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Abstract. We provide an explicit integral representation for L-functions of

pairs (F, g) where F is a holomorphic genus 2 Siegel newform and g a holomor-
phic elliptic newform, both of squarefree levels and of equal weights. When

F, g have level one, this was earlier known by the work of Furusawa. The

extension is not straightforward. Our methods involve precise double-coset
and volume computations as well as an explicit formula for the Bessel model

for GSp(4) in the Steinberg case; the latter is possibly of independent inter-

est. As an application, we prove an algebraicity result for a critical value of
L(s, F × g). This is in the spirit of known results on critical values of triple

product L-functions, also of degree 8, though there are significant differences.

Introduction

L-functions for automorphic forms on reductive groups are objects of consider-
able number theoretic interest. They codify the relationship between arithmetic and
analytic objects and enable us to investigate properties that are otherwise not easily
accessible. One of the tools that has been successfully used to study L-functions
and their special values is the method of integral representations; this is some-
times called the Rankin-Selberg method after Rankin and Selberg’s fundamental
work in this direction. Often, sharper and more explicit results are obtained when
one restricts attention to holomorphic forms. The papers [5], [6], [10] treating the
triple-product L-function, are good examples, and in fact, provided an inspiration
for this work.

Let π = ⊗πv, σ = ⊗σv be irreducible, cuspidal automorphic representations of
GSp4(A), GL2(A) respectively, where A denotes the ring of adeles over Q. In this
paper we are interested in the degree eight L-function L(s, π × σ). Furusawa [3]
discovered an integral representation for this L-function; however, he computed the
local zeta integral only in the case when πp, σp are both unramified. For several
applications, this is not enough. To give an example, suppose F = Sym3(E1) is a
holomorphic Siegel cusp form that arises as the symmetric cube of an elliptic curve
E1 over Q (as worked out by Ramakrishnan-Shahidi in [21]) and g is an holomorphic
elliptic cusp form associated to another elliptic curve E2 over Q. Then neither F
nor g can be of full level (since there exists no elliptic curve over Q that is unramified
everywhere). Furthermore, the local components of the representations associated
to F and g at all ramified places are Steinberg. So, if we wish to study L(s, F × g)
in this case, we would need to evaluate the local zeta integral when one or both of
the local representations is Steinberg.
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In order to state the results of this paper, we first recall the integral representa-
tion of [3] in detail.

Fix automorphic representations π, σ as above with trivial central characters.
For a quadratic extension L/Q, consider the unitary group GU(2, 2) = GU(2, 2;L).
Let P be the maximal parabolic of GU(2, 2) with a non-abelian unipotent radi-
cal. Note that GL1(L) × GL2(Q) embeds naturally inside a Levi component of
P (Q). So, given a Hecke character Λ of L, we can use σ and Λ to construct
an automorphic representation Π of P (A) and thus an induced representation
I(Π, s) = IndGU(2,2)(A)

P (A) (Π × δsP ). In the usual manner we then define an Eisen-
stein series E(g, s; f) on GU(2, 2)(A) for an analytic section f ∈ I(Π, s).

For an vector Φ in the space of π and an analytic section f ∈ I(Π, s) consider
the global integral

(0.0.1) Z(s) =
∫
Z(A)GSp4(Q)\GSp4(A)

E(g, s; f)Φ(g)dg.

(We refer the reader to the beginning of section 2 for our normalization of the
measure dg.)

In [3], Furusawa proves the following results:
(a) For suitable choices of L,Λ and f , Z(s) is Eulerian, that is

Z(s) =
∏
v

Zv(s)

where for each place v of Q, Zv(s) is an explicit local zeta integral.
(b) Let p be a finite prime such that πp and σp are both unramified. Then

Zp(s) = C(s)× L(3s+
1
2
, πp × σp),

where C(s) is an explicit normalizing factor.
We now state the main local result of this paper. For the more precise version,

see the Theorems 5.3.1, 6.3.1, 7.3.1.

Theorem A. Let p be a finite prime which is inert in L.
(a) Suppose that πp is unramified and σp is an unramified quadratic twist of the

Steinberg representation. Also suppose that Λp is unramified. Then we have

Zp(s) =
1− p−6s−3

p2 + 1
× L(3s+

1
2
, πp × σp).

(b) Suppose that πp is an unramified quadratic twist of the Steinberg represen-
tation and σp is unramified. Also suppose that Λp has conductor p. Then
we have

Zp(s) =
1

(p+ 1)(p2 + 1)
× L(3s+

1
2
, πp × σp).

(c) Suppose that πp , σp are both unramified quadratic twists of the Steinberg
representations. Also suppose that Λp has conductor p. Then we have

Zp(s) =
p−6s−3

p(p2 + 1)(1− apwpp−3s− 3
2 )
× L(3s+

1
2
, πp × σp),
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where ap is the eigenvalue of the local operator Tp for σp and wp is the
eigenvalue of the local Atkin-Lehner operator for πp.

As already noted, the simplest case where both local representations are un-
ramified was proved in [3]. However the methods employed for that case are not
sufficient to deal with the above three cases. The explicit evaluation of the local
zeta integral involves several steps. First of all, we need to perform certain tech-
nical volume and double-coset computations. These computations — easy in the
unramified case — are tedious and challenging for the remaining cases and are
carried out in Section 3. Secondly, it is necessary to suitably choose the sections
of the Eisenstein series at the bad places to insure that the local zeta integrals do
not vanish. Thirdly, and perhaps most crucially, the local computations require an
explicit knowledge of the local Whittaker and Bessel functions. The formulae for
the Whittaker model are well known in all cases; the same, however, is not true for
the Bessel model. In fact, the only case where the local Bessel model for a finite
place was computed before this work was when πp is unramified [2, 26]. However,
that does not suffice for the two cases when we have πp Steinberg. As a preparation
for the calculations in these cases, we find, in Section 4, an explicit formula for the
Bessel function for πp when it is Steinberg. This is perhaps of independent interest.

Putting together our local computations we get an integral representation for a
pair (F, g) of global newforms as described next.

For a square-free integerM let B(M) denote the congruence subgroup of Sp(4,Z)
defined by

B(M) = Sp(4,Z) ∩


Z MZ Z Z
Z Z Z Z
MZ MZ Z Z
MZ NZ MZ Z

 .

We say that a holomorphic Siegel cusp form of genus 2 is a newform of level M if:

(a) It lies in the orthogonal complement of the space of oldforms for B(M) as
defined by Schmidt [24].

(b) It is an eigenform for the Hecke algebra at all primes not dividing M .
(c) It is an eigenform for the Atkin-Lehner operator at all primes dividing M .

For a square-free integer N , we call a holomorphic elliptic cusp form a newform
of level N if it is a newform with respect to the group Γ0(N) in the usual sense.

Now, fix odd, square-free positive integers M , N and let F be a genus 2 Siegel
newform of level M and g an elliptic newform of level N . We assume that F
and g have the same even integral weight l and have trivial central characters.
Furthermore we make the following (mild) assumption about F :

Suppose

F (Z) =
∑
S>0

a(S)e(tr(SZ))

is the Fourier expansion; then we assume that

(0.0.2) a(T ) 6= 0 for some T =
(
a b

2
b
2 c

)
such that−d = b2−4ac is the discriminant of the imaginary quadratic field Q(

√
−d),

and all primes dividing MN are inert in Q(
√
−d).
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Let Φ denote the adelization of F . The representation of GSp(4)(A) generated
by Φ may not be irreducible, but we know [24] that all its irreducible components
are isomorphic. Let us denote any of these components by π. Also, we know that g
generates an irreducible representation σ of GL2(A). We prove (see Theorem 8.5.1
for the full statement) the following result:

Theorem B. Let F, g, π, σ be as defined above. Then, for a suitable choice of
Λ, f , the global integral defined in (0.0.1) satisfies

Z(s) = C(s)× L(3s+
1
2
, π × σ),

where C(s) is an explicit normalizing factor.

Using the above integral representation, one can prove a certain special value
result. Before stating that, we make some general remarks. If L(s) is an arith-
metically defined (or motivic) L-series, it is interesting to study its value at certain
critical points s = m. For these critical points, the standard conjectures predict
that L(m) is the product of a suitable transcendental number Ω and an algebraic
number A(m). Moreover, it is expected that the same Ω works for Lχ(m) where χ
is a Dirichlet character of appropriate parity.

As a consequence of Theorem B, we get, using standard algebraicity results re-
lated to Siegel modular forms and Eisenstein series [4, 7, 17], the following special
value result. This fits into the framework of the conjectures mentioned above.

Theorem C. Suppose F, g are as defined above and moreover have totally real
algebraic Fourier coefficients. Then, assuming l > 6, we have

(0.0.3)
L( l2 − 1, F × g)
π5l−8〈F, F 〉〈g, g〉

∈ Q

where 〈 〉 denotes the Petersson inner product.

We should note that Theorem C was previously proved in the basic case M =
1, N = 1 by Furusawa [3] and (independently) by Bernhard Heim [11], who used
a different integral representation. Subsequently, Böcherer and Heim were able to
treat the case of different weights [1]. After this paper had been essentially com-
pleted, it was brought to the attention of the author that Pitale and Schmidt [20]
have independently, and around the same time as this paper, evaluated the local
Furusawa integral Zp(s) in the case when πp is unramified but σp is Steinberg.
This allows them to prove analogues of Theorem B and Theorem C in the case
M = 1, N ≥ 1 square-free. They also compute the Archimedean integral for a
larger family of Archimedean representations σ∞.

However, all the works mentioned above only consider the case when F is of
full level, i.e. M = 1. This paper, to our best knowledge, is the first that gives
an integral representation or proves any special value result for L(s, F × g) when
M > 1.

It is of interest to find, in addition, a reciprocity law relating to the above
special value, that is, the equivariance of the action of Aut(C) on the quantity
defined in (0.0.3). Unfortunately, not enough is known about the corresponding
action on the Fourier coefficients of our Eisenstein series to resolve this question
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here. In a sequel to this paper [23], we will use a certain pullback formula to get a
modified integral representation for our L-function that involves a well-understood
Siegel Eisenstein series on GU(3, 3). This will enable us to answer the Aut(C)
equivariance and related questions. We say a little more about these techniques
in the final section of this paper. The referee has pointed out that this way of
formulating the integral representation in terms of pullbacks from GU(3, 3) has
been anticipated by the experts.

The details of some routine calculations have been omitted from this paper for
the sake of brevity; the reader who wishes to see them can take a look at the longer
version of this paper available online [22].

Notation.

• The symbols Z, Z≥0, Q, R, C, Zp and Qp have the usual meanings. A
denotes the ring of adeles of Q. For a complex number z, e(z) denotes e2πiz.

• For any commutative ring R and positive integer n, Mn(R) denotes the ring
of n by n matrices with entries in R and GLn(R) denotes the group of in-
vertible matrices in Mn(R). If A ∈Mn(R), we let AT denote its transpose.
We use R× to denote GL1(R).

• Denote by Jn the 2n by 2n matrix given by

Jn =
(

0 In
−In 0

)
.

We use J to denote J2.

• For a positive integer n define the group GSp(2n) by

GSp(2n,R) = {g ∈ GL2n(R)|gTJng = µn(g)Jn, µn(g) ∈ R×}

for any commutative ring R.
Define Sp(2n) to be the subgroup of GSp(2n) consisting of elements

g1 ∈ GSp(2n) with µn(g1) = 1.
The letter G will always stand for the group GSp(4) and G1 for the group

Sp(4).

• For a commutative ring R we denote by I(2n,R) the Borel subgroup of

GSp(2n,R) consisting of the set of matrices that look like
(
A B
0 λ(AT )−1

)
.

where A is lower-triangular and λ ∈ R×. Denote by B the Borel subgroup
of G defined by B = I(4) and U the subgroup of G consisting of matrices

that look like


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

 .

• For a quadratic extension L of Q define

GU(n, n) = GU(n, n;L)
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by

GU(n, n)(Q) = {g ∈ GL2n(L)|(g)TJng = µn(g)Jn, µn(g) ∈ Q×}

where g denotes the conjugate of g.
Denote the algebraic group GU(2, 2;L) by G̃.

• Define

H̃n = {Z ∈M2n(C)|i(Z − Z) is positive definite},
Hn = {Z ∈Mn(C)|Z = ZT , i(Z − Z) is positive definite}.

For g =
(
A B
C D

)
∈ G̃(R), Z ∈ H̃2 define

J(g, Z) = CZ +D.

The same definition works for g ∈ G(R), Z ∈ H2.

• For v be a finite place of Q, define Lv = L⊗Q Qv.
ZL denotes the ring of integers of L and ZL,v its v-closure in Lv.
Define maximal compact subgroups K̃v and Kv of G̃(Qv) and G(Qv)

respectively by

K̃v = G̃(Qv) ∩GL4(ZL,v),
Kv = G(Qv) ∩GL4(Zv).

• For a positive integer N the subgroups Γ0(N) and Γ0(N) of SL2(Z) are
defined by

Γ0(N) = {A ∈ SL2(Z) | A ≡
(
∗ ∗
0 ∗

)
(mod N)},

Γ0(N) = {A ∈ SL2(Z) | A ≡
(
∗ 0
∗ ∗

)
(mod N)}.

For p a finite place of Q, their local analogues Γ0,p (resp. Γ0
p) are defined

by

Γ0,p = {A ∈ GL2(Zp) | A ≡
(
∗ ∗
0 ∗

)
(mod p)},

Γ0
p = {A ∈ GL2(Zp) | A ≡

(
∗ 0
∗ ∗

)
(mod p)}.

The local Iwahori subgroup Ip is defined to be the subgroup of Kp =
G(Zp) consisting of those elements of Kp that when reduced mod p lie in
the Borel subgroup of G(Fp). Precisely,

Ip = {A ∈ Kp | A ≡


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 (mod p)}
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1. Preliminaries

1.1. Bessel models. We recall the definition of the Bessel model of Novodvorsky
and Piatetski-Shapiro [19] following the exposition of Furusawa [3].

Let S ∈M2(Q) be a symmetric matrix. We let disc(S) = −4 det(S) and put d =

−disc(S). If S =
(
a b/2
b/2 c

)
then we define the element ξ = ξS =

(
b/2 c
−a −b/2

)
.

Let L denote the subfield Q(
√
−d) of C.

We always identify Q(ξ) with L via

(1.1.1) Q(ξ) 3 x+ yξ 7→ x+ y

√
−d
2
∈ L, x, y ∈ Q.

We define a subgroup T = TS of GL2 by

(1.1.2) T (Q) = {g ∈ GL2(Q)|gTSg = det(g)S}.

It is not hard to verify that T (Q) = Q(ξ)×. We identify T (Q) with L× via (1.1.1)).

We can consider T as a subgroup of G via

(1.1.3) T 3 g 7→
(
g 0
0 det(g).(g−1)T

)
∈ G.

Let us denote by U the subgroup of G defined by

U = {u(X) =
(

12 X
0 12

)
|XT = X}.

Let R be the subgroup of G defined by R = TU .

Let ψ be a non trivial character of A/Q. We define the character θ = θS on
U(A) by θ(u(X)) = ψ(tr(S(X))). Let Λ be a character of T (A)/T (Q) such that
Λ|A× = 1. Via (1.1.1) we can think of Λ as a character of L×(A)/L× such that
Λ|A× = 1. Denote by Λ⊗θ the character of R(A) defined by (Λ⊗θ)(tu) = Λ(t)θ(u)
for t ∈ T (A) and u ∈ U(A).

Let π be an automorphic cuspidal representation of G(A) with trivial central
character and Vπ be its space of automorphic forms.

Then for Φ ∈ Vπ, we define a function BΦ on G(A) by

(1.1.4) BΦ(h) =
∫
R(A)/R(Q)ZG(A)

(Λ⊗ θ)(r)−1Φ(rh)dr.

The C - vector space of function on G(A) spanned by {BΦ|Φ ∈ Vπ} is called the
global Bessel space of type (S,Λ, ψ) for π. We say that π has a global Bessel model
of type (S,Λ, ψ), if the global Bessel space has positive dimension, that is if there
exists Φ ∈ Vπ such that BΦ 6= 0. In Sections 1–7 of this paper, we assume that:
(1.1.5)

There exists S,Λ, ψ such that π has a global Bessel model of type (S,Λ, ψ).
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1.2. Eisenstein series. We briefly recall the definition of the Eisenstein series used
by Furusawa in [3]. Let P be the maximal parabolic subgroup of G̃ consisting of

the elements in G̃ that look like


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

. We have the Levi decomposition

P = MN with M = M (1)M (2) where the groups M,N,M (1),M (2) are as defined
in [3].

Precisely,

(1.2.1) M (1)(Q) =



a 0 0 0
0 1 0 0
0 0 a−1 0
0 0 0 1

 | a ∈ L×
 ' L×.

M (2)(Q) =




1 0 0 0
0 α 0 β
0 0 λ 0
0 γ 0 δ

 |(α β
γ δ

)
∈ GU(1, 1)(Q), λ = µ1

(
α β
γ δ

)
' GU(1, 1)(Q).

(1.2.2)

(1.2.3) N(Q) =




1 x 0 0
0 1 0 0
0 0 1 0
0 0 −x 1




1 0 a y
0 1 y 0
0 0 1 0
0 0 0 1

 | a ∈ Q, x, y ∈ L

 .

We also write

m(1)(a) =


a 0 0 0
0 1 0 0
0 0 a−1 0
0 0 0 1

 , m(2)

(
α β
γ δ

)
=


1 0 0 0
0 α 0 β
0 0 λ 0
0 γ 0 δ

 .

Let σ be an irreducible automorphic cuspidal representation of GL2(A) with central
character ωσ. Let χ0 be a character of L×(A)/L× such that χ0 | A× = ωσ.

Finally, let χ be a character of L×(A)/L× = M1(A)M1(Q) defined by

(1.2.4) χ(a) = Λ(a)−1χ0(a)−1.

Then defining

(1.2.5) Π(m1m2) = χ(m1)(χ0 ⊗ σ)(m2),m1 ∈M1(A),m2 ∈M2(A)

we extend σ to an automorphic representation Π of M(A). We regard Π as a rep-
resentation of P (A) by extending it trivially on N(A). Let δP denote the modulus
character of P . If p = m1m2n ∈ P (A) with mi ∈Mi(A)(i = 1, 2) and n ∈ N(A),

(1.2.6) δP (p) = |NL/Q(m1)|3 · |µ1(m2)|−3,

where || denoted the modulus function on A.
Then for s ∈ C, we form the family of induced automorphic representations of

G̃(A)

(1.2.7) I(Π, s) = IndG̃(A)
P (A)(Π⊗ δ

s
P )
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where the induction is normalized. Let f(g, s) be an entire section in I(Π, s) viewed
concretely as a complex-valued function on G̃(A) which is left N(A)-invariant and
such that for each fixed g ∈ G̃(A), the function m 7→ f(mg, s) is a cusp form on
M(A) for the automorphic representation Π ⊗ δsP . Finally we form the Eisenstein
series E(g, s) = E(g, s; f) by

(1.2.8) E(g, s) =
∑

γ∈P (Q)\G̃(Q)

f(γg, s)

for g ∈ G̃(A).
This series converges absolutely (and uniformly in compact subsets) for Re(s) >

1/2, has a meromorphic extension to the entire plane and satisfies a functional
equation (see [15, 3] ).

2. The Rankin-Selberg integral

2.1. The global integral. Before defining our fundamental global integral, let us
clarify our normalization on G(Q)ZG(A)\G(A). We may factor G(A) as a restricted
direct product

∏′
Gv where v runs over all places of Q. Let Kv = G(Zv) if v is a

finite place. Let K∞ = Sp(4,R) ∩ O(4,R). Thus at each place Kv is a maximal
compact subgroup of Gv. We define a Haar measure dg on ZG(A)\G(A) as the
product

∏
v dgv where dgv is the Haar measure on ZGv\Gv normalized such that

(ZGv ∩ Kv)\Kv has volume 1. Thus dg leads to a natural quotient measure on
G(Q)ZG(A)\G(A) which we also denote by dg.

We note that there is a canonical isomorphism

G(Q)ZG(A)\G(A)/
∏
v

Kv = Sp4(Z)\H2.

A Sp4(R) invariant measure on H2 is given by dh = (detY )−3dXdY . It can be
easily checked that under the above isomorphism, we have dg = 1

2dh.
The main object of study in this paper is the following global integral of Rankin-

Selberg type

(2.1.1) Z(s) = Z(s, f,Φ) =
∫
G(Q)ZG(A)\G(A)

E(g, s, f)Φ(g)dg,

where Φ ∈ Vπ and f ∈ I(Π, s). Z(s) converges absolutely away from the poles of
the Eisenstein series.

Let Θ = ΘS be the following element of G̃(Q)

Θ =


1 0 0 0
α 1 0 0
0 0 1 −α
0 0 0 1

 where α =
b+
√
−d

2c

The ‘basic identity’ proved by Furusawa in [3] is that

(2.1.2) Z(s) =
∫
R(A)\G(A)

Wf (Θh, s)BΦ(h)dh
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where for g ∈ G̃(A) we have

(2.1.3) Wf (g, s) =
∫

A/Q
f




1 0 0 0
0 1 0 x
0 0 1 0
0 0 0 1

 g, s

ψ(cx)dx.

and BΦ is the Bessel model of type (S,Λ, ψ) defined in section 1.

2.2. The local integral. In this section v refers to any place of Q. Let π = ⊗vπv
and σ = ⊗vσv. Now suppose that Φ and f are factorizable functions with Φ = ⊗vΦv
and f( , s) = ⊗vfv( , s).

By the uniqueness of the Whittaker and the Bessel models, we have

(2.2.1) Wf (g, s) =
∏
v

Wf,v(gv, s)

(2.2.2) BΦ(h) =
∏
v

BΦ,v(hv, s)

for g = (gv) ∈ G̃(A) and h = (hv) ∈ G(A) and local Whittaker and Bessel functions
Wf,v , BΦ,v respectively. Henceforth we write Wv = Wf,v, Bv = BΦ,v when no
confusion can arise.

Therefore our global integral breaks up as a product of local integrals

(2.2.3) Z(s) =
∏
v

Zv(s)

where

Zv(s) = Zv(s,Wv, Bv) =
∫
R(Qv)\G(Qv)

Wv(Θg, s)Bv(g)dg.

2.3. The unramified case. The local integral is evaluated in [3] in the unramified
case. We recall the result here.

Suppose that the characters ωπ, ωσ, χ0 are trivial. Now let q be a finite prime of
Q such that

(a) The local components πq, σq and Λq are all unramified.
(b) The conductor of ψq is Zq.

(c) S =
(
a b/2
b/2 c

)
∈M2(Zq) with c ∈ Z×q .

(d) −d = b2 − 4ac generates the discriminant of Lq/Qq.

Since σq is spherical, it is the spherical principal series representation induced
from unramified characters αq, βq of Q×q .

Suppose M0 is the maximal torus (the group of diagonal matrices) inside G and
P0 the Borel subgroup containing M0 as Levi component. πq is a spherical principal
series representation, so there exists an unramified character γq of M0(Qq) such
that πq = Ind

M0(Qq)

P0(Qq) γq , (where we extend γq to P0 trivially). We define characters
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γ
(i)
q (i = 1, 2, 3, 4) of Q×q by

γ(1)
q (x) = γq


x 0 0 0
0 x 0 0
0 0 1 0
0 0 0 1

 , γ(2)
q (x) = γq


x 0 0 0
0 1 0 0
0 0 1 0
0 0 0 x

 ,

γ(3)
q (x) = γq


1 0 0 0
0 1 0 0
0 0 x 0
0 0 0 x

 , γ(4)
q (x) = γq


1 0 0 0
0 x 0 0
0 0 x 0
0 0 0 1

 .

Now let fq( , s) be the unique normalized K̃q− spherical vector in Iq(Πq, s)
and Φq be the unique normalized Kq− spherical vector in πq. Let Wq, Bq be the
coresponding vectors in the local Whittaker and Bessel spaces. The following result
is proved in [3].

Theorem 2.3.1 (Furusawa). Let ρ(Λq) denote the Weil representation of GL2(Qq)
corresponding to Λq. Then we have

Zq(s,Wq, Bq) =
L(3s+ 1

2 , πq × σq)
L(6s+ 1,1)L(3s+ 1, σq × ρ(Λq))

where,

L(s, πq × σq) =
4∏
i=1

(
(1− γ(i)

q αq(q)q−s)(1− β(i)
q αq(q)q−s)

)−1

,

L(s,1) = (1− q−s)−1,

L(s, σq × ρ(Λq))

=



(1− α2
q(q)q

−2s)−1(1− β2
q (q)q−2s)−1 if q is inert in L,

(1− αq(q)Λq(q1)q−s)−1(1− βq(q)Λq(q1)q−s)−1 if q is ramified in L,

(1− αq(q)Λq(q1)q−s)−1(1− βq(q)Λq(q1)q−s)−1

·(1− αq(q)Λ−1
q (q1)q−s)−1(1− βq(q)Λ−1

q (q1)q−s)−1 if q splits in L,

where q1 ∈ Zq ⊗Q L is any element with NL/Q(q1) ∈ qZ×q .

3. Strategy for computing the p-adic integral

3.1. Assumptions. Throughout this section we fix an odd prime p in Q such that
p is inert in L. Moreover, we assume that S ∈M2(Zp).

The fact that p is inert in L implies that if w, z are elements of Zp then w+ zξ ∈
(T (Qp) ∩Kp) if and only if at least one of w, z is an unit.

Moreover the additional assumption S ∈M2(Zp) forces that a, c are units in Zp.

3.2. An explicit set of coset representatives. Recall the Iwahori subgroup Ip.
It will be useful to describe a set of coset representatives of Kp/Ip.

But first some definitions.
Let Y be the set {0, 1, .., p− 1}. Let V = Y ∪ {∞} where ∞ is just a convenient

formal symbol.
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For x = (n, q, r) ∈ Z3
p, let Ux ∈ U(Qp) be the matrix


1 0 n q
0 1 q r
0 0 1 0
0 0 0 1


For y ∈ Zp define Zy =


1 y 0 0
0 1 0 0
0 0 1 0
0 0 −y 1

 ∈ Kp.

Also define Z∞ =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∈ Kp.

In particular, the definitions Ux, Zy make sense for x ∈ Y 3, y ∈ V . Now we
define the following three classes of matrices. We call them matrices of class A,
class B and class D respectively.

(a) For x = (n, q, r) ∈ Y 3, y ∈ V , let Ayx = UxJZy.
(b) For x = (n, q, r) ∈ Y 3 with q2 − nr ≡ 0 (mod p) and y ∈ V , let Byx =

JUxJZy.

(c) For λ, y ∈ V , let Dy
λ =




−λ 0 0 1
1 0 0 λ−1

0 1 λ−1 0
0 λ −1 0

Zy if λ 6= 0,∞,


0 0 0 1
−1 0 0 0
0 1 0 0
0 0 1 0

Zy if λ = 0,


−1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

Zy if λ =∞.

Let S be the set obtained by taking the union of the class A, class B and class
D matrices, precisely S = {Ayx} y∈V

x∈Y 3

⋃
{Byx}y∈V,x=(n,q,r)∈Y 3

q2−nr≡0 (mod p)

⋃
{Dy

λ}λ∈V
y∈V

. Clearly

S has cardinality p3(p+ 1) + p2(p+ 1) + (p+ 1)2 = (p+ 1)2(p2 + 1).

Lemma 3.2.1. S is a complete set of coset representatives for Kp/Ip.

Proof. Let us first verify that S has the right cardinality. Clearly the cardinality of
Kp/Ip is the same as the cardinality of G(Fp)/B(Fp) where B is the Borel subgroup
of G. By [14, Theorem 3.2], |G(Fp)| = p4(p − 1)3(p + 1)2(p2 + 1). On the other
hand B has the Levi-decomposition

B =
(
g 0
0 v.(g−1)T

)(
12 X
0 12

)
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with g upper-triangular, X symmetric and v ∈ GL(1). So |B(Fp)| = p4(p − 1)3.
Thus |G(Fp)/B(Fp)| = (p+ 1)2(p2 + 1) which is the same as the cardinality of S.

So it is enough to show that no two matrices in S lie in the same coset.
For a 2×2 matrix H with coefficients in Zp, we may reduce H mod p and consider

the Fp-rank of the resulting matrix; we denote this quantity by rp(H). It is easy

to see that if the matrix A =
(
A1 A2

A3 A4

)
varies in a fixed coset of Kp/Ip, the pair

(rp(A1), rp(A3)) remains constant.
Observe now that if A is of class A, then rp(A3) = 2 ; for A of class B, rp(A3) < 2

and rp(A1) = 2; while for A of class D we have rp(A3) < 2, rp(A1) < 2. This proves
that elements of S of different classes cannot lie in the same coset.

Now we consider distinct elements of S of the same class, and show that they
too must lie in different cosets.

For x1 = (n1, q1, r1), x2 = (n2, q2, r2) ∈ Y 3, y1, y2 ∈ Y , consider the elements
Ay1
x1
, Ay2

x2
, By1

x1
, By2

x2
of S. We have

(Ay1
x1

)−1Ay2
x2

= (By1
x1

)−1By2
x2

=


1 y2 − y1 0 0
0 1 0 0

−n2 + n1 −n2y2 − q2 + n1y2 + q1 1 0
y1(n1 − n2) + q1 − q2 y1y2(n1 − n2) + (y1 + y2)(q1 − q2)− r2 + r1 y1 − y2 1

 .

So if the above matrix belongs to Ip, we must have y1 = y2, n1 = n2. That leads
to q1 = q2, and finally by looking at the bottom row we conclude r1 = r2.

This covers the case of class A and class B matrices in S whose y-component is
not equal to ∞.

Now (Ay1
x1

)−1A∞x2
= (By1

x1
)−1B∞x2

=


−y1 1 0 0

1 0 0 0
q1 − q2 n1 − n2 0 1

q1y1 + r1 − y1q2 − r2 n1y1 + q1 − y1n2 − q2 1 y1


which cannot belong to Ip.
Also (A∞x1

)−1A∞x2
= (B∞x1

)−1B∞x2
=


1 0 0 0
0 1 0 0

−r2 + r1 −q2 + q1 1 0
−q2 + q1 −n2 + n1 0 1


and if the above matrix lies in Ip we must have x1 = x2.
Thus we have completed the proof for class A and class B matrices. To complete

the proof of the lemma we need to show that no two class D matrices are in the same
coset. The calculations for that case are similar to those above and are therefore
omitted; the reader can find them in the longer version of this paper available
online [22]. �
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3.3. Reducing the integral to a sum. By [3, p. 201]) we have the following
disjoint union

(3.3.1) G(Qp) =
∐
l∈Z

0≤m∈Z

R(Qp) · h(l,m) ·Kp

where

h(l,m) =


p2m+l 0 0 0

0 pm+l 0 0
0 0 1 0
0 0 0 pm

 .

We wish to compute

(3.3.2) Zp(s) =
∫
R(Qp)\G(Qp)

Wp(Θh, s)Bp(h)dh.

By (3.3.1) and (3.3.2) we have

(3.3.3) Zp(s) =
∑

l∈Z,m≥0

∫
R(Qp)\R(Qp)h(l,m)Kp

Wp(Θh, s)Bp(h)dh.

For m ≥ 0 we define the subset Tm of S by

Tm = {B0
(1,0,0), B

∞
(1,0,0), B

0
(0,0,1), B

∞
(0,0,1), B

0
(0,0,0), B

∞
(0,0,0), A

0
(0,0,0), A

∞
(0,0,0)}

if m > 0,

T0 = {B0
(1,0,0), B

∞
(1,0,0), B

0
(0,0,0), A

0
(0,0,0)}.

Also, we use the notation t1 = B0
(1,0,0), t2 = B∞(1,0,0), ..., t8 = A∞(0,0,0). Thus

Tm = {ti|1 ≤ i ≤ 8} if m > 0 and T0 = {t1, t2, t5, t7}.

Proposition 3.3.1. Let l ∈ Z,m ≥ 0. Then we have

R(Qp)\R(Qp)h(l,m)Kp =
∐
t∈Tm

R(Qp)\R(Qp)h(l,m)tIp.

Proof. Define two elements f and g in Kp to be (l,m)-equivalent if there exists
r ∈ R(Qp) and k ∈ Ip such that rh(l,m)fk = h(l,m)g. Furthermore observe that
if two elements of Kp are congruent mod p then they are in the same Ip-coset and
therefore are trivially (l,m)-equivalent.

The proposition can be restated as saying that any s ∈ S is (l,m)-equivalent to
exactly one of the elements t with t ∈ Tm. This will follow from the following nine
claims.

Claim 1. Any class A matrix in S by left-multiplying by an appropriate element
of U(Zp) can be made congruent mod p to Ay(0,0,0) for some y ∈ V .

Claim 2. If m > 0 all the Ay(0,0,0), y ∈ V \ {0} are (l,m)-equivalent. In the case
m = 0 all the Ay(0,0,0), y ∈ V are (l, 0)-equivalent.

Claim 3. Any class B matrix in S by left-multiplying by an appropriate element
of U(Zp) can be made congruent mod p to one of the matrices

B−λ(1,λ,λ2), B
∞
(1,λ,λ2)B

y
(0,0,1), B

y
(0,0,0),

where λ ∈ Y, y ∈ V .



L-FUNCTIONS ON GSp(4)×GL(2) AND THEIR SPECIAL VALUES 15

Claim 4. The matrices By(1,λ,λ2), λ ∈ Y, y ∈ {−λ,∞} are all (l,m)-equivalent to
one of the matrices By(1,0,0), y ∈ {0,∞}.

Claim 5. The matrices By(0,0,1), y ∈ V by left-multiplying by an appropriate element
of U(Zp) can be made equal to one of the matrices By(0,0,1) with y ∈ {0,∞}.

Claim 6. The matrices By(0,0,0), y ∈ V are (l,m)-equivalent to one of the matrices
By(0,0,0) with y ∈ {0,∞}. In the case m = 0 these two matrices are also equivalent.

Claim 7. The matrices B0
(1,0,0), B

∞
(0,0,1) are (l, 0)-equivalent and the matrices

B∞(1,0,0), B
0
(0,0,1) are also (l, 0)-equivalent.

Claim 8. Any class D matrix Dy
λ by left-multiplying by an appropriate element of

U(Zp) can be made equal to a class B matrix.

Claim 9. No two elements of Tm are (l,m)-equivalent for any m ≥ 0.

Indeed Claims 1, 2 imply that any class A matrix is (l,m)-equivalent to one of
t7, t8 (and when m = 0, t7 alone suffices). On the other hand claims 3,4,5,6,7 tell
us that any class B matrix is (l,m)-equivalent to one of the ti, 1 ≤ i ≤ 6 (and that
just t1, t2, t5 suffice if m = 0). Also claim 8 says that any class D matrix is also
(l,m)-equivalent to one of the above. Since the class A, class B and class D matrix
exhaust S, this shows that any element of S is (l,m)-equivalent to some element
of Tm; in other words we do have the union stated in Proposition 3.3.1. Finally
claim 9 completes the argument by implying that the union is indeed disjoint.

As for the proofs of the claims themselves, they are just routine computations.
We only prove Claims 1 and 2 here; the computations for the other cases are
similar. The reader can find them all the in the longer version of this paper available
online [22].

Claim 1 follows from the fact that U−xAyx ≡ JZy (mod p) and JZy = Ay(0,0,0).
To prove Claim 2, we first deal with the case m = 0. For y ∈ V, y 6= 0 let

j = (−ay + b
2 ) + ξ ∈ (T (Qp) ∩ Kp) (here and elsewhere we interpret 1/∞ = 0).

Consider the element (A0
(0,0,0))

−1h(l, 0)−1jh(l, 0)Ay(0,0,0). By direct calculation this
equals 

−ay 0 0 0

−c −cy2+a−yb
y 0 0

0 0 − cy
2+a−yb
y c

0 0 0 −ay


if y 6=∞ and equals 

a 0 0 0
b −c 0 0
0 0 c b
0 0 0 −a


if y =∞. Both these matrices lie in Ip and this proves the claim for m = 0.

Now consider m > 0. For y ∈ V, y 6= 0,∞, let j = cy + pmξ ∈ (T (Qp) ∩
Kp). Consider the element (A∞(0,0,0))

−1 h(l,m)−1j h(l,m)Ay(0,0,0), which by direct
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calculation equals
−c bpm

2 0 0
cy − bpm

2 cy2 − ypmb
2 + p2ma 0 0

0 0 −p2ma− cy2 + ypmb
2 cy − bpm

2

0 0 bpm

2 c


and this lies in Ip. Thus Ay0,0,0 is (l,m)-equivalent to A∞0,0,0 and this completes the
proof of the claim.

As mentioned already, the proofs of the other claims are similar and hence omit-
ted. �

3.4. In which we calculate a certain volume. For any t ∈ Kp we define the
volume I l,mt as follows.

(3.4.1) I l,mt = vol(R(Qp)\R(Qp)h(l,m)tIp).

In this subsection we shall explicitly compute the volume I l,mt . By Proposi-
tion 3.3.1, it is enough to do this for t ∈ Tm. The next two propositions state the
results and the rest of the section is devoted to proving them.

Proposition 3.4.1. Let m > 0. Let Ml,m denote p3l+4m

(p+1)(p2+1) . Then the quantities

I l,mti for 1 ≤ i ≤ 8 are as follows.

I l,mt1 = pMl,m I l,mt5 = Ml,m

I l,mt2 = p2Ml,m I l,mt6 = pMl,m

I l,mt3 = pMl,m I l,mt7 = p2Ml,m

I l,mt4 = Ml,m I l,mt8 = p3Ml,m

Proposition 3.4.2. For m = 0 the quantities I l,mt are as follows.

I l,mt1 =
p3l+1

(p+ 1)(p2 + 1)
I l,mt5 =

p3l

(p+ 1)(p2 + 1)

I l,mt2 =
p3l+2

(p+ 1)(p2 + 1)
I l,mt7 =

p3l+3

(p+ 1)(p2 + 1)

Remark. That the volume I l,mt is finite can be viewed either as a corollary of the
above propositions, or as a consequence of the fact that vol(R(Qp)\R(Qp)h(l,m)Kp)
is finite [3, section 3].

For each t ∈ Tm define the subgroup Gt of Kp by

Gt = t−1U(Zp)GL2(Zp)t ∩ Ip

where U(Zp) is the subgroup of Kp consisting of matrices that look like
(

12 M
0 12

)
with M = MT ∈M2(Zp), and GL2(Zp) (more generally GL2(Qp)) is embedded in

G(Qp) via g 7→
(
g 0
0 det(g) · (g−1)T

)
.

Also let G1
t = tGtt

−1 be the corresponding subgroup of U(Zp)GL2(Zp).
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And finally, define

(3.4.2) Ht = {x ∈ GL2(Zp) | ∃y ∈ U(Zp) such that yx ∈ G1
t}.

It is easy to see that Ht = U(Zp)G1
t ∩GL2(Zp), thus Ht is a subgroup of GL2(Zp).

Lemma 3.4.3. We have a disjoint union

R(Qp)\R(Qp)h(l,m)tIp =
∐

y∈Gt\Ip

R(Qp)\R(Qp)h(l,m)G1
t ty.

Proof. Since tIp =
⋃
y∈Gt\Ip

tGty =
⋃
y∈Gt\Ip

G1
t ty, the only thing to prove is that

the union in the statement of the lemma is indeed disjoint.
So suppose that y1, y2 are two coset representatives of Gt\Ip and rh(l,m)g1ty1 =

h(l,m)g2ty2 with g1, g2 ∈ G1
t , r ∈ R(Qp).

This means ty2y
−1
1 t−1 is an element ofKp that is of the form

(
A B
0 det(A) · (A−1)T

)
.

Hence ty2y
−1
1 t−1 ∈ U(Zp)GL2(Zp). Thus y2y

−1
1 ∈ t−1U(Zp)GL2(Zp)t ∩ Ip = Gt

which completes the proof.
�

By the above lemma it follows that

I l,mt =
∫
Gt\Ip

dg ·
∫
R(Qp)\R(Qp)h(l,m)G1

t

dt(3.4.3)

= p3(l+m)[Kp : Ip]−1[GL2(Zp)U(Zp) : G1
t ]
∫
R(Qp)\R(Qp)h(0,m)G1

t

dt(3.4.4)

where we have normalized
∫
U(Zp)GL2(Zp)\Kp

dx = 1.
On the other hand,

R(Qp)\R(Qp)h(0,m)G1
t = R(Qp)\R(Qp)h(0,m)U(Zp)G1

t

= R(Qp)\R(Qp)h(0,m)(U(Zp)G1
t ∩GL2(Zp))

= T (Qp)\T (Qp)h(m)Ht

where h(m) =
(
pm 0
0 1

)
.

For each t ∈ Tm let us define

At = [GL2(Zp)U(Zp) : G1
t ]

and
Vt,m =

∫
T (Qp)\T (Qp)h(m)Ht

dt.

We use the same normalization of Haar measures as in [3], namely we have∫
T (Qp)\T (Qp)h(m)GL2(Zp)

dt = 1.

We summarize the computations above in the form of a lemma.

Lemma 3.4.4. Let m ≥ 0. For each t ∈ Tm we have

I l,mt =
p3(l+m)

(p+ 1)2(p2 + 1)
·At · Vt,m.

Proof. This follows from equation (3.4.4). �
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By exactly the same arguments as in [3, p. 202-203], we see that

(3.4.5) Vt,m = [GL2(Zp) : Ht]−1[T (Zp) : Otm]

where Otm = T (Qp) ∩ h(m)Hth(m)−1.
Let Γ0

p (resp. Γ0,p) be the subgroup of GL2(Zp) consisting of matrices that
become lower-triangular (resp. upper-triangular) when reduced modp.

Lemma 3.4.5. (a) We have Hti = Γ0
p for i = 1, 2, 5, 8 and Hti = Γ0,p for

i = 3, 4, 6, 7.
(b) The quantities Ati = [U(Zp)GL2(Zp) : G1

ti ] are as follows:

At1 = p(p+ 1) At5 = p+ 1

At2 = p2(p+ 1) At6 = p+ 1

At3 = p2(p+ 1) At7 = p3(p+ 1)

At4 = p(p+ 1) At8 = p3(p+ 1)

Proof. We will prove this directly using (3.4.2) and the definition of Ati .
First observe that the cardinality of U(Fp)GL2(Fp) is p3 · (p2 − p)(p2 − 1) =

p4(p − 1)2(p + 1). Recall also that the images of Γ0
p and Γ0,p have cardinality

p(p− 1)2 in GL2(Fp).
Suppose

U =


1 0 n q
0 1 q r
0 0 1 0
0 0 0 1

 , G =


a b 0 0
c d 0 0
0 0 d −c
0 0 −b a

 .

We have

t−1
1 UGt1 =


a− nd+ qb b nd− qb −nc+ qa
c− qd+ rb d qd− rb −qc+ ra

a− nd+ qb− d b nd− qb+ d −nc+ qa− c
b 0 −b a

 .

By inspection, this belongs to Ip if and only if b ≡ 0 (mod p), n ≡ a
d − 1 (mod p).

So Ht1 = Γ0
p and At1 = p4(p−1)2(p+1)

p(p−1)2p2 = p(p+ 1).
Thus we have proved the lemma for the case t1. The proofs of the assertions

regarding ti, 2 ≤ i ≤ 8 are similar to the above and will be omitted. The reader who
wishes to see those details can find them in the longer version available online [22].

�

Let t be such that Ht = Γ0
p. Then by working through the definitions, we see

that

(3.4.6) Otm = x+ pm+1yξ0, x, y ∈ Zp.
On the other hand if t is such that Ht = Γ0,p, then we see that

(3.4.7) Otm = x+ pmyξ0, x, y ∈ Zp.

Lemma 3.4.6. Let m > 0. Then we have Vti,m = pm for i = 1, 2, 5, 8 and Vti,m =
pm−1 for i = 3, 4, 6, 7.

Proof. This follows from (3.4.5), (3.4.6), (3.4.7), Lemma 3.4.5 and [3, Lemma 3.5.3]
�
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Proof of Proposition 3.4.1. The proof is a consequence of Lemma 3.4.4, Lemma 3.4.5
and Lemma 3.4.6. �

Let us now look at the case m = 0. In this case T0 = {t1, t2, t5, t7}.
The groups Hti and the quantities [GL2(Zp) : Hti ]

−1 have already been calcu-
lated. On the other hand we now have

(3.4.8) Oti0 = x+ pyξ0, x, y ∈ Zp.
for each ti ∈ T0.

Proof of Proposition 3.4.2. We have already calculated eachAti . Also by (3.4.5),(3.4.8)
and Lemma 3.4.5 we conclude that each Vti,0 = 1. Now the result follows as before,
from Lemma 3.4.4.

�

3.5. Simplification of the local zeta integral. Recall the definition of the key
local integral Zp(s) from section 2. In (3.3.3) we reduced this integral to an useful
sum. Now suppose that Wp and Bp are right Ip-invariant. Then proposition 3.3.1
allows us to further simplify that expression as follows.

(3.5.1) Zp(s) =
∑

l∈Z,m≥0

∑
t∈Tm

Wp(Θh(l,m)t, s) ·Bp(h(l,m)t) · I l,mt

Note that in the above formula we mildly abuse notation and use Θ to really
mean its natural inclusion in G̃(Qp). We will continue to do this in the future for
notational economy.

4. The evaluation of the local Bessel functions in the Steinberg
case

4.1. Background. Because automorphic representations of GSp(4) are not neces-
sarily generic, the Whittaker model is not always useful for studying L-functions.
For many problems, the Bessel model is a good substitute. Explicit evaluation of
local zeta integrals then often reduces to explicit evaluation of certain local Bessel
functions.

Formulas for local Bessel functions at the non-archimedean places have been
established in the following cases:

• unramified representations of GSp4(Qp) [26],
• unramified representations (the Casselman-Shalika like formula) [2],

Formulas for the archimedean Bessel functions have been established in the fol-
lowing cases:

• class-one representations on Sp4(R) [18],
• large discrete series and PJ -principal series of Sp4(R) [16],
• principal series of Sp4(R) [13].

In this section we give an explicit formula for the Bessel function for an un-
ramified quadratic twist of the Steinberg representation of GSp4(Qp). By [24] this
is precisely the representation corresponding to a local newform for the Iwahori
subgroup.

Throughout this section we let p be an odd prime that is inert in L. We suppose
that the local component (ωπ)p is trivial, the conductor of ψp is Zp and S =(
a b/2
b/2 c

)
∈M2(Zp).
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Because p is inert, Lp is a quadratic extension of Qp and we may write elements
of Lp in the form a+ b

√
−d with a, b ∈ Qp; then ZL,p = a+ b

√
−d where a, b ∈ Zp.

We identify Lp with T (Qp) and ξ with
√
−d/2. Then T (Zp) = Z×L,p consists of

elements of the form a+ b
√
−d where a, b are elements of Zp not both divisible by

p.
We assume that Λp is trivial on the elements of T (Zp) of the form a + b

√
−d

with a, b ∈ Zp, p | b, p - a. Further, we assume that Λp is not trivial on the full
group T (Zp), that is, it is not unramified.

Finally, assume that the local representation πp is an unramified twist of the
Steinberg representation. This is representation IVa in [24, Table 1]. The space of
πp contains a unique normalized vector that is fixed by the Iwahori subgroup Ip.
We can think of this vector as the normalized local newform for this representation.

4.2. Bessel functions. Let B be the space of locally constant functions ϕ on
G(Qp) satisfying

ϕ(tuh) = Λp(t)θp(u)ϕ(h), for t ∈ T (Qp), u ∈ U(Qp), h ∈ G(Qp).

Then by Novodvorsky and Piatetski-Shapiro [19], there exists a unique subspace
B(πp) of B such that the right regular representation of G(Qp) on B(πp) is isomor-
phic to πp. Let Bp be the unique Ip-fixed vector in B(πp) such that Bp(14) = 1.
Therefore

(4.2.1) Bp(tuhk) = Λp(t)θp(u)ϕ(h),

where t ∈ T (Qp), u ∈ U(Qp), h ∈ G(Qp), k ∈ Ip.
Our goal is to explicitly compute Bp. By Proposition 3.3.1 and (4.2.1) it is

enough to compute the values Bp(h(l,m)ti) for l ∈ Z,m ∈ Z≥0, ti ∈ Tm.
Let us fix some notation. Recall the matrices ti which were defined in Sub-

section 3.3. Also we will frequently use other notation from Section 3. We now
define

al,m0 = Bp(h(l,m)t7), al,m∞ = Bp(h(l,m)t8),

bl,m0 = Bp(h(l,m)t2), 1bl,m0 = Bp(h(l,m)t1),

bl,m∞ = Bp(h(l,m)t3), 1bl,m∞ = Bp(h(l,m)t4),

cl,m0 = Bp(h(l,m)t5), cl,m∞ = Bp(h(l,m)t6).

Lemma 4.2.1. Let m ≥ 0, y ∈ {0,∞}. The following equations hold:
(a) al,my = 0 if l < −1.
(b) 1bl,m0 = bl,m0 = 1bl,0∞ = bl,0∞ = 0 if l < 0.
(c) 1bl,m∞ = bl,m∞ = 0 if l < −1.
(d) cl,my = 0 if l < 0.

Proof. First note that U(0,0,p)ti ≡ ti (mod p), hence they are in the same coset of
Kp/Ip. Hence

Bp(h(l,m)ti) = Bp(h(l,m)U(0,0,p)ti)

= Bp(U(0,0,pl+1)h(l,m)ti)

= ψp(pl+1c)Bp(h(l,m)ti).
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Since the conductor of ψp is Zp and c is a unit, it follows that Bp(h(l,m)ti) = 0 for
l < −1. This completes the proof of (a) and (c).

Next, observe that

cl,my = Bp(h(l,m)Zy)

= Bp(h(l,m)U(0,0,1)Zy)

= Bp(U(0,0,pl)h(l,m)Zy)

= ψp(plc)Bp(h(l,m)Zy).

It follows that Bp(h(l,m)Zy) = 0 for l < 0. This completes the proof of (d).
Next, we have

Bp(h(l,m)JU(1,0,0)JZy) = Bp(h(l,m)JU(1,0,0)JU0,0,1Zy)

= Bp(h(l,m)U0,0,1JU(1,0,0)JZy)

= ψp(plc)Bp(h(l,m)JU(1,0,0)JZy).

It follows that 1bl,m0 = bl,m0 = 0 for l < 0.
Finally,

Bp(h(l, 0)JU(0,0,1)JZy) = Bp(h(l, 0)JU(0,0,1)JU1,0,0Zy)

= Bp(h(l, 0)U1,0,0JU(0,0,1)JZy)

= ψp(pla)Bp(h(l, 0)JU(0,0,1)JZy).

It follows that 1bl,0∞ = bl,0∞ = 0 for l < 0. This completes the proof of (b).
�

By our normalization, we have c0,00 = 1. From Proposition 3.3.1, proof of Claim
6, it follows that c0,0∞ = Λp( b+

√
−d

2 ).
To get more information, we have to use the fact that the local Iwahori-Hecke

algebra acts on Bp in a precise manner.

4.3. Hecke operators and the results. Henceforth we always assume that l ≥
−1,m ≥ 0. In particular, all equations that are stated without qualification will
be understood to hold in the above range. We know that πp is either StGSp(4) or
ξ0StGSp(4) where ξ0 is the non-trivial unramified quadratic character. Put wp = −1
in the former case and wp = 1 in the latter. Put

ηp =


0 0 0 1
0 0 1 0
0 p 0 0
p 0 0 0

 .

Also, for y ∈ V , define the matrices Ry as follows: If y ∈ Y ,

Ry = (U(y,0,0))T ,

and

R∞ =


0 0 −1 0
0 −1 0 0
−1 0 0 0
0 0 0 1

 .
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Let t ∈ G(Qp). By [24], we know the following:

(4.3.1)
∑
y∈V

Bp(tZy) = 0,

(4.3.2) Bp(tηp) = wpBp(t),

(4.3.3)
∑
y∈V

Bp(tRy) = 0.

(4.3.1) and Proposition 3.3.1 immediately imply

al,m0 + pal,m∞ = 0, for m > 0(4.3.4)

pbl,my + 1bl,my = 0, for y ∈ {0,∞}(4.3.5)

pcl,m0 + cl,m∞ = 0, for m > 0(4.3.6)

Next we act upon by ηp. Check that

(h(l + 1,m)B∞(0,0,0))
−1h(l,m)A0

(0,0,0)ηp =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

So we have

al,m0 = Bp(h(l,m)A0
(0,0,0))

= wpBp(h(l,m)A0
(0,0,0)ηp)

= wpBp(h(l + 1,m)B∞(0,0,0)).

Thus

(4.3.7) al,m0 = wpc
l+1,m
∞ .

We also have

(h(l + 1,m)B0
(0,0,0))

−1h(l,m)A∞(0,0,0)ηp =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

So similarly, we conclude

(4.3.8) al,m∞ = wpc
l+1,m
0 .

Next, check that

(h(l,m)B1
(1,0,0)ηp)

−1h(l − 1,m+ 1)U(−1/p,0,0)D
1
∞ = (Z1)T ∈ Ip.

Hence
Bp(h(l,m)B1

(1,0,0)) = wpBp(h(l − 1,m+ 1)D1
∞).

(Note that both sides are zero if l = −1,m = 0).
By the proof of Proposition 3.3.1, Bp(h(l,m)B1

(1,0,0)) = bl,m0 and Bp(h(l−1,m+
1)D1

∞) = ψp(pl−1c)bl−1,m+1
∞ .

Thus we have proved

(4.3.9) bl,m0 = wpψp(pl−1c)bl−1,m+1
∞ .
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At this point we pause and note that on account of (4.3.4)–(4.3.9) it is enough
to compute the quantities bl,m∞ , al,m0 , l ≥ −1,m ≥ 0, l + m 6= −1. Of course, we
already know that a−1,0

0 = wpΛp( b+
√
−d

2 ).
Next, we use (4.3.3).
For each x ∈ Y , we can check that A0

0,0,0Rx = A0
−x,0,0. Furthermore, A0

0,0,0R∞ =
D0
∞. Assuming l+m ≥ 0 we have Bp(h(l,m)A0

−x,0,0) = al,m0 and Bp(h(l,m)D0
∞ =

ψp(plc)bl,m∞ . So using (4.3.3) we conclude

(4.3.10) pal,m0 = −ψp(plc)bl,m∞ ,

for l +m ≥ 0.
However we can do more. Check that for x ∈ Y , A∞(0,0,0)Rx = A∞(0,0,−x) and

A∞(0,0,0)R∞ ≡ D0
0 (mod p). If l ≥ 0 we have Bp(h(l,m)A∞(0,0,−x) = al,m∞ and

Bp(h(l,m)D0
0) = bl,m0 . So again using (4.3.3) we have

(4.3.11) pal,m∞ = −bl,m0 ,

for l ≥ 0.
So (4.3.4), (4.3.9) and (4.3.11) imply that for l ≥ 0, m > 0

(4.3.12) bl,m∞ = −pbl,m0 = −pwpψp(pl−1c)bl−1,m+1
∞ .

Now observe that B0
0,0,0R∞ ≡ D∞0 (mod p) and for x ∈ Y , B0

0,0,0Rx = B0
−x,0,0.

Assuming l + m 6= −1 we have Bp(h(l,m)D∞0 ) = 1bl,m0 and for x ∈ y, x 6= 0,
Bp(h(l,m)B0

−x,0,0) = 1bl,m0 . Hence using (4.3.3)

(4.3.13) cl,m0 = −p 1bl,m0

So by equations (4.3.5) and (4.3.8) we have,

(4.3.14) al,m∞ = p2ψp(plc)bl,m+1
∞

The above equation, along with our normalization tells us that

(4.3.15) b−1,1
∞ =

1
p2
ψp(−

c

p
)wp.

Also, using (4.3.11),(4.3.12) and (4.3.14) we get

(4.3.16) bl,m+1
∞ =

1
p4
bl,m∞

for l ≥ 0,m > 0.
(4.3.12),(4.3.16) and(4.3.15) imply :

(4.3.17) bl,m∞ = − (−pwp)l

p4l+4m+1
if l ≥ 0,m ≥ 1

(4.3.18) b−1,m
∞ =

1
p4m−2

ψp(−
c

p
)wp if m ≥ 1.

In the case m = 0, Proposition 3.3.1, proof of Claim 7, tells us that 1bl,0∞ =
Λp( b+

√
−d

2 ) 1bl,00 which implies

(4.3.19) bl,0∞ = Λp(
b+
√
−d

2
)bl,00 = wpψp(pl−1c)Λp(

b+
√
−d

2
)bl−1,1
∞

Equation (4.3.17)–(4.3.19), along with the earlier equations that specify the in-
derdependence of various quantities, determine all the values Bp(h(l,m)ti). For
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convenience, we compactly state the facts proven above above as two propositions.
We only state it for l ≥ 0 since that is the only case needed for our later appli-
cations. The values for l = −1 can be easily gleaned from these and the above
equations.

Proposition 4.3.1. Let l ≥ 0,m > 0. Put M = (−pwp)lp−4(l+m). Then the
following hold:

(a) Bp(h(l,m)t1) = M · −1
p ,

(b) Bp(h(l,m)t2) = M · 1
p2 ,

(c) Bp(h(l,m)t3) = M · −1
p ,

(d) Bp(h(l,m)t4) = M
(e) Bp(h(l,m)t5) = M
(f) Bp(h(l,m)t6) = M · (−p),
(g) Bp(h(l,m)t7) = M · 1

p2 ,

(h) Bp(h(l,m)t8) = M · −1
p3 .

Proposition 4.3.2. Let l ≥ 0. Put M = (−pwp)lp−4l. Then the following hold:

(a) Bp(h(l, 0)t1) = M · −1
p ,

(b) Bp(h(l, 0)t2) = M · 1
p2 ,

(c) Bp(h(l, 0)t5) = M,

(d) Bp(h(l,m)t7) = M · −Λp( b+
√
−d

2 )

p3 .

5. The case unramified πp, Steinberg σp

5.1. Assumptions. Suppose that the characters ωπ, ωσ, χ0 are trivial. Let p 6= 2
be a finite prime of Q such that

(a) p is inert in L = Q(
√
−d).

(b) The local components Λp and πp are unramified.
(c) σp is the Steinberg representation (or its twist by the unramified quadratic

character).
(d) The conductor of ψp is Zp

(e) S =
(
a b/2
b/2 c

)
∈M2(Zp).

(f) −d = b2 − 4ac generates the discriminant of Lp/Qp.

5.2. Description of Bp and Wp. Given the local representations and characters
as above, define I(Πp, s) and the local Bessel and Whittaker spaces as in Sections
1 and 2. For any choice of local Whittaker and Bessel functions Wp and Bp we can
define the local zeta integral Zp(s) by (2.2.3). We now fix such a choice.

As in the unramified case from section 1, we let Bp be the unique normalized
Kp-vector in the local Bessel space. Sugano[26] has computed the function Bp
explicitly.

We now define Wp. Let Ũp be the subgroup of K̃p defined by

Ũp =
{
z ∈ K̃p | z ≡


∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗

 (mod p)
}
.



L-FUNCTIONS ON GSp(4)×GL(2) AND THEIR SPECIAL VALUES 25

It is not hard to see that I(Πp, s) has Ũp-fixed vectors. Now let Wp be the unique
Ũp-fixed vector in the local Whittaker space with the following properties:

• Wp(e, s) = 1,
• Wp(g, s) = 0 if g does not belong to P (Qp)Ũp

Concretely we have the following description of Wp( s).
We know that σp = Sp⊗ τ where Sp denotes the special (Steinberg) representa-

tion and τ is a (possibly trivial) unramified quadratic character. We put ap = τ(p),
thus ap = ±1 is the eigenvalue of the local Hecke operator T (p).

Let W ′p be the unique function on GL2(Qp) such that

(5.2.1) W ′p(gk) = W ′p(g), for g ∈ GL2(Qp), k ∈ Γ0,p,

(5.2.2) W ′p(
(

1 x
0 1

)
g) = ψp(−cx)W ′p(g), for g ∈ GL2(Qp), x ∈ Qp,

(5.2.3) W ′p

(
a 0
0 1

)
=

{
τ(a)|a| if |a|p ≤ 1,
0 otherwise

(5.2.4) W ′p

((
a 0
0 1

)(
0 1
−1 0

))
=

{
−p−1τ(a)|a| if |a|p ≤ p,
0 otherwise

We extend W ′p to a function on GU(1, 1)(Qp) by

W ′p(ag) = W ′p(g), for a ∈ L×p , g ∈ GL2(Qp).

Then, Wp( s) is the unique function on G̃(Qp) such that

(5.2.5) Wp(mnk, s) = Wp(m, s), for m ∈M(Qp), n ∈ N(QP ), k ∈ Ũp,

(5.2.6) Wp(e) = 1 and Wp(g, s) = 0 if g /∈ P (Qp)Ũp,

and

Wp



a 0 0 0
0 1 0 0
0 0 a−1 0
0 0 0 1




1 0 0 0
0 a1 0 b1
0 0 c1 0
0 d1 0 e1

 , s


=
∣∣NL/Q(a) · c−1

1

∣∣3(s+1/2)

p
·W ′p

(
a1 b1
d1 e1

)(5.2.7)

for a ∈ Q×p ,
(
a1 b1
d1 e1

)
∈ GU(1, 1)(Qp), c1 = µ1

(
a1 b1
d1 e1

)
.

Let us use the following notation: For
(
a b
c d

)
∈ GU(1, 1) we let

m(2)(
(
a b
c d

)
) =


1 0 0 0
0 a 0 b
0 0 β 0
0 c 0 d


where β = µ1(

(
a b
c d

)
).
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5.3. The results. For i = 1, 2, 3, 4, define the characters γ(i)
p of Q×p as in Section 1.

We now state and prove the main theorem of this section.

Theorem 5.3.1. Let the functions Bp,Wp be as defined in subsection 5.2. Then
we have

Zp(s,Wp, Bp) =
1

p2 + 1
·
L(3s+ 1

2 , πp × σp)
L(3s+ 1, σp × ρ(Λp))

where,

L(s, πp × σp) =
4∏
i=1

(1− γ(i)
p (p)app−1/2p−s)−1,

and
L(s, σp × ρ(Λp)) = (1− p−2s−1)−1.

Before we begin the proof, we need a lemma.

Lemma 5.3.2. We have the following formulae for Wp(Θh(l,m)ti, s) where ti ∈
Tm.

(a) If m > 0 then Wp(Θh(l,m)ti, s) =


p−6ms−3ls−3m−5l/2alp if i ∈ {1, 5}
p−6ms−3ls−3m−5l/2alp · −1

p if i ∈ {3, 7}
0 otherwise

(b) Wp(Θh(l, 0)ti, s) =

{
p−3ls−5l/2alp if i ∈ {1, 5}
0 if i ∈ {2, 7}

Proof. We have

(5.3.1) Θh(l,m) = h(l,m)


1 0 0 0

pmα 1 0 0
0 0 1 −pmα
0 0 0 1


First consider the case m > 0.
We can check that Θh(l,m)ti /∈ P (Qp)Ũp if i ∈ {2, 4, 6, 8}.
For the remaining ti (i.e. i ∈ {1, 3, 5, 7}) we have the following decompositions:
Θh(l,m)t1

=


p2m+l 0 0 0

0 1 0 0
0 0 p−2m−l 0
0 0 0 1

m(2)(
(
pm+l 0

0 pm

)
)


−1 0 0 0
−pmα −1 0 0

1 0 −1 pmα
0 0 0 −1


Θh(l,m)t3 =
p2m+l 0 0 0

0 1 0 0
0 0 p−2m−l 0
0 0 0 1

m(2)(
(
pm+l 0
−pm pm

)
)


−1 0 0 0
−pmα −1 0 0

0 −pmα −1 pmα
−pmα 0 0 −1


Θh(l,m)t5

=


p2m+l 0 0 0

0 1 0 0
0 0 p−2m−l 0
0 0 0 1

m(2)(
(
pm+l 0

0 pm

)
)


1 0 0 0

pmα 1 0 0
0 0 1 pmα
0 0 0 1


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Θh(l,m)t7

=


p2m+l 0 0 0

0 1 0 0
0 0 p−2m−l 0
0 0 0 1

m(2)(
(

0 −pm+l

−pm 0

)
)


0 0 1 0
0 1 0 0
−1 pmα 0 0
0 0 pmα 1


Part (a) of the lemma now follows from the above decompositions and equa-

tions(5.2.1)-(5.2.7).
Let us now look at m = 0. Once again, check that Θh(l, 0)ti /∈ P (Qp)Ũp if

i ∈ {2, 7}. For t1 and t5 we have the above decompositions, from which part (b)
follows via the equations (5.2.1)-(5.2.7).

�

Proof of Theorem 5.3.1. By (3.5.1) we have

(5.3.2) Zp(s,Wp, Bp) =
∑

l≥0,m≥0

Bp(h(l,m))
∑
ti∈Tm

Wp(Θh(l,m)ti, s) · I l,mti

We first look at the terms corresponding to m > 0. From Lemma 5.3.2 and
Proposition 3.4.1 we have

∑
ti∈Tm

Wp(Θh(l,m)ti, s) · I l,mti = 0. So only terms
corresponding to m = 0 contribute.

From Proposition 3.4.2 and Lemma 5.3.2 we have∑
ti∈T0

Wp(Θh(l, 0)ti, s) · I l,0ti =
1

p2 + 1
· p−3ls+l/2alp.

Hence (6.3.2) reduces to

Zp(s,Wp, Bp) =
1

p2 + 1
·
∑
l≥0

Bp(h(l, 0))p−3ls+l/2alp.

Define C(y) =
∑
l≥0Bp(h(l, 0))yl. We are interested in the quantity

(5.3.3) Zp(s,Wp, Bp) =
1

p2 + 1
C(app−3s+1/2).

Sugano, in [26, p. 544], has computed C(y) explicitly. He proves that

C(y) =
H(y)
Q(y)

where H(y) = 1− y2

p4 , Q(y) =
∏4
i=1(1− γ(i)

p (p)p−3/2y).
Plugging in these values in (5.3.3) we get the desired result.

�

6. The case Steinberg πp, Steinberg σp

6.1. Assumptions. Suppose that the characters ωπ, ωσ, χ0 are trivial. Let p 6= 2
be a finite prime of Q such that

(a) p is inert in L = Q(
√
−d).

(b) Λp is not trivial on T (Zp); however it is trivial on T (Zp) ∩ Γ0
p.

(c) πp is the Steinberg representation (or its twist by the unique non-trivial
unramified quadratic character).
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(d) σp is the Steinberg representation (or its twist by the unique non-trivial
unramified quadratic character).

(e) The conductor of ψp is Zp.

(f) S =
(
a b/2
b/2 c

)
∈M2(Zp).

(g) −d = b2 − 4ac generates the discriminant of Lp/Qp.

Remark. πp corresponds to a local newform for the Iwahori subgroup Ip (see
[24]). Also, as in the previous section, σp corresponds to the local newform for the
Iwahori subgroup Γ0(p) of GL2(Qp).

6.2. Description of Bp and Wp. Let Φp be the unique normalized local newform
for the Iwahori subgroup Ip, as defined by Schmidt [24]. Let wp be the local Atkin-
Lehner eigenvalue for πp; this equals −1 when πp is the Steinberg representation
and equals 1 when πp is the unramified quadratic twist of the Steinberg represen-
tation. We let Bp be the normalized vector that corresponds to Φp in the Bessel
space. Section 4 was devoted to the computation of the values Bp(h(l,m)t) for
l,m ∈ Z,m ≥ 0, t ∈ Tm.

Because p is inert, Lp is a quadratic extension of Qp and we may write elements
of Lp in the form a+ b

√
−d with a, b ∈ Qp; then ZL,p = a+ b

√
−d where a, b ∈ Zp.

We also identify Lp with T (Qp) and ξ with
√
−d/2. We now define Wp. By

Assumption (b) above, we have Λp is trivial on the elements of T (Qp) of the form
a + b

√
−d with a, b ∈ Zp, p | b, p - a. Take the canonical map r : K̃p → G̃(Fp)

and define I ′p = r−1(I(Fp)), where I(Fp) is the subgroup of G(Fp) defined in the
beginning of this paper.

Let s1 denote the matrix


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

Let Wp( , s) be the unique vector in I(Πp, s) with the following properties:

• Wp(1, s) = 1,
• Wp(s1, s) = 1,
• Wp(gk, s) = Wp(g, s) is k ∈ I ′p,
• Wp(g, s) = 0 if g does not belong to P (Qp)I ′p t P (Qp)s1I

′
p

Concretely we have the following description of Wp( , s) :
We know that σp = Sp⊗ τ where Sp denotes the special (Steinberg) representa-

tion and τ is a (possibly trivial) unramified quadratic character. We put ap = τ(p),
thus ap = ±1 is the eigenvalue of the local Hecke operator T (p).

Let W ′p be the unique function on GL2(Qp) such that

(6.2.1) W ′p(gk) = W ′p(g), for g ∈ GL2(Qp), k ∈ Γ0,p,

(6.2.2) W ′p(
(

1 x
0 1

)
g) = ψp(−cx)W ′p(g), for g ∈ GL2(Qp), x ∈ Qp,

(6.2.3) W ′p

(
a 0
0 1

)
=

{
τ(a)|a| if |a|p ≤ 1,
0 otherwise
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(6.2.4) W ′p

((
a 0
0 1

)(
0 1
−1 0

))
=

{
−p−1τ(a)|a| if |a|p ≤ p,
0 otherwise

We extend W ′p to a function on GU(1, 1)(Qp) by

W ′p(ag) = W ′p(g), for a ∈ L×p , g ∈ GL2(Qp).

Then, Wp( s) is the unique function on G̃(Qp) such that
(6.2.5)

Wp(mnuk, s) = Wp(mu, s), for m ∈M(Qp), n ∈ N(QP ), u ∈ {1, s1}, k ∈ I ′p,

(6.2.6) Wp(t) = 0 if t /∈ P (Qp)I ′p t P (Qp)s1I
′
p

Wp



a 0 0 0
0 1 0 0
0 0 a−1 0
0 0 0 1




1 0 0 0
0 a1 0 b1
0 0 c1 0
0 d1 0 e1

u, s


=
∣∣NL/Q(a) · c−1

1

∣∣3(s+1/2)

p
· Λp(a)W ′p

(
a1 b1
d1 e1

)
,

(6.2.7)

for a ∈ Q×p , u ∈ {1, s1},
(
a1 b1
d1 e1

)
∈ GU(1, 1)(Qp), c1 = µ1

(
a1 b1
d1 e1

)
.

6.3. The results. We now state and prove the main theorem of this section.

Theorem 6.3.1. Let the functions Bp,Wp be as defined in subsection 6.2. Then
we have

Zp(s,Wp, Bp) =
1− p
p2 + 1

· p−6s−3

1− apwpp−3s−3/2
· L(3s+

1
2
, πp × σp)

where L(s, πp × σp) = (1 + apwpp
−1p−s)−1(1 + apwpp

−2p−s)−1.

Before we begin the proof, we need a lemma.

Lemma 6.3.2. We have the following formulae for Wp(Θh(l,m)ti, s) where ti ∈
Tm.

Wp(Θh(l,m)ti, s) =


p−6ms−3ls−3m−5l/2alp · −1

p if i = 3, 4, m > 0
p−6ms−3ls−3m−5l/2alp if i = 5, 6, m > 0
0 otherwise.

Proof. We have

(6.3.1) Θh(l,m) = h(l,m)


1 0 0 0

pmα 1 0 0
0 0 1 −pmα
0 0 0 1


Put K ′p = r−1(G(Fp)). Thus Θh(l,m)ti ∈ P (Qp)K ′p when m > 0 and Θh(l,m)ti ∈
P (Qp)ΘK ′p whenm = 0. A direct computation shows that P (Qp)K ′p and P (Qp)ΘK ′p
are disjoint; the fact that P (Qp)I ′p ⊂ P (Qp)K ′p then implies thatWp(Θh(l,m)ti, s) =
0 for m = 0 . From now on we assume m > 0.
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We can check that Θh(l,m)ti /∈ P (Qp)I ′p if i ∈ {1, 2, 7, 8}.
For the remaining ti (i.e. i ∈ {3, 4, 5, 6}) we have the decompositions:
Θh(l,m)t3 =
p2m+l 0 0 0

0 1 0 0
0 0 p−2m−l 0
0 0 0 1

m(2)(
(
pm+l 0
−pm pm

)
)


−1 0 0 0
−pmα −1 0 0

0 −pmα −1 pmα
−pmα 0 0 −1


Θh(l,m)t4 =
p2m+l 0 0 0

0 1 0 0
0 0 p−2m−l 0
0 0 0 1

m(2)(
(
pm+l 0
−pm pm

)
)s1


1 pmα 0 0
0 1 0 0
0 pmα 1 0

pmα 0 −pmα 1


Θh(l,m)t5

=


p2m+l 0 0 0

0 1 0 0
0 0 p−2m−l 0
0 0 0 1

m(2)(
(
pm+l 0

0 pm

)
)


1 0 0 0

pmα 1 0 0
0 0 1 pmα
0 0 0 1


Θh(l,m)t6

=


p2m+l 0 0 0

0 1 0 0
0 0 p−2m−l 0
0 0 0 1

m(2)(
(
pm+l 0

0 pm

)
)s1


1 pmα 0 0
0 1 0 0
0 0 1 0
0 0 −pmα 1


The lemma now follows from the above decompositions and equations (6.2.1)-

(6.2.7).
�

Proof of Theorem 6.3.1. By (3.5.1) we have

(6.3.2) Zp(s,Wp, Bp) =
∑

l≥0,m≥0

∑
ti∈Tm

Bp(h(l,m)ti)Wp(Θh(l,m)ti, s) · I l,mti

From Proposition 3.4.1, Proposition 4.3.1 and Lemma 6.3.2 we have∑
i∈{3,4,5,6}

Bp(h(l,m)ti)Wp(Θh(l,m)ti, s)·I l,mti =
(1− p)(−apwpp−3s−5/2)l(p−6s−3)m

p2 + 1
.

Hence (6.3.2) implies

Zp(s,Wp, Bp) =
(1− p)p−6s−3

p2 + 1
· 1

1 + apwpp−2p−3s−1/2
· 1

1− p−6s−3

This completes the proof.
�

Remark. We might equally well have chosen Wp to be the simpler vector
supported only on 1 (rather than on 1 and s1). Indeed, all the results in this paper
will remain valid with that choice. The reason we include s1 in the support of the
section is because this definition will be necessary for our future work [23].
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7. The case Steinberg πp, unramified σp

7.1. Assumptions. Suppose that the characters ωπ, ωσ, χ0 are trivial. Let p 6= 2
be a finite prime of Q such that

(a) p is inert in L = Q(
√
−d).

(b) Λp is not trivial on T (Zp); however it is trivial on T (Zp) ∩ Γ0
p.

(c) πp is the Steinberg representation (or its twist by the unique non-trivial
unramified quadratic character) while σp is unramified.

(d) The conductor of ψp is Zp.

(e) S =
(
a b/2
b/2 c

)
∈M2(Zp).

(f) −d = b2 − 4ac generates the discriminant of Lp/Qp.

Remark. πp corresponds to a local newform for the Iwahori subgroup Ip (see
[24]).

7.2. Description of Bp and Wp. Let Φp be the unique normalized local newform
for the Iwahori subgroup Ip, as defined by Schmidt [24]. Let wp be the local Atkin-
Lehner eigenvalue for πp; this equals −1 when πp is the Steinberg representation
and equals 1 when πp is the unramified quadratic twist of the Steinberg represen-
tation. We let Bp be the normalized vector that corresponds to Φp in the Bessel
space. Section 4 was devoted to the computation of the values Bp(h(l,m)t) for
l,m ∈ Z,m ≥ 0, t ∈ Tm.

We now define Wp. Take the canonical map r : K̃p → G̃(Fp) and define I ′p =
r−1(I(Fp)), where I(Fp) is the subgroup of G(Fp) defined in the beginning of this
paper.

Let Wp( , s) be the unique vector in I(Πp, s) with the following properties:
• Wp(Θ, s) = 1,
• Wp(1, s) = 1,
• Wp(gk, s) = Wp(g, s) is k ∈ I ′p,
• Wp(g, s) = 0 if g does not belong to P (Qp)ΘI ′p t P (Qp)I ′p

Concretely we have the following description of Wp( , s).
Suppose σp is the principal series representation induced from the unramified

characters α, β of Q×p . Let W ′p be the unique function on GL2(Qp) such that

(7.2.1) W ′p(gk) = W ′p(g), for g ∈ GL2(Qp), k ∈ GL2(Zp),

(7.2.2) W ′p(
(

1 x
0 1

)
g) = ψp(−cx)W ′p(g), for g ∈ GL2(Qp), x ∈ Qp,

(7.2.3) W ′p

(
a 0
0 b

)
=

{∣∣a
b

∣∣ 1
2

p
· α(ap)β(b)−α(b)β(ap)

α(p)−β(p) if
∣∣a
b

∣∣
p
≤ 1,

0 otherwise

We extend W ′p to a function on GU(1, 1)(Qp) by

W ′p(ag) = W ′p(g), for a ∈ L×p , g ∈ GL2(Qp).

Then, Wp( s) is the unique function on G̃(Qp) such that
(7.2.4)

Wp(mnuk, s) = Wp(mu, s), for m ∈M(Qp), n ∈ N(QP ), u ∈ {1,Θ}, k ∈ I ′p,
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(7.2.5) Wp(t) = 0 if t /∈ P (Qp)ΘI ′p t P (Qp)I ′p

Wp



a 0 0 0
0 1 0 0
0 0 a−1 0
0 0 0 1




1 0 0 0
0 a1 0 b1
0 0 c1 0
0 d1 0 e1

u, s


=
∣∣NL/Q(a) · c−1

1

∣∣3(s+1/2)

p
· Λp(a−1)W ′p

(
a1 b1
d1 e1

)
,

(7.2.6)

for a ∈ Q×p , u ∈ {1,Θ},
(
a1 b1
d1 e1

)
∈ GU(1, 1)(Qp), c1 = µ1

(
a1 b1
d1 e1

)
.

7.3. The results. We now state and prove the main theorem of this section.

Theorem 7.3.1. Let the functions Bp,Wp be as defined in subsection 7.2. Then
we have

Zp(s,Wp, Bp) =
1

(p+ 1)(p2 + 1)
· L(3s+

1
2
, πp × σp),

where L(s, πp × σp) = (1 + wpp
−3/2α(p)p−s)−1(1 + wpp

−3/2β(p)p−s)−1.

Before we begin the proof, we need a lemma.

Lemma 7.3.2. Let ti ∈ Tm, l ≥ 0. We have

Wp(Θh(l,m)ti, s) =


p−3ls−2l

(
α(p)l+1−β(p)l+1

α(p)−β(p)

)
if m = 0, i = 5

p−6ms−3ls−3m−5l/2
(
α(p)l+1−β(p)l+1

α(p)−β(p)

)
if m > 0, i = 3, 5

0 otherwise

Proof. By the proof of Lemma 6.3.2 we have Θh(l,m)ti /∈ P (Qp)ΘI ′p if m > 0. As
for the case m = 0, we can check that Θh(l, 0)ti /∈ P (Qp)ΘI ′p if i ∈ {1, 2, 7}. On the
other hand, again by the proof of Lemma 6.3.2, we have Θh(l,m)ti ∈ P (Qp)I ′p if
and only if m > 0 and i ∈ {3, 5}. The lemma now follows immediately from (7.2.1) -
(7.2.6). �

Proof of Theorem 7.3.1. We have

Zp(s,Wp, Bp) =
∑
l≥0

Wp(Θh(l, 0)t5, s)Bp(h(l, 0)t5) · I l,0t5

+
∑

l≥0,m>0

∑
i∈{3,5}

Wp(Θh(l,m)ti, s)Bp(h(l,m)ti) · I l,mti
(7.3.1)

Using Proposition 4.3.2 , Proposition 3.4.2 and Lemma 7.3.2 we have∑
i∈{3,5}

Wp(Θh(l,m)ti, s)Bp(h(l,m)ti) · I l,mti = 0

and hence
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Zp(s,Wp, Bp) =
∑
l≥0

Wp(Θh(l, 0)t5, s)Bp(h(l, 0)t5) · I l,0t5

=
1

(p+ 1)(p2 + 1)

∑
l≥0

p−3ls−2l

(
α(p)l+1 − β(p)l+1

α(p)− β(p)

)
(−pwp)lp−l

=
1

(p+ 1)(p2 + 1)
L(3s+

1
2
, πp × σp).

This completes the proof of the theorem.
�

Remark. We might equally well have chosen Wp to be the simpler vector
supported only on Θ (rather than on Θ and 1). The only reason we include 1 in
the support of the section is because this definition will be necessary for our future
work [23].

8. The global integral and some results

8.1. Classical Siegel modular forms and newforms for the minimal con-
gruence subgroup. For M a positive integer define the following global parahoric
subgroups.

B(M) := Sp(4,Z) ∩


Z MZ Z Z
Z Z Z Z
MZ MZ Z Z
MZ MZ MZ Z

 ,

U1(M) := Sp(4,Z) ∩


Z Z Z Z
Z Z Z Z
MZ MZ Z Z
MZ MZ Z Z

 ,

U2(M) := Sp(4,Z) ∩


Z MZ Z Z
Z Z Z Z
Z MZ Z Z
MZ MZ MZ Z

 ,

U0(M) := Sp(4,Q) ∩


Z MZ Z Z
Z Z Z M−1Z
MZ MZ Z Z
MZ MZ MZ Z

 .

When M = 1 each of the above groups is simply Sp(4,Z). For M > 1, the groups
are all distinct. If Γ′ is equal to one of the above groups, or (more generally) is
any congruence subgroup, we define Sk(Γ′) to be the space of Siegel cusp forms of
degree 2 and weight k with respect to the group Γ′.

More precisely, let H2 = {Z ∈ M2(C)|Z = ZT , i(Z − Z) is positive definite}.

For any g =
(
A B
C D

)
∈ G let J(g, Z) = CZ + D. Then f ∈ Sk(Γ′) if it is a
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holomorphic function on H2, satisfies f(γZ) = det(J(γ, Z))kf(Z) for γ ∈ Γ′, Z ∈
H2 and vanishes at the cusps. It is well-known that f has a Fourier expansion

f(Z) =
∑
S>0

a(S, F )e(tr(SZ)),

where e(z) = exp(2πiz) and S runs through all symmetric semi-integral positive-
definite matrices of size two.

Now let M be a square-free positive integer. For any decomposition M = M1M2

into coprime integers we define, following Schmidt [24], the subspace of oldforms
Sk(B(M))old to be the sum of the spaces

Sk(B(M1) ∩ U0(M2)) + Sk(B(M1) ∩ U1(M2)) + Sk(B(M1) ∩ U2(M2)).

For each prime p not dividing M there is the local Hecke algebra Hp of operators
on Sk(B(M)) and for each prime q dividing M we have the Atkin-Lehner involution
ηq also acting on Sk(B(M)). For details, the reader may refer to [24].

By a newform for the minimal congruence subgroup B(M), we mean an element
f ∈ Sk(B(M)) with the following properties

(a) f lies in the orthogonal complement of the space Sk(B(M))old.
(b) f is an eigenform for the local Hecke algebras Hp for all primes p not dividing

M .
(c) f is an eigenform for the Atkin-Lehner involutions ηq for all primes q divid-

ing M .
Remark. By [24], if we assume the hypothesis that a nice L-function theory for

GSp(4) exists, (b) and (c) above follow from (a) and the assumption that f is an
eigenform for the local Hecke algebras at almost all primes.

8.2. Description of our newforms. Let M be an odd square-free positive integer
and

F (Z) =
∑
T>0

a(T )e(tr(TZ))

be a Siegel newform for B(M) of even weight l.
Let N be an odd square-free positive integer and g be a normalized newform of

weight l for Γ0(N). g has a Fourier expansion

g(z) =
∞∑
n=1

b(n)e(nz)

with b(1) = 1. It is then well known that the b(n) are all totally real algebraic
numbers.

We make the following assumption:

(8.2.1) a(T ) 6= 0 for some T =
(
a b

2
b
2 c

)
such that −d = b2 − 4ac is the discriminant of the imaginary quadratic field
Q(
√
−d), and all primes dividing MN are inert in Q(

√
−d).

We define a function Φ = ΦF on G(A) by

Φ(γh∞k0) = µ2(h∞)l det(J(h∞, iI2))−lF (h∞(i))
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where γ ∈ G(Q), h∞ ∈ G(R)+ and

k0 ∈ (
∏
p-M

Kp) · (
∏
p|M

Ip).

Because we do not have strong multiplicity one for G we can only say that the
representation of G(A) generated by Φ is a multiple of an irreducible representation
π. However that is enough for our purposes.

We know that π = ⊗πv where

πv =


holomorphic discrete series if v =∞,
unramified spherical principal series if v finite , v - M,

ξvStGSp(4)where ξv unramified, ξ2
v = 1 if v |M.

Next, we define a function Ψ on GL2(A) by

Ψ(γ0mk0) = (det m)
l
2 (γi+ δ)−lg(m(i))

where γ0 ∈ GL2(Q), m =
(
α β
γ δ

)
∈ GL+

2 (R), and

k0 ∈
∏
p-N

GL2(Zp)
∏
p|N

Γ0,p

Let σ be the automorphic representation of GL2(A) generated by Ψ.
We know that σ = ⊗σv where

σv =


holomorphic discrete series if v =∞,
unramified spherical principal series if v finite , v - N,
ξStGL(2)where ξv unramified, ξ2

v = 1 if v | N.

8.3. Description of our Bessel model. In order to use our results from the
previous sections, we need to associate a Bessel model to π (or more accurately, we
associate it to π). This involves making a choice of (S,Λ, ψ). This subsection is
devoted to doing that.

Let ψ =
∏
v ψv be a character of A such that

• The conductor of ψp is Zp for all (finite) primes p,
• ψ∞(x) = e(−x), for x ∈ R,
• ψ|Q = 1.

Put L = Q(
√
−d). where d is the integer defined in (8.2.1).

First we deal with the case M = 1. In this case, our choice of S and Λ is identical
to [3]. To recall, put

(8.3.1) T (A) =
h(−d)∐
j=1

tjT (Q)T (R)(Πp<∞T (Zp))

where tj ∈
∏
p<∞ T (Qp) and h(−d) is the class number of L.

Write tj = γjmjκj , where γj ∈ GL2(Q),mj ∈ GL+
2 (R), and κj ∈ ((Πp<∞GL2(Zp)).
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Choose

S =



(
d/4 0
0 1

)
if d ≡ 0 (mod 4)(

(1 + d)/4 1/2
1/2 1

)
if d ≡ 3 (mod 4)

Let Sj = det(γj)−1γTj Sγj . Then, any primitive semi-integral two by two positive
definite matrix with discriminant equal to −d is SL2(Z)-equivalent to some Sj . So,
by our assumption, we can choose Λ a character of T (A)/T (Q)T (R)((Πp<∞T (Zp))
such that

h(−d)∑
j=1

Λ(tj)a(Sj) 6= 0.

Thus, we have specified a choice of S and Λ for M = 1.
In the rest of this subsection, unless otherwise mentioned, assume M > 1.
Suppose p is a prime dividing M . We can identify Lp with elements a + b

√
−d

with a, b ∈ Qp. Let Z×L,p denote the units in the ring of integers of Lp. The elements
of Z×L,p are of the form a + b

√
−d with a, b ∈ Zp and such that at least one of a

and b is a unit. Let Γ0
L,p be the subgroup of Z×L,p consisting of the elements with

p|b. The group Z×L,p/Γ0
L,p is clearly cyclic of order p + 1. Moreover, the elements

{(−b +
√
−d)/2} where b is a positive integer satisfying {1 ≤ b ≤ 2p : b = d

(mod 2)} are distinct in Z×L,p/Γ0
L,p. Note that d = 0 or 3 (mod 4) and hence b = d

(mod 2) implies that 4 divides b2 + d. So we have the lemma:

Lemma 8.3.1. There exists an integer b such that 4 divides b2+d and (−b+
√
−d)/2

is a generator of the group Z×L,p/Γ0
L,p for each p|M .

Proof. By the comments above, we can choose, for each prime pi dividing M , an
integer bi such that bi ≡ d (mod 2) and (−bi +

√
−d)/2 is a generator of the group

Z×L,pi
/Γ0

L,pi
. Now, using the Chinese Remainder theorem, choose b satisfying b ≡ bi

(mod 2pi) for each i . �

Now we define

S =
(
b2+d

4
b
2

b
2 1

)
.

As in section 1.1 we define the matrix ξ = ξS and the group T = TS . We have
T (Q) ' L×. We write T (Zp) for T (Qp) ∩GL2(Zp).

Let

(8.3.2) T (A) =
h(−d)∐
j=1

tjT (Q)T (R)(Πp<∞T (Zp)

where tj ∈
∏
p<∞ T (QP ) and h(−d) is the class number of L. For each p|M

put Γ0
L,p = T (Zp) ∩ Γ0

p. Note that under the isomorphism T (Zp) ' Z×L,p sending

x+ yξ 7→ x+ y
√
−d
2 , our two definitions for Γ0

L,p agree, so there is no ambiguity.



L-FUNCTIONS ON GSp(4)×GL(2) AND THEIR SPECIAL VALUES 37

Let M = p1p2...pr be its decomposition into distinct primes. For each 1 ≤ i ≤ r
we choose coset representatives u(pi)

ki
∈ T (Zpi

) such that

T (Zpi
) =

pi+1∐
ki=1

u
(pi)
ki

Γ0
L,pi

.

We write an r-tuple (k1, .., kr) in short as k̃. Let X denote the cartesian product
of the r sets Xi = {x : 1 ≤ x ≤ pi}. For k̃ ∈ X, define

uk̃ =
r∏
i=1

u
(pi)
ki

.

Then it is easy to see that as k̃ varies over X the elements uk̃ form a set of coset
representatives of Πp|MT (Zp)/Πp|MΓ0

L,p. Also note that |X| = |SL2(Z)/Γ0(M)| =
Πp1|M (pi + 1). We denote the quantity∏

p1|M

(pi + 1)

by g(M).
Let T (Z) denote the (finite) group of units in the ring of integers ZL of L. Let

t(d) denote the cardinality of the group T (Z)/{±1}. We know that,

t(d) =


3 if d = 3
2 if d = 4
1 otherwise.

Let T×M be the image of T (Z) in Πp|MT (Zp). Then T×M ∩Πp|MΓ0
L,p = {±1}. Choose

a set of elements r1, r2, ..rt(d) in T (Z) such that they form distinct representatives
in T (Z)/{±1}. Let ri denote the image of ri in T×M . We have

(8.3.3) T×MΠp|MΓ0
L,p =

t(d)∐
i=1

ri(Πp|MΓ0
L,p).

Finally, choose x1, x2, ..., xg(M)/t(d) in Πp|MT (Zp) such that we have the disjoint
coset decomposition:

(8.3.4) Πp|MT (Zp) =
g(M)/t(d)∐

i=1

xiT
×
MΠp|MΓ0

L,p

This immediately gives us the fundamental coset decomposition:

(8.3.5) T (A) =
∐

1≤j≤h(−d)
1≤k≤g(M)/t(d)

tjxkT (Q)T (R)(Πp-MT (Zp))(Πpi|MΓ0
L,pi

)

Also from (8.3.3) and (8.3.4) we immediately get another coset decomposition:

(8.3.6) Πp|MT (Zp) =
∐

1≤i≤g(M)/t(d)
1≤j≤t(d)

xirjΠp|MΓ0
L,p

But we know that an alternate set of coset representatives in the above equation
is given by the elements uk̃. It follows that for any 1 ≤ i ≤ g(M)/t(d), 1 ≤ j ≤ t(d),
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there exists a unique k̃ ∈ X such that u−1

k̃
xirj ∈ Πp|MΓ0

L,p. This correspondence
is bijective.

Write tjxk = γj,kmj,kκj,k, where γj,k ∈ GL2(Q),mj,k ∈ GL+
2 (R), and κj,k ∈

(Πp<∞,p-MGL2(Zp) ·Πp|MΓ0
p. Also, by (γj,k)f we denote the finite part of γj,k, that

is, (γj,k)f = γj,kmj,k.

Lemma 8.3.2. For each j, the elements γ−1
j,1 rlγj,k form a system of representatives

of SL2(Z)/Γ0(M) as l, k vary over 1 ≤ l ≤ t(d), 1 ≤ k ≤ g(M)/t(d).

Proof. Fix j. Let 1 ≤ l2 ≤ t(d), 1 ≤ k2 ≤ g(M)/t(d). We have

γ−1
j,k2

r−1
l2
rlγj,k = mj,k2κj,k2x

−1
k2
r−1
l2
rlxk(mj,kκj,k)−1.

Therefore γ−1
j,k2

r−1
l2
rlγj,k ∈

(
GL+

2 (R)Πq<∞GL2(Zq)
)
∩GL2(Q) = SL2(Z).Moreover,

if it belongs to Γ0(M) then we must have x−1
k2
r−1
l2
rlxk ∈ Πp|MΓ0

p and by (8.3.6) this
can happen only if l = l2, k = k2. Now the lemma follows because the size of the
set γ−1

j,1 rlγj,k equals the cardinality of SL2(Z)/Γ0(M). �

Let Sj,k = det(γj,k)−1γTj,kSγj,k. So, looking at S and Sj,k as elements of
GL2(R)+ we have Sj,k = det(mj,k) (m−1

j,k)TSm−1
j,k.

Lemma 8.3.3. There exists j, k, 1 ≤ j ≤ h(−d), 1 ≤ k ≤ g(M)/t(d) such that
a(Sj,k) 6= 0.

Proof. By assumption (8.2.1), a(T ) 6= 0 for some primitive semi-integral positive
definite matrix T with discriminant equal to −d. By [3, p.209] there exists j such
that T is SL2(Z)-equivalent to Sj,1. This means there is R ∈ SL2(Z) such that
T = RTSj,1R. By Lemma 8.3.2, we can find k, l such that R = γ−1

j,1 rlγj,kg where
g ∈ Γ0(M). This gives us

T = gT γTj,kr
T
l (γ−1

j,1 )TSj,1γ−1
j,1 rlγj,kg

= det(γj,k)−1gT γTj,kr
T
l Srlγj,kg

= det(γj,k)−1gT γTj,kSγj,kg

= gTSj,kg

Hence 0 6= a(T ) = a(gTSj,kg) = a(Sj,k), using the fact that the image of gT in
Sp4(Z) falls in B(M) and F is a modular form for B(M).

�

Proposition 8.3.4. There exists a character Λ of T (A)/(T (Q)T (R)Πp<∞,p-MT (Zp)·
Πp|MΓ0

L,p) such that ∑
1≤j≤h(−d)

1≤k≤g(M)/t(d)

Λ(tjxk)−1a(Sj,k) 6= 0.

Moreover for any such Λ we have Λp non-trivial on T (Zp) for each prime p|M .

Proof. By Lemma 8.3.3 we can find Sj,k such that a(Sj,k) 6= 0. Hence using (8.3.5)
we know that a character Λ satisfying the condition listed in the proposition exists.

Let Λ be such a character and pi a fixed prime dividing M . We will show that
Λpi

is not the trivial character on T (Zpi
).
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For any 1 ≤ j ≤ h(−d) and k̃ ∈ X we can write tjuk̃ = γj,k̃mj,k̃κj,k̃, where
γj,k̃ ∈ GL2(Q),mj,k̃ ∈ GL

+
2 (R) and κj,k ∈ (Πp<∞,p-MGL2(Zp) ·Πp|MΓ0

p.

We put Sj,k̃ = det(γj,k̃)−1γT
j,k̃
Sγj,k

Suppose Λpi
is trivial on T (Zpi

). We claim that

(8.3.7)
∑

1≤j≤h(−d)

k̃∈X

Λ(tjuk̃)−1a(Sj,k̃) = 0.

Suppose we fix k1, k2, .., ki−1, ki+1, ..kr. For 1 ≤ y ≤ pi + 1, let k̃y ∈ X be the
r-tuple obtained by putting ki = y. Then, by essentially the same argument as in
Lemma 8.3.2 we see that γ−1

j,k̃1
γj,k̃y form a set of representatives of Γ0(M/pi)/Γ0(M).

In particular, this implies, by [24, 3.3.3], that
∑
y a(Sj,k̃y ) = 0, and therefore,

because Λpi is trivial on T (Zpi), we must have
∑
y Λ(tjuk̃y )−1a(Sj,k̃y ) = 0. It

follows, by breaking up ∑
1≤j≤h(−d)

k̃∈X

Λ(tjuk̃)−1a(Sj,k̃)

into quantities as above, (8.3.7) follows.
Given 1 ≤ k ≤ g(M)/t(d), 1 ≤ l ≤ t(d), let k̃(k, l) be the unique element in X

such that

(8.3.8) u−1

k̃(k,l)
xkrl ∈ Πp|MΓ0

L,p

. Such an element exists by our comment after (8.3.6). Suppose we write rl =
rlrl,frl,∞ where rl,f ∈ Πp-MT (Zp) and rl,∞ ∈ T (R)

Then, using (8.3.8) we have

tjuk̃(k,l) = rltjxkr
−1
l,∞k

with k ∈ (Πp<∞,p-MGL2(Zp) ·Πp|MΓ0
p. In other words we can take γj,k̃(k,l) = rlγj,k.

But then a(Sj,k̃(k,l)) = a(Sj,k). Also from (8.3.8) it is clear that Λ−1(tjuk̃(k,l)) =
Λ−1(tjxk). On the other hand if we let k, l vary over all elements in the range
1 ≤ k ≤ g(M)/t(d), 1 ≤ l ≤ t(d), the corresponding k̃(k, l) vary over all k̃ ∈ X. As
a result we conclude that

(8.3.9)
∑

1≤j≤h(−d)

k̃∈X

Λ(tjuk̃)−1a(Sj,k̃) = t(d)
∑

1≤j≤h(−d)
1≤k≤g(M)/t(d)

Λ(tjxk)−1a(Sj,k)

But we have already shown that if Λpi is trivial on T (Zpi) then∑
1≤j≤h(−d)

k̃∈X

Λ(tjuk̃)−1a(Sj,k̃) = 0.

The proof follows.
�

From now on, fix a character Λ satisfying the above proposition. Consider

(8.3.10) BΦ(h) =
∫
ZG(A)R(Q)\R(A)

(Λ⊗ θ)(r)−1Φ(rh)dr

where θ is defined as in Section 1 and Φ(h) = Φ(h).
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Also, define a(Λ) = a(F,Λ) by

a(Λ) =


∑

1≤j≤h(−d) Λ(tj)a(Sj) if M = 1
1

g(M)

∑
1≤j≤h(−d)

1≤k≤g(M)/t(d)

Λ(tjxk)−1a(Sj,k) if M > 1.

Proposition 8.3.5. Let g∞ ∈ G(R)+. We have

BΦ(g∞) = det(J(g∞, i))−lµ2(g∞)le(−tr(S · g∞(i))
∑

1≤j≤h(−d)

a(F,Λ).

Remark. This is proved by explicit computation. The details for the caseM = 1
is there in [26, (1-26)]. The proof for the general case is completely analogous and
hence not included here. The reader who wishes to see the details can take a look
at the longer version of this paper available online [22].

8.4. Description of the Eisenstein series. This section describes the Eisenstein
series on G̃(A). For each finite place v, recall that K̃v is the maximal compact
subgroup of G̃(Qv) and is defined by

K̃v = G̃(Qv) ∩GL4(ZL,v).
Let us now define

K̃∞ = {g ∈ G̃(R)|µ2(g) = 1, g < iI2 >= iI2}.
Equivalently

K̃∞ = U(2, 2; R) ∩ U(4,R).
We define

ρl(k∞) = det(k∞)l/2 det(J(k∞, i))−l.

By [12, p. 5], any matrix k∞ in K̃∞ can be written in the form k∞ = λ

(
A B
−B A

)
where λ ∈ C, |λ| = 1, and A+iB,A−iB ∈ U(2; R) with det(A+iB) = det(A− iB).
Then,

(8.4.1) ρl(k∞) = det(A− iB)−l

Note that if k∞ has all real entries, i.e. k∞ ∈ Sp(4,R) ∩O(4,R), then

ρl(k∞) = det(J(k∞, i))−l.

Extend Ψ to GU(1, 1;L)(A) by

Ψ(ag) = Ψ(g)

for a ∈ L×(A), g ∈ GL2(A). Now define the compact open subgroup KG̃ of G̃(Af )
by

KG̃ =
∏

p<∞,p-MN

K̃p

∏
p|N,p-M

Ũr
∏
p|M

I ′p

Define

(8.4.2) fΛ(g, s) = δ
s+ 1

2
P (m1m2)Λ(m1)−1Ψ(m2)ρl(k∞) if g = m1m2nk̃k

where mi ∈ M (i)(A) (i = 1, 2), n ∈ N(A), k = k∞k0 with k∞ ∈ K̃∞, k0 ∈ KG̃

and k̃ =
∏
p|M kp is such that kp ∈ {1, s1} for p| gcd(M,N) and kp ∈ {1,Θ} for

p|M,p - N, and put
fΛ(g, s) = 0
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otherwise.
Finally, we define the Eisenstein series EΨ,Λ(g, s) on G̃(A) by

(8.4.3) EΨ,Λ(g, s) =
∑

γ∈P (Q)\G̃(Q)

fΛ(γg, s).

8.5. The global integral. The global integral for our consideration is

Z(s) =
∫
ZG(A)G(Q)\G(A)

EΨ,Λ(g, s)Φ(g)dg.

Then, by (2.2.3), Theorem 2.3.1, Theorem 5.3.1, Theorem 6.3.1 and Theorem 7.3.1
we have
(8.5.1)

Z(s) =
QfZ∞(s)

g(M/f)PMN
·
∏
p|f

p−6s−3

1− apwpp−3s−3/2
·

L(3s+ 1
2 , π × σ)

ζMN (6s+ 1)L(3s+ 1, σ × ρ(Λ))

where f denotes gcd(M,N) and

L(s, π × σ) =
∏
q<∞

L(s, πq × σq)

L(s, σ × ρ(Λ))) =
∏

q<∞,q-M

L(s, σq × ρ(Λq)),

ζA(s) =
∏
p-A

p prime

(1− p−s)−1,

PA =
∏
r|A

r prime

(r2 + 1),

,
QA =

∏
r|A

r prime

(1− r),

and

(8.5.2) Z∞(s) =
∫
R(R)\G(R)

WfΛ(Θg, s)BΦ(g)dg

As for the explicit computation of Z∞, Furusawa’s calculation in [3], mutatis
mutandis, works for us. The only real point of difference is the choice of S. Furusawa
chooses

S =



(
d
4 0
0 1

)
, if d ≡ 0 (mod 4),(

1+d
4

1
2

1
2 1

)
, if d ≡ 3 (mod 4).

He computes Z∞(s) for the case d ≡ 0 (mod 4) and uses it to deduce the other
case via a simple change of variables, using(

1+d
4

1
2

1
2 1

)
=
(

1 0
− 1

2 1

)T (d
4 0
0 1

)(
1 0
− 1

2 1

)
.
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In our case we have,

S =
(
b2+d

4
b
2

b
2 1

)
=
(

1 0
b
2 1

)T (d
4 0
0 1

)(
1 0
b
2 1

)
and so a similar change of variables works.

Thus, we have (cf. [3, p. 214])

Z∞(s) = πa(Λ)(4π)−3s− 3
2 l+

3
2 d−3s− l

2 ·
Γ(3s+ 3

2 l −
3
2 )

6s+ l − 1
.

Henceforth we simply write L(s, F × g) for L(s, π × σ). We can summarize our
computations in the following theorem.

Theorem 8.5.1 (The integral representation). Let F and EΨ,Λ be as defined pre-
viously. Then∫

ZG(A)G(Q)\G(A)

EΨ,Λ(g, s)Φ(g)dg = C(s) · L(3s+
1
2
, F × g)

where C(s) =

A(f)πa(Λ)(4π)−3s− 3
2 l+

3
2 d−3s− l

2 Γ(3s+ 3
2 l −

3
2 )

g(M/f)PMN (6s+ l − 1)ζMN (6s+ 1)L(3s+ 1, σ × ρ(Λ))

∏
p|d

p−6s−3

1− apwpp−3s−3/2

with f = gcd(M,N).

Remark. Note that

C(
l

6
− 1

2
) =

π4−2l a(F,Λ)
ζ(l − 2)L( l−1

2 , σ × ρ(Λ))
× (an algebraic number).

9. A classical reformulation and special value consequences

Let
G̃+(R) = {g ∈ G̃(R) : µ2(g) > 0},

G+(R) = {g ∈ G(R) : µ2(g) > 0}.
Also, define

H̃2 = {Z ∈M4(C)|i(Z − Z) is positive definite}.

Note that G̃+(R) acts transitively on H̃2. For g ∈ G̃+(R), z ∈ H̃2, define J(g, z) in
the usual manner.

For Z =
(
∗ ∗
∗ z22

)
∈ H̃2, we set Ẑ = i

2 (Z
T − Z) and Z∗ = z22.

Now, let us interpret the Eisenstein series of the last section as a function on
H̃2. Recall the definitions of the global section fΛ(g, s) ∈ IndG̃(A)

P (A)(Π× δ
s
P ), and the

corresponding Whittaker function WfΛ =
∏
vWfΛ,v.

Also for z ∈ H2, put

W ′(z) = det(g)−l/2J(g, i)lWΨ(g)

where WΨ is the Whittaker function associated to Ψ and g ∈ GL+
2 (R) is any element

such that g(i) = z. Note that this definition does not depend on g.
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Lemma 9.0.2. Let g∞ ∈ G̃+(R). Then

WfΛ,∞(g∞, s) = det(g∞)l/2 det(J(g∞, i))−l
(

det(ĝ∞(i)
Im(g∞(i))∗

)3(s+ 1
2 )− l

2

W ′((g∞(i)∗).

Thus the function

det(g∞)−l/2 det(J(g∞, i))lWfΛ,∞(g∞, s)

depends only on g∞(i).

Proof. Let us write
g∞ = m(1)(a)m(2)(b)nk

where we use the notation of Subsection 1.2 with a ∈ R×, b =
(
α β
γ δ

)
∈ GL+

2 (R),

n ∈ N(R) and k ∈ K̃∞. Observe that b(i) = (g∞(i))∗. Then, (8.4.2) tells us that
(9.0.3)
WfΛ(g∞, s) = |a2µ2(b)|3(s+ 1

2 det(k)l/2 det(b)l/2J(b, i)−l det(J(k, i))−lW ′((g∞(i)∗).

On the other hand, we can verify that

(9.0.4) det(ĝ∞(i)) = µ2(b)2|det(J(g∞, i))|−2.

Also,

(9.0.5) det(J(g∞, i)) = a−1µ2(b)(γi+ δ) det(J(k, i))

and

(9.0.6) Im(g∞(i))∗ = µ2(b)|γi+ δ|−2.

Putting the above equations together, and using the fact that |det(J(k, i))|−2 = 1,
we get the statement of the lemma. �

Corollary 9.0.3. Let s ∈ C be fixed. Then the function

det(g∞)−l/2 det(J(g∞, i))lEΨ,Λ(g∞, s)

depends only on g∞(i).

Proof. Put

rλ =


1

λ
λ

1

 .

The corollary follows immediately from the above lemma and the definition

EΨ,Λ(g∞, s) =
∑
λ∈Q

∑
γ∈P (Q)\G̃(Q)

WfΛ,∞((rλ)∞γ∞g∞, s)

(∏
v<∞

WfΛ,v((rλ)v, γvs)

)
.

�

Define the function E(Z, s) on H̃2 by

(9.0.7) E(Z, s) = det(g∞)−l/2 det(J(g∞, i))lEΨ,Λ(g∞,
s

3
+
l

6
− 1

2
).
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We know [3] that the series defining E(Z, s) converges absolutely and uniformly
for s > 3− l

2 . From now on, assume l > 6. Then E(Z, 0) is a holomorphic Eisenstein
series on H̃2. By [7] we know that E(Z, 0) has algebraic Fourier coefficients.

Now, we consider the restriction of E(Z, 0) to H2. Clearly, the resulting function
also has algebraic Fourier coefficients.

Henceforth we abuse notation by using E(Z, 0) to mean its restriction to H2.

Proposition 9.0.4. Suppose l > 6. Then E(Z, 0) is a Siegel modular form of
weight l for B(M) ∩ U2(N).

Proof. By the above comments, E(Z, 0) is holomorphic as a function on H2. Let
γ ∈ B(M) ∩U2(N). We consider γ as an element of G(Q) embedded diagonally in
G(A). Write γ = γ∞γf where γf denotes the finite part. It suffices to show that

E(γ∞Z, 0) = det(J(γ∞, Z))lE(Z, 0)

for Z ∈ H2.
Let g ∈ Sp(4,R) be such that g(i) = Z; thus γ∞g(i) = γ∞Z.
We have

E(γ∞Z, 0) = det(g)−l/2 det(J(γ∞, Z))l det(J(g, i))lEg,Λ(γg(γf )−1,
l

6
− 1

2
)

= det(J(γ∞, Z))l(det(g)−l/2 det(J(g, i))lEg,Λ(g,
l

6
− 1

2
))

= det(J(γ∞, Z))lE(Z, 0)

�

For any congruence subgroup Γ of Sp(4,Z) let V (Γ) denote the quantity [Sp(4,Z) :
Γ]−1.

Suppose f(Z) and g(Z) are Siegel modular forms of weight l for some congruence
subgroup. We define the Petersson inner product

〈f, g〉 =
1
2
V (Γ)

∫
Γ\H2

f(Z)g(Z)(det(Y ))l−3dXdY

where Z = X+ iY and Γ is any congruence subgroup such that f, g are both Siegel
modular forms for Γ. Note that this definition does not depend on the choice of Γ.

Also for brevity, we put ΓM,N = B(M) ∩ U2(N) and VM,N = V (ΓM,N ).

Proposition 9.0.5. Assume l > 6. Define the global integral Z(s) as in (8.5).
Then

Z(
l

2
− 1

2
) = 〈E(Z, 0), F 〉.

Proof. By definition, we have

Z(
l

2
− 1

2
) =

∫
ZG(A)G(Q)\G(A)

EΨ,Λ(g, 0)Φ(g)dg.

It suffices to prove that
(9.0.8)∫
ZG(A)G(Q)\G(A)

EΨ,Λ(g, s)Φ(g)dg =
VM,N

2

∫
ΓM,N\H2

E(Z, 0)F (Z) det(Y )l−3dXdY.
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Recall the definition of the compact open subgroup KG̃ from Subsection 8.4.
The integrand on the left side is right invariant under KG = (KG̃K∞) ∩ G(A).
Furthermore vol(KG) = VM,N and we have

ZG(A)G(Q)\G(A)/KG = ΓM,N\H2.

Now (9.0.8) follows from the above comments and the observation that the G(R)+-
invariant measure on H2 and dg are related by dg = 1

2 (det(Y ))−3dXdY. �

For σ ∈ Aut(C), and an arbitrary Siegel modular form Θ, denote by Θσ (resp
Θ−) the Siegel modular form obtained by applying σ (resp. complex conjugation)
to all the Fourier coefficients of Θ.

Theorem 9.0.6. Let F, g be as defined in Subsection 8.2 with l > 6. Then, for
σ ∈ Aut(C/Q), we have(

L( l2 − 1, F × g)
π5l−8〈F, F−〉〈g, g〉

)σ
=

L( l2 − 1, F × g)
π5l−8〈Fσ, (Fσ)−〉〈g, g〉

.

Proof. By [7] we know that the orthogonal complement of the space of Siegel cusp
forms of any level is spanned by Eisenstein series which have algebraic Fourier
coefficients. It follows from the theorem at the top of p. 460 in [4] we have(

〈E(Z, 0), F−〉
〈F, F−〉

)σ
=
〈E(Z, 0)σ, (Fσ)−〉
〈Fσ, (Fσ)−〉

Now, by [7] we know that E(Z, 0)σ = E(Z, 0). Also, since all the Hecke eigenval-
ues of F are totally real and algebraic, we have

L(F × g) = L(Fσ × g) = L(F− × g).

Therefore, from the above proposition and the remark at the end of Theorem 8.5.1,
it follows that
(9.0.9)(

π4−2la(F−,Λ)L( l2 − 1, F × g)
ζ(l − 2)L( l−1

2 , σ × ρ(Λ))〈F, F−〉

)σ
=

π4−2la((Fσ)−,Λ)L( l2 − 1, F × g)
ζ(l − 2)L( l−1

2 , σ × ρ(Λ))〈Fσ, (Fσ)−〉
.

It is well-known that ζ(l − 2)π2−l ∈ Q. Also using the same argument as in the
proof of [3, Theorem 4.8.3], we have

L( l−1
2 , σ × ρ(Λ)
π2l−2〈g, g〉

∈ Q.

These facts, when substituted in (9.0.9) give the assertion of the theorem.
�

The above theorem implies the following corollary.

Corollary 9.0.7. Let F, g be as defined in Subsection 8.2 with l > 6 and further-
more assume that F has totally real algebraic Fourier coefficients. Then

L( l2 − 1, F × g)
π5l−8〈F, F 〉〈g, g〉

∈ Q.
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Remark. Newforms for GL(2), when normalized, automatically have algebraic
Fourier coefficients. A similar statement is not known for Siegel newforms (among
other things, we do not know multiplicity one for GSp(4)). However by [4] we
do know the following: The space of Siegel cusp forms for a principal congruence
subgroup has a basis of Hecke eigenforms with totally real algebraic Fourier coeffi-
cients.

10. Further questions

It is of interest to investigate the special values of L(s, F × g) more closely. In
particular, we may ask the following questions.

(a) Does the expected reciprocity law hold for the special value L( l2 −1, F ×g),
i.e., does Theorem 9.0.6 hold for σ any automorphism of C?

(b) Do we have similar special value results for the other ‘critical’ values of
L(s, F × g) as predicted by Deligne’s conjectures?

We can answer the first question if we know precisely the behavior of the Fourier
coefficients of E(Z, 0) under an automorphism of C. For the second, we would like to
know similar facts for E(Z, s) with s lying outside the range of absolute convergence
of the Eisenstein series. It seems hard to extract these directly, as our Eisenstein
series — being induced from an automorphic representation of GL(2) sitting inside
the Klingen parabolic — is rather complicated.

However, using a ‘pullback formula’, we can switch to a more standard Siegel-
type Eisenstein series on a higher rank group. More precisely, we will derive, in
a sequel to this paper [23], a variant of our integral representation which involves
pulling back an Eisenstein series from GU(3, 3). Incidentally, this second integral
representation looks similar to the Garrett–Piatetski-Shapiro–Rallis integral repre-
sentation for the triple product L-function.

Let us describe this second integral representation in more detail.
Let G̃(3) = GU(3, 3;L), F̃ = GU(1, 1;L). Let H1 denote the subgroup of G× F̃

consisting of elements h = (h1, h2) such that h1 ∈ G, h2 ∈ F̃ and µ2(h1) = µ1(h2).
We fix a certain embedding H1 ↪→ G̃(3). Let PG̃(3) be the Siegel parabolic of G̃(3).

Given a section Υ(s) of IndG̃
(3)

P
G̃(3)

(Λ × | |3s) define the Eisenstein series EΥ(h, s) on

G̃(3)(A) in the usual manner.
Now consider the global integral

Z(s) =
∫
Z

G̃(3) (A)H1(Q)\H1(A)

Λ−1(deth2)Φ(h1)Ψ(h2)EΥ(h1, h2, s)dh

where h = (h1, h2). We will prove in [23] that for a suitable Υ,

Z(s) = L

(
3s+

1
2
, F × g

)
× (normalizing factor).

So, to answer the questions stated in the beginning of this section it suffices to
study the (simpler) Eisenstein series EΥ(h, s). Indeed, the action of Aut(C) on the
Fourier coefficients is then known, enabling us to answer the first question. For the
second there seem to be two possible strategies: the theory of nearly holomorphic
functions due to Shimura [25], or a Siegel-Weil formula based attack explained by
Harris in his papers [8, 9].
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In [23], the approach sketched in this section will be fleshed out and the special
value properties of the L-function investigated in more detail.
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