, for instance, ε(s, π) in these cases is expressed in terms of ε-factors of characters.
Type 1b is the most subtle one, but it benefits from the more precise classification recorded in
Proposition 3.9 that uses the following lemma, which further explicates conductor exponents.

Lemma 3.7. For a supercuspidal representation π of GL2(Q2) with a(π) ≥ 2 and ωπ = 1 (Type 1),
any twist-minimal twist π0 of π satisfies

a(π0)


= a(π) if a(π) is odd or if a(π) = 2,

≤ a(π)− 1 if a(π) is even and a(π) ≥ 4,

∈ {a(π)− 2, a(π)− 1} if a(π) is even and a(π) ≥ 8.

Proof. A twist of a supercuspidal representation is supercuspidal, and hence has conductor exponent
≥ 2 (compare with §3.6), so the first case follows from (3.1.1). The second case may be deduced
from [AL78, Thm. 4.4 and the remark after it] by globalization, but we give a direct argument.

Suppose, for the sake of contradiction, that a(π) is even with π twist-minimal and a(π) ≥ 4.
By [Tun78, 3.5], such a π is dihedral, associated to some ξ : E× → C× with E/Q2 unramified
quadratic. By (3.6.3), we have a(ξ) = a(π)

2 > 1, so, by [BH06, §18.1, Prop.], for any χ ∈ XQ2, a(ξ)

also a(χ ◦NormE/Q2
) = a(ξ). In particular, both ξ and χ ◦NormE/Q2

are nontrivial on the group

(1 + 2a(ξ)−1OE)/(1 + 2a(ξ)OE) ' (Z/2Z)2. (3.7.1)

However, χ ◦ NormE/Q2
is trivial on its subgroup (1 + 2a(ξ)−1Z2)/(1 + 2a(ξ)Z2) ' Z/2Z, and so is

ξ: indeed, (3.6.1) gives ξ|Im(Norm: E×→Q×2 ) = 1, whereas NormE/Q2
: 1 + 2a(ξ)−1OE � 1 + 2a(ξ)−1Z2

(see [Ser79, V, §2, Prop. 3 a)]). It follows that ξ and χ ◦ NormE/Q2
agree on the group (3.7.1), so

that a(ξ(χ−1 ◦NormE/Q2
)) < a(ξ), and hence, by (3.6.3), also a(χ−1π) < a(π), a contradiction.

Finally, suppose that a(π) is even with a(π) ≥ 8 and write π ' χπ0, so that (3.1.1) and the just-
established inequality a(π0) ≤ a(π) − 1 give a(π) = 2a(χ). Since ωπ = 1, the central character of
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π0 is χ−2, to the effect that a(π0) ≥ 2a(χ2) by [Tun78, 3.4]. Since a(χ) ≥ 4 and we are dealing with
Q2, we have a(χ2) = a(χ)− 1, and the desired a(π0) ≥ a(π)− 2 follows. �

Remark 3.8. In contrast, for an odd prime p and a finite extension F/Qp, every supercuspidal
representation π of GL2(F ) with ωπ = 1 is twist-minimal, see, for instance, [HNS19, Lem. 2.1].

Proposition 3.9. Up to isomorphism, there are 16 nondihedral supercuspidal (that is, Type 1b)
representations π of GL2(Q2) with ωπ = 1. Letting Xquad

Q2
be as in §2.8, such π are listed as

{βπ3 : β ∈ Xquad
Q2
}
⊔
{βπ7 : β ∈ Xquad

Q2
}

with the following conductor exponents:
a(π3) = a(β0π3) = 3, a(β2π3) = a(β0β2π3) = 4,

a(β3π3) = a(β2β3π3) = a(β0β3π3) = a(β0β2β3π3) = 6,

a(π7) = a(β0π7) = a(β2π7) = a(β0β2π7) = a(β3π7) = a(β2β3π7) = a(β0β3π7) = a(β0β2β3π7) = 7.

In contrast, no dihedral supercuspidal representation π′ of GL2(Q2) with ωπ′ = 1 has a(π′) ∈ {3, 7}.

Proof. Via the local Langlands correspondence [BH06, §33.4], our supercuspidal π corresponds to
an irreducible, smooth representation σ : WQ2 → GL2(C), which has its associated projectivization
σ : WQ2 → PGL2(C). Since ωπ = 1, we have det(σ) = 1, so σ(WQ2) is a subgroup of SL2(C) that
is necessarily finite (see [BH06, §28.6, Prop.]). Since π is nondihedral, σ is not induced from a
subgroup. The projective image σ(WQ2) must be the symmetric group S4: the only other finite,
solvable subgroups of PGL2(C) are cyclic, dihedral, and A4, and the first two cannot occur because
σ is irreducible and not induced from a quadratic extension (compare with [Wei74, §13]), whereas
Weil proved in [Wei74, §34-§35] that σ(WQ2) 6' A4 (more precisely, σ(WQ2) 6' A4 because A4 has
no irreducible, 2-dimensional representation, and σ(WQ2) is not a central extension of A4 by Z/2Z
because the “Condition C with respect to A4” of [Wei74, §21] fails for Q2; see also [BR99, §8]).

Up to conjugation, there is a unique embedding of S4 into PGL2(C) (compare with [Wei74, §14]), so
we fix one such and, in the notation of op. cit., let ∆0 � S4 be the central extension by {±1} obtained
by the preimage in SL2(C). Since S4 has no faithful, irreducible, 2-dimensional representations, by
conjugating we may assume that σ(WQ2) = ∆0. In particular, the S4-extension K/Q2 cut out by
σ extends to a ∆0-extension K̃/Q2. Thus, by [Wei74, §24 (with §16 and §21)] (“Condition C with
respect to ∆0” is equivalent to “Condition C with respect to ∆′0”), this extension also extends to
a ∆′0-extension K̃ ′/Q2 with ∆′0 := GL2(F3) inside GL2(C) (note that GL2(F3)/{±1} ' S4). By
[Wei74, §36] and [BR99, §8], this means that K is one of the two S4-extensions of Q2 that extend
to GL2(F3)-extensions of Q2. In particular, since any two lifts of σ to a σ̃ : WQ2 → GL2(C) are
twists by a character (compare with [Koc77, §1]), we have isolated two distinct families of twists of
2-dimensional, irreducible, smooth representations of WQ2 that could contain σ.

By [Cal78, Thm. 5], there exist representations π3 and π7 of GL2(Q2), each either supercuspidal
or a twist of Steinberg, such that ωπ3 = ωπ7 = 1 and a(π3) = 3, a(π7) = 7. To conclude it then
suffices to argue that these πc are nondihedral supercuspidal: indeed, they will be twist-minimal
by Lemma 3.7, the representation π will be of the form βπc with β ∈ Xquad

Q2
, all the latter will be

pairwise distinct by [BH06, §51.5], and the formulas for the a(βπc) will follow from (3.1.1).

The formulas for the conductor exponents in §3.6 show that πc is not a twist of Steinberg. Thus,
we assume that πc is dihedral supercuspidal, associated to a quadratic extension E/Q2 and a
character ξ : E× → C× subject to (3.6.1). By [Tun78, 3.5], the extension E/Q2 is ramified, so that
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a(ξ) = c − dE/Q2
∈ {c − 2, c − 3} (see §3.6 and §2.8). For c = 3, this is already a contradiction:

indeed, since FE ∼= F2, the inequality a(ξ) ≤ 1 gives a(ξ) = 0, which contradicts (3.6.1). For c = 7,
if dE/Q2

= 2, equivalently, if a(ξ) = 5, then, by (3.6.1) and [Ser79, IV, §1, Prop. 4 and V, §3, Cor. 3],
we have ξ|1+4Z2 = 1, so the inclusion 1 + m4

EOE ⊆ (1 + 4Z2)(1 + m5
EOE) contradicts a(ξ) = 5. In

the remaining case c = 7 with dE/Q2
= 3, we have a(ξ) = 4, so again ξ|1+4Z2 = 1, which, since

ξ|Q×2 = χE/Q2
(see §3.6), contradicts the conductor-discriminant formula a(χE/Q2

) = dE/Q2
= 3. �

Remark 3.10. As we learned from Ralf Schmidt, the main assertion of Proposition 3.9 is due to
Nekljudova [Nek75] who obtained it by analyzing the Hecke algebra (see also [Nob78]). With the
local Langlands correspondence, it could also be deduced from results in [Zin79] or [Hen79].

To prepare for a p-adic study of the values ofWπ, ψ, we begin by exhibiting a general integrality away
from p property of these values in Proposition 3.12. Its argument rests on the following lemma.

Lemma 3.11. For a finite extension E/Qp, an m > 0, a Haar measure dx on the additive group
Em with

∫
OmE

dx ∈ Z[1
p ], and a function f : (O×E)m → Z that is right multiplication invariant by

(1 +$n
EOE)m for some n > 0 (that is, f(x) = f(xy) for y ∈ (1 +$n

EOE)m), we have∫
(O×E )m f(x)dx ∈ Z[1

p ]; (3.11.1)

for a Haar measure d×x on the multiplicative group (E×)m with
∫

(O×E )m d
×x ∈ Z[1

p ], instead

1
ζE(1)m

∫
(O×E )m f(x)d×x ∈ Z[1

p ]. (3.11.2)

Proof. Due to (1.4.1), the first display implies the second one. For the former,∫
(O×E )m

f(x)dx =
∑

x0∈(O×E )m/(1+$nEOE)m

f(x0) vol((1 +$n
EOE)m) =

∫
OmE

dx

qmnE

∑
x0∈(O×E )m/(1+$nEOE)m

f(x0),

and it remains to note that f takes values in Z. �

Proposition 3.12. For a finite extension F/Qp, an irreducible, admissible, infinite-dimensional
representation π of GL2(F ) such that a(π) ≥ 1 and ωπ = 1, an additive character ψ : F → C× with
c(ψ) = 0, and a g ∈ GL2(F ),

Wπ, ψ(g) ∈ Z[1
p ] if π is

{
dihedral supercuspidal (Type 1a) or a twist of St (Types 2, 3), or
principal series χ| · |σF � χ−1| · |−σF (Types 4, 5) with q±σF ∈ Z[1

p ].

In addition, if π is nondihedral supercuspidal (Type 1b) and F = Q2, then we have

Wπ, ψ(g) ∈

{
1

21/2Z if a(π) = 6, ` = 3, t ∈ {−3,−4},

Z otherwise.
(3.12.1)

Proof. By §3.3, we may assume that g = gt, `, v for a t ∈ Z, a 0 ≤ ` ≤ a(π), and a v ∈ O×F . For the first
assertion, by Proposition 3.4, we may assume that π is not of Type 2, and, to conclude, claim that
Wπ, ψ(gt, `, v) is a Z[1

p ]-linear combination of products of quantities
∫

(O×E )m f(x)dx with f and dx as
in Lemma 3.11 for a finite extension E/F . This will follow from formulas forWπ, ψ(gt, `, v) derived by
Assing in [Ass19, §3]. For referring to them below, we recall from (3.1.2) that ε(1

2 , π̃) = ε(1
2 , π) = ±1

and from (2.7.1) that ε(1
2 , χ, ψ) ∈ Z[1

p ]× for a character χ : F× → C× of finite order.
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Namely, [Ass19, Lem. 3.1] gives the desired description for π of Type 1a (with E/F quadratic and
m = 1; by (3.6.2), the quantity γ there lies in {±1,±i}). To similarly treat π ' µSt of Type 3,
we first twist by a finite order unramified character and use (3.2.1) to assume that µ($F ) = 1, and
then apply [Ass19, Lem. 3.3]12 (now E = F and m ∈ {1, 2}; in the case of loc. cit. that involves Salié
sums, we use (3.11.2) instead of (3.11.1)). Finally, for π of Type 4 or 5, we combine the assumption
q±σF ∈ Z[1

p ] with [Ass19, Lem. 3.6] (now E = F and m ∈ {1, 2}).

For the remaining (3.12.1), we assume that π is of Type 1b with F = Q2 and use (3.3.1) with
Proposition 3.4 to reduce to 0 < ` ≤ a(π)

2 . By the classification in Proposition 3.9, we have
a(π) ≤ 7, so the bound is 1 ≤ ` ≤ 3. We will use the local Fourier expansion

Wπ, ψ(gt, `, v)
(3.5.1)

=
∑

χ∈X≤` ct, `(χ)χ(v)

and the following formulas for the ct, `(χ) derived in [Ass19, §2.1] from the basic identity of §3.5:

ct, `(χ) =


−ε(1

2 , π) if ` = 1, t = −a(π), χ = 1,

21−`/2ε(1
2 , χ)ε(1

2 , χ
−1π) if t = −a(χπ), χ ∈ X`,

0 otherwise.

Since 1 ≤ ` ≤ 3, the appearing χ are quadratic (see §2.8), so ε(1
2 , π), ε(1

2 , χ), and ε(1
2 , χ

−1π) are all
roots of unity (see (2.1.4) and (3.1.2)). Thus, since 21−`/2 ∈ Z for ` ≤ 2, we reduce to ` = 3, when
a(π) ∈ {6, 7} and, in the notation of §2.8, the only appearing χ are β3 and β2β3. If a(π) = 6, then
for these χ, by Proposition 3.9, we have a(χπ) ∈ {3, 4}, and the claim follows. In the remaining
case a(π) = 7, we likewise have a(χπ) = 7, so we only need to consider the value

Wπ, ψ(g−7, 3, v) = 1
21/2 (ε(1

2 , β3)ε(1
2 , β3π)β3(v) + ε(1

2 , β2β3)ε(1
2 , β2β3π)β2β3(v)).

Lemma 2.9 gives ε(1
2 , β3) = ±1 and ε(1

2 , β2β3) = ±i, and (3.1.2) gives ε(1
2 , β3π) = ±1 and

ε(1
2 , β2β3π) = ±1. Thus, Wπ, ψ(g−7, 3, v) lies in {± 1+i

21/2 ,± 1−i
21/2 }, and so is a root of unity in Z. �

A final preparation for Theorems 3.14 and 3.15 is the following vanishing result that draws heavily
on [CS18], which studied the phenomenon of exceptional vanishing of the values of Wπ, ψ.

Proposition 3.13. For a finite extension F/Qp, an additive character ψ : F → C× with c(ψ) = 0,
an irreducible, admissible, infinite-dimensional representation π of GL2(F ) with a(π) ≥ 2 and
ωπ = 1, a twist-minimal twist π0 of π, a 0 ≤ ` ≤ a(π), and a v ∈ O×F , we have

Wπ, ψ(gt, `, v) = 0 if


t < −max(a(π), 2`), or
t > −max(a(π), 2`), ` 6= a(π)

2 , or
t > −a(π0), π is supercuspidal (Type 1), or
t 6= −max(a(π), 2`), p is odd, π is supercuspidal (Type 1).

12Even though the case ` = a(χ) = 1 is omitted from the cited statement, it is treated in the proof: as is observed
in the beginning of the argument there, the subcase t 6= −2 reduces to [Ass19, Lem. 2.1], whereas the subcase t = −2
is addressed before the phrase “If l = 1 = a(χ), we will leave this expression as it is.”
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Moreover, in the case F = Q2 we have the following additional vanishing for ` = a(π)
2 :

Wπ, ψ(g
t,
a(π)

2
, v

) = 0 if



t ≤ −a(π), π is supercuspidal (Type 1) with a(π0) ≤ a(π)− 1, or
t ≤ −a(π) + 1, π is supercuspidal (Type 1) with a(π0) ≤ a(π)− 2, or
t ≤ −a(π) + 1, π is a ramified twist of St (Type 3), or
t ≤ −a(π) + 1, π ' µ| · |σF � µ| · |−σF with σ 6= ±1

2 , µ
2 = 1 (Type 4), or

t ≤ −a(π) + 2, π ' µ| · |σF � µ−1| · |−σF with µ2 6= 1 (Type 5).

Proof. The additional vanishing statements for ` = a(π)
2 follow from the rest and [CS18, Thm 2.14]

(with §2.8 and (3.1.1); for instance, for Type 5, one uses that a(µ) ≥ 4, so that also a(µ2) = a(µ)−1).

For the main statement, its last case follows from the rest: indeed, by Remark 3.8, if p is odd
and π is supercuspidal, then a(π0) = a(π). Moreover, its case t < −max(a(π), 2`) follows from
[Sah17, Prop. 2.10 (1)],13 so we assume that t ≥ −max(a(π), 2`). In the remaining cases, we use
the Atkin–Lehner relation (3.3.1), which replaces t by t+ 2`− a(π) and ` by a(π)− `, to reduce to
0 ≤ ` ≤ a(π)

2 , and we will conclude from (3.5.1) by arguing that ct, `(χ) = 0 for all χ ∈ X≤`.

For this, we will use the basic identity reviewed in §3.5. By inspecting §3.6, in the remaining cases
in question we find that L(s, χπ) = 1, and, by [CS18, Lem. 2.10],

Wπ, ψ

((
$rF

1

))
=

{
1, if r = 0,
0, if r > 0.

In effect, the basic identity in the cases in question is the equality

ε(1
2 , χπ)

∑
t∈Z q

(t+a(χπ))( 1
2
−s)

F ct, `(χ) = Gψ($−`F , χ−1)

of Laurent polynomials in qsF . In the case when ` < a(π)
2 , by (3.1.1), we have a(χπ) = a(π), so

the ct, `(χ) indeed vanish for t 6= −a(π). In the remaining case when π is supercuspidal, we have
a(χπ) ≥ a(π0), and the ct, `(χ) still vanish for t > −a(π0) ≥ −a(χπ), as desired. �

In the remaining case a(π) ≥ 2, for clarity, we split the sought bounds on valp(Wπ, ψ(gt, `, v)) into the
case of an odd p (Theorem 3.14) and that of F = Q2 (Theorem 3.15). To avoid additional technical
complications, we do not attempt to treat the case of a general finite extension of Q2.

Theorem 3.14. For a finite extension F/Qp with p odd, an irreducible, admissible, infinite-dimen-
sional representation π of GL2(F ) with a(π) ≥ 2 and ωπ = 1, an additive character ψ :F → C×
with c(ψ) = 0, an isomorphism C ' Qp, a t ∈ Z, a 0 ≤ ` ≤ a(π), and a v ∈ O×F , we have

valp(Wπ, ψ(gt, `, v)) ≥



0 if ` ∈ {0, a(π)},
0 if ` ∈ {1, a(π)− 1}, a(π) > 2,

[FF : Fp]
(

1− min(`, a(π)−`)
2

)
if ` /∈ {0, 1, a(π)

2 , a(π)− 1, a(π)},

−[FF : Fp] + min
(

[FF :Fp]
2 , 1

2 + 1
p−1

)
if ` = 1, a(π) = 2, t = −2,

[FF : Fp]
(

1− a(π)
4

)
if ` = a(π)

2 , a(π) > 2, t = −a(π),

and, for ` = a(π)
2 and an even a(π), the following additional bounds (see also Proposition 3.13):

13The proof does not use the assumption of [Sah17, §2.2] that π be unitarizable, compare with [CS18, Prop. 2.11].
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(i) if π is supercuspidal (Type 1) with a(π) = 2, then

valp(Wπ, ψ(gt, 1, v)) ≥ −[FF : Fp] + 1
2 + 1

p−1;

(ii) if π is a twist of Steinberg by a ramified quadratic character (Type 3), then a(π) = 2 and

valp(Wπ, ψ(gt, 1, v)) ≥ − t+4
2 [FF : Fp] + min

(
−[FF : Fp]

(
t+1

2

)
, 1

2 + 1
p−1

)
;

(iii) if π is a principal series µ| · |σF � µ| · |−σF with µ2 = 1 (Type 4), then a(π) = 2 and

valp(Wπ, ψ(gt, 1, v)) ≥ −[FF : Fp]− (t+ 2)|valp(q
σ
F )|+ min

(
−[FF : Fp]

(
t+1

2

)
, 1

2 + 1
p−1

)
;

(iv) if π is a principal series µ| · |σF � µ−1| · |−σF with µ2 6= 1 (Type 5), then

valp(Wπ, ψ(g
t,
a(π)

2
, v

)) ≥

{
− [FF :Fp](t+4)

2 + 1
2 + 1

p−1 − (t+ 2)|valp(q
σ
F )| if a(π) = 2,

− [FF :Fp] max(t+a(π), a(π)/2−2)
2 − (t+ a(π))|valp(q

σ
F )| if a(π) > 2.

Theorem 3.15. For an irreducible, admissible, infinite-dimensional, representation π of GL2(Q2)
with a(π) ≥ 2 and ωπ = 1, an additive character ψ : Q2 → C× with c(ψ) = 0, an isomorphism
C ' Q2, a t ∈ Z, a 0 ≤ ` ≤ a(π), and a v ∈ Z×2 , we have

val2(Wπ, ψ(gt, `, v)) ≥


0 if ` ∈ {0, 1, a(π)− 1, a(π)},
1− min(`, a(π)−`)

2 if ` /∈ {0, 1, a(π)
2 , a(π)− 1, a(π)},

0 if ` ∈ {3, a(π)− 3}, a(π) > 6,

(3.15.1)

and, for ` = a(π)
2 and an even a(π) > 2, the following additional bounds (see also Proposition 3.13):

(i) if π is supercuspidal (Type 1), then

val2(Wπ, ψ(g
t,
a(π)

2
, v

)) ≥ 1− a(π)
4 and, for a(π) ∈ {6, 8}, val2(Wπ, ψ(g−a(π)+1,

a(π)
2
, v

)) ≥ 0;

(ii) if π is a twist of Steinberg by a ramified quadratic character (Type 3), then a(π) ∈ {4, 6},

val2(Wπ, ψ(g
t,
a(π)

2
, v

)) =


−(t+ 3) if t ≥ −2, a(π) = 4,

−(t+ 7
2) if t ≥ −2, a(π) = 6,

−1
2 if t = −4, a(π) = 6,

∞ otherwise;

(iii) if π is a principal series µ| · |σQ2
� µ| · |−σQ2

with µ2 = 1 (Type 4), then a(π) ∈ {4, 6},

val2(Wπ, ψ(g
t,
a(π)

2
, v

))


≥ − t+4

2 − (t+ 2)|val2(2σ)| if t ≥ −2, a(π) = 4,

≥ − t+5
2 − (t+ 2)|val2(2σ)| if t ≥ −2, a(π) = 6,

= −1
2 if t = −4, a(π) = 6,

=∞ otherwise;

(iv) if π is a principal series µ| · |σQ2
� µ−1| · |−σQ2

with µ2 6= 1 (Type 5), then a(π) ≥ 8,

val2(Wπ, ψ(g
t,
a(π)

2
, v

)) ≥


1−t−a(π)

2 − (t+ a(π)− 2)|val2(2σ)| if t ≥ −a(π)
2 ,

4−a(π)
4 − (t+ a(π)− 2)|val2(2σ)| if − a(π) + 2 < t < −a(π)

2 ,

∞ if t ≤ −a(π) + 2.
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3.16. Proof of Theorems 3.14 and 3.15. Even though we have separated the cases of an odd p and
of p = 2 with F = Q2 into separate statements, we will prove them simultaneously.

For ` ∈ {0, a(π)}, the assertion is that valp(Wπ, ψ(gt, `, v)) ≥ 0, which follows from Proposition 3.4.
Each of the assertions that involves ` > a(π)

2 allows any t ∈ Z. Thus, we may use the Atkin–Lehner
relation (3.3.1) to switch ` and a(π)− ` if needed to assume from now on that

(1) 1 ≤ ` ≤ a(π)
2 and, by also using Proposition 3.13, that if ` < a(π)

2 , then t = −a(π).

Moreover, π is not of Type 2 because a(π) ≥ 2 (see §3.6). If π is of Type 1b (so that p = 2), then the
sought bounds follow from Proposition 3.9 and (3.12.1). Thus, we assume from now on that

(2) π is not of Type 1b or Type 2.

Our basic strategy is as follows: by the local Fourier expansion (3.5.1), we have

Wπ, ψ(gt, `, v) =
∑

χ∈X≤` ct, `(χ)χ(v), so valp(Wπ, ψ(gt, `, v)) ≥ minχ∈X≤`(valp(ct, `(χ))), (3.16.1)

and we will bound valp(ct, `(χ)) individually for each representation in the classification of §3.6 (in
exceptional cases individual bounds will not suffice and we will consider the full sum). Below we
omit our fixed ψ from the notation when forming ε-factors with respect to it.

The case when π is of Type 1a. Such a π is associated to a character ξ : E× → C× for a
quadratic extension E/F . By [Ass19, §2.1], for 1 ≤ ` ≤ a(π)

2 and χ ∈ X≤`,

ct, `(χ) =


− 1
qF−1ε(

1
2 , π) if t = −a(π), ` = 1, χ = 1,

1
qF−1q

1−`/2
F ε(1

2 , χ)ε(1
2 , χ

−1π) if t = −a(χπ), χ ∈ X`,

0 otherwise.
(3.16.2)

In particular, ct, `(1) = 0 unless t = −a(π) and ` = 1, in which case valp(c−a(π), 1(1)) = 0 (see
(3.1.2)), and ct, `(χ) = 0 for χ ∈ X≤` \ {1} unless χ ∈ X`. Since all the required bounds are
nonpositive for Type 1a when ` = 1, this reduces us to χ ∈ X` with t = −a(χπ).

We begin with the case a(π) = 2, when ` = 1 and, since χ ∈ X1, also F 6= Q2 (so that p is odd) and
t = −a(χπ) = −2 (see (3.1.1)). By §3.6, the representation χ−1π is dihedral supercuspidal associ-
ated to ξ(χ−1 ◦NormE/F ) : E× → C×. By [Tun78, 3.5], we may assume that E/F is unramified, so
that a(ξ(χ−1 ◦NormE/F )) = 1 by (3.6.3). Thus, by (3.6.2) and Corollary 2.7 (i),

valp(ε(
1
2 , χ

−1π)) = valp(ε(
1
2 , ξ(χ

−1 ◦NormE/F ), ψ ◦ TraceE/F )) = −[FF : Fp] +
s(ξ−1(χ◦NormE/F ))

p−1 .

Consequently, (3.16.2) and Corollary 2.7 (i) give

valp(c−2, 1(χ)) = −[FF : Fp] +
s(χ−1)+s(ξ−1(χ◦NormE/F ))

p−1 .

By (3.6.1), we have ξ|O×F = 1, so (2.2.3) and (2.2.4) give p−1 | 2s(χ−1)+s(ξ−1(χ◦NormE/F )). Since

s(χ−1) and s(ξ−1(χ◦NormE/F )) are positive, it follows that s(χ−1)+s(ξ−1(χ◦NormE/F )) ≥ p−1
2 +1.

In conclusion, for a(π) = 2, we obtain the sufficient bound

valp(c−2, 1(χ)) ≥ −[FF : Fp] + 1
2 + 1

p−1 .

We next turn to the case when a(π) > 2 with 1 ≤ ` < a(π)
2 , and χ ∈ X` with t = −a(χπ) as above. By

(3.1.1), we have a(π) = a(χ±1π), so that, by (3.6.3), also a(ξ(χ±1 ◦NormE/F )) = a(ξ). In addition,
a(ξ) > 1: indeed, otherwise, by (3.6.1), we would have a(ξ) = 1 and, since, by (3.6.3),

[FE : FF ]a(ξ) + dE/F = a(π) > 2,
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the quadratic extension E/F would be ramified (so that FE ∼= FF ), we would have p = 2 because
dE/F ≤ 1 for odd p (see [Ser79, III, §6, Prop. 13]), and the simultaneous FE ∼= F2 and a(ξ) = 1
would give a contradiction. Thus, (3.16.2) together with Corollary 2.7 and (3.6.2) gives

valp(c−a(π), `(χ))

{
≥ 1

p−1 if ` = 1,

= [FF : Fp](1− `
2) if ` > 1.

These bounds suffice in all cases with a(π) > 2 and ` < a(π)
2 except when p = 2 with a(π) > 6 and

` = 3, when instead we seek to show that val2(Wπ, ψ(g−a(π), `, v)) ≥ 0 and bounding each valp(ct, `(χ))
does not suffice. Instead, in the notation of §2.8, in this case (3.16.1) and (3.16.2) give

Wπ, ψ(g−a(π), 3, v) = 1
21/2

(
ε(1

2 , β3)ε(1
2 , β3π)β3(v) + ε(1

2 , β2β3)ε(1
2 , β2β3π)(β2β3)(v)

)
. (3.16.3)

Since β2
2 = β2

3 = 1, Lemma 2.9 and (3.1.2) then give the sufficientWπ, ψ(g−a(π), 3, v) ∈ {± 1+i
21/2 ,± 1−i

21/2 }.

We turn to the remaining case when a(π) > 2 with ` = a(π)
2 , and χ ∈ X` with t = −a(χπ) as

above. If a(χ−1π) > 2 (for instance, if p is odd, see Remark 3.8), then, as above, (3.6.3) gives
a(ξ(χ−1 ◦NormE/F )) > 1, to the effect that, by (3.6.2), (3.16.2), and Corollary 2.7 (ii),

valp(ct, a(π)
2

(χ)) = [FF : Fp](1− a(π)
4 ). (3.16.4)

If, in contrast, a(χ−1π) = 2, then p = 2, Lemma 3.7 and §2.8 give χ2 = 1 and so also ωχ−1π = 1,
and (3.16.4) follows from (3.1.2), (3.16.2), and Corollary 2.7 (ii).

The equality (3.16.4) suffices for the desired bounds unless p = 2 and a(π) ∈ {6, 8}, when we seek
to show the additional bound val2(Wπ, ψ(g−a(π)+1,

a(π)
2
, v

)) ≥ 0. In this final case, by Lemma 3.7 and

(3.1.1), the minimal conductor twist π0 of π ' χ0π0 satisfies a(π0) ≤ a(π) − 1 and a(χ0) = a(π)
2 .

Moreover, we may assume that a(π0) = a(π) − 1 because otherwise Wπ, ψ(g−a(π)+1,
a(π)

2
, v

) = 0

by Proposition 3.13. Then E/Q2 is ramified by [Tun78, 3.5] and, for any χ ∈ Xa(π)
2

, we have

a(χχ0) ≤ a(χ0)− 1 = a(π)
2 − 1 < a(π0)

2 , so also a(χπ) = a((χχ0)π0) = a(π0) = a(π)− 1 (see (3.1.1)).
Consequently, by (3.16.1) and (3.16.2),

Wπ, ψ(g−a(π)+1,
a(π)

2
, v

) = 21−a(π)
4
∑

χ∈X
Q2,

a(π)
2

ε(1
2 , χ)ε(1

2 , χ
−1π)χ(v). (3.16.5)

If a(π) = 6, then, as after (3.16.3), Lemma 2.9 gives the sufficient Wπ, ψ(g−5, 3, v) ∈ {± 1+i
21/2 ,± 1−i

21/2 }.
If a(π) = 8, then, letting β4 ∈ XQ2, 4 be nonquadratic with β4(−1) = −1, we have

XQ2, 4 = {β4, β2β4, β
−1
4 , β2β

−1
4 }, with β2 ∈ XQ2, 2, β2(−1) = −1 as in §2.8.

In this notation, (3.1.2) gives ε(1
2 , β

−1
4 π)ε(1

2 , β4π) = 1 and ε(1
2 , β2β

−1
4 π)ε(1

2 , β2β4π) = 1, so, with

x := ε(1
2 , β4)ε(1

2 , β
−1
4 π)β4(v) and x′ := ε(1

2 , β2β4)ε(1
2 , β2β

−1
4 π)(β2β4)(v),

by (2.1.4) and (3.16.5), we have

Wπ, ψ(g−7, 4, v) = 1
2

(
x− x−1 + x′ + x′−1

)
. (3.16.6)

The characters β−1
4 and β2β

−1
4 agree on 1 + 4Z2, so they satisfy Lemma 2.4 (i) with the same

u ∈ Z×2 . Thus, Lemma 2.5 (i) gives Gψ( 1
16 , β

−1
4 ) = ±Gψ( 1

16 , β2β
−1
4 ), so that, by (2.1.1), also

ε(1
2 , β4) = ±ε(1

2 , β2β4), where, by Corollary 2.7 (ii), both sides are roots of unity. (3.16.7)
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By §3.6, the representations β−1
4 π and β2β

−1
4 π of conductor exponent 7 (see before (3.16.5)) are

dihedral supercuspidal associated to ξ(β−1
4 ◦ NormE/Q2

) and ξ(β2β
−1
4 ◦ NormE/Q2

), respectively.
Thus, since E/Q2 is ramified quadratic, and hence dE/Q2

∈ {2, 3}, we obtain from (3.6.3) that

a(ξ(β−1
4 ◦NormE/Q2

)) = a(ξ(β2β
−1
4 ◦NormE/Q2

)) ∈ {4, 5}.

Since these two characters agree on 1 +$2
EOE = 1 + 2OE , we conclude as in (3.16.7), but now also

using (3.6.2) (with (2.1.2)) and the odd conductor exponent cases of Lemmas 2.4 and 2.5, that

ε(1
2 , β

−1
4 π) = ±ε(1

2 , β2β
−1
4 π), where both sides are roots of unity.

Thus, x and x′ are roots of unity, x = ±x′, and (3.16.6) gives

Wπ, ψ(g−7, 4, v) ∈ {x,−x−1}, so also the sought val2(Wπ, ψ(g−7, 4, v)) ≥ 0.

The case when π is of Type 3. Such a π is µSt for a ramified character µ with µ2 = 1, and
a(π) = 2a(µ). We twist by the unramified quadratic character if needed to assume that µ($F ) = 1:
by (3.1.1) and (3.2.1), this changes neither a(π) nor valp(Wπ, ψ(gt, `, v)). By [Ass19, Lem. 2.1] and
(1.4.1), for 1 ≤ ` ≤ a(π)

2 and χ ∈ X≤`,

ct, `(χ) =


ε(1

2 , χ
−1µ)2Gψ($−`F , χ−1) if χ 6= µ, t = −2a(µχ),

1
qF

Gψ($−`F , µ−1) if χ = µ, t = −2,

− q2
F−1

q3+t
F

Gψ($−`F , µ−1) if χ = µ, t ≥ −1,

0 otherwise.

By then using the formula (2.1.1) for Gψ($−`F , χ−1) together with (2.1.4), we obtain

ct, `(χ) =



1
qF−1q

1−`/2
F ε(1

2 , χ
−1µ)2ε(1

2 , χ) if χ /∈ {1, µ}, t = −2a(χµ), ` = a(χ),

− 1
qF−1µ(−1) if χ = 1, t = −2a(µ), ` = 1,
1

qF−1q
−`/2
F ε(1

2 , µ) if χ = µ, t = −2, ` = a(µ),

−(qF + 1)q
−(t+2+`/2)
F ε(1

2 , µ) if χ = µ, t ≥ −1, ` = a(µ),

0 otherwise.

(3.16.8)

We begin with the case of an odd p, when necessarily a(µ) = 1, so that a(π) = 2, and ` = 1.
Since µ2 = 1, from (2.2.2) and (2.2.3) we obtain p−1

2 | s(χ−1µ) + s(χ), so, for χ /∈ {1, µ}, also
2s(χ−1µ) + s(χ) ≥ p−1

2 + 1. Since µ2 = 1, Corollary 2.7 and (3.16.8) then give the sufficient

valp(ct, `(χ)) ≥


−[FF : Fp] + 1

2 + 1
p−1 if χ /∈ {1, µ}, t = −2,

0 if χ = 1, t = −2,

−[FF : Fp](t+ 5
2) if χ = µ, t ≥ −2,

∞ otherwise.

(3.16.9)

For the remaining F = Q2, in the notation of §2.8, we have µ ∈ {β2, β3, β2β3}, so a(π) = 4 if µ = β2,
and a(π) = 6 if µ ∈ {β3, β2β3}. It then suffices to use (3.16.1), the values (3.16.8), and Lemma 2.9
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to compute the only possible nonzero Wπ, ψ(gt, `, v) for 1 ≤ ` ≤ a(µ):

Wπ, ψ(gt, 1, v) = −µ(−1) ∈ {±1} if t = −a(π),

Wπ, ψ(gt, 2, v) =


1
2ε(

1
2 , β2)β2(v) ∈ {± i

2} if µ = β2, t = −2,

− 3
2t+3 ε(

1
2 , β2)β2(v) ∈ {± 3i

2t+3 } if µ = β2, t ≥ −1,

ε(1
2 , β2µ)2ε(1

2 , β2)β2(v) ∈ {±i} if µ ∈ {β3, β2β3}, t = −6,

Wπ, ψ(gt, 3, v) =


1

21/2 ε(
1
2 , β2)2ε(1

2 , β2µ)(β2µ)(v) ∈ {± 1
21/2 ,± i

21/2 } if µ ∈ {β3, β2β3}, t = −4,
1

23/2 ε(
1
2 , µ)µ(v) ∈ {± 1

23/2 ,± i
23/2 } if µ ∈ {β3, β2β3}, t = −2,

− 3
2t+7/2 ε(

1
2 , µ)µ(v) ∈ {± 3

2t+7/2 ,± 3i
2t+7/2 } if µ ∈ {β3, β2β3}, t ≥ −1.

The case when π is of Type 4. Such a π is µ| · |σF �µ| · |−σF for σ 6= ±1
2 and a ramified µ ∈ X with

µ2 = 1, and a(π) = 2a(µ). By [Ass19, Lem. 2.2] and (1.4.1), for 1 ≤ ` ≤ a(π)
2 and χ ∈ X≤`,

ct, `(χ) =



ε(1
2 , χ

−1µ| · |−σF )ε(1
2 , χ

−1µ| · |σF )Gψ($−`F , χ−1) if χ 6= µ, t = −2a(χµ),
1
qF

Gψ($−`F , µ) if χ = µ, t = −2,

− qF−1

q
3/2
F

Gψ($−`F , µ)(q−σF + qσF ) if χ = µ, t = −1,

− qF−1

q
2+t/2
F

Gψ($−`F , µ)

(
1

q
σ(t+2)
F

+ q
σ(t+2)
F −

∑t
m=0

qF−1

q
σ(2m−t)
F

)
if χ = µ, t ≥ 0,

0 otherwise.

By then using the formula (2.1.1) forGψ($−`F , χ−1) and the formulas (2.1.3)–(2.1.4), we obtain

ct, `(χ) =



1
qF−1q

1−`/2
F ε(1

2 , χ
−1µ)2ε(1

2 , χ) if χ /∈ {1, µ}, t = −2a(χµ), ` = a(χ),

− 1
qF−1µ(−1) if χ = 1, t = −2a(µ), ` = 1,
1

qF−1q
−`/2
F ε(1

2 , µ) if χ = µ, t = −2, ` = a(µ),

−q−(`+1)/2
F ε(1

2 , µ)(q−σF + qσF ) if χ = µ, t = −1, ` = a(µ),

−ε( 1
2
, µ)

q
(t+`+2)/2
F

(
1

q
σ(t+2)
F

+ q
σ(t+2)
F −

∑t
m=0

qF−1

q
σ(2m−t)
F

)
if χ = µ, t ≥ 0, ` = a(µ),

0 otherwise.

If p 6= 2, then a(µ) = 1, so a(π) = 2 and ` = 1, and, similarly to (3.16.9), we get the sufficient

valp(ct, `(χ)) ≥


−[FF : Fp] + 1

2 + 1
p−1 if χ /∈ {1, µ}, t = −2,

0 if χ = 1, t = −2,

− t+3
2 [FF : Fp]− (t+ 2)|valp(q

σ
F )| if χ = µ, t ≥ −2,

∞ otherwise.

In the remaining case F = Q2, similarly to Type 3, in the notation of §2.8, we have µ ∈ {β2, β3, β2β3},
and we combine the above formulas for the ct, `(χ) with (3.16.1) and Lemma 2.9 to find the following
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sufficient formulas for the only possible nonzero Wπ, ψ(gt, `, v) in the range in question:

Wπ, ψ(gt, 1, v) ∈ {±1} if t = −a(π),

Wπ, ψ(gt, 2, v) ∈


{± i

2} if µ = β2, t = −2,

{± i
23/2 (2−σ + 2σ)} if µ = β2, t = −1,{
± i

22+t/2

(
1

2σ(t+2) + 2σ(t+2) −
∑t

m=0
1

2σ(2m−t)

)}
if µ = β2, t ≥ 0,

{±i} if µ ∈ {β3, β2β3}, t = −6,

Wπ, ψ(gt, 3, v) ∈


{± 1

21/2 ,± i
21/2 } if µ ∈ {β3, β2β3}, t = −4,

{± 1
23/2 ,± i

23/2 } if µ ∈ {β3, β2β3}, t = −2,

{±1
4( 1

2σ + 2σ),± i
4( 1

2σ + 2σ)} if µ ∈ {β3, β2β3}, t = −1,
1

2(t+5)/2 ( 1
2σ(t+2) + 2σ(t+2) −

∑t
m=0

1
2σ(2m−t) ) · {±1,±i} if µ ∈ {β3, β2β3}, t ≥ 0.

The case when π is of Type 5. Such a π is µ| · |σF � µ−1| · |−σF for a ramified µ ∈ X with µ2 6= 1,
and a(π) = 2a(µ). By [Ass19, Lem. 2.2],14 (1.4.1), and (2.1.3), for 1 ≤ ` ≤ a(π)

2 and χ ∈ X≤`,

ct, `(χ) =



ε( 1
2
, χ−1µ−1)ε( 1

2
, χ−1µ)

q
σ(a(χµ−1)−a(χµ))
F

Gψ($−`, χ−1) if χ 6= {µ±1}, t = −a(χµ)− a(χµ−1),

−q−
1
2
±σ(a(µ2)−1)

F ε(1
2 , µ
∓2)Gψ($−`, µ∓1) if χ = µ±1, t = −a(µ2)− 1,

(qF−1)2

q
2+ t

2∓σ(t+2a(µ2))

F

Gψ($−a(µ2), µ±2)Gψ($−`, µ∓1) if χ = µ±1, t ≥ −a(µ2),

0 otherwise.

By then using the formula (2.1.1) for the appearing Gauss sums as well as (2.1.4), we obtain

ct, `(χ) =



−µ(−1)
qF−1 if χ = 1, t = −2a(µ), ` = 1,

ε( 1
2
, χ−1µ−1)ε( 1

2
, χ−1µ)ε( 1

2
, χ)

(qF−1)q
`/2−1+σ(a(χµ−1)−a(χµ))
F

if χ /∈ {1, µ±1}, t = −a(χµ)− a(χµ−1), ` = a(χ),

− ε( 1
2
, µ∓2)ε( 1

2
, µ±1)

(qF−1)q
(`−1)/2±σ(1−a(µ2))
F

if χ = µ±1, t = −a(µ2)− 1, ` = a(µ),

ε( 1
2
, µ∓2)ε( 1

2
, µ±1)

q
(t+`+a(µ2))/2∓σ(t+2a(µ2))
F

if χ = µ±1, t ≥ −a(µ2), ` = a(µ),

0 otherwise.

We begin with a(π) = 2, when ` = 1 and a(µ) = 1, so p is odd and, since µ2 6= 1, also a(µ2) = 1.
By (2.2.3), both s(χ−1µ−1) + s(χ−1µ) + 2s(χ) and s(µ∓2) + 2s(µ±1) are divisible by p− 1, so

s(χ−1µ−1) + s(χ−1µ) + s(χ) ≥ p−1
2 + 1 and s(µ∓2) + s(µ±1) ≥ p−1

2 + 1.

These inequalities, the formulas for the ct, `(χ), and Corollary 2.7 (i) imply the sufficient bound

valp(ct, 1(χ)) ≥ −4+t
2 [FF : Fp] + 1

2 + 1
p−1 − (t+ 2)|valp(q

σ
F )| for χ ∈ X≤1.

14We corrected a slight mistake in [Ass19, Lem. 2.2] (see also [Ass19e]): when χ1|O× 6= χ2|O× , in the case
“if a(µχj) 6= a(µχi) = 0 for {j, i} = {1, 2} and t ≥ −a(µχj)” of the formula for ct,l(µ) one should instead have
“ζF (1)−2q−

t
2χi($

t+a(µχj))χj($
−a(µχj))G($−a(µχj), µχj)G($−l, µ−1).”
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In the case a(π) > 2, that is, a(µ) > 1, we begin with 1 ≤ ` < a(µ) = a(π)
2 , so that t = −a(π) by

(1). In this case, the formulas above for the ct, `(χ) and Corollary 2.7 give

valp(c−a(π), `(χ)) =

{
s(χ−1)
p−1 if ` = 1,

[FF : Fp](1− `
2) if 1 < ` < a(π)

2 ,

which reduces us further to the last setting of (3.15.1), in which, in addition, F = Q2 and ` = 3. In
the notation of §2.8, the formulas above for the ct, `(χ) and (3.16.1) then give

Wπ, ψ(g−a(π), 3, v) = 1
21/2

∑
β∈{β3, β2β3}

(
ε(1

2 , β)ε(1
2 , βµ)ε(1

2 , βµ
−1)β(v)

)
.

Since ε(1
2 , βµ)ε(1

2 , βµ
−1) = (βµ)(−1) ∈ {±1} by (2.1.4), Lemma 2.9 gives the sufficient

Wπ, ψ(g−a(π), 3, v) ∈ {± 1+i
21/2 ,± 1−i

21/2 }.

The remaining case is a(π) > 2, that is, a(µ) > 1, with ` = a(π)
2 = a(µ), in which the above

formulas for the ct, `(χ) allow us to restrict to χ with a(χ) = a(µ). For odd p, since a(µ) > 1, we
have a(µ2) = a(µ), so if also a(χµ±1) < a(µ), then a(χµ∓1) = a(χµ±1 · µ∓2) = a(µ). Thus, for odd
p, the above formulas for the ct, `(χ) combine with Corollary 2.7 to give the sufficient bounds

valp(ct, a(µ)(χ)) ≥


−[FF : Fp](a(µ)

2 − 1)−
∣∣(a(χµ−1)− a(χµ))valp(q

σ
F )
∣∣

if a(χµ), a(χµ−1) > 1, t = −a(χµ)− a(χµ−1),

[FF :Fp](1−a(µ))
2 + s(χµ±1)

p−1 − |(a(µ)− 1)valp(q
σ
F )| if a(χµ±1) = 1, t = −a(µ)− 1,

−[FF : Fp]( t2 + a(µ))− |(t+ 2a(µ))valp(q
σ
F )| if χ = µ±1, t ≥ −a(µ)− 1.

We are left with F = Q2, when µ2 6= 1 gives a(µ) ≥ 4 (see §2.8), so a(π) ≥ 8 and a(µ2) = a(µ)− 1.
If χ /∈ {µ±1}, then, since a(χ) = a(µ), exactly one of a(χµ) and a(χµ−1) equals a(µ) − 1, and
the other one lies in [2, a(µ) − 2] (compare with [CS18, Lem. 2.2]). Thus, for such χ we have
−a(χµ)−a(χµ−1) ≤ −a(µ)−1 and, furthermore,

∣∣a(χµ−1)− a(χµ)
∣∣ = 2a(µ)−2−a(χµ)−a(χµ−1).

Thus, the formulas above for the ct, `(χ) and Corollary 2.7 give the sufficient final bounds

val2(ct, a(µ)(χ)) ≥


1− a(µ)

2 − (t+ 2a(µ)− 2)|val2(2σ)| if χ 6= µ±1, t = −a(χµ)− a(χµ−1),
1−a(µ)

2 − (a(µ)− 2)|val2(2σ)| if χ = µ±1, t = −a(µ),
1−t

2 − a(µ)− (t+ 2a(µ)− 2)|val2(2σ)| if χ = µ±1, t ≥ −a(µ) + 1. �

4. p-adic valuations of Fourier coefficients at cusps

We turn to global consequences of the local analysis of the preceding section, more precisely, to
Theorem 4.6 that p-adically bounds the Fourier expansions at cusps of holomorphic newforms on
Γ0(N). For this, we begin by reviewing notions that concern cusps and Fourier expansions.

4.1. Cusps. The group SL2(R) acts by Möbius transformations on the extended upper half-plane

H∗ := H ∪ P1(Q) with H := {z ∈ C : Im(z) > 0}

and, for an N ≥ 1, the set of cusps of Γ0(N) is the orbit space

cusps(Γ0(N)) := (Γ0(N) ∩ SL2(Z)) \P1(Q).

Since SL2(Z) acts transitively on P1(Q) and the stabilizer of ∞ ∈ P1(Q) is {± ( 1 ∗
1 )}, we have

cusps(Γ0(N)) ∼= (Γ0(N) ∩ SL2(Z))\SL2(Z)/{± ( 1 ∗
1 )},
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and the latter is the global analogue of the local double coset set ZU\GL2(F )/K1(n) of §3.3. Via
the complex uniformization of X0(N), that is, via the identification of Riemann surfaces

X0(N)(C) ∼= (Γ0(N) ∩ SL2(Z))\H∗ (4.1.1)

(see [Roh97, §1.10, Prop. 7]), the cusps are the complement of the elliptic curve locus of X0(N)C.

Concretely, each cusp c of Γ0(N) is represented by an m
L ∈ Q ⊂ P1(Q) with gcd(m,N) = 1 and a

uniquely determined denominator L | N of c (compare with [DS05, 3.8.3]). For c =
(
a b
c d

)
∞, we

have L = gcd(c,N). The cusp ∞ is the unique one of denominator N and there are φ(gcd(L, NL ))
cusps of denominator L (see loc. cit.). The width of a cusp c is the smallest w(c) ∈ Z>0 such that
γ
(

1 w(c)
0 1

)
γ−1 ∈ Γ0(N) for any fixed γ ∈ SL2(Z) with c = γ∞, explicitly, w(c) = N

gcd(L2, N)
.

4.2. Fourier expansions. For a function f : H→ C, a k ∈ Z>0, and a γ =
(
a b
c d

)
∈ GL+

2 (R),

the function f |kγ : H→ C is defined by (f |kγ)(z) := det(γ)
k
2

1
(cz+d)k

f(az+bcz+d).

If the ideal {h ∈ Z : f = f |k
(

1 h
1

)
} ⊂ Z is nonzero, generated by a unique w ∈ Z>0, then f descends

along the map H � C× given by z 7→ e2πiz/w to a function f0 : C× → C. If then f0 extends to a
holomorphic function at 0, then f is holomorphic at ∞ and we obtain its Fourier expansion at ∞:

f(z) =
∑

n≥0 af (n)e
2πinz
w . (4.2.1)

We say that such an f is cuspidal at ∞ if af (0) = 0.

For a subgroup Γ1(N) ⊂ Γ ⊂ GL2(Ẑ) and a k ∈ Z>0, a modular form (resp., a cuspform) of weight
k on Γ is a holomorphic function f : H→ C such that both f |kγ = f for γ ∈ Γ∩SL2(Z) and f |kγ′ is
holomorphic (resp., cuspidal) at ∞ for γ′ ∈ SL2(Z). A cuspform f on Γ is normalized if af (1) = 1.
For instance, for Γ = Γ0(N), choosing γ =

(−1
−1

)
gives f(z) = (−1)kf(z), so k is even or f = 0.

For every modular form f of weight k on Γ0(N) and every cusp c = γ∞ with γ ∈ SL2(Z), we have
(f |kγ)|k( 1 w(c)

1
) = f |kγ, so (4.2.1) gives the Fourier expansion of f at c:

(f |kγ)(z) =
∑

n≥0 af (n; γ)e
2πinz
w(c) ,

which depends not only on c but also on γ—explicitly, for any γ′ ∈ SL2(Z) with c = γ′∞,

af (n; γ) = e
2πint
w(c) af (n; γ′) for some t ∈ Z that depends on γ′−1γ.

In particular, for any isomorphism Qp ' C and the resulting p-adic valuation valp : C→ Q ∪ {∞},

valp(f |c) := infn≥0(valp(af (n; γ))) depends only on f and c, and not on γ. (4.2.2)

4.3. The representation πf . For a normalized newform f on Γ1(N) (see [Li75, p. 294]),15 the
Fourier coefficients af (n) are algebraic integers that generate a number field Kf (see, for instance,
[DI95, Cor. 12.4.5]). In particular, for a normalized newform f on Γ0(N) and every prime p, we have
valp(f |∞) = 0. For such an f , the Fourier coefficients af (n; γ) at any cusp c = γ∞ of denominator
L lie in Kf (ζN/L) (see [BN19, Thm 7.6], which even exhibits the possibly smaller number field
generated by the af (n; γ)), and to study them p-adically we will use the adelic viewpoint.

15Here and throughout the paper, a ‘newform’ is implicitly assumed to be a (holomorphic) cuspform.
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Namely, for a newform f on Γ1(N), we let πf be the cuspidal, irreducible, admissible, automorphic
GL2(AQ)-representation spanned by the GL2(AQ)-translates of the adelic newform associated to f
(see [Gel75, 5.19]). In the resulting factorization (compare with [Fla79, Thm. 3])

πf ∼= πf,∞ ⊗
⊗′

p<∞ πf, p

each πf, p is an irreducible, admissible, infinite-dimensional representation of GL2(Qp) of conductor
exponent valp(N). If f is on Γ0(N), then ωπf, p = 1, and if also valp(N) ≥ 2, then πf, p is of Type
1, 3, 4, or 5 in the classification of §3.6. In the last two cases, we have the following refinement.

Lemma 4.4. For a prime p and a newform f of weight k on Γ0(N) with valp(N) ≥ 2, if the
GL2(Qp)-representation πf, p is of Type 4 or 5, that is, if

πf, p ' µ| · |σQp � µ−1| · |−σQp for a ramified µ ∈ XQp such that σ 6= ±1
2 when µ2 = 1,

then σ ∈ iR and p±σ+ k−1
2 ∈ Z, so that |valp(p

σ)| ≤ k−1
2 .

Proof. By the Ramanujan–Petersson conjecture at all finite places (see, e.g., [Bla06, Thm. 1 and
Rem. on p. 46]), the characters µ| · |σQp and µ

−1| · |−σQp are unitary, so σ ∈ iR. By complex conjugation,

it then remains to show that p−σ+ k−1
2 ∈ Z. For this, we first globalize µ to a finite order character

µ̃ : A×Q/Q
× → C× (compare with [AT09, X, §2, Thm. 5]), set π̃ := µ̃πf , and let f̃ be the normalized

newform of weight k on Γ1(Ñ) for which π
f̃
' π̃ (see [Gel75, 5.19]), so that a

f̃
(p) ∈ Z (see §4.3).

If πf, p is of Type 4, then π
f̃ , p
' | · |σQp � | · |

−σ
Qp with σ 6= ±1

2 , so [CS18, equation before (30)] gives

a
f̃
(p) = p

k
2Wπ

f̃ , p
, ψp((

p
1 ))

[PSS14, (121)]
= p

k−1
2 (pσ + p−σ),

where ψp : Qp → C× is an additive character with c(ψp) = 0 and Wπ
f̃ , p

, ψp is the normalized

Whittaker newform of π
f̃ , p

(see §3.2). Checking prime by prime, we obtain the sought p−σ+ k−1
2 ∈ Z.

If πf, p is of Type 5, then π
f̃ , p
' µ2| · |σQp � | · |

−σ
Qp with µ2 6= 1, so [CS18, (30)] gives

a
f̃
(p) = p

k
2Wπ

f̃ , p
, ψp (( p 1 ))

∏
q|Ñ, q 6=pWπ

f̃ , q
, ψq (( p 1 ))

with ψq and Wπ
f̃ , q

, ψq as before. Since ( p 1 ) =
(
p 0
0 p

)(
1
p−1

)
, the factors for q 6= p are all roots of

unity (see §3.2), so [PSS14, (121)] now directly implies the sought p−σ+ k−1
2 ∈ Z. �

The following key lemma uses the adelic point of view to link the global p-adic valuation valp(f |c) to
the local p-adic valuations valp(Wπf, p, ψp(gt, `, v)) that were bounded in Theorems 3.14 and 3.15.

Lemma 4.5. For a prime p, a normalized newform f of weight k on Γ0(N), and a cusp c in
X0(N)(C) of denominator L,

if p - N, then valp(f |c) ≥ 0. (4.5.1)

If, in contrast, p | N , then, setting π := πf, p for brevity (see §4.3), for any additive character
ψ : Qp → C× with c(ψ) = 0, with the notation of §§3.2–3.3, we have

valp(f |c) ≥ −k
2 valp

(
N

gcd(L2, N)

)
+minτ∈Z≥0, v∈Z×p

(
kτ
2 + valp(Wπ, ψ(gτ−max(valp(N), 2valp(L)), valp(L), v))

)
.
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Proof. We included (4.5.1) because it follows from the argument below, although [DI95, 12.3.5] gives
it, too. We fix additive characters ψq : Qq → C× with c(ψq) = 0 for each prime q | N such that
ψp = ψ in the case p | N , we fix a γ =

(
m b
L d

)
∈ SL2(Z) with c = γ∞, and we consider a variable

Fourier coefficient af (r; γ). By [CS18, Prop. 3.3], there are vq ∈ Z×q (that depend on r) such that

af (r; γ) = af (r0)e
2πird
w(c)L

∏
q|N q

k
2

(
valq(r)−valq

(
N

gcd(L2,N)

))
Wπf, q , ψq(gvalq(r)−max(valq(N), 2valq(L)), valq(L), vq),

where r0 :=
∏
q-N q

valq(r). Since af (r0) ∈ Z (see §4.3) and Wπf, q , ψq takes values in Z[1
q ] (see

Proposition 3.12 with Lemma 4.4), it remains to take p-adic valuations and let r vary. �

We are ready to bound the p-adic valuations of Fourier expansions of newforms at cusps.

Theorem 4.6. For a prime p, a cuspform f that is a Z-linear combination of normalized newforms
of weight k on Γ0(N), a cusp c ∈ X0(N)(C) of denominator L, and an isomorphism C ' Qp,

valp(f |c) ≥ −k
2 valp

(
N

gcd(L2, N)

)
+


0 if valp(gcd(L, NL )) = 0,

0 if valp(gcd(L, NL )) = 1, valp(N) > 2,

−1
2 if valp(L) = 1

2valp(N) = 1,

1− 1
2valp(gcd(L, NL )) otherwise,

as well as the following stronger bounds in the case p = 2:

val2(f |c) ≥ −k
2 val2

(
N

gcd(L2, N)

)
+


0 if val2(L) = 1

2val2(N) = 1,
k
2 if val2(L) = 1

2val2(N) ∈ {2, 3, 4},
k
2 + 1− 1

4val2(N) if val2(L) = 1
2val2(N) > 4,

0 if val2(gcd(L, NL )) = 3, val2(N) > 6.

Proof. We lose no generality by assuming that f is a normalized newform of weight k on Γ0(N), so
we set π := πf, p (see §4.3) and fix an additive character ψ : Qp → C× with c(ψ) = 0.

The case valp(N) = 0 follows from (4.5.1). In the case valp(N) = 1, we have valp(L) ∈ {0, 1} and
a(π) = 1, and Lemma 4.5 reduces us to showing that kτ2 +valp(Wπ, ψ(gτ−max(1, 2valp(L)), valp(L), v)) ≥ 0

for every τ ∈ Z≥0 and v ∈ Z×p , which follows from the first case of Proposition 3.4.

In the remaining case valp(N) ≥ 2, by §4.3, the representation π is of Type 1, 3, 4, or 5 with
a(π) = valp(N), and Lemma 4.5 reduces us to showing that for τ ∈ Z≥0 and v ∈ Z×p the quantity

kτ
2 + valp(Wπ, ψ(gτ−max(valp(N), 2valp(L)), valp(L), v)) (4.6.1)

is at least the summand split into different cases in the desired inequalities. When valp(L) 6= valp(N)
2 ,

this is immediate from Theorems 3.14 and 3.15, so we assume from now on that valp(L) =
valp(N)

2 .

For π of Type 3, if p is odd, then Theorem 3.14 (ii) shows that valp(N) = 2 and gives the conclusion
(after plugging in the bounds from Theorem 3.14 (ii), the expression (4.6.1) becomes linear in τ ,
so its extrema are at the endpoints of the range for τ), and if p = 2, then Theorem 3.15 (ii) (with
§2.8) shows that val2(N) ∈ {4, 6} and gives the conclusion. For π ' µ|·|σQp ⊕ µ

−1|·|−σQp of Type 4 or
5, Lemma 4.4 shows that |valp(p

σ)| ≤ k−1
2 , so Theorems 3.14 and 3.15 likewise give the conclusion.

In the remaining case when π is of Type 1, for odd p, by Proposition 3.13, we may restrict to
τ = 0, and then conclude by Theorem 3.14. In contrast, for p = 2, we combine Lemma 3.7 and
Proposition 3.13 to reduce either to a(π) = 2 with τ = 0 or to τ > 0, and then use Theorem 3.15. �
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We explicate the weight 2 case of Theorem 4.6 because it is the most relevant one for our goals.

Corollary 4.7. For a prime p, a Z-linear combination f of normalized newforms of weight 2 on
Γ0(N), a cusp c ∈ X0(N)(C) of denominator L, and an isomorphism C ' Qp,

valp(f |c) ≥ −valp(
N
L )+



0 if valp(L) ∈ {0, valp(N)},
max(1

2 ,
1
p−1) if valp(L) = 1, valp(N) = 2,

1 if valp(L) ∈ {1, valp(N)− 1}, valp(N) > 2,

1 + 1
2val2(N) if p = 2, val2(L) = 1

2val2(N) ∈ {2, 3, 4},
2 + 1

4val2(N) if p = 2, val2(L) = 1
2val2(N) > 4,

3 if p = 2, val2(L) ∈ {3, val2(N)− 3}, val2(N) > 6,

1 + 1
2valp(gcd(L, NL )) otherwise. �

Example 4.8. In Tables 4.8.1 and 4.8.2, for newforms f associated to elliptic curves of conductor
N , we used the SageMath algorithm16 described in [DN18, §6] to compute the valuations valp(f | 1

p`
)

for 0 < ` ≤ 1
2valp(N) (the restriction to this range is natural due to the Atkin–Lehner involutions).

The resulting examples illustrate the sharpness of Corollary 4.7.

Newform f Level Label val2(f | 1
2
) val2(f | 1

4
) val2(f | 1

8
) val2(f | 1

16
)

q − 2q3 − q5 + 2q7 + q9 +O(q10) 22 · 5 20a 0
q − q3 − 2q5 + q9 +O(q10) 23 · 3 24a −1
q + q3 − 2q5 + q9 +O(q10) 24 · 3 48a −2 1
q − 2q5 − 3q9 +O(q10) 25 32a −3 −1
q + 2q5 − 3q9 +O(q10) 26 64a −4 −2 1

q − 2q3 + 2q5 + 4q7 + q9 +O(q10) 27 128b −5 −3 −1
q + 4q5 − 3q9 +O(q10) 28 256c −6 −4 −2 1

Table 4.8.1. p-adic valuations of Fourier expansions for p = 2 and small levels

Newform f p Level Label valp(f | 1
p
) valp(f | 1

p2
)

q + q2 − q4 − q5 − 3q8 +O(q10) 3 p2 · 5 45a −1
2

q − 2q4 − q7 +O(q10) 3 p3 27a −1

q + q2 + q4 + 3q5 − 4q7 + q8 +O(q10) 3 2 · p4 162d −2 0

q − 2q4 + 5q7 +O(q10) 3 p5 243b −3 −1

q + q2 + q3 − q4 + q6 − 3q8 + q9 +O(q10) 5 3 · p2 75b −1
2

q − q2 + 2q3 + q4 − 2q6 − q8 + q9 +O(q10) 7 2 · p2 98a −1
2

q + 2q2 − q3 + 2q4 + q5 − 2q6 + 2q7 − 2q9 +O(q10) 11 p2 121d −1
2

Table 4.8.2. p-adic valuations of Fourier expansions for 3 ≤ p ≤ 11 and small levels

16Available at https://github.com/michaelneururer/products-of-eisenstein-series. A faster and more gen-
eral pari/gp algorithm for algebraically computing Fourier expansions at cusps is based on [Coh19], but we did not
use it because it is heuristic: to convert the numerically approximated Fourier coefficients to algebraic numbers, it
uses a heuristic application of the LLL-algorithm. Our denominator bounds could help make this algorithm rigorous.
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5. The differential determined by a newform lies in the Z-lattice H0(X0(N),Ω)

Any cuspform f of weight 2 on Γ0(N) that has a rational Fourier expansion determines a differential
form ωf on X0(N)Q. The goal of this section is to use the results of §4 to show in Theorem 5.15
that, in particular, if such an f is a normalized newform (that then corresponds to an isogeny class
of elliptic curves over Q), then ωf is integral in the sense that it lies in the Z-lattice

H0(X0(N),Ω) ⊂ H0(X0(N)Q,Ω
1),

where Ω is the relative dualizing sheaf. For arguing this, it is convenient to work with the regular
stack X0(N) that has both a modular interpretation and line bundles of modular forms instead of
the possibly singular scheme X0(N) whose scheme-theoretic points lack a clear modular description.
Thus, we begin by reviewing the definition of the “relative dualizing” sheaf in the stacky case. Some
material of this section overlaps with the appendix of the unpublished manuscript [Čes16].

5.1. “Relative dualizing sheaves” of Deligne–Mumford stacks. Let X → S be a flat and
locally of finite presentation morphism of schemes with Cohen–Macaulay fibers. By [SP, 02NM],
the scheme X is a disjoint union of clopen subschemes whose relative dimension over S is constant.
Thus, the theory of Grothendieck duality, specifically [Con00, bottom halves of p. 157 and p. 214],
supplies relative dualizing OX -module ΩX/S that is quasi-coherent, locally finitely presented, S-flat,
and of formation compatible with base change in S. For instance, if X → S is smooth, then ΩX/S is
simply the top exterior power of the vector bundle Ω1

X/S . The formation of ΩX/S is compatible with
étale localization on X: for every étale S-morphism f : X ′ → X one has a canonical isomorphism

ιf : f∗(ΩX/S)
∼−→ ΩX′/S (5.1.1)

supplied by [Con00, Thm. 4.3.3 and bottom half of p. 214]. Moreover, if f ′ : X ′′ → X ′ is a further
étale S-morphism, then [Con00, (4.3.7) and bottom half of p. 214] supply the following compatibility:

ιf◦f ′ = ιf ′ ◦ ((f ′)∗(ιf )) : (f ′)∗(f∗(ΩX/S))
∼−→ ΩX′′/S . (5.1.2)

Let now X → S be a flat and locally of finite presentation morphism of Deligne–Mumford stacks
with Cohen–Macaulay fibers. By working étale locally on S, the compatibilities (5.1.2) ensure17

that the OX -modules ΩX/S for étale morphisms X →X from a scheme X glue to a quasi-coherent,
locally finitely presented, S-flat OX -module ΩX /S , the “relative dualizing sheaf” of X → S, whose
formation is compatible with base change in S (see [Con00, Thm. 4.4.4 and bottom half of p. 214]
for the base change aspect). If X → S is smooth, then ΩX /S is the top exterior power of Ω1

X /S .

The quasi-coherent OX -module ΩX /S has full support and is S-fiberwise Cohen–Macaulay: indeed,
this reduces to the case when S is the spectrum of a field and X is a scheme, and in this case, by
[Har66, Remark on p. 291], the stalks of ΩX /S are dualizing modules for the corresponding stalks
of OX and hence, by [SP, 0AWS], are Cohen–Macaulay of full support. Similarly, by [SP, 0DW9],
the module ΩX /S is a line bundle if and only if the S-fibers of X are Gorenstein.

We draw attention to the case when X → S is proper and X is not a scheme, in which we do not
claim any dualizing properties of the OX -module ΩX /S constructed above.

5.2. The case of modular curves. For us, the key case is when S = SpecZ and X is either
the modular stack XΓ or its coarse space XΓ for an open subgroup Γ ⊂ GL2(Ẑ) (see §1.4). The
resulting X → S is flat, of finite presentation, with Cohen–Macaulay fibers (the latter by the
normality of X and [EGA IV2, 6.3.5 (i)]), so the discussion of §5.1 applies. Normality of X and

17See [LMB00, 12.2.1] for a discussion of analogous compatibilities and their relevance for glueing.
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[EGA IV2, 6.12.6 (i)] ensure that X reg is the complement of finitely many closed points of X , and
hence contains XQ and is Z-fiberwise dense in X . Since X reg is also Z-fiberwise Gorenstein (see
[Liu02, 6.3.18]), the coherent, Z-flat, Cohen–Macaulay OX -module ΩX reg/Z of §5.1 is a line bundle.
In addition, ΩX /Z agrees with the line bundle Ω1

U /Z over any Z-smooth open U ⊂X , for instance,
over XZ[ 1

N
] ⊂X for an N ≥ 1 with Γ(N) ⊂ Γ (see [DR73, IV, 6.7] and [Čes17, 6.4 (a)]).

The key advantages of ΩX /Z over the OX -module Ω1
X /Z are its aforementioned pleasant properties

at the nonsmooth points. The following comparison relates ΩXΓ/Z to the more concrete ΩXΓ/Z.

Proposition 5.3. For an open subgroup Γ ⊂ GL2(Ẑ), an N ≥ 1 with Γ(N) ⊂ Γ, and the coarse
space morphism XΓ

π−→ XΓ, we have an isomorphism of line bundles

Ω1
(XΓ)Z[ 1

N
]
/Z[ 1

N
]

∼−→ (πZ[ 1
N

])∗(Ω
1
(XΓ)Z[ 1

N
]
/Z[ 1

N
]
) (5.3.1)

and for any open U ⊂ XΓ such that U := π−1(U)
π−→ U is étale over a Z-fiberwise dense open of U ,

H0(U,Ω) ⊂ H0(UQ,Ω
1) is identified by (5.3.1) with H0(U ,Ω) ⊂ H0(UQ,Ω

1).

Proof. The second assertion implies the first: indeed, for every open U ⊂ (XΓ)Z[ 1
n

], the map

π−1(U) → U is étale over the complement of j = 0 and j = 1728 (see [Čes17, last paragraph
of the proof of Prop. 6.4]). For the same reason, away from j = 0 and j = 1728 the pullback map

Ω1
(XΓ)Q/Q → (πQ)∗(Ω

1
(XΓ)Q/Q) (5.3.2)

is an isomorphism: there it is the Ω1
(XΓ)Q/Q-twist of the coarse space isomorphism OXΓ

∼−→ π∗(OXΓ
).

To conclude that (5.3.2) is an isomorphism, we claim that so is its base change to the completion
Ôsh

(XΓ)Q, x
of the strict Henselization of (XΓ)Q at any x ∈ XΓ(Q). We have

Ôsh
(XΓ)Q, x

' QJtK under which (Ω1
(XΓ)Q/Q)

Ôsh
(XΓ)Q, x

' QJtK · dt,

and also, using the identification XΓ(Q) ∼= XΓ(Q) to view x in XΓ(Q),

Ôsh
(XΓ)Q, x

' QJτK under which (Ω1
(XΓ)Q/Q)

Ôsh
(XΓ)Q, x

' QJτK · dτ.

Taking into account the action of the automorphism group of x ∈XΓ(Q), we have, compatibly,

Ôsh
(XΓ)Q, x

∼= (Ôsh
(XΓ)Q, x

)G and ((πQ)∗(Ω
1
(XΓ)Q/Q))

Ôsh
(XΓ)Q, x

∼= ((Ω1
(XΓ)Q/Q)

Ôsh
(XΓ)Q, x

)G

for some finite group G acting faithfully on Ôsh
(XΓ)Q, x

(see [DR73, I, 8.2.1] or [Ols06, 2.12]). Since the
ramification of πQ is tame, the faithfulness of the action implies by Galois theory that G ' µ#G(Q)

with, at the cost of changing the uniformizer τ above, t = τ#G and ζ ∈ µ#G(Q) acts by τ 7→ ζ · τ
(see [Ser79, IV, §2, Prop. 8]). The desired QJtK · dt ∼−→ (QJτK · dτ)G follows.

To conclude the sought identification H0(U,Ω) ∼= H0(U ,Ω), we let U ′ ⊂ U with preimage U ′ ⊂ U
be a Z-fiberwise dense open over which π is étale. The OXΓ

-module ΩXΓ/Z has depth 2 at the points
in U \ (U ′ ∪ UQ) (see §5.2), and similarly for ΩXΓ/Z, so, by [EGA IV2, 5.10.5], we have

H0(U,Ω) = H0(U ′,Ω) ∩H0(UQ,Ω
1) inside H0(U ′Q,Ω

1),

H0(U ,Ω) = H0(U ′,Ω) ∩H0(UQ,Ω
1) inside H0(U ′

Q,Ω
1).
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Therefore, the isomorphism (5.3.2) reduces us to the case when U = U ′. Similarly, neither H0(U,Ω)
nor H0(U ,Ω) changes if we remove finitely many closed points from U , so we assume further that U
and U are regular, so that ΩU/Z and ΩU /Z are line bundles (see §5.2). Then (π|U )∗(ΩU/Z) ∼= ΩU /Z
by the étaleness of U → U (see (5.1.1)), to the effect that there is a pullback map

ΩU/Z → (π|U )∗(ΩU /Z) that is the ΩU/Z-twist of the isomorphism OU
∼−→ (π|U )∗(OU ),

and hence is an isomorphism. The sought identification follows by taking global sections. �

We conclude that the Z-lattice determined in the Q-space of cuspforms H0(X0(N)Q,Ω
1) by the rela-

tive dualizing sheaf Ω on the stack X0(N) agrees with its coarse space counterpart as follows.

Corollary 5.4. For an N ≥ 1 and the map X0(N)
π−→ X0(N), we have an OX0(N)-module isomor-

phism ΩX0(N)/Z
∼−→ π∗(ΩX0(N)/Z) that over Q is the pullback of Kähler differentials. In particular,

H0(X0(N),Ω) = H0(X0(N),Ω) inside H0(X0(N)Q,Ω
1) ∼= H0(X0(N)Q,Ω

1). (5.4.1)

Proof. The map π is étale (even a Z/2Z-gerbe) over a Z-fiberwise dense open of X0(N), for instance,
over the complement of j = 0 and j = 1728, see [Čes17, proof of Thm. 6.7]. Thus, in the case
Γ = Γ0(N), Proposition 5.3 applies to every open U ⊂ X0(N) and gives the claim. �

Due to the abstract nature of Ω, the lattice H0(X0(N),Ω) is a priori inexplicit. To remedy this, in
particular, to relate this lattice to the integrality properties of Fourier expansions studied in §4, we
will use an integral version of the Kodaira–Spencer isomorphism presented in Proposition 5.6.

5.5. The line bundle ω. The cotangent space at the identity section of the universal generalized
elliptic curve gives a line bundle ω on X (1), which pulls back to a line bundle ω on XΓ for every
open subgroup Γ ⊂ GL2(Ẑ). We write ‘cusps’ for the reduced complement of the elliptic curve
locus of XΓ, so that ‘cusps’ restricts to a Weil divisor on the regular locus X reg

Γ , which contains
(XΓ)Q and is Z-fiberwise dense in XΓ (see §5.2). By [Del71, §2], for every k ∈ Z>0 and every
Γ ⊂ Γ1(N), the space H0((XΓ)C, ω

⊗k) (resp., H0((XΓ)C, ω
⊗k(−cusps))) is canonically identified

with the C-vector space of modular forms (resp., cuspforms) of weight k on Γ reviewed in §4.2, so
H0(XΓ, ω

⊗k) (resp., H0(XΓ, ω
⊗k(−cusps)) if XΓ is regular) is a Z-lattice in this C-vector space.

Thanks to this algebraic description, one enlarges the scope of the definitions: in the rest of this
article, by a modular form (resp., cuspform) of weight k on Γ over a scheme S we mean an element of
H0((XΓ)S , ω

⊗k) (resp., H0((XΓ)S , ω
⊗k(−cusps)); we will use the latter only when XΓ is regular).

Proposition 5.6. For an open subgroup Γ ⊂ GL2(Ẑ), letting y range over the generic points of the
Fp-fibers of XΓ for the set of primes p that divide every (equivalently, the smallest) N ≥ 1 with
Γ(N) ⊂ Γ, and letting dy denote the valuation of the different ideal of the extension Osh

XΓ, y
/Osh

X (1), y

of discrete valuation rings (see §1.4 for the notation), we have

ΩX reg
Γ /Z

∼= ω⊗2
X reg

Γ
(−cusps +

∑
y dy{y}).

Proof. It is indeed equivalent to consider the smallest N with Γ(N) ⊂ Γ: if p | N but p - M for
some Γ(M) ⊂ Γ, then, for N ′ := N

pvalp(N) , every element of Γ(N ′) is congruent modulo pvalp(N) to an
element of Γ(M), so Γ(N ′) ⊂ Γ(MN ′)Γ(N) ⊂ Γ, contradicting the minimality of N .
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For the main assertion, since both sides are line bundles (see §5.1) and XΓ is normal, by [EGA IV2,
5.10.5], it suffices to exhibit the desired isomorphism over the slightly smaller open U ⊂X reg

Γ that
is the preimage of the open of X (1) obtained by removing the images of the singular points of XΓ.
We will bootstrap the claim from its case for X (1) supplied by [Kat73, A1.3.17]:

Ω1
X (1)/Z

∼= ω⊗2
X (1)(−cusps). (5.6.1)

By working étale locally on X (1) and using [Con00, Thm. 4.3.3, (4.3.7), bottom of p. 206], we get

ΩU /Z ∼= ΩU /X (1) ⊗OU
π∗ΩX (1)/Z, (5.6.2)

where π : U →X (1) is the forgetful map. Since π is finite locally free over π(U ), by [Con00, bottom
half of p. 31 and pp. 137–139, esp. (VAR6) on p. 139], the OU -module ΩU /X (1) reviewed in §5.1,
is identified with H omOπ(U )

(π∗(OU ),Oπ(U )). Thus, since π is generically étale, the element

trace ∈ HomOπ(U )
(π∗(OU ),Oπ(U )) ∼= Γ(U ,ΩU /X (1)),

via the correspondence [SP, 01X0] (with [SP, 0AG0]), gives rise to the identification

ΩU /X (1)
∼= OU (

∑
x∈|XΓ|(1) dx{x}), (5.6.3)

where the sum is over the height 1 points x of XΓ and dx is the order of vanishing of ‘trace’ at
Osh

XΓ, x
. By considering the fractional multiples of ‘trace’ that still map Osh

XΓ, x
into Osh

X (1), x, we see
that dx is the valuation of the different ideal of Osh

XΓ, x
/Osh

X (1), x (see [Ser79, III, §3]). Thus, dx = 0

whenever this extension is étale, so each x that contributes to the sum either lies on the cusps of
(XΓ)Q or is the generic point of an irreducible component of an Fp-fiber of XΓ → SpecZ such that
p | N for every Γ(N) ⊂ Γ (see [DR73, IV, 3.2]). At the former, ramification is tame and dx = ex−1,
where ex is the ramification index of Osh

XΓ, x
/Osh

X (1), x (see [Ser79, III, §6, Prop. 13]). Thus, since
π∗(ω⊗2

X (1)(−cusps)) ∼= ω⊗2
U (−

∑
x∈cusps ex{x}), by (5.6.1)–(5.6.3) we obtain the desired

ΩU /Z ∼= ω⊗2
U (−cusps +

∑
y dy{y}). �

Variant 5.7. For an open subgroup Γ ⊂ GL2(Ẑ) and the forgetful map π : XΓ → X(1), letting y
range over the height 1 points of XΓ and letting d′y denote the valuation of the different ideal of the
extension OXΓ, y/OX(1), π(y) of discrete valuation rings, we have

ΩXreg
Γ /Z

∼= (π∗Ω1
X(1)/Z)|Xreg

Γ
(
∑

y∈X(1)
Γ

d′y{y}).

Proof. The proof is the same (but simpler) as that of Proposition 5.6. Namely, X(1) ∼= P1
Z is Z-

smooth, so ΩX(1)/Z ∼= Ω1
X(1)/Z, and, similarly to there, one may restrict to the preimage U ⊂ XΓ of

X(1) \ π(XΓ \Xreg
Γ ) and then conclude by using the analogues of (5.6.2) and (5.6.3). �

For general Γ, it is tricky to directly compute the dy that appear in the integral Kodaira–Spencer
formula of Proposition 5.6 because the extension Osh

XΓ, y
/Osh

X (1), y involves imperfect residue fields
and may be wildly ramified. For Γ0(N), we will compute the dy in Proposition 5.12, and for this we
first argue that only the level at p matters and then describe X0(pvalp(N)) along the cusps.

Lemma 5.8. For open subgroups Γ,Γ′ ⊂ GL2(Ẑ) with Γ(N) ⊂ Γ and Γ(N ′) ⊂ Γ′, a generic point
yΓ∩Γ′ of the Fp-fiber of XΓ∩Γ′ with p - N ′, and its image yΓ in XΓ, in Proposition 5.6 we have

dyΓ∩Γ′ = dyΓ .
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Proof. By [DR73, IV, 3.8–3.9], the stack XΓ∩Γ′ agrees with the normalization18 of XΓ ×X (1) XΓ′ .
Thus, since the assumption p - N ′ ensures that the map XΓ′ → X (1) is étale at the image of
yΓ∩Γ′ (see [DR73, IV, 3.2ff]), the map XΓ∩Γ′ → XΓ is étale at yΓ∩Γ′ . In particular, letting y be a
geometric point above yΓ∩Γ′ , we have Osh

XΓ∩Γ′ , y
∼−→ Osh

XΓ, y
, so that dyΓ∩Γ′ = dyΓ , as desired. �

5.9. The components of X0(N)Fp. We recall from [KM85, 13.4.7] that the irreducible components
of X0(N)Fp correspond to pairs (a, b) of integers a, b ≥ 0 with a+ b = valp(N) in such a way that
on the (a, b)-component the p-primary part of the cyclic subgroup that is part of the modular
interpretation of X0(N) is generically an extension of an étale group of order pb by the a-fold
relative Frobenius kernel. The ramification index e(a, b) of the strict Henselization of X0(N) at the
generic point of the (a, b)-component of X0(N)Fp was determined in [KM85, 13.5.6]:

e(a, b) = φ(pmin(a, b)). (5.9.1)

If p | N , then the forgetful map X0(N)Fp → X0(Np )Fp sends each (a, b)-component with b > 0 to
the (a, b− 1)-component and the (a, 0)-component to the (a− 1, 0)-component.

Lemma 5.10. For a prime p and an n ≥ 0, the base change of the forgetful map X0(pn)→ X (1)
along the map Spec(ZJqK)→X (1) given by the Tate generalized elliptic curve over ZJqK is

X0(pn)×X (1) ZJqK ∼=
⊔
a+b=n
a≥b≥0

Spec(Z[ζpb ]JqK) t
⊔
a+b=n
0≤a<b

Spec((Z[ζpa ]JqK)[X]/(Xpb−a − ζpaq)),

where, without explicating the ZJqK-algebra structure, the last term is Z[ζpa ]JXK. After base change
to Fp, the term indexed by (a, b) in this decomposition maps to the (a, b)-component of X0(pn)Fp.

Proof. By [DR73, VII, 2.2], the finite, flat ZJqK-scheme X0(pn) ×X (1) ZJqK is the normalization of
ZJqK in the finite Z((q))-scheme X0(pn)×X (1) Z((q)). The latter parametrizes cyclic (in the sense of
Drinfeld) subgroups of order pn of the Tate elliptic curve over Z((q)), so, by [KM85, 13.6.6], it is

Spec(Z((q))) t Spec(Z((q
1
pn ))) t

⊔
a+b=n
a, b>0

Spec

(
Z((q))[X]/(Φp(

Xpb−1

qpa−1 ))

)
where Φp(Z) := Zp−1 + . . .+Z + 1 is the p-th cyclotomic polynomial. More explicitly, if a ≥ b ≥ 1,
then X/qpa−b is a pb-th root of unity in the source of the surjection

Z((q))[X]/(Φp(
Xpb−1

qpa−1 ))→ Z[ζpb ]((q)) given by X 7→ ζpb q
pa−b

that must also be injective because its source and target are free Z((q))-modules of rank pb−1(p−1).
Similarly, if 1 ≤ a ≤ b, then Xpb−a/q is a pa-th root of unity in the source of the isomorphism

Z((q))[X]/(Φp(
Xpb−1

qpa−1 ))
∼−→ (Z[ζpa ]((q)))[X]/(Xpb−a − ζpaq).

To conclude the claimed description of X0(pn) ×X (1) ZJqK, it remains to note that both Z[ζpb ]JqK
for a ≥ b and (Z[ζpa ]JqK)[X]/(Xpb−a − ζpaq) ∼= Z[ζpa ]JXK for a ≤ b are normal (even regular). The
claim about the (a, b)-component follows from [KM85, 13.6.2 and the proof of 13.6.6]. �

Before proceeding to the promised formula for the dy in Proposition 5.12, we record the following con-
sequence of Lemma 5.10 that relates the present section to the analytic considerations of §4.

18Note that for [DR73, III, 3.9.1] to hold, one needs to take the normalization of its left side, see [Čes17, 4.5.3].
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Lemma 5.11. For L | N and a prime p, every cusp of X0(N)C of denominator L (see §4.1 and
use X0(N)(C) = X0(N)(C)) reduces to the (valp(L), valp(

N
L ))-component of X0(N)Fp (see §5.9).

Proof. Points of X0(N) and of its coarse space X0(N) valued in algebraically closed fields agree
and every cusp is a Q-point, so the statement makes sense. Moreover, the complex uniformizations
(4.1.1) are compatible with forgetting some of the level, so we may assume that N = pn. For
L = N , the only cusp of X0(N) of denominator L is ∞ and its punctured analytic neighborhood
parametrizes pairs (C×/qZ, 〈e2πi/N 〉) with q = e2πiz and Im z � 0 (see [Roh97, §1.10, Prop. 7]).
Thus, by the algebraic theory of the Tate curve with its canonical subgroup µN (see [DR73, VII,
§1, esp. VII, 1.12.3]), this cusp factors through the (n, 0)-term of the right side decomposition of
Lemma 5.10, and hence reduces to the (n, 0)-component. For the other cusps, we induct on n, so
we suppose that n > 0 and consider a cusp c of denominator p` with ` ≤ n − 1. By induction,
the image of c reduces to the (`, n − ` − 1)-component of X0(pn−1)Fp . Thus, if n − ` − 1 > 0,
then c must reduce to the (`, n− `)-component of X0(pn)Fp (see §5.9). To bootstrap the remaining
φ(pmin(n−1, 1)) cusps with ` = n − 1 (see §4.1), it now remains to note that, by Lemma 5.10, there
are precisely φ(pmin(n−1, 1)) cusps that reduce to the (n− 1, 1)-component of X0(pn)Fp . �

Proposition 5.12. For an N ≥ 1, a prime p, the generic point y of the (a, b)-component of X0(N)Fp
(see §5.9), and the valuation d(a,b) of the different of the extension Osh

X0(N), y/O
sh
X (1), y,

d(a, b) =


b if a = 0,
pmin(a, b)−1(pb− b− 1) if a, b ≥ 1,
0 if b = 0.

(5.12.1)

Proof. By Lemma 5.8 and §5.9, we may forget level away from p to assume that N = pn. As in the
proof of Proposition 5.6, the different of a finite, generically separable extension R′/R of discrete
valuation rings is the annihilator of the R′-module HomR(R′, R)/(traceR′/R). The formation of this
annihilator commutes with flat base change in R (after which R and R′ may cease being discrete
valuation rings). We will apply this to Osh

X0(N), y/O
sh
X (1), y, the valuation d(a, b) of whose different

we wish to compute. Namely, by [DR73, VII, 2.1], the map Spec(ZJqK) → X (1) given by the
Tate generalized elliptic curve over ZJqK realizes its source as an étale double cover of the formal
completion of X (1) along the cusps, and the flat base change map we will use is the resulting
Osh

X (1), y → ZJqKsh
(p), where the latter strict Henselization is at the generic point of the Fp-fiber of

ZJqK. In this notation, by Lemma 5.10, the resulting base change of Osh
X0(N), y is

Z[ζpb ]JqK
sh
(p) if a ≥ b, and ((Z[ζpa ]JqK)[X]/(Xpb−a − ζpaq))sh

(p) if a ≤ b.

These are discrete valuation rings, and the extension Z[ζpb ]JqKsh
(p)/ZJqKsh

(p) is a flat base change of
Z[ζpb ]

sh
(p)/Z

sh
(p). Thus, the a ≥ b case of (5.12.1) follows from the ramification theory of cyclotomic

fields [Was97, 2.1]. To similarly treat the a ≤ b case, we will use subextension

ZJqKsh
(p) ⊂ Z[ζpa ]JqKsh

(p) ⊂ ((Z[ζpa ]JqK)[X]/(Xpb−a − ζpaq))sh
(p) (5.12.2)

and the tower formula for the different [Ser79, III, §4, Prop. 8] (that, notably, does not require
residue field extensions to be separable—an assumption not met here). Namely, letting d̃(a, b) be
the valuation of the different of the top extension, [Was97, 2.1] now gives

d(a, b) = d̃(a, b) +

{
pa−1(pa− a− 1) if a ≥ 1,
0 if a = 0.

37



To compute d̃(a, b), we note that the top subextension in (5.12.2) is of degree pb−a, does not change
the uniformizer 1−ζpa , induces a purely inseparable residue field extension of degree pb−a, and, as a
module, is generated by powers of X. Thus, since X,X2, . . . , Xpb−a−1 have trace 0 in this extension,
we conclude that d = (b− a)φ(pa). The desired formula in the remaining case a ≤ b follows. �

With the integral version of the Kodaira–Spencer isomorphism (Proposition 5.6) and the explicit for-
mulas for the dy (Proposition 5.12) in hand, we are ready to characterize the Z-latticeH0(X0(N),Ω)
in terms of the p-adic properties of Fourier expansions at all cusps in Proposition 5.14.

Lemma 5.13. For a prime p, an f ∈ H0(X0(N)Qp , ω
⊗k) with k ≥ 1, a cusp c ∈ X0(N)(Qp) of

denominator L, and an isomorphism ι : Qp ' C, the valuation v := valp(ι(f)|ι(c)) defined as in
(4.2.2) (see also §5.5) after pullback19 to a cusp c̃ ∈ X(NÑ)(C) above c for a sufficiently divisible
Ñ depends only on f and valp(L) (and not on c, ι, Ñ , or c̃): letting U ⊂X0(N)Zp denote the open
complement of those irreducible components of X0(N)Fp that do not meet the reduction of c,

v is the largest rational number such that p−vf ∈ H0(UZp , ω
⊗k). (5.13.1)

Proof. By Lemma 5.11, the irreducible component of X0(N)Fp that contains the reduction of c
depends only on valp(L), so the same holds for U and it suffices to establish (5.13.1). Moreover,
by scaling f , we may assume that v = 0. By the normality of X0(N), the forgetful map

π : X (NÑ)→X0(N) satisfies OX0(N)
∼−→ (π∗(OX (NÑ)

))Γ0(N)/Γ(NÑ)

and this persists after flat base change, such as to Zp. Thus, Γ0(N)/Γ(NÑ) acts transitively on the
cusps c̃ ∈ X(NÑ)(C) above c and, letting Ũ ⊂X (NÑ)Zp be the complement of those irreducible
components of X (NÑ)Fp that do not meet the reduction of a fixed c̃, we reduce to showing that

no v′ ∈ Q>0 satisfies p−v
′
f |X (NÑ)Qp

∈ H0(ŨZp , ω
⊗k). (5.13.2)

In addition, limit arguments eliminate the artificial non-Noetherian aspects: they allow us to replace
Qp and Zp by a variable sufficiently large finite extension F/Qp and its ring of integers OF .

For sufficiently divisible Ñ , the stack X (NÑ) is a scheme (already 15 | Ñ suffices, see [KM85, 2.7.2])
and, by [KM85, 10.9.1], the formal completion of X (NÑ)OF along the closure of c̃ is OF Jq

1

NÑ K.
Under a trivialization of the pullback of ω⊗k to this formal completion, the pullback of f is described
by its q-expansion, which is an element of F Jq

1

NÑ K that, via ι, agrees with the analytic Fourier
expansion of f at c̃ constructed as in §4.2 (see [DR73, VII, 4.8]). Consequently, $a

F f with a ∈ Z
extends to a section of ω⊗k over a neighborhood of the closure of c̃ in X (NÑ)OF if and only if
a
eF
≥ 0, where eF is the absolute ramification index of F . The complement in ŨOF of the union of

such a neighborhood with X (NÑ)F is of codimension≥ 2, so, since X (NÑ)OF is Cohen–Macaulay,
[EGA IV2, 5.10.5] ensures that $a

F f extends to a neighborhood of the closure of c̃ in X (NÑ)OF if
and only if $a

F f ∈ H0(ŨOF , ω
⊗k). As F grows, this achieves the promised (5.13.2). �

Proposition 5.14. For a prime p and a cuspform f ∈ H0(X0(N)Qp , ω
⊗2(−cusps)), the differential

ωf ∈ H0(X0(N)Qp ,Ω
1) lies in the Zp-lattice H0(X0(N)Zp ,Ω) ∼= H0(X0(N)Zp ,Ω) (see (5.4.1)) if

19The only role of the auxiliary level is to ensure that X (NÑ)C is a scheme and hence admits a complex uni-
formization analogous to the one discussed in (4.1.1).
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and only if for every 0 ≤ ` ≤ valp(N) and some (equivalently, any) cusp c ∈ X0(N)(Qp) whose
denominator L satisfies ` = valp(L) and some (equivalently, any) isomorphism ι : Qp ' C, we have

valp(ι(f)|ι(c)) ≥


−valp(N) if valp(L) = 0,

−valp(
N
L ) + 1

p−1 if 0 < valp(L) < valp(N),

0 if valp(L) = valp(N).

(5.14.1)

For such an f defined over a number fieldK with ring of integers OK , we have ωf ∈ H0(X0(N)OK ,Ω)

if and only if (5.14.1) holds for all primes p and all embeddings K ↪→ Qp.

Proof. The last assertion follows from the rest because any finite free OK-module M (such as
H0(X0(N)OK ,Ω) ∼= H0(X0(N),Ω) ⊗Z OK , see §5.1) agrees with the set of m ∈ M ⊗OK K whose
image inM⊗OK Qp lies inM⊗OK Zp for every prime p and every embedding K ↪→ Qp. For (5.14.1)
itself, we begin by recalling the integral Kodaira–Spencer isomorphism of Propositions 5.6 and 5.12:
letting y range over the generic points of the irreducible components of X0(N)Fp , with dy as there,

ΩX0(N)Zp/Zp
∼= ω⊗2(−cusps +

∑
y dy{y}).

Consequently, the characterization of valp(f |c) given in Lemma 5.13 together with [EGA IV2, 5.10.5]
(applied as in the preceding proof) show that ωf ∈ H0(X0(N)Zp ,Ω) if and only if for every y and
some cusp c that reduces modulo p on {y}, we have dy/ey ≥ −valp(ι(f)|ι(c)) where ey is the absolute
ramification index of the discrete valuation ring Osh

X0(N), y. By Lemma 5.11, a cusp c of denominator
L reduces to the (valp(L), valp(

N
L ))-component of X0(N)Fp for which, by (5.9.1), the corresponding

ey is φ(pmin(valp(L), valp(N
L

))). To arrive at (5.14.1), it then remains to use (5.12.1). �

We are ready for our main integrality result for normalized newforms.

Theorem 5.15. For a number field K and an f ∈ H0(X0(N)K , ω
⊗2(−cusps)) whose base change

along some K ↪→ C is a Z-linear combination of normalized newforms on Γ0(N) (see §5.5),

ωf ∈ H0(X0(N)OK ,Ω) ∼= H0(X0(N)OK ,Ω) inside H0(X0(N)K ,Ω
1) ∼= H0(X0(N)K ,Ω

1)

(identification by flat base change and (5.4.1)), and, more generally, for any Γ1(N) ⊂ Γ ⊂ Γ0(N),

ωf ∈ H0((XΓ)OK ,Ω) ⊂ H0((XΓ)K ,Ω
1) and ωf ∈ H0((XΓ)OK ,Ω) ⊂ H0((XΓ)K ,Ω

1).

Proof. A Galois conjugate of a newform is still a newform (see [DI95, 12.4.5]), so the assumption on f
does not depend on the choice of an embedding K ↪→ C. For the first assertion, by Proposition 5.14,
we need to check that for every prime p, every embedding λ : K ↪→ Qp, every 0 ≤ ` ≤ valp(N), some
cusp c ∈ X0(N)(C) whose denominator L satisfies valp(L) = `, and some isomorphism ι : Qp ' C,
the valuation valp(ι(λ(f))|c) satisfies the bound (5.14.1). This, however, follows from Corollary 4.7.

To deduce that ωf ∈ H0((XΓ)OK ,Ω) for an arbitrary Γ, since Ω(XΓ)OK /OK
is a Cohen–Macaulay

O(XΓ)OK
-module of full support (see §5.1), by [EGA IV2, 5.10.5], it suffices to show the containment

ωf ∈ H0((Xreg
Γ )OK ,Ω). Thus, Variant 5.7 and the settled case Γ = Γ0(N) reduce us to showing

that for every height 1 point y ∈ XΓ with images y′ ∈ X0(N) and y′′ ∈ X(1), the extensions

OX(1), y′′ ⊂ OX0(N), y′ ⊂ OXΓ, y of discrete valuation rings satisfy dy/y′′ ≥ ey/y′dy′/y′′
where d∗ (resp., e∗) is the valuation of the different (resp., the ramification index) of the indicated
subextension. This inequality is immediate from the tower formula for the different [Ser79, III, §4,
Prop. 8]. To likewise deduce that also ωf ∈ H0((XΓ)OK ,Ω), one uses Proposition 5.6 instead. �
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Remark 5.16. For a normalized cuspform f of weight 2 on Γ0(N), if ωf lies in H0(X0(N),Ω), then
it is a primitive (that is, not divisible by any m > 1) element of this Z-lattice. In fact, then it is
primitive even in the Z-lattice H0(Xsm

Γ ,Ω1) for every Γ1(N) ⊂ Γ ⊂ Γ0(N). Indeed, the finite maps
X1(N) → XΓ → X0(N) are flat away from finitely many closed points (see [EGA IV2, 6.1.5]), so
they restrict to maps X1(N)sm → Xsm

Γ → X0(N)sm away from these points. By [EGA IV2, 5.10.5],
removing finitely many closed points has no effect on H0((−)sm,Ω1), so we obtain the inclusions

H0(X0(N)sm,Ω1) ⊂ H0(Xsm
Γ ,Ω1) ⊂ H0(X1(N)sm,Ω1), (5.16.1)

which reduce primitivity to the case Γ = Γ1(N) settled as in [Ste89, proof of 1.6] via q-expansions.

6. Rational singularities of X0(N)

For studying the Manin constant, the Z-lattice H0(J0(N),Ω1) given by the global differentials on
the Néron model J0(N) of the modular Jacobian J0(N) := Pic0

X0(N)Q/Q is more convenient than the
a priori largerH0(X0(N),Ω) because it is functorial with respect to both a modular parametrization
J0(N) � E and its dual E → J0(N). Thanks to this functoriality, the Manin conjecture implies
that the differential ωf associated to the normalized newform f determined by E should lie in
H0(J0(N),Ω1), and we show this unconditionally in Corollary 6.14 whenever X0(N) has rational
singularities. We show in Theorem 6.12 that this assumption holds in a vast number of cases.

6.1. Rational singularities. We recall from [Lip69, 1.1] that a Noetherian, normal, 2-dimensional,
local domain R has rational singularities if H1(Z,OZ) = 0 for some proper, birational morphism
Z → Spec(R) with Z regular. In this case, by [Lip69, 1.2], we have H1(Z,OZ) = 0 for every proper,
birational Z → Spec(R) with Z merely normal, and any such Z also has rational singularities.

The following result summarizes the relevance of rational singularities for our purposes.

Proposition 6.2. For an excellent discrete valuation ring R with fraction field K and residue field
k, a normal, proper, flat relative curve X over R such that XK is irreducible and Xsm∩Xk 6= ∅, the
Jacobian J := Pic0

XK/K
, and its Néron model J over R, the map Pic0

X/R → J 0 is an isomorphism
if and only if the inclusion

H0(J ,Ω1) ↪→ H0(X,Ω) is an equality inside H0(J,Ω1) ∼= H0(XK ,Ω
1), (6.2.1)

which happens if and only if X has rational singularities; more generally, letting π : Z � X be a
proper, birational morphism with Z regular, H0(X,Ω)/H0(J ,Ω1) ' H0(X,R1π∗(OZ)).

Proof. We have R ∼−→ H0(X,OX) because this finite morphism of normal domains (see [SP, 0358])
is, by checking over K, an isomorphism. Thus, since Xsm ∩ Xk 6= ∅, by [Ray70, 8.2.1], the map
X → SpecR is cohomologically flat and Pic0

X/R is a separated, smooth R-group scheme (see also
[BLR90, 8.4/2]). In particular, the Néron property supplies the map Pic0

X/R → J . Moreover, the
deformation-theoretic [BLR90, 8.4/1] gives the identification H1(X,OX) ∼= Lie(Pic0

X/R) of finite
free R-modules. Consequently, by the Grothendieck–Serre duality (see [Con00, Thm. 5.1.2]),

H0(Pic0
X/R,Ω

1) = HomR(Lie(Pic0
X/R), R) = H0(X,Ω) in H0(J,Ω1) ∼= H0(XK ,Ω

1). (6.2.2)

Thus, there is the claimed inclusion H0(J ,Ω1) ↪→ H0(X,Ω), which, since all the global differentials
on J are translation invariant (see [BLR90, 4.2/1–2]), is an equality if Pic0

X/R
∼= J 0. Conversely,

if the inclusion is an equality, then the separated morphism Pic0
X/R → J 0 is an isomorphism on

Lie algebras, that is, it is étale (see [EGA IV4, 17.11.2]), and hence, by checking the triviality of its
kernel over K (see [EGA IV4, 18.5.11 c)]), even an isomorphism.
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By Lipman’s [SP, 0BGP], a desingularization π : Z � X exists (ensuring this is the only role
of the excellence of R). Moreover, by the above and the proof of [BLR90, 9.7/1], the map
π∗ : H1(X,OX) → H1(Z,OZ) is identified with the map Lie(Pic0

X/R) ↪→ Lie(J ). By forming
duals, the finite length cokernel of the latter is isomorphic to H0(X,Ω)/H0(J ,Ω1). On the other
hand, Grothendieck’s theorem on formal functions [EGA III1, 4.1.7] shows that H2(X,OX) = 0.
The above and the spectral sequence H i(X,Rjπ∗(OZ))⇒ H i+j(Z,OZ) then give the claimed

H0(X,Ω)/H0(J ,Ω1) ' H1(Z,OZ)/π∗(H1(X,OX)) ∼= H0(X,R1π∗(OZ)).

Since R1π∗(OZ) is supported at the singular points of X and vanishes if and only if X has rational
singularities (see §6.1), the latter happens if and only if (6.2.1) holds. �

Example 6.3. Proposition 6.2 applies to R = Z(p) and X = (XΓ)Z(p)
for every prime p and every

Γ1(N) ⊂ Γ ⊂ Γ0(N). Indeed, X1(N)sm ∩X1(N)Fp 6= ∅ by [KM85, 13.5.6], so, since, by [EGA IV2,
6.1.5], the finite map X1(N) � XΓ is flat away from finitely many points, also Xsm

Γ ∩ (XΓ)Fp 6= ∅.
More generally, it also applies to any (X

Γ∩ H̃)Z(p)
with Γ as before and Γdiag(M) ⊂ H̃ ⊂ GL2(Ẑ) the

preimages of subgroups {( x1
x2 ) |xi ∈ (Z/MZ)×} ⊂ H ⊂ GL2(Z/MZ) for some M coprime to N :

indeed, the identity
(

0 1
M 0

) (
a b
c d

) (
0 1
M 0

)−1
=
(

d c
M

Mb a

)
gives

(
0 1
M 0

)
Γ0(M2)

(
0 1
M 0

)−1
= Γdiag(M), so,

by [DR73, IV, 3.19 (see also 3.14.1)], we obtain an isomorphism XΓ∩Γ0(M2) ' XΓ∩Γdiag(M), to the
effect that we may now instead use the resulting finite flat map

XΓ∩Γ0(M2) ' XΓ∩Γdiag(M) � X
Γ∩ H̃ to conclude that Xsm

Γ∩ H̃ ∩ (X
Γ∩ H̃)Fp 6= ∅. (6.3.1)

By Proposition 6.2, controlling the lattice H0(J0(N),Ω1) relevant for the Manin constant hinges on
positively answering the pertinent cases of the following question considered by Raynaud [Ray91].

Question 6.4. Does X0(N) have rational singularities for every N ≥ 1?

We know of no N for which the answer is negative, in fact, we exhibit a positive one for a large
class of N in Theorem 6.12, which subsumes [Ray91, Thm. 2]. The new cases in Theorem 6.12 will
come by bootstrapping from Proposition 6.6, whose proof uses the following lemma.

Lemma 6.5. For Γ1(N) ⊂ Γ ⊂ Γ′ ⊂ Γ0(N), the Jacobians JΓ and JΓ′ of (XΓ)Q and (XΓ′)Q, and
isogenous newform elliptic curve quotients20 π : JΓ � E and π′ : JΓ′ � E′, if Ker(π) and Ker(π′)
are connected, then there is an isogeny e : E → E′ such that the Manin constants cπ and cπ′ satisfy

cπ′ = cπ ·# Coker(Lie E Lie e−−−→ Lie E ′) where E and E ′ are the Néron models of E and E′.

Moreover, cπ ∈ Z for any newform elliptic curve quotient π : JΓ � E (regardless of Ker(π)).

Proof. Everything was settled in [Čes18, 2.12] except for the assertion that cπ ∈ Z in the case when
Ker(π) is nonconnected. To reduce the latter to the case when Ker(π) is connected, it suffices to
consider the factorization JΓ � JΓ/(Ker(π)0) � E of π. �

Proposition 6.6. For the following Γ ⊂ GL2(Ẑ), the modular curve XΓ has rational singularities:

(i) any Γ1(N) ⊂ Γ ⊂ Γ0(N) such that (XΓ)Q has genus ≤ 1;

20We say that a surjection of abelian varieties π : JΓ � E is a newform quotient of JΓ if JΓ/(Ker(π)0) is associated
to a newform on Γ via the Eichler–Shimura construction (compare, for instance, with [Roh97, §3.7] or [DS05, 6.6.3]).
We call such an E a newform elliptic curve quotient if, in addition, E is an elliptic curve.
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(ii) Γ = Γ0(9)∩ C̃3 with C̃3 ⊂ GL2(Ẑ) the preimage of the cyclic subgroup C3 ⊂ GL2(Z/2Z) ' S3.

Proof. We will use Proposition 6.2, which applies thanks to Example 6.3 (note that Γdiag(2) = Γ(2)),
so we let J be the Néron model over Z of the Jacobian of (XΓ)Q. In particular, we may assume
that the genus of (XΓ)Q is positive: indeed, in the genus 0 case the spaces in (6.2.1) vanish. Then
the genus of (XΓ)Q is 1: indeed, for (ii), the genus of X0(36)Q is 1, so, due to the surjection

X0(36)
(6.3.1)−−−−→ X

Γ0(9)∩ C̃3
, (6.6.1)

that of (X
Γ0(9)∩ C̃3

)Q is ≤ 1 (in fact, it is 1, but we do not need to sidestep into showing this).

In (i), the map (XΓ)Q → X0(N)Q is then an isogeny of elliptic curves over Q (see [Sch09, 1.2 (i)]),
so that N < 50 (compare with Example 6.7 below). By, for instance, Lemma 6.5 and Cremona’s
[ARS06, Thm. 5.2], the Manin conjecture holds for the optimal parametrization of the elliptic curve
(XΓ)Q by the modular curve (XΓ)Q: the differential ωf associated to the unique normalized newform
on Γ0(N) lies in H0(J ,Ω1). However, by Theorem 5.15 and Remark 5.16, this ωf is also a primitive
element of the lattice H0(Xsm

Γ ,Ω1). Since H0(J ,Ω1) ⊂ H0(XΓ,Ω) ⊂ H0(Xsm
Γ ,Ω1) (see (6.2.1)),

these Z-modules are then all generated by ωf , so Proposition 6.2 gives (i).

In (ii), we have reduced to the Q-fiber of the map (6.6.1) being an isogeny of elliptic curves of
degree 3 (compare with [DS05, bottom of p. 66]). Thus, by [LMFDB, 36a1], it must be the unique
degree 3 isogeny with source X0(36)Q. By [LMFDB, 36a3], the Manin constant of the resulting
nonoptimal modular parametrization of the elliptic curve (X

Γ0(9)∩ C̃3
)Q is 1, so the pullback of

the Néron differential ωJ is the differential ωf associated to the unique normalized newform on
Γ0(36). In particular, by Theorem 5.15 and Remark 5.16, this pullback is a primitive element of
H0(X0(36)sm,Ω1) and, to conclude in the same way as for (i), we use the inclusions

H0(J ,Ω1)
(6.2.1)
⊂ H0(X

Γ0(9)∩ C̃3
,Ω) ⊂ H0(Xsm

Γ0(9)∩ C̃3
,Ω1) ⊂ H0(X0(36)sm,Ω1),

the last one of which is obtained as (5.16.1) by using the map X0(36)→ X
Γ0(9)∩ C̃3

. �

Example 6.7. The Z-curve X0(N) has rational singularities for N = 1, . . . , 21, 24, 25, 27, 32, 36, 49:
these are the N for which X0(N)Q has genus ≤ 1, that is, for which Proposition 6.6 (i) applies.

To upgrade the finite list of Proposition 6.6 to infinite families, in Proposition 6.10 we develop
general criteria for rational singularities of X0(N). For this, we use the following lemmas.

Lemma 6.8. For an action of a finite group G on a ring R, if both R and RG are complete, 2-
dimensional, Noetherian, normal, local domains (when #G is invertible in R, it suffices to assume
this for R) and R has rational singularities, then, for every proper birational Z → Spec(RG) with
Z normal, #G kills H1(Z,OZ), in particular, RG also has rational singularities when #G ∈ R×.

Proof. We may assume that G acts faithfully and begin with the parenthetical claim, in which
#G ∈ R× and we consider the RG-linear operator R : r 7→ 1

#G

∑
g∈G gr that fixes each a ∈ RG. By

applying R to any equality a =
∑
riai with a, ai ∈ RG and ri ∈ R, we get RG ∩ IR = I for any

ideal I ⊂ RG. In particular, RG inherits the ascending chain condition, so is a Noetherian domain.
The 0-dimensional localization R ⊗RG KG of R is the fraction field K of R, so, by Galois theory,
it is a finite extension of the fraction field KG of RG. We choose a KG-basis r1, . . . , rn ∈ R for K
and consider the RG-module map R →

⊕n
i=1R

G given by r 7→ (R(rri))
n
i=1. This map is injective

because the version of R for K cannot kill
∑n

i=1 rriK
G = rK unless r = 0. Thus, R is a finite
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RG-module,21 so RG ↪→ R is a finite, local map of Noetherian local domains that splits via R as a
map of RG-modules, and hence RG is a complete, 2-dimensional, Noetherian, normal, local domain.

Returning to general G, for Z as in the statement we let Z̃ → SpecR be the proper birational map
obtained by normalizing the base change ZR in K := Frac(R) (the finite type of Z̃ over R follows
from [EGA IV2, 7.8.6 (ii)]). The G-action on R induces a compatible G-action on Z̃, for which the
integral map π : Z̃ → Z is equivariant (with G acting trivially on Z). Thus, since Z is normal, π
induces an isomorphism Z̃/G

∼−→ Z. Consequently, the trace map s 7→
∑

g∈G gs defines an OZ-
linear morphism π∗(OZ̃

)→ OZ whose postcomposition with OZ → π∗(OZ̃
) is multiplication by #G

on OZ . The rational singularities assumption gives H1(Z, π∗(OZ̃
)) = 0 (see §6.1), so the induced

maps on H1(Z,−) show that #G kills the RG-module H1(Z,OZ), as claimed. In particular, if #G
is a unit in R, so also in RG, then H1(Z,OZ) = 0. By choosing a Z that is regular (see Lipman’s
[SP, 0BGP]), we then conclude that RG indeed has rational singularities. �

Lemma 6.9. For a prime p, we have p - #(Aut(x)/{±1}) for each x ∈X0(N)(Fp) whenever

(i) p ≥ 5; or

(ii) p = 3 and there is a prime p′ | N with p′ ≡ 2 mod 3; or

(iii) p = 2 and there is a prime p′ | N with p′ ≡ 3 mod 4.

Proof. By [Čes17, proof of Thm. 6.7], for cuspidal x we have Aut(x) = {±1}, so we may assume that
x corresponds to an elliptic curve E over Fp equipped with a cyclic (in the sense of Drinfeld) subgroup
C ⊂ E of order N . Thus, since Aut(x) ⊂ Aut(E) and #Aut(E) | 24 (see [KM85, 2.7.2]), we have
(i). For (ii) and (iii), we consider the action of Aut(x) on E[p′](Fp). Firstly, if p′ is odd (resp., if
p′ = 2), then this action (resp., the induced action of Aut(x)/{±1}) is faithful, see [KM85, 2.7.2].
Thus, since it also preserves both the Weil pairing and the cyclic subgroup C ′ := C ∩E[p′] ⊂ E[p′],
any p-Sylow subgroup G of Aut(x) (resp., of Aut(x)/{±1}) acts semisimply on E[p′] and embeds
into Aut(C ′) ∼= (Z/p′Z)×. In particular, #G | p′−1, so that G = 1 in (ii) and G = {±1} in (iii). �

Proposition 6.10. For a prime p, an N ∈ Z>0, and n := valp(N),

(i) if p ≥ 5; or

(ii) if p = 3 and there is a p′ | N with p′ ≡ 2 mod 3; or

(iii) if p = 3 and either X0(3n · 7)Z(3)
or (X

Γ0(3n)∩ C̃3
)Z(3)

has rational singularities where the

subgroup C̃3 ⊂ GL2(Ẑ) is the preimage of the cyclic subgroup C3 ⊂ GL2(Z/2Z); or

(iv) if p = 2 and there is a p′ | N with p′ ≡ 3 mod 4; or

(v) if p = 2 and X0(2n · 5)Z(2)
has rational singularities and N 6= 2n; or

(vi) if p = 3 (resp., if p = 2) and for the level Γ0(pn) universal deformation ring R of (E,C),
where E/Fp is the elliptic curve with j = 0 and C ⊂ E the cyclic (in the sense of Drinfeld)
subgroup of order pn, and for every subgroup G′ ⊂ G := Aut(E)/{±1} of p-power order,
RG

′ has rational singularities (resp., same, but if N 6= 2n, then may restrict to cyclic G′);

then X0(N)Z(p)
has rational singularities.

21Finite generation of R as an RG-module holds much more generally, even for noncommutative R, see [Mon80, 5.9].
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Proof. SinceX0(N)Z(p)
is regular away from the Fp-points x with j = 0 or j = 1728 (see [Čes17, 6.7]),

we need to show that OX0(N), x has rational singularities for every such x. By Lipman’s [SP, 0BGP],
there is a proper birational map Z → Spec(OX0(N), x) with Z regular and, by [EGA IV2, 6.4.2,
7.8.3 (v)] (see also [Gre76, 5.6]), the Ôsh

X0(N), x-base change of Z is regular. Thus, by checking the
vanishing H1(Z,OZ) = 0 after flat base change, OX0(N), x has rational singularities if and only if so
does Ôsh

X0(N), x. However, by [DR73, I, 8.2.1] (or [Ols06, 2.12]), we have

Ôsh
X0(N), x

∼= (Ôsh
X0(N), x)Aut(x)/{±1}, (6.10.1)

and Ôsh
X0(N), x is regular by [KM85, 6.6.1]. Thus, (i), (ii), and (iv) follow from Lemmas 6.8 and 6.9.

In (vi), the unique E is supersingular, C is the kernel of the pn-fold relative Frobenius (see [KM85,
12.2.1]) and hence is preserved by Aut(E), and x maps to (E,C). Moreover, E[ Npn ] is étale, so its
subgroups C ′ ⊂ E[ Npn ] deform uniquely, and hence R ∼= Ôsh

X0(N), x by the modular interpretation of
X0(N). Since G injects into (in fact, equals to) SL2(F3)/{±1} if p = 2 and SL2(F2) if p = 3 (see
[KM85, 2.7.2], also [Del75, 5.9 (IV)–(V), 7.4]), its p-Sylow subgroup G(p) ⊂ G is normal. Thus, the
same holds for H := Aut(x)/{±1} ⊂ G, to the effect that RH ∼= (RH

(p)
)H/H

(p) . The assumption of
(vi) ensures that RH(p) has rational singularities, so, by Lemma 6.8, so does RH ∼= Ôsh

X0(N), x (see
(6.10.1)). To conclude (vi), we note that H is cyclic when p = 2 and N 6= 2n: then the preimage of
H in Aut(E) lies in the cyclic group (Z/p′Z)× for an odd prime p′ | N (see the proof of Lemma 6.9).

To show that (iii) and (v) follow from (vi), we set Γ := Γ0(3n · 7) or Γ := Γ0(3n) ∩ C̃3 in (iii) and
Γ := Γ0(2n · 5) in (v) and, in the view of the above, especially, the analogue of (6.10.1) for XΓ and
the insensitivity of the universal deformation ring R of (E,C) in (vi) to tame level, need to show that
every cyclic subgroup G′ ⊂ Aut(E)/{±1} of p-power order is Aut(z)/{±1} for some z ∈ XΓ(Fp).
For p = 3, the unique G′ of 3-power order is Z/3Z and its preimage G̃′ ⊂ Aut(E) is Z/6Z. Since F7

contains sixth roots of unity, the action of G̃′ on E[7] is diagonalizable and either of the resulting
G̃′-stable F7-lines C ′ ⊂ E[7] is the 7-primary part of a level structure that determines the desired
z for Γ = Γ0(3n · 7). Similarly, the faithful action of G′ on E[2] determines a C̃3-structure, and so
a desired z for Γ = Γ0(3n) ∩ C̃3. For p = 2, the argument is analogous: now G′ is Z/2Z but is no
longer unique (the 2-Sylow of SL2(F3)/{±1} is Z/2Z × Z/2Z), its preimage G̃′ is Z/4Z, and one
can diagonalize the action of G̃′ on E[5] because F5 contains fourth roots of unity. �

Remark 6.11. By the preceding proof, if N 6= 2n, then the p-Sylow subgroup of the exceptional
automorphism group at each Fp-point of X0(N) is normal and either trivial or Z/pZ (the latter can
occur only for p = 2 and p = 3). In particular, Lemma 6.8 and the preceding proof show that for
any proper birational π : Z � X0(N) with Z normal, the OX0(N)-module R1π∗(OZ) is killed by 6.

A big portion of the following partial positive answer to Question 6.4 appeared in [Ray91, Thm. 2]:
our main improvement to loc. cit. is the inclusion of the cases valp(N) = 2 for p ≤ 3.

Theorem 6.12. For a prime p, the modular curve (X0(N))Z(p)
has rational singularities whenever

(a) p ≥ 5; or

(b) p = 3 and either valp(N) ≤ 2 or there is a prime p′ | N with p′ ≡ 2 mod 3; or

(c) p = 2 and either valp(N) ≤ 2 or there is a prime p′ | N with p′ ≡ 3 mod 4.
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Proof. Thanks to Proposition 6.10, it suffices to check is that X0(7), X0(21), and X
Γ0(9)∩ C̃3

, as well
as X0(5), X0(10), X0(20), X0(1), X0(2), and X0(4) have rational singularities. We have already
done this in Proposition 6.6 (see also Example 6.7). �

Remark 6.13. The method would show that X0(N) has rational singularities for every N 6= 2n

equal to a conductor of an elliptic curve over Q if one knew that X
Γ0(27)∩ C̃3

, X
Γ0(81)∩ C̃3

, and
X

Γ0(243)∩ C̃3
(or, if one prefers, X0(27 ·7), X0(81 ·7), and X0(243 ·7)), as well as X0(8 ·5), X0(16 ·5),

X0(32·5), X0(64·5), X0(128·5), X0(256·5), X0(64), X0(128), andX0(256) have rational singularities
(for well-known conductor exponent bounds for an elliptic curve overQ, see [Pap93, Cor. to Thm. 1]).

Corollary 6.14. For a normalized newform f ∈ H0(X0(N)Q, ω
⊗2(−cusps)) (see §5.5) and the

Néron model J0(N) over Z of the Jacobian J0(N) of X0(N)Q,

6 · ωf ∈ H0(J0(N),Ω1), where ωf is the differential associated to f ;

if X0(N) has rational singularities, then even ωf ∈ H0(J0(N),Ω1).

Proof. The Manin conjecture for the quotient π : J0(N) � E with connected Ker(π) determined
by f predicts that ωf is the pullback of a Néron differential ωE of the elliptic curve E. By the
functoriality of Néron models, this pullback lies in H0(J0(N),Ω1), so, by, for instance, Cremona’s
[ARS06, Thm. 5.2] that verified the Manin conjecture for small N , we may assume that N 6= 2n.
By Proposition 6.2, there is an inclusion H0(J0(N),Ω1) ↪→ H0(X0(N),Ω) that is an isomorphism
if and only if X0(N) has rational singularities and, by Remark 6.11, in general its cokernel is killed
by 6. Thus, it remains to recall from Theorem 5.15 that ωf ∈ H0(X0(N),Ω). �

7. A relation between the Manin constant and the modular degree

Our final goal is to use the work above to establish Theorems 1.1 and 1.2. The following basic fact is
the underlying source of the relationship between the modular degree and the Manin constant.

Lemma 7.1. For a field k, a proper, smooth k-curve X with the Jacobian J := Pic0
X/k, a k-

surjection φ : X � E onto an elliptic curve, a point P ∈ X(k) with φ(P ) = 0, the closed immersion
iP : X ↪→ J given by Q 7→ OX(Q − P ), and the homomorphism π : J � E obtained from φ by the
Albanese functoriality of J , the composition π ◦ π∨ : E → J → E is multiplication by deg φ.

Proof. The existence of φ implies that X has genus > 0, and the map π : J → E is characterized by
OX(Q − P ) 7→ φ(Q), see [Mil86, 6.1]. Moreover, by [Mil86, 6.9 and 6.10 (c)], the map Pic0(iP ) is
the negative of the inverse of the canonical principal polarization of J and the canonical principal
polarization of E sends a Q ∈ E(k) to OEk

([0]− [Q]) (see also [Con04, 2.5]). In particular, the map
Pic0(φ) = Pic0(iP ) ◦ π∨ sends such a Q to OXk

([φ−1(0)] − [φ−1(Q)]) and, by taking into account
the canonical principal polarization of J , we find that π ◦ π∨ sends Q to deg φ ·Q. �

Theorem 7.2. For an elliptic curve E over Q of conductor N , a Néron differential ωE ∈ H0(E,Ω1),
the normalized newform f determined by E, its associated ωf ∈ H0(X0(N)Q,Ω

1), a subgroup
Γ1(N) ⊂ Γ ⊂ Γ0(N), and a prime p, if for some subgroup Γ ⊆ Γ′ ⊆ Γ0(N) the curve (XΓ′)Z(p)

has
rational singularities (see Theorem 6.12), then every surjection

φ : (XΓ)Q � E satisfies valp(cφ) ≤ valp(deg(φ)) with cφ ∈ Z defined by φ∗(ωE) = cφ · ωf .
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Without the rational singularities assumption, we still have

valp(cφ) ≤ valp(deg(φ)) +


1 if p = 2 with val2(N) ≥ 3 and there is no p′ | N with p′ ≡ 3 mod 4,
1 if p = 3 with val3(N) ≥ 3 and there is no p′ | N with p′ ≡ 2 mod 3,
0 otherwise.

Proof. By Theorem 5.15, we have ωf ∈ H0(XΓ′ ,Ω). Thus, by Proposition 6.2, the rational singu-
larity assumption ensures that ωf ∈ H0((JΓ′)Z(p)

,Ω1) where JΓ′ is the Néron model of the Jacobian
JΓ′ of (XΓ′)Q. We choose a P ∈ XΓ(Q), for instance, a rational cusp, and consider the resulting
embeddings (XΓ)Q ↪→ JΓ and (XΓ′)Q ↪→ JΓ′ . By the Albanese functoriality of the Jacobian, the
map XΓ → XΓ′ induces a morphism JΓ → JΓ′ , and we conclude by pullback that

ωf ∈ H0((JΓ)Z(p)
,Ω1) (7.2.1)

(here we use the compatibility of the identification H0((XΓ′)Q,Ω
1) ∼= H0(JΓ′ ,Ω

1) obtained by
pullback along (XΓ′)Q ↪→ JΓ′ with its counterpart obtained by Grothendieck–Serre duality as in
(6.2.2), see [Con00, Thm. B.4.1]). By postcomposing with a translation, we may assume that
φ(P ) = 0, and we then let π : JΓ � E be the map that φ induces via the Albanese functoriality.
Lemma 7.1 ensures that π ◦ π∨ : E ↪→ JΓ � E is multiplication by deg(φ), so the same holds for
the induced E → JΓ → E on Néron models. Thus, by pullback, deg(φ) · ωE = cφ · (π∨)∗(ωf ). Since
cφ ∈ Z by Lemma 6.5 and (π∨)∗(ωf ) ∈ H0(EZ(p)

,Ω1) ∼= Z(p) · ωE by (7.2.1), we obtain the sought

valp(cφ) ≤ valp(deg(φ)).

Without the rational singularities assumption, by Corollary 6.14 and the Albanese functoriality as
above, we still have 6·ωf ∈ H0(JΓ,Ω

1), so the same argument gives valp(cφ) ≤ valp(deg(φ))+valp(6).
In particular, by also using Theorem 6.12, we obtain the claimed last display in the statement. �

SinceX1(N) almost always agrees with the regular X1(N), we now show that the above minor hypo-
thetical exceptions to the divisibility cφ | deg(φ) cannot occur for parametrizations byX1(N)Q.

Corollary 7.3. For an elliptic curve E over Q of conductor N , a Néron differential ωE ∈ H0(E,Ω1),
the normalized newform f determined by E, and its associated ωf ∈ H0(X1(N)Q,Ω

1), every sur-
jection

φ : X1(N)Q � E satisfies cφ | deg(φ) with cφ ∈ Z defined by φ∗(ωE) = cφ · ωf .

Proof. By Theorem 7.2, we have valp(cφ) ≤ valp(deg(φ)) for every prime p ≥ 5. For the remaining
p = 2 and p = 3, Theorem 7.2 applied with Γ = Γ′ = Γ1(N) gives the same as soon as X1(N)Z(p)

is
regular. By [KM85, 2.7.3, 5.5.1] and [Čes17, 4.1.3, 4.4.4], this happens whenever p′ | N for a prime
p′ ≥ 5. Thus, we may assume that N = 2a · 3b, in fact, by the last aspect of Theorem 7.2, even that
N = 2a or N = 3b (so a ≤ 8 and b ≤ 5, see [Pap93, Cor. to Thm. 1]). For any isogeny ψ : E′ → E,
since the composition with the dual isogeny is multiplication by deg(ψ), we have ψ∗(ωE) = cψ ·ωE′
for some cψ ∈ Z with cψ | deg(ψ). Thus, we may assume that φ does not factor through any
such ψ. For low conductor curves, by Cremona’s [ARS06, Thm. 5.2], the Manin constant of such
optimal parametrizations by X0(N)Q is ±1. Thus, Lemma 6.5 allows us to conclude the same for
parametrizations by X1(N)Q with N = 2a and N = 3b, so that indeed valp(cφ) ≤ valp(deg(φ)). �
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