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Abstract. We show that a weak form of the generalized Böcherer’s conjecture

implies multiplicity one for Siegel cusp forms of degree 2.

1. Multiplicity one

Let Sk(Γ) denote the space of classical holomorphic cusp forms of weight k for
Γ = SL2(Z). Suppose that f1 and f2 are two Hecke eigenforms in Sk(Γ) such that
the Hecke eigenvalues λp(f1) and λp(f2) are equal for all primes p. Then, it is well
known that there exists a constant c such that f1 = cf2. Indeed, the various Hecke
eigenvalues λp(fi) determine all the Fourier coefficients of fi, hence the form fi
itself, up to a common multiple.

The above fact is a special case of the “multiplicity one theorem” for GL2 due to
Jacquet–Langlands. Multiplicity one was extended to the case of cuspidal represen-
tations on the group GLn independently by Shalika [17] and Piatetski-Shapiro [10].
However, much less is known for cuspidal representations on other reductive groups.

In this note, we consider the space1 Sk(Γ2) of holomorphic Siegel cusp forms of
weight k for Γ2 = Sp4(Z). These forms give rise to cuspidal representations on the
group GSp4, for which multiplicity one remains unknown. In particular, one has
the following conjecture.

Conjecture 1.1 (Multiplicity one for Siegel cusp forms of degree 2 and full level).
Let f1 and f2 be two Hecke eigenforms in Sk(Γ2) such that for all primes p, we
have an equality of Hecke eigenvalues λp(f1) = λp(f2) and λp2(f1) = λp2(f2). Then,
there exists a constant c such that f1 = cf2.

The above conjecture is deep. For instance, it does not appear to follow from
the transfer to GL4 that was proved in [12] even though multiplicity one is known
for GL4. We can get some idea about the difficulties involved by looking at the
proof of multiplicity one for cusp forms on GLn. The proof involves combining
the Whittaker expansion of cusp forms on GLn with the uniqueness of Whittaker
models. This approach does not work for holomorphic Siegel cusp forms because
the corresponding Whittaker expansion does not exist (Hecke eigenforms in Sk(Γ2)
are non-generic).

It seems appropriate to point out here that in Conjecture 1.1, one may replace
“for all primes” by “for almost all primes” without increasing the difficulty of the
problem. Let us briefly explain this point. Hecke eigenforms in Sk(Γ2) that are not
Saito-Kurokawa lifts (the Saito-Kurokawa lifts can be dealt with separately) lead
to cuspidal representations of GSp4 whose local components at all finite places are

1For definitions and background on Siegel cusp forms, see [7].
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tempered unramified principal series. If two eigenforms have the same eigenvalues
at almost all primes, then they lead to representations that are nearly equivalent
(i.e., their local components are equivalent at almost all primes). A fairly simple
argument using the the global functional equation and the temperedness now shows
that the two representations must have the same local L-function at all the remain-
ing primes. Since unramified principal series representations are determined by their
L-functions, it follows that the two representations are in fact equivalent. So the
eigenforms we started off with must have the same eigenvalues at all primes. This
argument does not work if Γ2 is replaced with a congruence subgroup. Indeed, there
are many examples of cuspidal representations on GSp4 that are nearly equivalent
but not equivalent, e.g. those provided by the various Saito-Kurokawa lifts [11],
the various Yoshida lifts [16], and the CAP representations of Borel type [6, 2].

2. Böcherer’s conjecture

Another deep and famous conjecture for Siegel cusp forms of degree 2 deals with
the relation between the central L-values and the Fourier coefficients. Before stating
this conjecture, we briefly recall the Fourier expansion for Siegel cusp forms. For
any f ∈ Sk(Γ2), we can write

f(Z) =
∑
S

a(f, S)e2πiTr(SZ),

where the Fourier coefficients a(f, S) are indexed by matrices S of the form

(1) S =

(
a b/2
b/2 c

)
, a, b, c ∈ Z, a > 0, disc(S) := b2 − 4ac < 0.

Equivalently, the Fourier coefficients a(f, S) are indexed by all positive, integral,
binary quadratic forms. In fact, using the defining relation for Siegel cusp forms,
we can see that

(2) a(f, tASA) = a(f, S)

for allA ∈ SL2(Z), thus showing that a(f, S) only depends on the SL2(Z)-equivalence
class of the matrix S, or equivalently, only on the proper equivalence class of the
associated binary quadratic form.

Let d > 0 be an integer such that −d is a fundamental discriminant.2 Put
K = Q(

√
−d) and let ClK denote the ideal class group of K. It is a fact going

back to Gauss that the SL2(Z)−equivalence classes of binary quadratic forms of
discriminant −d are in natural bijective correspondence with the elements of ClK .
In view of the comments above, it follows that for any f ∈ Sk(Γ2) and any c ∈ ClK
the notation a(f, c) makes sense. We define

(3) R(f,K) =
∑
c∈ClK

a(f, c).

Now, suppose that f is an eigenform for the local Hecke algebras at all places.
Then f gives rise to an irreducible cuspidal automorphic representation πf of
GSp4(A); see [9]. The remarkable conjecture below was first made by Böcherer [1].

2Recall that an integer n is a fundamental discriminant if either n is a squarefree integer
congruent to 1 modulo 4 or n = 4m where m is a squarefree integer congruent to 2 or 3 modulo

4.



A RELATION BETWEEN MULTIPLICITY ONE AND BÖCHERER’S CONJECTURE 3

Conjecture 2.1 (Böcherer’s conjecture). Let f ∈ Sk(Γ2) be a non-zero Hecke
eigenform and πf the associated automorphic representation. Then there exists
a constant cf depending only on f such that for any imaginary quadratic field

K = Q(
√
−d) with −d a fundamental discriminant, we have

|R(f,K)|2 = cf · dk−1 · w(K)2 · L(1/2, πf × χ−d).
Above, χ−d is the quadratic Hecke character associated via class field theory to

the field Q(
√
−d), w(K) denotes the number of distinct roots of unity inside K,

and L(s, πf × χ−d) denotes the associated Langlands L-function.

The above conjecture is deep and so far not proven for any Siegel cusp form that
is not a lift of some sort. Theoretical evidence for the truth of a refined version
of the above conjecture was provided in work of the author with Kowalski and
Tsimerman (see [8, (5.4.5)]).

Böcherer’s conjecture has been further generalized by various people. We note in
particular the papers by Furusawa–Shalika [4], Furusawa–Martin [3] and Prasad–
Takloo-Bighash [13], as well as a conjecture of Dipendra Prasad adapting Ichino-
Ikeda’s conjecture to this setting [14]. In these generalizations, one takes a linear
combination of the Fourier coefficients a(f, c) with the values taken by an ideal
class character of ClK (more generally, a Hecke character on A×K). Partial progress
towards such a conjecture has been made in recent work of Furusawa and Martin.
Such a formulation is also closely related to the global Gross-Prasad conjecture for
(SO(5), SO(2)).

We now describe a “weak version” of a specific refinement of Böcherer conjecture.
Let d, K, f , πf be as before. For any character Λ of the finite group ClK , we make
the definition

(4) R(f,K,Λ) =
∑
c∈ClK

a(f, c)Λ−1(c).

Also, define the theta-series

θΛ(z) =
∑

06=a⊂OK

Λ(a)e2πiN(a)z.

Thus, θΛ is a holomorphic modular form of weight 1 and nebentypus
(−d
∗
)

on Γ0(d);

it is a cusp form if and only if Λ2 6= 1. The form θΛ generates a dihedral automorphic
representation of GL2(A) which coincides with the automorphic induction of Λ. We
let L(s, πf × θΛ) denote the Langlands L-function attached to the Rankin–Selberg
convolution of this dihedral representation with πf . We now state the

Conjecture 2.2 (Generalized Böcherer’s conjecture, weak form). Let f ∈ Sk(Γ2)
be a non-zero Hecke eigenform and πf the associated automorphic representation.

Let K = Q(
√
−d) with −d a fundamental discriminant, and Λ be a character of the

ideal class group of K. Then R(f,K,Λ) 6= 0 if and only if L(1/2, πf × θΛ) 6= 0.

Remark 2.3. In the special case Λ = 1, the quantity R(F,K,Λ) is simply R(F,K)
in our earlier notation and the L-function L(s, πf × θΛ) factors as a product
L(s, πf )L(s, πf × χ−d). Thus, Conjecture 2.2 is compatible with Conjecture 2.1.

Conjecture 2.2 is in the spirit of the global Gross-Prasad conjectures since it
asserts that the non-vanishing of a (Bessel) period R(F,K,Λ) is equivalent to the
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non-vanishing of the central value of a related L-function. Indeed, Sugano’s for-
mula [18] can be used to show that R(F,K,Λ) is related to a global Bessel period,
and as such in the case of trivial central character this is nothing but the global
Gross-Prasad (note PGSp(4) ' SO(3, 2)). For a somewhat stronger formulation,
see [4, Conj. 1.11]. In general, the new conjectures of Gan, Gross, and Prasad [5]
are relevant.

3. The main result

Theorem 1. Conjecture 2.2 implies Conjecture 1.1.

Proof. The proof relies on the following fact which was proved in [15]:

Let 0 6= f ∈ Sk(Γ2). Then there exists a matrix S of the form given by equa-
tion (1) such that disc(S) is a fundamental discriminant and a(f, S) 6= 0.

Now, assume Conjecture 2.2. Suppose f1 and f2 are two Hecke eigenforms
in Sk(Γ2) such that for all primes p, we have an equality of Hecke eigenvalues
λp(f1) = λp(f2) and λp2(f1) = λp2(f2). Let −d < 0 be a fundamental discriminant
such that there exists a matrix S with disc(S) = −d and a(f2, S) 6= 0. Such a d
exists by the fact quoted above. Put K = Q(

√
−d) and pick a character Λ of ClK

such that R(f2,K,Λ) 6= 0. Now, put g1 = f1 − R(f1,K,Λ)
R(f2,K,Λ)f2.

We claim that g1 = 0. Suppose not. Then g1 and f2 are two non-zero Hecke
eigenforms in Sk(Γ2) such that for all primes p, we have an equality of Hecke
eigenvalues λp(g1) = λp(f2) and λp2(g1) = λp2(f2). Since the Hecke operators at p
and p2 generate the full Hecke algebra, it follows that L(s, πg1×θΛ) = L(s, πf2×θΛ).
However, by construction, we have R(f2,K,Λ) 6= 0 and R(g1,K,Λ) = 0. Since we
are assuming Conjecture 2.2 holds true, this means that L(1/2, πg1 × θΛ) = 0 and
L(1/2, πg1 × θΛ) 6= 0. This is a contradiction. Thus g1 = 0. Hence f1 and f2 are
multiples of each other.

�

Remark 3.1. The proof shows that Bessel coefficients can serve as a substitute
for the missing Whittaker coefficients. Although our theorem was stated only for
full level eigenforms on Sp4(Z), it should be possible to use the same idea and get
similar results for other groups under certain assumptions. The conjectures of Gan,
Gross and Prasad [5] should be relevant here.
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