Mass equidistribution for Saito-Kurokawa lifts

Abhishek Saha (joint work with Jesse Jääsaari and Steve Lester)

Queen Mary University of London

September 24, 2023

Heuristic from physics/dynamics: Consider a freely moving particle on a typical surface. As its energy increases, it gets "equally distributed" on the surface.

Heuristic from physics/dynamics: Consider a freely moving particle on a typical surface. As its energy increases, it gets "equally distributed" on the surface.

The following statement was conjectured by Rudnick-Sarnak (1994).

The Quantum Unique Ergodicity (QUE) Conjecture

Let X be a compact Riemannian surface of negative curvature, $d\mu$ be the volume form, and f_i traverse a sequence of Laplace eigenfunctions on X such that the Laplace eigenvalues $\lambda_i \to \infty$. For any bounded continuous function ϕ on X, as $i \to \infty$,

$$\frac{\int_X \phi(z) |f_i(z)|^2 d\mu}{\int_X |f_i(z)|^2 d\mu} \to \operatorname{vol}(X)^{-1} \int_X \phi(z) d\mu.$$

Heuristic from physics/dynamics: Consider a freely moving particle on a typical surface. As its energy increases, it gets "equally distributed" on the surface.

The following statement was conjectured by Rudnick-Sarnak (1994).

The Quantum Unique Ergodicity (QUE) Conjecture

Let X be a compact Riemannian surface of negative curvature, $d\mu$ be the volume form, and f_i traverse a sequence of Laplace eigenfunctions on X such that the Laplace eigenvalues $\lambda_i \to \infty$. For any bounded continuous function ϕ on X, as $i \to \infty$,

$$\frac{\int_X \phi(z) |f_i(z)|^2 d\mu}{\int_X |f_i(z)|^2 d\mu} \to \operatorname{vol}(X)^{-1} \int_X \phi(z) d\mu.$$

Quantum mechanical interpretation: Eigenfunctions correspond to particles, eigenvalues correspond to their energies.

The classical case: Maass forms

Let $M = \operatorname{SL}_2(\mathbb{Z}) \setminus \mathbb{H}$. Let f_i traverse a sequence of Hecke–Maass cusp forms on M with Laplace eigenvalues $\lambda_i \to \infty$.

$$\langle f_i, f_i \rangle = \int_M |f_i(z)|^2 d\mu, \quad d\mu := \frac{dxdy}{y^2}.$$

The classical case: Maass forms

Let $M = \operatorname{SL}_2(\mathbb{Z}) \setminus \mathbb{H}$. Let f_i traverse a sequence of Hecke–Maass cusp forms on M with Laplace eigenvalues $\lambda_i \to \infty$.

$$\langle f_i, f_i \rangle = \int_M |f_i(z)|^2 d\mu, \quad d\mu := \frac{dxdy}{y^2}.$$

In this case, one can use the additional structure from arithmetic.

QUE for Hecke–Maass cusp forms (eigenvalue aspect) For any bounded continuous function ϕ on M, as $i \to \infty$,

$$rac{1}{\langle f_i,f_i
angle}\int_M \phi(z)|f_i(z)|^2 d\mu o \mathrm{vol}(M)^{-1}\int_M \phi(z)d\mu.$$

- This was proved by Lindenstrauss (2006) and Soundararajan (2010).
- One of the reasons Lindenstrauss won the Fields medal.

Abhishek Saha (QMUL) Mass e

The classical case: a holomorphic analogue

Let $M = \text{SL}_2(\mathbb{Z}) \setminus \mathbb{H}$. Let f_i traverse a sequence of holomorphic cusp forms of weight k_i such that each f_i is a Hecke eigenform and $k_i \to \infty$.

$$\langle f_i, f_i \rangle = \int_M |f_i(z)|^2 y^{k_i} d\mu.$$

The classical case: a holomorphic analogue

Let $M = \text{SL}_2(\mathbb{Z}) \setminus \mathbb{H}$. Let f_i traverse a sequence of holomorphic cusp forms of weight k_i such that each f_i is a Hecke eigenform and $k_i \to \infty$.

$$\langle f_i, f_i \rangle = \int_{\mathcal{M}} |f_i(z)|^2 y^{k_i} d\mu.$$

A holomorphic analogue of QUE was raised explicitly by Luo- Sarnak.

QUE for holomorphic cusp forms (weight aspect)

For any bounded continuous function ϕ on M, as $i \to \infty$,

$$\frac{1}{\langle f_i, f_i \rangle} \int_M \phi(z) |f_i(z)|^2 y^{k_i} d\mu \to \operatorname{vol}(M)^{-1} \int_M \phi(z) d\mu.$$

• This was *proved* by Holowinsky and Soundararajan (Annals of Math. 2010).

The classical case: a holomorphic analogue

Let $M = \text{SL}_2(\mathbb{Z}) \setminus \mathbb{H}$. Let f_i traverse a sequence of holomorphic cusp forms of weight k_i such that each f_i is a Hecke eigenform and $k_i \to \infty$.

$$\langle f_i, f_i \rangle = \int_{\mathcal{M}} |f_i(z)|^2 y^{k_i} d\mu.$$

A holomorphic analogue of QUE was raised explicitly by Luo- Sarnak.

QUE for holomorphic cusp forms (weight aspect)

For any bounded continuous function ϕ on M, as $i \to \infty$,

$$\frac{1}{\langle f_i, f_i \rangle} \int_M \phi(z) |f_i(z)|^2 y^{k_i} d\mu \to \operatorname{vol}(M)^{-1} \int_M \phi(z) d\mu.$$

- This was *proved* by Holowinsky and Soundararajan (Annals of Math. 2010).
- A key application: equidistribution of zeroes of Hecke cusp forms (Rudnick).

What about QUE for holomorphic forms on higher rank groups?

- There have been generalizations of Lindenstrauss's work on QUE for Maass forms on higher rank groups.
- Today, I am interested in talking about higher rank generalizations of QUE for **holomorphic** forms.
- Simplest higher rank case: holomorphic Siegel cusp forms of degree n with respect to Sp_{2n}(ℤ).
- The method of Holowinsky and Soundararajan basically breaks down in these cases (if n > 1).

Holomorphic Siegel cusp forms of degree n

Definition of Sp_{2n}

For a commutative ring R, we denote by $\operatorname{Sp}_{2n}(R)$ the set of $2n \times 2n$ matrices $A \in \operatorname{GL}_{2n}(R)$ satisfying the equation $A^t J A = J$ where $J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$.

Definition of \mathbb{H}_n

Let \mathbb{H}_n denote the set of complex $n \times n$ matrices Z such that $Z = Z^t$ and $\operatorname{Im}(Z)$ is positive definite.

 \mathbb{H}_n is a homogeneous space for $\mathrm{Sp}_{2n}(\mathbb{R})$ under the action

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} : Z \mapsto (AZ + B)(CZ + D)^{-1}$$

Holomorphic Siegel cusp forms of degree n

Siegel modular forms

A holomorphic Siegel modular form of degree n, full level and weight k is a holomorphic \mathbb{C} -valued function F on \mathbb{H}_n satisfying

$$F(\gamma Z) = \det(CZ + D)^k F(Z),$$

for any
$$\gamma = \begin{pmatrix} \mathsf{A} & \mathsf{B} \\ \mathsf{C} & \mathsf{D} \end{pmatrix} \in \operatorname{Sp}_{2n}(\mathbb{Z}).$$

Siegel cusp forms

A holomorphic Siegel modulas form of degree n, full level and weight k is a cusp form if all the degenerate Fourier coefficients of F vanish.

Notation: We use $S_k(\operatorname{Sp}_{2n}(\mathbb{Z}))$ to denote the space of holomorphic Siegel cusp forms of degree *n*, full level and weight *k*.

Let $M = \operatorname{Sp}_{2n}(\mathbb{Z}) \setminus \mathbb{H}$ for some fixed *n*. Let $F_i \in S_{k_i}(\operatorname{Sp}_{2n}(\mathbb{Z}))$ such that each F_i is a Hecke eigenform and $k_i \to \infty$.

Let $M = \operatorname{Sp}_{2n}(\mathbb{Z}) \setminus \mathbb{H}$ for some fixed *n*. Let $F_i \in S_{k_i}(\operatorname{Sp}_{2n}(\mathbb{Z}))$ such that each F_i is a Hecke eigenform and $k_i \to \infty$.

$$\langle F_i, F_i
angle = \int_M |F_i(z)|^2 \det(Y)^{k_i} d\mu, \quad d\mu = dXdY \det(Y)^{-n-1}$$

QUE conjecture for holomorphic Siegel cusp forms (weight aspect) For any bounded continuous function ϕ on M, as $i \to \infty$,

$$\frac{1}{\langle F_i,F_i\rangle}\int_M\phi(z)|F_i(z)|^2\det(Y)^{k_i}d\mu\to\operatorname{vol}(M)^{-1}\int_M\phi(z)d\mu.$$

• This was first raised explicitly by Cogdell and Luo (2008) who also proved that the *average* of the measures over a full Hecke basis (dim $\sim k_i^3$) converges to $d\mu$ over fixed compact sets.

So, motivated by history, let us approach this conjecture for lifts first.

• QUE for classical holomorphic forms (n = 1) was initially proved for Eisenstein series and for dihedral/CM forms.

So, motivated by history, let us approach this conjecture for lifts first.

- QUE for classical holomorphic forms (*n* = 1) was initially proved for Eisenstein series and for dihedral/CM forms.
- The simplest lifts for the Siegel case are the Saito-Kurokawa lifts (for n = 2); more generally the lkeda lifts (n ≥ 2):

So, motivated by history, let us approach this conjecture for lifts first.

- QUE for classical holomorphic forms (n = 1) was initially proved for Eisenstein series and for dihedral/CM forms.
- The simplest lifts for the Siegel case are the Saito-Kurokawa lifts (for n = 2); more generally the lkeda lifts ($n \ge 2$):
 - Liu (2017) showed that if $\phi = E(Z, 1/2 + it)$ is a degenerate Klingen Eisenstein series and F_i traverses a sequence of Ikeda lifts, then

$$\lim_{i\to\infty}\frac{1}{\langle F_i,F_i\rangle}\int_M E(Z,1/2+it)|F_i(Z)|^2\det(Y)^{k_i}d\mu=0.$$

Katsurada-Kim (2022) showed that if φ = E(Z, 1/2 + it) is a degenerate Siegel Eisenstein series and F_i traverses a sequence of Ikeda lifts, and n ≥ 4, then

$$\lim_{i\to\infty}\frac{1}{\langle F_i,F_i\rangle}\int_M E(Z,1/2+it)|F_i(Z)|^2\det(Y)^{k_i}d\mu=0.$$

How did the proof of Holowinsky-Soundararajan go?

What we need for QUE

Let g equal a Hecke-Maass cusp form or unitary Eisenstein series. Need

$$\lim_{i\to\infty}\frac{1}{\langle f_i,f_i\rangle}\int_{\mathrm{SL}_2(\mathbb{Z})\backslash\mathbb{H}}g(z)|f_i(z)|^2y^{k_i}d\mu=0.$$

How did the proof of Holowinsky-Soundararajan go?

What we need for QUE

Let g equal a Hecke-Maass cusp form or unitary Eisenstein series. Need

$$\lim_{i\to\infty}\frac{1}{\langle f_i,f_i\rangle}\int_{\mathrm{SL}_2(\mathbb{Z})\backslash\mathbb{H}}g(z)|f_i(z)|^2y^{k_i}d\mu=0.$$

Watson-Ichino formula

$$\left(rac{1}{\langle f_i,f_i
angle}\int_{\mathrm{SL}_2(\mathbb{Z})\setminus\mathbb{H}}g(z)|f_i(z)|^2y^{k_i}d\mu
ight)^2pprox k_i^{-1}L(1/2,f_i imes f_i imes g).$$

Subconvexity conjecture: $L(1/2, f_i \times f_i \times g) \ll_g k_i^{1-\delta}$. Conclusion: Subconvexity implies QUE.

• QUE for holomorphic forms follow if we knew subconvexity (still open).

- QUE for holomorphic forms follow if we knew subconvexity (still open).
- Soundararajan proved "weak subconvexity".

- QUE for holomorphic forms follow if we knew subconvexity (still open).
- Soundararajan proved "weak subconvexity".
- Holowinsky, also working on the problem (independently) proved bounds on "shifted convolution sums".

- QUE for holomorphic forms follow if we knew subconvexity (still open).
- Soundararajan proved "weak subconvexity".
- Holowinsky, also working on the problem (independently) proved bounds on "shifted convolution sums".
- Neither approach gives the complete answer, but if one approach fails, it can be shown that the other succeeds!!

- QUE for holomorphic forms follow if we knew subconvexity (still open).
- Soundararajan proved "weak subconvexity".
- Holowinsky, also working on the problem (independently) proved bounds on "shifted convolution sums".
- Neither approach gives the complete answer, but if one approach fails, it can be shown that the other succeeds!!
- Holowinsky + Soundararajan = QUE for holomorphic modular forms.

- For Hecke eigenforms in $S_k(\operatorname{Sp}_{2n}(\mathbb{Z}))$ that are not classical (i.e., for
- n > 1), there is
 - No triple product formula. (Note: Watson-Ichino is a special case of refined GGP. Accidental isomorphisms for a "triple product"). So no clear way to relate the integral to *L*-values.
 - No multiplicativity of Fourier coefficients, so the techniques of sieve-theoretic techniques of Holowinsky for dealing with the shifted convolution sum are no longer available.

 The SK lifts are Hecke eigenforms in S_k(Sp₄(ℤ)) that span a Hecke-invariant subspace (called the SK subspace or the Maass subspace).

- The SK lifts are Hecke eigenforms in S_k(Sp₄(ℤ)) that span a Hecke-invariant subspace (called the SK subspace or the Maass subspace).
- A Hecke eigenform $F \in S_k(\operatorname{Sp}_4(\mathbb{Z}))$ is a SK lift if and only if there exists $f \in S_{2k-2}(\operatorname{SL}_2(\mathbb{Z}))$ such that $L(s, F) = L(s, f)\zeta(s + \frac{1}{2})\zeta(s \frac{1}{2})$.

- The SK lifts are Hecke eigenforms in S_k(Sp₄(ℤ)) that span a Hecke-invariant subspace (called the SK subspace or the Maass subspace).
- A Hecke eigenform $F \in S_k(\operatorname{Sp}_4(\mathbb{Z}))$ is a SK lift if and only if there exists $f \in S_{2k-2}(\operatorname{SL}_2(\mathbb{Z}))$ such that $L(s, F) = L(s, f)\zeta(s + \frac{1}{2})\zeta(s \frac{1}{2})$.
- Most forms are non-lifts: The SK subspace has dimension ≍ k while dim(S_k(Sp₄(ℤ))) ≍ k³.

- The SK lifts are Hecke eigenforms in S_k(Sp₄(ℤ)) that span a Hecke-invariant subspace (called the SK subspace or the Maass subspace).
- A Hecke eigenform $F \in S_k(\operatorname{Sp}_4(\mathbb{Z}))$ is a SK lift if and only if there exists $f \in S_{2k-2}(\operatorname{SL}_2(\mathbb{Z}))$ such that $L(s, F) = L(s, f)\zeta(s + \frac{1}{2})\zeta(s \frac{1}{2})$.
- Most forms are non-lifts: The SK subspace has dimension ≍ k while dim(S_k(Sp₄(ℤ))) ≍ k³.
- A Hecke eigenform F ∈ S_k(Sp₄(ℤ)) is a SK lift if and only if it violates the Ramanujan conjecture for Hecke eigenvalues.

Saito-Kurokawa lifts as theta lifts

Using $\mathrm{PD}^{\times} \simeq SO(3)$ and $\mathrm{PGSp}_4 \simeq SO(5)$, we have

This allows us to take a classical cusp form f of weight 2k - 2 and produce a SK lift $F \in S_k(\text{Sp}_4(\mathbb{Z}))$.

Theorem 1 (Jääsaari–Lester–S)

Let $F_i \in S_{k_i}(\operatorname{Sp}_4(\mathbb{Z}))$ be a Hecke eigenform in the Saito–Kurokawa space, with $k_i \to \infty$. Assume the Generalized Riemann Hypothesis. For any bounded continuous function ϕ on $\operatorname{Sp}_4(\mathbb{Z}) \setminus \mathbb{H}_2$, as $i \to \infty$, we have

$$\frac{1}{\langle F_i, F_i \rangle} \int_M \phi(z) |F_i(z)|^2 \det(Y)^{k_i} d\mu \to \operatorname{vol}(M)^{-1} \int_M \phi(z) d\mu.$$

In the rest of this talk I will sketch the key ideas in the proof of this theorem.

Fourier expansion of Siegel cusp forms of degree 2

The Fourier expansion

Let $F(Z) \in S_k(Sp_4(\mathbb{Z}))$. Then we can write

$$F(Z) = \sum_{S \in \Lambda_2^+} a(F,S) e^{2\pi i \operatorname{Tr} S Z}, \quad a(F,S) \in \mathbb{C}.$$

Above, $\Lambda_2^+ := \{S = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}$: $a, b, c \in \mathbb{Z}, S > 0\}.$

Fourier expansion of Siegel cusp forms of degree 2

The Fourier expansion

1

Let $F(Z) \in S_k(Sp_4(\mathbb{Z}))$. Then we can write

$$F(Z) = \sum_{S \in \Lambda_2^+} a(F,S) e^{2\pi i \operatorname{Tr} S Z}, \quad a(F,S) \in \mathbb{C}.$$

Above,
$$\Lambda_2^+ := \{S = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} : \quad a, b, c \in \mathbb{Z}, \ S > 0\}.$$

- Let $A \in \mathrm{SL}_2(\mathbb{Z})$. Since $\begin{bmatrix} A \\ (A^t)^{-1} \end{bmatrix} \in \mathrm{Sp}_4(\mathbb{Z})$, we have that $a(F, A^tSA) = a(F, S)$ for all $S \in \Lambda_2^+$.
- For $S = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \in \Lambda_2^+$, let $\operatorname{disc}(S) := b^2 4ac < 0$. So for each discriminant d < 0, there are exactly h(d) inequivalent Fourier coefficients of discriminant d.

Fourier expansion of Siegel cusp forms of degree 2

The Fourier expansion

1

Let $F(Z) \in S_k(Sp_4(\mathbb{Z}))$. Then we can write

$$F(Z) = \sum_{S \in \Lambda_2^+} a(F,S) e^{2\pi i \operatorname{Tr} S Z}, \quad a(F,S) \in \mathbb{C}.$$

Above,
$$\Lambda_2^+ := \{S = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} : \quad a, b, c \in \mathbb{Z}, \ S > 0\}.$$

- Let $A \in \mathrm{SL}_2(\mathbb{Z})$. Since $\begin{bmatrix} A \\ (A^t)^{-1} \end{bmatrix} \in \mathrm{Sp}_4(\mathbb{Z})$, we have that $a(F, A^tSA) = a(F, S)$ for all $S \in \Lambda_2^+$.
- For S = ^a b/2 b/2 c
] ∈ Λ⁺₂, let disc(S) := b² - 4ac < 0. So for each discriminant d < 0, there are exactly h(d) inequivalent Fourier coefficients of discriminant d.
- Fourier coefficients contain far more information than Hecke eigenvalues.

Abhishek Saha (QMUL)

Let $F \in S_k(\text{Sp}_4(\mathbb{Z}))$ that is a SK lift. Two crucial properties:

Independence of class group element

The Fourier coefficient $a(F, \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix})$ depends only on $d = b^2 - 4ac$ and $L = \gcd(a, b, c)$. In particular, if d is a fundamental discriminant, all the h(d) inequivalent Fourier coefficients a(F, S) for $\operatorname{disc}(S) = d$ coincide!

Let $F \in S_k(Sp_4(\mathbb{Z}))$ that is a SK lift. Two crucial properties:

Independence of class group element

The Fourier coefficient $a(F, \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix})$ depends only on $d = b^2 - 4ac$ and $L = \gcd(a, b, c)$. In particular, if d is a fundamental discriminant, all the h(d) inequivalent Fourier coefficients a(F, S) for $\operatorname{disc}(S) = d$ coincide!

In fact, the Fourier coefficients come from a half-integer weight form.

Explicit relation to half-integer weight forms

There exists a Hecke eigenform $\tilde{f} \in S_{k-\frac{1}{2}}(\Gamma_0(4))$ so that

$$a(F, \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}) = a(\tilde{f}, 4ac - b^2)$$

whenever gcd(a, b, c) = 1.

17 / 25

Let $F \in S_k(Sp_4(\mathbb{Z}))$ that is a SK lift. Two crucial properties:

Independence of class group element

The Fourier coefficient $a(F, \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix})$ depends only on $d = b^2 - 4ac$ and $L = \gcd(a, b, c)$. In particular, if d is a fundamental discriminant, all the h(d) inequivalent Fourier coefficients a(F, S) for $\operatorname{disc}(S) = d$ coincide!

In fact, the Fourier coefficients come from a half-integer weight form.

Explicit relation to half-integer weight forms

There exists a Hecke eigenform $\tilde{f} \in S_{k-\frac{1}{2}}(\Gamma_0(4))$ so that

$$a(F, \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}) = a(\tilde{f}, 4ac - b^2)$$

whenever gcd(a, b, c) = 1.

Waldspurger's theorem: $|a(F, \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix})|^2 \approx L(1/2, f \times \chi_{b^2-4ac}).$

- As a starting point we want a collection of incomplete Poincare series (of weight 0) on Sp_4 and hope they span the space of all smooth functions on M.
- One can attach Poincare series to any parabolic of Sp_4 . Our first attempt was the minimal parabolic. But this does not work because they only span the subspace of forms with a Whittaker model!

- As a starting point we want a collection of incomplete Poincare series (of weight 0) on Sp_4 and hope they span the space of all smooth functions on M.
- One can attach Poincare series to any parabolic of Sp_4 . Our first attempt was the minimal parabolic. But this does not work because they only span the subspace of forms with a Whittaker model!
- The correct choice is the Siegel parabolic, because its unipotent parabolic is abelian.
- Unfolding gives us a shifted convolution sum of Fourier coefficients of Siegel cusp forms.

Poincare series and unfolding

Let $h \in C_c^{\infty}(\mathbb{H} \times \mathbb{R}^+)$. Let (ℓ_1, ℓ_2, ℓ_3) be a triple of non-negative integers.

• The data defines a Poincare series $P^h_{\ell_1,\ell_2,\ell_3}(Z) \in L^2(\mathrm{Sp}_4(\mathbb{Z}) \setminus \mathbb{H}_2).$

Poincare series and unfolding

Let $h \in C_c^{\infty}(\mathbb{H} \times \mathbb{R}^+)$. Let (ℓ_1, ℓ_2, ℓ_3) be a triple of non-negative integers.

- The data defines a Poincare series $P^h_{\ell_1,\ell_2,\ell_3}(Z) \in L^2(\mathrm{Sp}_4(\mathbb{Z}) \setminus \mathbb{H}_2).$
- The various P^h_{ℓ1,ℓ2,ℓ3} span the space of smooth compactly supported functions on Sp₄(Z)\𝔼₂.

Poincare series and unfolding

Let $h \in C_c^{\infty}(\mathbb{H} \times \mathbb{R}^+)$. Let (ℓ_1, ℓ_2, ℓ_3) be a triple of non-negative integers.

- The data defines a Poincare series $P^h_{\ell_1,\ell_2,\ell_3}(Z) \in L^2(\mathrm{Sp}_4(\mathbb{Z}) \setminus \mathbb{H}_2).$
- The various P^h_{ℓ1,ℓ2,ℓ3} span the space of smooth compactly supported functions on Sp₄(Z)\𝔼₂.
- Denote $L = \begin{bmatrix} \ell_1 & \ell_2/2 \\ \ell/2 & \ell_3 \end{bmatrix}$. For any $F \in S_k(\text{Sp}_4(\mathbb{Z}))$, we obtain by unfolding

$$\int_{M} P^{h}_{\ell_{1},\ell_{2},\ell_{3}}(Z) |F(z)|^{2} \det(Y)^{k} d\mu = \sum_{T \in \Lambda_{2}^{+}} a(T) a(T+L) W^{h}_{\ell_{1},\ell_{2},\ell_{3}}(T),$$

where $W^{h}_{\ell_{1},\ell_{2},\ell_{3}}(T)$ is a "weight" function.

 We have a shifted convolution sum problem with two cases depending on whether (l₁, l₂, l₃) equals 0 or not.

The off-diagonal terms

For $(\ell_1, \ell_2, \ell_3) \neq (0, 0, 0)$ need to show as $k \to \infty$,

$$rac{1}{\langle F,F
angle}\int_{\mathcal{M}}P^{h}_{\ell_{1},\ell_{2},\ell_{3}}(Z)|F(z)|^{2}\det(Y)^{k}d\mu
ightarrow 0.$$

Using the unfolding, the relation $a(F, \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}) = a(g, 4ac - b^2)$ and Waldspurger's theorem, we are reduced to showing something like

$$\frac{1}{k^3} \sum_{r,m,n \asymp k} \sqrt{L(\frac{1}{2}, f \times \chi_{r^2 - 4mn})L(\frac{1}{2}, f \times \chi_{(r+\ell_1)^2 - 4(m+\ell_2)(n+\ell_3)})} \longrightarrow 0$$

as $k \to \infty$.

The off-diagonal terms

For $(\ell_1,\ell_2,\ell_3)
eq (0,0,0)$ need to show as $k o \infty$,

$$rac{1}{\langle F,F
angle}\int_{\mathcal{M}}P^{h}_{\ell_{1},\ell_{2},\ell_{3}}(Z)|F(z)|^{2}\det(Y)^{k}d\mu
ightarrow0.$$

Using the unfolding, the relation $a(F, \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}) = a(g, 4ac - b^2)$ and Waldspurger's theorem, we are reduced to showing something like

$$\frac{1}{k^3} \sum_{r,m,n \asymp k} \sqrt{L(\frac{1}{2}, f \times \chi_{r^2 - 4mn})L(\frac{1}{2}, f \times \chi_{(r+\ell_1)^2 - 4(m+\ell_2)(n+\ell_3)})} \longrightarrow 0$$

as $k \to \infty$. Assuming GRH, we prove (a refined version of above) using Soundararajan's method for moments, obtaining a savings of $(\log(k)^{1/4})$.

The diagonal terms

 Instead of working with P^h_{0,0,0}(Z), we do an initial sum on the Levi, then use the spectral decomposition of L²(SL₂(ℤ)\ℍ) and convert the Poincare series to an Eisenstein series!

The diagonal terms

- Instead of working with P^h_{0,0,0}(Z), we do an initial sum on the Levi, then use the spectral decomposition of L²(SL₂(ℤ)\ℍ) and convert the Poincare series to an Eisenstein series!
- Let g : SL₂(ℤ)\ℍ → ℂ be either a constant function, or a unitary Eisenstein series or a Hecke–Maass cusp form; let κ ∈ C[∞]_c(ℝ⁺).

The diagonal terms

- Instead of working with P^h_{0,0,0}(Z), we do an initial sum on the Levi, then use the spectral decomposition of L²(SL₂(ℤ)\ℍ) and convert the Poincare series to an Eisenstein series!
- Let $g : \operatorname{SL}_2(\mathbb{Z}) \setminus \mathbb{H} \to \mathbb{C}$ be either a constant function, or a unitary Eisenstein series or a Hecke–Maass cusp form; let $\kappa \in C_c^{\infty}(\mathbb{R}^+)$.
- The data defines an incomplete Eisenstein series (induced from the Siegel parabolic) E(Z; g, κ) on Sp₄(Z)\H₂.
- We need to prove as $k o \infty$,

$$\frac{1}{\langle F,F\rangle}\int_M E(Z;g,\kappa)|F(z)|^2\det(Y)^kd\mu\to 2\langle g,1\rangle\int_0^\infty\kappa(\lambda)\lambda^{-4}d\lambda.$$

• We need to prove as $k o \infty$,

$$\frac{1}{\langle F,F\rangle}\int_M E(Z;g,\kappa)|F(z)|^2\det(Y)^kd\mu\to 2\langle g,1\rangle\int_0^\infty\kappa(\lambda)\lambda^{-4}d\lambda.$$

- We *unfold* the above. This reduces again to a sum involving squares of Fourier coefficients of half-integer weight forms.
- For g = 1 (the main term) we use Soundararajan's methods from moments of L-functions to obtain a twisted asymptotic for central L-values, and then combine this result with delicate computations involving the residue of the Rankin–Selberg convolution of the Koecher–Maass series.

• For g orthogonal to 1, we need

$$\frac{1}{c_k} \sum_{d \asymp k^2} h(d) L(1/2, f \times \chi_d) G(d, g, \kappa) \to 0,$$
$$G(d, g, \kappa) = \frac{|d|^{k-\frac{3}{2}}}{h(d)} \sum_{T \in \mathsf{Cl}(d)} \int_0^\infty \int_{\mathbb{H}} g(z) \lambda^{2k-4} \kappa(\lambda) e^{-4\pi\lambda \operatorname{Tr}(\operatorname{Tg}_z g_z^t)} dz d\lambda.$$

• For g orthogonal to 1, we need

$$\frac{1}{c_k}\sum_{d\asymp k^2}h(d)L(1/2,f\times\chi_d)G(d,g,\kappa)\to 0,$$

$$G(d,g,\kappa) = \frac{|d|^{k-\frac{3}{2}}}{h(d)} \sum_{T \in \mathsf{Cl}(d)} \int_0^\infty \int_{\mathbb{H}} g(z) \lambda^{2k-4} \kappa(\lambda) e^{-4\pi\lambda \operatorname{Tr}(\operatorname{Tg}_z g_z^t)} dz d\lambda.$$

• Trivially, $G(d, g, \kappa) \ll_{g,\kappa} c_k k^{-3}$; not enough!

• For g orthogonal to 1, we need

$$rac{1}{c_k}\sum_{d symp k^2} h(d) L(1/2, f imes \chi_d) G(d, g, \kappa) o 0,$$

$$G(d,g,\kappa) = \frac{|d|^{k-\frac{3}{2}}}{h(d)} \sum_{T \in \mathsf{Cl}(d)} \int_0^\infty \int_{\mathbb{H}} g(z) \lambda^{2k-4} \kappa(\lambda) e^{-4\pi\lambda \operatorname{Tr}(\operatorname{Tg}_z g_z^t)} dz d\lambda.$$

- Trivially, $G(d,g,\kappa) \ll_{g,\kappa} c_k k^{-3}$; not enough!
- We get (unconditionally) power savings on G(d, g, κ) using (essentially) equidistribution of Heegner points

$$G(d,g,\kappa) \ll_{g,\kappa,\epsilon} c_k k^{-3} |d|^{-1/12+\epsilon}$$

which implies what we need.

An application to equidistribution of zero divisors

Theorem 2 (Jääsaari–Lester–S)

Let $F_i \in S_{k_i}(\operatorname{Sp}_4(\mathbb{Z}))$ traverse a sequence of Hecke eigenforms in the Saito-Kurokawa space, with $k_i \to \infty$. Assume GRH. Let $\omega := -\frac{i}{2\pi}\partial\overline{\partial}\log(\det Y)$ be the "canonical" differential form of bidegree (1,1). Fix a smooth compactly supported differential form ϕ of bidegree (2,2) on $\operatorname{Sp}_4(\mathbb{Z})\backslash\mathbb{H}_2$. Let Z_{F_i} denote the zero divisor of F_i . Then

$$\frac{1}{k_i} \int_{Z_{F_i}} \phi \longrightarrow \int_{\mathrm{Sp}_4(\mathbb{Z}) \setminus \mathbb{H}_2} \omega \wedge \phi$$
(2)

as $i \longrightarrow \infty$.

- What about non Saito-Kurokawa lifts (n = 2)?
- 2 What about lifts for n > 2?
- **③** What about non-lifts for n > 2?

- What about non Saito-Kurokawa lifts (n = 2)?
- 2 What about lifts for n > 2?
- What about non-lifts for n > 2?

Thank you!