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Abstract. We characterize the irreducible, admissible, spherical representations
of GSp4(F ) (where F is a p-adic field) that occur in certain CAP representations
in terms of relations satisfied by their spherical vector in a special Bessel model.
These local relations are analogous to the Maass relations satisfied by the Fourier
coefficients of Siegel modular forms of degree 2 in the image of the Saito-Kurokawa
lifting. We show how the classical Maass relations can be deduced from the local
relations in a representation theoretic way, without recourse to the construction of
Saito-Kurokawa lifts in terms of Fourier coefficients of half-integral weight modular
forms or Jacobi forms. As an additional application of our methods, we give a
new characterization of Saito-Kurokawa lifts involving a certain average of Fourier
coefficients.
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1 Introduction

Let F be a holomorphic Siegel modular form of degree 2 and weight k with respect to the full
Siegel modular group Sp4(Z). Then F has a Fourier expansion of the form

F (Z) =
∑
S

a(S)e2πiTr(SZ), (1)
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where Z is a point in the Siegel upper half space H2, and where the sum is taken over the set P2

of semi-integral1, symmetric and positive semidefinite 2× 2-matrices S. We say that F satisfies

the Maass relations if, for all S =

[
a b/2
b/2 c

]
,

a(

[
a b

2
b
2 c

]
) =

∑
r|gcd(a,b,c)

rk−1 a(

[
ac
r2

b
2r

b
2r 1

]
). (2)

Such a relation was first known to be satisfied by Eisenstein series; see [20]. Maass, in [11],
started a systematic investigation of the space of modular forms satisfying these relations, calling
this space the Spezialschar. Within a few years it was proven, through the efforts of Maass,
Andrianov and Zagier, that the Spezialschar is precisely the space of modular forms spanned by
Saito-Kurokawa liftings. Recall that a Saito-Kurokawa lifting is a Siegel modular form of weight
k constructed from an elliptic modular form of weight 2k − 2 with k even. The book [4] gives
a streamlined account of the construction of these liftings, and of the proof that they span the
Spezialschar.

In addition to this classical approach, it is possible to construct Saito-Kurokawa liftings using
automorphic representations theory. For simplicity, we only consider cuspforms. The procedure
may be illustrated as follows:

π PGL2(A)
Wald←−−−− S̃L2(A)

θ−−−−→ PGSp4(A) Πx y
f F

(3)

Here, f is an elliptic cuspform of weight 2k−2 with k even and with respect to SL2(Z). Assuming
that f is an eigenform, it can be translated into an adelic function which generates a cuspidal
automorphic representation π of GL2(A). This representation has trivial central character, so
really is a representation of PGL2(A). Since PGL2

∼= SO3, there is a theta correspondence

between this group and S̃L2(A), the double cover of SL2(A). More precisely, one considers the

Waldspurger lifting from S̃L2(A) to PGL2(A), which is a variant of the theta correspondence.
Let τ be any pre-image of π under this lifting2. Since PGSp4

∼= SO5, there is another theta

correspondence between S̃L2(A) and PGSp4(A). We can use it to forward τ to an automorphic
representation Π of PGSp4(A). From this Π one can extract a Siegel modular form F of weight
k. It turns out that Π is cuspidal, so that F is a cuspform. This F coincides with the classical
Saito-Kurokawa lifting of f . For the details of this construction, see [16] and [26].

There is a marked difference between the classical and the representation theoretic construc-
tions. The classical construction directly provides the Fourier coefficients of the modular form
F (in terms of the Fourier coefficients of the half-integral weight modular form corresponding
to f via the Shimura correspondence). In contrast, the representation theoretic Saito-Kurokawa
lifting consists of the following statement: “For each cuspidal elliptic eigenform f of weight 2k−2

1Recall that a matrix is semi-integral if its off-diagonal entries are in 1
2
Z, and its diagonal entries are in Z.

2In this classical situation, there is precisely one pre-image. For modular forms with level, there can be several
possibilities for τ , leading to the phenomenon that one elliptic cusp form f may have several Saito-Kurokawa
liftings. We refer to [27] for more explanation.
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with even k there exists a cuspidal Siegel eigenform F of weight k such that its spin L-function
is given by L(s, F ) = L(s, f)ζ(s− k + 1)ζ(s− k + 2).” In this case the Fourier coefficients of F
are not readily available.

At the very least, one would like to know that the Fourier coefficients of the modular form F
constructed in the representation theoretic way satisfy the Maass relations. One quick argument
consists in referring to either [5] or [13]. In these papers it is proven that the Fourier coefficients
of F satisfy the Maass relations if and only if L(s, F ) has a pole. The pole condition is satisfied
because of the appearance of the zeta factors above.

However, it would be desirable to deduce the Maass relations directly from the representation
theoretic construction. One reason is that this construction opens the way to generalizations
in various directions, and for these more general situations results similar to [5] or [13] are not
available. For example, what happens if we replace the above condition “k even” by “k odd”? In
this case it turns out that one can still do the representation theoretic construction, the difference
being that the archimedean component of the automorphic representation Π is no longer in the
holomorphic discrete series. Hence, one will obtain a certain type of non-holomorphic Siegel
modular form whose adelization generates a global CAP representation. As far as we know,
the full details of this construction have yet to be written out (though see [12]). But since the
non-archimedean situation is no different from the case for even k, we expect this new type of
Siegel modular form to admit a Fourier expansion for which the Maass relations hold as well.
One could prove such a statement if one had a direct representation-theoretic way of deducing
the Maass relations. Similarly, we expect that a representation-theoretic proof of the Maass
relations would easily generalize to the case of Saito-Kurokawa lifts with respect to congruence
subgroups.

It was shown in [14] that a representation theoretic method for proving the Maass relations
exists. In the present paper we take a similar, but slightly different approach. Common to both
approaches is the fact that certain local Jacquet modules are one-dimensional. This may be
interpreted as saying that the local representations in question admit a unique Bessel model,
and this Bessel model is special (see Sect. 2 for precise definitions). While [14] makes use
of certain Siegel series to derive an explicit formula for local p-adic Bessel functions, we use
Sugano’s formula, to be found in [28].

Our main local result, Theorem 2.1 below, asserts the equivalence of five conditions on a
given irreducible, admissible, spherical representation π of GSp4(F ) with a special Bessel model
(where F is a p-adic field). The first condition is that one of the Satake parameters of π is
q1/2 (where q is the cardinality of the residue class field); in particular, such representations
are non-tempered. The second condition is that π is a certain kind of degenerate principal
series representation; these representations occur in global CAP representations with respect to
the Borel or Siegel parabolic subgroup. The third and fourth conditions are formulas relating
certain values of the spherical Bessel function; the third formula is a local analogue of the Maass
relations. The fifth condition is an explicit formula for some of the values of the spherical Bessel
function; this formula is very similar to one appearing in [9] and [14] for the values of a Siegel
series.

In the global part of this paper, we will explain how the classical Maass relations follow from
this local result. It is known that the local components of the automorphic representation Π
in the diagram (3) are of the kind covered in Theorem 2.1. Hence, the corresponding spherical
Bessel functions satisfy the “local Maass relations” (this implication is all that is needed from
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Theorem 2.1). Since Bessel models are closely related to Fourier coefficients, one can deduce the
global (classical) Maass relations from the local relations. To make this work one has to relate
the classical notions with the representation theoretic concepts. While this is standard, some
care has to be taken, which is why we carry these arguments out in some detail. In fact, we
give two different proofs of the classical Maass relations; one uses a result proved by the second
author in collaboration with Kowalski and Tsimerman [10], while the other relies on some explicit
computations with Bessel functions which may be of independent interest. As explained above,
what we have in mind are future applications to more general situations. Finally, in the last
section, we prove a result (Theorem 10.1) that gives a new characterization of Saito-Kurokawa
lifts involving a certain average of Fourier coefficients.

Notation

Let G = GSp4 be the group of symplectic similitudes of semisimple rank 2, defined by

GSp4 = {g ∈ GL4 : tgJg = µ(g)J, µ(g) ∈ GL1}, where J =

[
0 12

−12 0

]
.

Here, µ is called the similitude character. Let Sp4 = {g ∈ GSp4 : µ(g) = 1}. The Siegel
parabolic subgroup P of GSp4 consists of matrices whose lower left 2 × 2-block is zero. Its

unipotent radical U consists of all elements of the block form

[
1 X

1

]
, where X is symmetric.

The standard Levi component M of P consists of all elements

[
A
u tA−1

]
with u ∈ GL1 and

A ∈ GL2.
Over the real numbers, we have the identity component G(R)+ := {g ∈ GSp4(R) : µ(g) > 0}.

Let H2 be the Siegel upper half space of degree 2. Hence, an element of H2 is a symmetric,
complex 2 × 2-matrix with positive definite imaginary part. The group G(R)+ acts on H2 via

g〈Z〉 = (AZ +B)(CZ +D)−1 for g =

[
A B
C D

]
.

Given any commutative ring R, we denote by Sym2(R) the set of symmetric 2× 2-matrices
with coefficients in R. The symbol P2 denotes the set of positive definite, half-integral symmetric
2× 2-matrices.

2 Spherical Bessel functions

In this section only, F is a local non-archimedean field with ring of integers o, prime ideal p,
uniformizer $ and order of residue field q. An irreducible, admissible representation of GSp4(F )
is called spherical if it admits a spherical vector, i.e., a non-zero GSp4(o)-invariant vector. Let
(π, V ) be such a representation. Then π is a constituent of a representation parabolically induced
from a character γ of the standard Borel subgroup of GSp4(F ). The numbers

γ(1) = γ(


$

$
1

1

), γ(2) = γ(


$

1
1

$

),
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γ(3) = γ(


1

1
$

$

), γ(4) = γ(


1

$
$

1

), (4)

are called the Satake parameters of π. The conjugacy class of diag(γ(1), γ(2), γ(3), γ(4)) in
GSp4(C) determines the isomorphism class of π.

Note that γ(1)γ(3) = γ(2)γ(4) = ωπ($), where ωπ is the central character of π. Hence, in the
case of trivial central character, the Satake parameters are {α±1, β±1} for some α, β ∈ C×. In
this case we allow ourselves a statement like “one of the Satake parameters of π is α±1”.

In this work we will employ the notation of [29] and the classification of [21] for constituents of
parabolically induced representations of GSp4(F ). According to Table A.10 of [21], the spherical
representations are of type I, IIb, IIIb, IVd, Vd or VId, and a representation of one these types
is spherical if and only if the inducing data is unramified. Note that type IVd is comprised
of one-dimensional representations, which are irrelevant for our purposes. Representations of
type I are irreducible principal series representations, and they are the only generic spherical
representations.

By [26], representations of type IIb occur as local components of the automorphic represen-
tations attached to classical Saito-Kurokawa liftings. Recall that these automorphic representa-
tions are CAP (cuspidal associated to parabolic) with respect to the Siegel parabolic subgroup;
this property has been defined on p. 315 of [16], where it was called “strongly associated to
P”. One can show that representations of type Vd and VId occur as local components of au-
tomorphic representations which are CAP with respect to B, the Borel subgroup. By Theorem
2.2 of [16], P -CAP and B-CAP representations with trivial central character have a common
characterization as being theta liftings from the metaplectic cover of SL2. We will see below that
spherical representations of type IIb, Vd and VId with trivial central character have a common
characterization in terms of their spherical Bessel functions.

We will briefly recall the notion of Bessel model; for more details see [22] (and [17] for the

archimedean case). Let ψ be a fixed character of F . Let S =

[
a b/2
b/2 c

]
with a, b, c ∈ F . Such a

matrix defines a character θ = θS of U , the unipotent radical of the Siegel parabolic subgroup,
by

θ(

[
1 X

1

]
) = ψ(Tr(SX)), X ∈ Sym2(F ).

Every character of U is of this form for a uniquely determined S. From now on we will assume
that θ is non-degenerate, by which we mean that S is invertible. If −det(S) ∈ F×2 we set
L = F ⊕ F and say that we are in the split case. Otherwise we set L = F (

√
−det(S)) and say

that we are in the non-split case. Below we will use the Legendre symbol

(L
F

)
=


−1 if L/F is an unramified field extension,

0 if L/F is a ramified field extension,

1 if L = F ⊕ F .
(5)

Let T = TS be the torus defined by T = {g ∈ GL2 : tgSg = det(g)S}. Then T (F ) ∼= L×.

We think of T (F ) embedded into GSp4(F ) via g 7→
[
g

det(g) tg−1

]
. Then T (F ) is the identity
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component of the stabilizer of θ in the Levi component of the Siegel parabolic subgroup. We
call the semidirect product R = TU the Bessel subgroup defined by S. Given a character Λ of
T (F ), the map tu 7→ Λ(t)θ(u) (t ∈ T (F ), u ∈ U(F )) defines a character Λ⊗ θ of R(F ).

Now let (π, V ) be an irreducible, admissible representation of GSp4(F ). A (Λ, θ)-Bessel
functional for π is a non-zero element of HomR(V,CΛ⊗θ). Equivalently, a (Λ, θ)-Bessel functional
for π is a non-zero functional β on V satisfying β(π(r)v) = (Λ ⊗ θ)(r)v for all r ∈ R(F ),
v ∈ V . Given such a functional β, the corresponding Bessel model for π consists of the functions
B(g) = β(π(g)v), where v ∈ V . By Theorem 6.1.4 of [22] every infinite-dimensional π admits a
Bessel functional for some choice of θ and Λ. The question of uniqueness is discussed in Sect. 6.3
of [22]. Bessel models with Λ = 1 are called special.

In the case of spherical representations, one may ask about an explicit formula for the
spherical vector in a (Λ, θ)-Bessel model. Such a formula was given by Sugano in [28] (at the
same time proving that such models are unique for spherical representations). In the case that
Λ is unramified, Sugano’s formula is conveniently summarized in Sect. (3.6) of [8]. We recall the
result. To begin, we assume that the elements a, b, c defining the matrix S satisfy the following
standard assumptions:

• a, b ∈ o and c ∈ o×.

• In the non-split case, b2−4ac is a generator of the discriminant of L/F . In the
split case, b2 − 4ac ∈ o×.

(6)

This is not a restriction of generality; using some algebraic number theory, one can show that,
after a suitable transformation S 7→ λ tASA with λ ∈ F× and A ∈ GL2(F ), the standard
assumptions are always satisfied. One consequence of (6) is the decomposition

GL2(F ) =
⊔
m≥0

T (F )

[
$m

1

]
GL2(o); (7)

see Lemma 2-4 of [28]. In conjunction with the Iwasawa decomposition, this implies

GSp4(F ) =
⊔

l,m∈Z
m≥0

R(F )h(l,m)GSp4(o), (8)

where

h(l,m) =


$l+2m

$l+m

1
$m

 .
Hence, a spherical Bessel function B is determined by the values B(h(l,m)). It is easy to see
that B(h(l,m)) = 0 if l < 0 (see Lemma (3.4.4) of [8]). Sugano’s formula now says that∑

l,m≥0

B(h(l,m))xmyl =
H(x, y)

P (x)Q(y)
(9)

where P (x), Q(y) and H(x, y) are polynomials whose coefficients depend on the Satake parame-
ters, on the value of

(
L
F

)
, and on Λ; see p. 205 of [8] for details. The formula implies in particular

that B(1) 6= 0, so that we may always normalize B(1) to be 1.
With these preparations, we may now formulate our main local theorem.
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2.1 Theorem. Let π be an irreducible, admissible, spherical representation of GSp(4, F ) with
trivial central character. Assume that π admits a special Bessel model with respect to the matrix
S. Let B be the spherical vector in such a Bessel model for π, normalized such that B(1) = 1.
Then the following are equivalent.

i) One of the Satake parameters of π is q±1/2.

ii) π is one of the representations in the following list:

• χ1GL(2) o χ−1 for an unramified character χ of F× (type IIb).

• L(νξ, ξ o ν−1/2), where ξ is the non-trivial, unramified, quadratic character of F×

(type Vd).

• L(ν, 1F× o ν−1/2) (type VId).

iii) For all l,m ≥ 0,

B(h(l,m)) =
l∑

i=0

q−iB(h(0, l +m− i)). (10)

iv) The following relation is satisfied:

B(h(1, 0)) = B(h(0, 1)) + q−1. (11)

v) The following two conditions are satisfied:

• For all m ≥ 0,

q3m/2B(h(0,m)) =
αm+1 − α−m−1

α− α−1
−
(L
F

)
q−1/2 α

m − α−m

α− α−1
, (12)

where α±1 is one of the Satake parameters of π. Here, if α = α−1, we understand
αm−α−m
α−α−1 =

∑m
i=1 α

m+1−2i.

• We are not in the following exceptional situation:
(
L
F

)
= −1 (the inert case) and π =

χ1GL(2) o χ−1ξ (type IIb), where χ, ξ are the unramified characters with χ($) = ±i
and ξ($) = −1.

Proof. i)⇔ ii) follows by inspecting the list of Satake parameters of all spherical representations;
see Table A.7 of [21].

iii) ⇒ iv) is trivial.
iv) ⇒ i) ⇒ iii) Observe that (10) is equivalent to the following identity between generating

series, ∑
l,m≥0

B(h(l,m))xmyl =
∑
l,m≥0

l∑
i=0

q−iB(h(0, l +m− i))xmyl. (13)

By Sugano’s formula, the left hand side equals

LHS =
H(x, y)

P (x)Q(y)
,
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with H,P,Q as in Proposition 2-5 of [28]. For the right hand side of (13), we calculate

RHS =
∞∑
m=0

∞∑
l=0

l∑
i=0

q−iB(h(0, l +m− i))xmyl

=
∞∑
m=0

∞∑
i=0

∞∑
l=i

q−iB(h(0, l +m− i))xmyl

=

∞∑
m=0

∞∑
i=0

∞∑
l=0

q−iB(h(0, l +m))xmyl+i

=
1

1− q−1y

∞∑
m=0

∞∑
l=0

B(h(0, l +m))xmyl

=
1

1− q−1y

∞∑
j=0

∑
l+m=j

B(h(0, j))xmyl

=
1

1− q−1y

∞∑
j=0

B(h(0, j))
xj+1 − yj+1

x− y

=
1

(1− q−1y)(x− y)

(
x
∞∑
j=0

B(h(0, j))xj − y
∞∑
j=0

B(h(0, j))yj
)

=
1

(1− q−1y)(x− y)

(
x
H(x, 0)

P (x)Q(0)
− y H(y, 0)

P (y)Q(0)

)
=

1

(1− q−1y)(x− y)

(
x
H(x, 0)

P (x)
− yH(y, 0)

P (y)

)
.

Hence, (13) is equivalent to

(1− q−1y)(x− y)H(x, y)P (y)−Q(y)
(
xP (y)H(x, 0)− yP (x)H(y, 0)

)
= 0. (14)

If one of the Satake parameters is q±1/2, then one can verify that (14) is satisfied. This shows
that i)⇒ iii). Conversely, assume that iv) is satisfied. Let F (x, y) be the polynomial on the left
hand side of (14). Then iv) is equivalent to saying that the coefficient of y of the power series

T (y) =
H(0, y)

Q(y)
− H(y, 0)

(1− q−1y)P (y)
,

which has no constant term, vanishes. In particular, this means that the y2-coefficient of
F (0, y) = −yQ(y)P (y)(1 − q−1y)T (y) is equal to 0. But it can be easily checked that the
y2-coefficient of F (0, y) is given by

(q−1/2 − α−1)(q−1/2 − α)(q−1/2 − β−1)(q−1/2 − β)

q − δ
,

where α±1, β±1 are the Satake parameters of π. It follows that α = q±1/2 or β = q±1/2. The
completes the proof of iv) ⇒ i).
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i) ⇔ v) Let α±1, β±1 be the Satake parameters of π. By Sugano’s formula,

P (x)
∑
m≥0

B(h(0,m))xm = H(x, 0). (15)

Note that H(x, 0) (resp. P (x)) is a degree 3 (resp. degree 4) polynomial. Write

P (x) = P0 + P1x+ P2x
2 + P3x

3 + P4x
4, H(x, 0) = H0 +H1x+H2x

2 +H3x
3.

Abbreviating A = α+ α−1 and B = β + β−1, as well as δ =
(
L
F

)
, we have

P0 = 1,

P1 = −q−2AB,

P2 = q−4(A2 +B2 − 2),

P3 = −q−6AB,

P4 = q−8,

and

H0 = 1,

H1 =
1

q2(q − δ)

(
q + 1 + δ(δ + 1)− q1/2(δ + 1)(A+B) + δAB

)
,

H2 =
1

q5(q − δ)

(
q(δ + 1) + δ2(q + 1)− q1/2δ(δ + 1)(A+B) + δqAB

)
,

H3 = −q−7δ.

Taking the mth derivative of both sides of (15), setting x = 0 and dividing by m!, we get the
following recurrence relation for B(h(0,m)),

4∑
i=0

B(h(0,m− i))Pi = Hm, (16)

where Hm = 0 if m > 3. Assume that the Satake parameters are α±1 and q±1/2, i.e., B =
q1/2+q−1/2. Then, using (16) and induction on m, it is easy to verify that (12) holds. Conversely,
assume that (12) holds for all m ≥ 0. Then, from (16) for m = 1, we find that either B =
q1/2 + q−1/2 or A = q−1/2(δ + 1). Assume that A = q−1/2(δ + 1). From (16) for m = 2, 3, 4, we
conclude, after some calculation, that B = −q1/2 − q−1/2 and δ = −1. It follows that A = 0, so
that α = ±i. Looking at Satake parameters, this is precisely the excluded exceptional situation.

Remarks:

i) The second condition in part v) of this theorem cannot be omitted, since in this exceptional
situation the formula (12) holds as well.

ii) There is a certain analogy of the identity (10) with the classical Maass relations (2). In
fact, in the proof of Theorem 9.1 we will show that the Maass relations are implied by the
local relations (10).
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iii) Combining the formulas iii) and v) of Theorem 2.1, we obtain

q3m/2B(h(l,m− l)) =
l∑

i=0

qi/2
(
αm−i+1 − α−(m−i+1)

α− α−1
−
(L
F

)
q−1/2 α

m−i − α−(m−i)

α− α−1

)
(17)

for m ≥ l ≥ 0. The expression on the right hand side, viewed as a polynomial in α, is
related to the value of a certain Siegel series; see Hilfssatz 10 in [9] and Corollary 5.1 in
[14]. In fact, formula (17) appears as Lemma 8.1 of [14].

3 Adelization and Fourier coefficients

We turn to classical Siegel modular forms and their adelization. Let Γ = Sp4(Z) and S
(2)
k (Γ) be

the space of holomorphic cuspidal Siegel modular forms of degree 2 and weight k with respect

to Γ. Hence, if F ∈ S(2)
k (Γ), then for all γ ∈ Γ we have F |kγ = F , where

(F |kg)(Z) := µ(g)kj(g, Z)−kF (g〈Z〉) (18)

for g ∈ G(R)+ and Z ∈ H2, the Siegel upper half space. Here j(g, Z) = det(CZ + D) for

g =

[
A B
C D

]
∈ G(R)+. The Fourier expansion of F is given by

F (Z) =
∑
S

a(S)e2πiTr(SZ), (19)

where the sum is taken over the set P2 of semi-integral, symmetric and positive definite matrices
S.

Let A be the ring of adeles of Q. It follows from the strong approximation theorem for Sp4

that
G(A) = G(Q)G(R)+K0 (20)

where K0 :=
∏
p<∞

Γp with Γp = G(Zp). Let F ∈ S(2)
k (Γ). Write g ∈ G(A) as g = gQg∞g0 with

gQ ∈ G(Q), g∞ ∈ G(R)+, g0 ∈ K0, and define ΦF : G(A)→ C by the formula

ΦF (g) := (F |kg∞)(i12). (21)

Since G(R)+K0 ∩G(Q) = Γ, the function ΦF is well-defined. From the definition it is clear that
for all g ∈ G(A), ρ ∈ G(Q), k0 ∈ K0, k∞ ∈ K∞ and z ∈ Z(A), it satisfies

ΦF (zρgk∞k0) = ΦF (g)j(k∞, i12)−k. (22)

Here Z ' GL1 is the center of GSp4 and K∞ ' U(2) is the standard maximal compact subgroup
of Sp4(R).

Let P = MU be the Siegel parabolic subgroup of G. By the Iwasawa decomposition,
G(A) = U(A)M(A)K∞K0. Let ψ : Q\A→ C× be the character such that ψ(x) = e2πix if x ∈ R
and ψ(x) = 1 for x ∈ Zp. Given S ∈ Sym2(Q), one obtains a character ΘS of U(Q)\U(A) by

ΘS(

[
1 X

1

]
) = ψ(Tr(SX)).
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Note that every character of U(Q)\U(A) is obtained in this way. For S ∈ Sym2(Q) we define
the following adelic Fourier coefficient of ΦF ,

ΦS
F (g) :=

∫
U(Q)\U(A)

ΦF (ng)Θ−1
S (n) dn for g ∈ G(A). (23)

The following result, which is standard, provides a formula for ΦS
F (g) in terms of the Fourier

coefficients of F .

3.1 Proposition. Let g = n0mk∞k0, with n0 ∈ U(A), m ∈ M(A), k∞ ∈ K∞ and k0 ∈ K0.
Let m = mQm∞m0, with mQ ∈ M(Q), m∞ ∈ M(R)+ and m0 ∈ M(A) ∩ K0. Write mQ =[
A
v−1 tA−1

]
with A ∈ GL2(Q) and v ∈ Q×. Let Z0 = m∞〈i12〉. Let S ∈ Sym2(Q) be non-

degenerate, and let S′ = v tASA. Let F ∈ S(2)
k (Γ) with Fourier expansion (19) and let ΦS

F be as
defined in (23). Then

ΦS
F (g) =

{
ΘS(n0)µ(m∞)k j(g∞, i12)−k a(S′)e2πiTr(S′Z0) if S′ ∈ P2,

0 otherwise,
(24)

where g∞ = m∞k∞. In particular, if S ∈ P2, we have

ΦS
F (1) = a(S)e−2πTr(S). (25)

Also, for S ∈ Sym2(Q) and S′ = v tASA, with A ∈ GL2(Q) and v ∈ Q×, we have

ΦS′
F (g) = ΦS

F (

[
A
v−1 tA−1

]
g) for all g ∈ G(A). (26)

Proof. From (22) and the definition (23), we get

ΦS
F (n0mk∞k0) = ΘS(n0)j(k∞, i12)−k ΦS

F (mQm∞).

A change of variable n 7→ mQnm
−1
Q in (23) gives

ΦS
F (mQm∞) = ΦS′

F (m∞),

where S′ = v tASA. For every prime p, let ap ⊂ Zp be the largest ideal such that whenever
n ∈

∏
p<∞

U(ap) then ΘS′(n) = 1. Let t =
∏
p
prp ∈ Z, where ap = prpZp. Note that t = 1 if and

only if S′ is semi-integral. Since

(Sym2(Z)\Sym2(R))×
∏
p<∞

Sym2(Zp)

is a fundamental domain for U(Q)\U(A) (where we identify U ∼= Sym2), so is

(t Sym2(Z)\Sym2(R))×
∏
p<∞

Sym2(ap).
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Therefore,

ΦS′
F (m∞) =

( ∏
p<∞

∫
U(ap)

1 dnp

) ∫
tSym2(Z)\Sym2(R)

ΦF (nm∞)Θ−1
S′ (n) dn

=

( ∏
p<∞

∫
U(ap)

1 dnp

) ∑
η∈tSym2(Z)\Sym2(Z)

∫
Sym2(Z)\Sym2(R)

ΦF (ηnm∞)Θ−1
S′ (ηn) dn

=

( ∏
p<∞

∫
U(ap)

1 dnp

)( ∑
η∈t Sym2(Z)\Sym2(Z)

Θ−1
S′ (η)

) ∫
U(Z)\U(R)

ΦF (nm∞)Θ−1
S′ (n) dn.

Since Θ−1
S′ is a non-trivial character of tU(Z)\U(Z) if t > 1, the sum is zero unless t = 1. Hence,

assume that t = 1, i.e., ap = Zp for all p. By (21),

ΦS′
F (m∞) =

∫
Sym2(Z)\Sym2(R)

(F |k
([1 X

1

]
m∞

)
)(i12)Θ−1

S′ (

[
1 X

1

]
) dX

= µ(m∞)kj(m∞, i12)−k
∫

Sym2(Z)\Sym2(R)

F (Z0 +X)e−2πiTr(S′X) dX.

Now, substitute the Fourier expansion of F to get

ΦS′
F (m∞) = µ(m∞)kj(m∞, i12)−k

∑
T∈P2

a(T )e2πiTr(TZ0)

×
∫

Sym2(Z)\Sym2(R)

e2πiTr(TX)e−2πiTr(S′X) dX.

If S′ 6∈ P2, then the integral above is zero for every T , otherwise it is equal to one exactly for
T = S′. This proves (24). One can obtain (26) by a simple change of variables.

4 Special automorphic forms

We now assume that F ∈ S
(2)
k (Γ) is a Hecke eigenform and is a Saito-Kurokawa lift of f ∈

S2k−2(SL2(Z)), with k even, as in §6 of [4]. Let ΦF be as defined in (21) and let (πF , VF ) be
the irreducible cuspidal automorphic representation of G(A) generated by right translates of
ΦF . Then πF is isomorphic to a restricted tensor product ⊗p≤∞πp with irreducible, admissible
representations πp of GSp4(Qp). The following is well-known (see, for example, [26]):

• The archimedean component π∞ is a holomorphic discrete series representation with scalar
minimal K-type determined by the weight k. Following the notation of [17], we denote
this representation by E(k, k).

• For a prime number p, the representation πp is a degenerate principal series representation
χ1GL(2) o χ−1 with an unramified character χ of Q×p . Here, we are using the notation of
[21]. In particular, πp is a representation of type IIb according to Table A.1 of [21]. Note
that these are non-tempered, non-generic representations.
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4.1 Lemma. Let p be a prime number or p =∞. Let S ∈ Sym2(Qp) be non-degenerate. In the
archimedean case, assume also that S is positive or negative definite. Let TS be the connected
component of the stabilizer of the character ΘS of U(Qp). Explicitly,

TS = {g ∈ GL2 : tgSg = det(g)S}, (27)

where we embed GL2 into GSp4 via g 7→
[
g

det(g) tg−1

]
. Let Vp be a model for πp, and consider

functionals βp : Vp → C with the property

βp(πp(n)v) = ΘS(n)βp(v) for all v ∈ Vp and n ∈ U(Qp). (28)

Then:

i) The space of such functionals βp is one-dimensional.

ii) If βp satisfies (28), then it automatically satisfies

βp(πp(m)v) = βp(v) for all v ∈ Vp and m ∈ TS(Qp). (29)

Proof. This follows from Lemma 5.2.2 of [22] in the non-archimedean case, and from Theorem
3.10 of [15] in the archimedean case.

In the language of Bessel models, Lemma 4.1 states that the only such model admitted by πp
is special, i.e., with trivial character on TS(Qp); see Sect. 2 for the definition of Bessel models in
the non-archimedean case, and [15], Sect. 2.6, for the definition in the archimedean case. Part i)
of Lemma 4.1 asserts the uniqueness of such models. We remark that property ii) in this lemma
is precisely the “U -property” of [15].

We fix a distinguished vector v0
p ∈ Vp for each of our local representations πp: If p is finite,

we let v0
p be a spherical (i.e., non-zero G(Zp)-invariant) vector, and if p = ∞ we let v0

p be a
vector spanning the one-dimensional K∞-type determined by k. Note that the construction
of the restricted tensor product ⊗Vp depends on the choice of distinguished vectors almost
everywhere, and we use the vectors v0

p for this purpose.
Let S ∈ Sym2(Q) be positive or negative definite. We will see in a later section that

βp(v
0
p) 6= 0 for almost all p. For those places where this is the case, we normalize the βp such

that βp(v
0
p) = 1.

The following lemma states that the automorphic forms in the space of π are special in the
sense of [15], p. 310.

4.2 Lemma. Let the notations be as above. Then, for any non-degenerate S ∈ Sym2(Q), and
all Φ ∈ VF , we have

ΦS(mg) = ΦS(g) for all g ∈ G(A) and m ∈ TS(A). (30)

Proof. We fix S. The assertion is trivial if the functional

β : V −→ C, β(Φ) := ΦS(1) =

∫
U(Q)\U(A)

Φ(n)Θ−1
S (n) dn
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is zero. Assume that β is non-zero. For each place p, let Vp be a model for πp. By a standard
argument, β induces a non-zero functional βp : Vp → C with the property (28). Looking at the
archimedean place, Corollary 4.2 of [17] implies that S is positive or negative definite. By the
uniqueness asserted in Lemma 4.1, it follows that there exists a non-zero constant CS such that

β(Φ) = CS
∏
p≤∞

βp(vp), (31)

whenever Φ ∈ VF corresponds to the pure tensor ⊗vp via VF ∼= ⊗Vp; note that the product on the
right is finite by our normalizations. Using ii) of Lemma 4.1, it follows that β(π(m)Φ) = β(Φ)
for all m ∈ TS(A). Since Φ is arbitrary, this implies the assertion of the lemma.

5 A proof of the classical Maass relations

For S =

[
a b/2
b/2 c

]
∈ P2 we denote c(S) = gcd(a, b, c) (resp. disc(S) = −4 det(S)) and call

c(S) the content (resp., call disc(S) the discriminant) of S. For S1, S2 ∈ P2, we say that
S1 ∼ S2 if there exists a matrix A ∈ SL2(Z) such that tAS1A = S2. For any S ∈ P2, let [S]
denote the equivalence class of S under the above relation; note that all matrices in a given
equivalence class have the same content and discriminant. For any discriminant D < 0 (recall
that a discriminant is an integer congruent to 0 or 1 modulo 4) and any positive integer L, we
let H(D;L) denote the set of equivalence classes of matrices in P2 whose content is equal to L
and whose discriminant is equal to DL2. In particular, if S ∈ P2, then [S] ∈ H(D;L) where
L = c(S) and D = disc(S)/c(S)2. It is clear that the map [S] 7→ [LS] gives a bijection of sets
H(D; 1)→ H(D;L).

Our objective in this section is to prove the following theorem.

5.1 Theorem. Let F be a cuspidal Siegel Hecke eigenform of weight k with respect to Sp4(Z).
For S ∈ P2, let a(S) denote the Fourier coefficient of F at S. Suppose that F is a Saito-Kurokawa
lift. Then the following hold.

i) Assume that disc(S1) = disc(S2) and c(S1) = c(S2). Then a(S1) = a(S2).

ii) For D < 0 a discriminant and L a positive integer, define a(D;L) = a(S) where S is any
member of P2 satisfying c(S) = L, disc(S) = DL2; this is well-defined by the previous
part. Then the following relation holds:

a(D;L) =
∑
r|L

rk−1 a(D(L/r)2; 1). (32)

5.2 Corollary. (Maass relations) Let F be a cuspidal Siegel Hecke eigenform of weight k
with respect to Sp4(Z) which is a Saito-Kurokawa lift. For S ∈ P2, let a(S) denote the Fourier
coefficient of F at S. Then

a(

[
a b

2
b
2 c

]
) =

∑
r|gcd(a,b,c)

rk−1a(

[
ac
r2

b
2r

b
2r 1

]
). (33)
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Proof. In the notation of the above Theorem,

a(

[
a b

2
b
2 c

]
) = a((b2 − 4ac)/gcd(a, b, c)2; gcd(a, b, c)), a(

[
ac
r2

b
2r

b
2r 1

]
) = a((b2 − 4ac)/r2; 1).

Now the corollary follows immediately from (32).

Let us now prove Theorem 5.1. As a first step, we recall a very useful characterization of the
elements of H(D;L). Let d < 0 be a fundamental discriminant3. We define Sd ∈ P2 as follows.

Sd =



[
−d
4 0

0 1

]
if d ≡ 0 (mod 4),

[
1−d

4
1
2

1
2 1

]
if d ≡ 1 (mod 4).

(34)

For any positive integerM , we letK
(0)
p (M) be the subgroup of GL2(Zp) consisting of elements

that are congruent to [
∗ 0
∗ ∗

]
(mod M).

We define Cld(M) as follows:

Cld(M) = Td(A)/Td(Q)Td(R)Πp<∞(Td(Qp) ∩K(0)
p (M)).

where
Td = {g ∈ GL2 : tgSdg = det(g)Sd}. (35)

It is easy to see that Cld(M) is finite. For example, Cld(1) is canonically isomorphic to the ideal
class group of Q(

√
d). Let c ∈ Cld(M) and let tc ∈

∏
p<∞ Td(Qp) be a representative for c. By

strong approximation, we can write (non-uniquely)

tc = γc γ
−1
c,∞ κc (36)

with γc ∈ GL(2,Q)+, and κc ∈ Πp<∞K
(0)
p (M).

It is known (see [8, p. 209]) that Sc := det(γc)
−1(tγc)Sdγc ∈ P2 and satisfies c(Sc) = 1,

disc(Sc) = d. Also, the (2, 2)-coefficient of Sc is 1 modulo M . For any positive integer L, we
define

φL,M (c) =

[
L
L

][
M

1

]
Sc

[
M

1

]
. (37)

It follows that c(φL,M (c)) = L, disc(φL,M (c)) = dL2M2. We remark here that the matrix
φL,M (c) depends on our choice of representative tc as well as on our choice of the matrix γc
involved in strong approximation. However, the equivalence class [φL,M (c)] is independent of
these choices. In fact, we have the following proposition.

3Recall that an integer n is called a fundamental discriminant if n is the discriminant of the field Q(
√
n). This

is equivalent to saying that either n is a squarefree integer congruent to 1 modulo 4 or n = 4m where m is a
squarefree integer congruent to 2 or 3 modulo 4.
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5.3 Proposition. For each pair of positive integers L,M , the map c 7→ [φL,M (c)] gives a well-
defined bijection between Cld(M) and H(dM2;L).

Proof. Let us first show that the map is well defined. Let Γ0(M) (resp. Γ0(M)) be the usual
congruence subgroups of SL2(Z) consisting of matrices whose upper-right (resp. lower-left) entry

is divisible by M . Let c ∈ Cld(M). Suppose that γ
(1)
c , γ

(2)
c are two distinct elements obtained

in (36) from c and that φ
(1)
L,M (c), φ

(2)
L,M (c) are the matrices obtained via (37). Then our definitions

imply that there exists t ∈ T (Q), k ∈ Γ0(M) such that γ
(2)
c = tγ

(1)
c k. It follows immediately

that φ
(2)
L,M (c) = tRφ

(1)
L,M (c)R where

R =

[
M−1

1

]
k

[
M

1

]
∈ Γ0(M) ⊂ SL2(Z).

Hence [φ
(2)
L,M (c)] = [φ

(1)
L,M (c)].

Next, we show that the map c 7→ [φL,M (c)] is injective. Suppose that [φL,M (c1)] = [φL,M (c2)].
Then there exists A ∈ SL2(Z) such that tAφL,M (c2)A = φL,M (c1). An easy calculation involving

the entries of the matrices shows that A ∈ Γ0(M). Then R =

[
M

1

]
A

[
M−1

1

]
∈ Γ0(M)

and tRSc2R = Sc1 . Let t1 = γ1γ
−1
1,∞κ1 and t2 = γ2γ

−1
2,∞κ2 be our chosen representatives in∏

p<∞ T (Qp) of c1 and c2, respectively. Then

γ2Rγ
−1
1 ∈ Td(Q) ∩ t2GL2(R)+

∏
p

K(0)
p (M)t−1

1 .

It follows that t1 and t2 represent the same element of Cld(M), completing the proof.
Finally, we show that the map c 7→ [φL,M (c)] is surjective. Since we have already proved

injectivity, it is enough to show that |Cld(M)| = |H(dM2;L)|. Now it is a classical fact (see
e.g. [2, p. 217]) that

|H(dM2;L)| = |H(dM2; 1)| = M

u(d)
|Cld(1)|

∏
p|M

(
1−

(d
p

)
p−1

)
,

where u(−3) = 3, u(−4) = 2 and u(d) = 1 for other d. On the other hand, a simple argument
along the lines of [25, p. 68], shows that

|Cld(M)| = M

u(d)
|Cld(1)|

∏
p|M

(
1−

(d
p

)
p−1

)
.

This completes the proof.

We now return to the proof of Theorem 5.1. In order to prove the first assertion, it is enough
to prove that (for some fixed fundamental discriminant d < 0, fixed positive integers L, M and
fixed elements c1, c2 ∈ Cld(M)) that

a(φL,M (c1)) = a(φL,M (c2)). (38)
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Let t1 ∈
∏
p<∞ Td(Qp) be a representative for c1 and let t2 ∈

∏
p<∞ Td(Qp) be a representative

for c2. By Lemma 4.2, it follows that

ΦSd
F (t1g) = ΦSd

F (t2g) for all g ∈ G(A). (39)

Define the element (HL,M )f ∈
∏
p<∞G(Qp) to be the diagonal embedding in

∏
p<∞G(Qp) of

the element

HL,M =


LM2

LM
1

M

 .
Let us explicate (39) in the special case g = (HL,M )f . Note that for i = 1, 2, we have

ti(HL,M )f = γci(HL,M )Q(HL,M )−1
∞ (γci)

−1
∞ (HL,M )−1

f κci(HL,M )f ,

where we note that γci(HL,M )Q ∈M(Q) and (HL,M )−1
∞ (γci)

−1
∞ ∈M(R)+. Furthermore, the ele-

ment (HL,M )−1
f κci(HL,M )f lies in the group K0 defined after (20). It follows from Proposition 3.1

that

ΦSd
F (t1(HL,M )f ) = e−2πTr(Sd)(LM)−ka(φL,M (c1)),

ΦSd
F (t2(HL,M )f ) = e−2πTr(Sd)(LM)−ka(φL,M (c2)).

(40)

Combining (39) and (40), we deduce (38). This completes the proof of the first assertion of
Theorem 5.1. To prove the second assertion of Theorem 5.1, we need the following result, which
is Theorem 2.10 of [10].

5.4 Theorem. (Kowalski–Saha–Tsimerman) Let d < 0 be a fundamental discriminant and
Λ =

∏
p Λp be a character of Cld(1) (note that Λ induces a character on Cld(M) for all positive

integers M via the natural surjection Cld(M) → Cld(1)). Let F be a cuspidal Siegel Hecke
eigenform of weight k with respect to Sp4(Z) and let π = ⊗pπp be the irreducible cuspidal
representation of GSp4(A) attached to F . For S ∈ P2, let a(S) denote the Fourier coefficient of
F at S. For each prime p, let Bp be the spherical vector in the (Sd,Λp, θp)-Bessel model for πp,
normalized so that Bp(1) = 1. Then for any positive integers L =

∏
p p

lp and M =
∏
p p

mp the
relation

1

|Cld(M)|
∑

c∈Cld(M)

Λ(c)a(φL,M (c)) =

(
(LM)k

|Cld(1)|
∑

c∈Cld(1)

Λ(c)a(Sc)

) ∏
p|LM

Bp(h(lp,mp))

holds.

Let us see what this implies in the setup of Theorem 5.1. For F a cuspidal Siegel Hecke
eigenform of weight k with respect to Sp4(Z) which is a Saito-Kurokawa lift, D < 0 a discriminant
and L a positive integer, define a(D;L) = a(S) where S is any member of P2 satisfying c(S) = L
and disc(S) = DL2 (this is well-defined by the first assertion of Theorem 5.1, which we have
already proven). Then Theorem 5.4, in the special case Λ = 1, F as above, tells us that

a(dM2;L) = (LM)ka(d; 1)
∏
p|LM

Bp(h(lp,mp)). (41)
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We need to prove

a(dM2;L) =
∑
r|L

rk−1a(d(LM/r)2; 1). (42)

By (41), the left side is equal to

(LM)ka(d; 1)
∏
p|LM

Bp(h(lp,mp)),

and the right side is equal to∑
r|L

rk−1(LM/r)ka(d; 1)
∏
p|LM

Bp(h(0, lp +mp − rp)).

Hence, we are reduced to showing that∏
p|L

Bp(h(lp,mp)) =
∑
r|L

r−1
∏
p|L

Bp(h(0, lp +mp − rp)).

This equation would follow provided for each prime p | LM we could prove that

Bp(h(lp,mp)) =

lp∑
i=0

p−iBp(h(0, lp +mp − i)).

But this follows from Theorem 2.1. Note here that, by our remarks in Sect. 4, the non-
archimedean local components πp associated to F are of the form χ1GL(2)oχ−1 for an unramified
character χ of Q×p (type IIb). This concludes the proof of Theorem 5.1.

6 Normalization of the Bessel functions

We return to the setup of Section 4. We will prove certain explicit formulas for the Bessel
functions and their effect under change of models. This will lead to another proof of the classical
Maass relations which does not use Theorem 5.4. In the following let

S =

[
a b/2
b/2 c

]
∈ P2

be fixed. Recall that in Sect. 4 we have fixed distinguished vectors v0
p in each local representation

Vp. For any place p let βp be a non-zero functional Vp → C as in Lemma 4.1. Let BS
p be the

Bessel function corresponding to v0
p, i.e., BS

p (g) = βp(πp(g)v0
p) for g ∈ G(Qp). We are going to

normalize the βp, hence the BS
p , in a certain way.

Non-archimedean case

Assume that p is a prime. It follows from Sugano’s formula (9) that BS
p (1) 6= 0, provided

S satisfies the standard assumptions (6). Hence, if S satisfies these conditions, then we can
normalize BS

p (1) = 1.
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For arbitrary positive definite S in P2 we proceed as follows. Let disc(S) = N2
1d, where d is

a fundamental discriminant. Let Sd be as in (34). Then we have Sd = a tASA, where

A :=



[
− b

2N1a
1
a

1
N1

]
if d ≡ 0 (mod 4),

[
− b

2N1a
+ 1

2a
1
a

1
N1

]
if d ≡ 1 (mod 4).

(43)

For brevity, we put S′ = Sd. We observe that the matrix S′ satisfies the standard assumptions (6)
for every prime p <∞. Consequently, we can normalize our Bessel functions so that BS′

p (1) = 1

for all primes p. However, for applications we require the values BS
p (1) = BS′

p (

[
A−1

a tA

]
).

Calculating this value requires decomposing the argument of BS′
p in the form (8) and then using

Sugano’s formula (9). We postpone the proof of the following lemma until the next section.

6.1 Lemma. Let A,S, S′, d,N1 be as above. Let L = c(S). Then

[
A−1

a tA

]
= th(l,m)k, with

t ∈ TS′(Qp), k ∈ GSp4(Zp) and

m = vp(N1/L) and l = vp(N1)−m = vp(L).

Consequently, BS
p (1) = BS′

p (h(l,m)) with these values of l and m. Since S′ satisfies the standard
assumptions (6), the right hand side can be evaluated using Sugano’s formula (9).

Archimedean case

If p =∞, let A′ =

[
−b/(N1a) 1/a

2/N1 0

][
−1/
√
−d

1

]
, where as before we write disc(S) = N2

1d, with

d a fundamental discriminant. Then S′ = a tA′SA′ = 12, the identity matrix. We normalize so
that B12

∞(1) = e−4π; this is possible by Theorem 3.10 of [17]. What naturally appears when we

relate Bessel models to Fourier coefficients is the value BS
∞(1) = B12

∞(

[
A′−1

a tA′

]
). Calculating

this value requires decomposing the argument of B12
∞ as thk, where t ∈ TS(R), the matrix h is

diagonal, and k is in the standard maximal compact subgroup of Sp4(R). Then one may use
the explicit formula given in Theorem 3.10 of [17]. The result is as follows.

6.2 Lemma. With the above notations and normalizations, we have

BS
∞(1) = det(S)k/2 e−2πTr(S). (44)

We postpone the proof of this lemma until the next section.



7 EXPLICIT FORMULAS FOR BESSEL FUNCTIONS 20

Global normalization

Recall that our starting point was a Saito-Kurokawa lift F ∈ S(2)
k (Γ) and its associated adelic

function ΦF defined in (20). Having fixed the local vectors v0
p at each place, we may normalize

the isomorphism V ∼= ⊗Vp such that ΦF corresponds to the pure tensor ⊗v0
p.

Given S ∈ P2, let CS be the constant defined by (31). Having fixed the vectors v0
p, the

functionals βp, and the isomorphism V ∼= ⊗Vp, the constants CS are well-defined. By definition,

ΦS
F (g) = CS

∏
p≤∞

BS
p (gp), (45)

for all g = (gp) ∈ G(A). The values of the constants CS are unknown, but the following property
will be sufficient to derive the Maass relations.

6.3 Lemma. Let S, S′ ∈ P2 such that ΦS
F (1),ΦS′

F (1) 6= 0 and S′ = v tASA for some A ∈ GL2(Q)
and v ∈ Q×. Then CS = CS′ .

Proof. We have

ΦS′
F (1) = ΦS

F (

[
A
v−1 tA−1

]
) = CS

∏
p≤∞

BS
p (

[
A
v−1 tA−1

]
) = CS

∏
p≤∞

BS′
p (1).

On the other hand, the left hand side equals CS′
∏
p≤∞

BS′
p (1). The assertion follows.

7 Explicit formulas for Bessel functions

In this section we provide the proofs of Lemmas 6.1 and 6.2.

Non-archimedean case

We first consider p < ∞. Recall that S′ satisfies the standard assumptions (6). In view of (8),

given an element g ∈ GSp4(Qp) of the form g =

[
h
v th−1

]
, we want to know which double

coset R(Qp)h(l,m)GSp4(Zp) it belongs to. For this, we first state the following result for GL2.

7.1 Lemma. Suppose that S′ =

[
a b/2

b/2 c

]
satisfies the standard assumptions (6). Let h ∈

GL2(Qp), and assume that, according to the decomposition (7),

h = t

[
pm

1

]
k (46)

with t ∈ TS′(Qp), a non-negative integer m, and k ∈ GL2(Zp). Define a′, b′, c′, d′ ∈ Qp by[
a′ b′

c′ d′

]
= det(h)−1 thS′h.

Then
m = max(0,−v(a′),−v(d′)).
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Proof. Taking determinants on the identity (46), we get

det(h) = det(t)pm det(k). (47)

A calculation shows that

det(h)−1 thS′h = det(k)−1 tk

[
apm b/2
b/2 cp−m

]
k.

If we let k =

[
w x
y z

]
, it follows that

a′ = det(k)−1
(
w2apm + wyb + y2cp−m

)
, d′ = det(k)−1

(
x2apm + xzb + z2cp−m

)
.

Note that all quantities except (possibly) p−m are integral, and that c is a unit. Also, one of y
or z is a unit. Hence,

a′, d′ ∈ o ⇐⇒ m = 0.

Assume a′ and d′ are not both in o. Then m > 0, the valuation of a′ and d′ is ≥ −m, and at
least one of a′ or d′ has valuation −m. It follows that −m = min(v(a′), v(d′)), or equivalently
m = max(−v(a′),−v(d′)). This concludes the proof.

Using this lemma, it is straightforward to derive the following result for GSp4.

7.2 Lemma. Let g =

[
h
v th−1

]
∈ GSp4(Qp) with h ∈ GL2(Qp) and v ∈ Q×p . Then g ∈

RS′(Qp)h(l,m)GSp4(Zp), where m is the integer obtained from Lemma 7.1 for h, and the value
of l is given by l = vp(det(h)/v)−m.

We can now give the proof of Lemma 6.1: From Lemmas 7.1 and 7.2, since

det(A−1)−1 tA−1S′A−1 = aS det(A)

and det(A) = −1/(N1a), we get m = max(0, vp
(
N1
a

)
, vp
(
N1
c

)
). Making use of gcd(a, b, c) =

gcd(a, c,N1), the result follows.

Archimedean case

Now consider p = ∞. The values of BS′
∞ have been computed in [17]. In this case S′ = 12,

and hence TS′(R) = {
[
γ
γ

]
: γ > 0}SO(2). We have the following disjoint double coset

decomposition,
GSp4(R) = R(R){h(λ, ζ) : λ ∈ R×, ζ ≥ 1}K1,

where K1 is the maximal compact subgroup of Sp4(R), R(R) = T12(R)U(R) is the Bessel
subgroup, and

h(λ, ζ) =

λ
[
ζ
ζ−1

]
[
ζ−1

ζ

]
.
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If g = uth(λ, ζ)k0, with u ∈ U(R), t ∈ T12(R) and k0 ∈ K1, then, by Theorem 3.10 of [17],

B12
∞(g) = Θ12(u)B12

∞(h(λ, ζ)) = Θ12(u)λke−2πλ(ζ2+ζ−2). (48)

Now we need to obtain the decomposition of gA′ =

[
A′−1

a tA′

]
as uth(λ, ζ)k0. Clearly, u = 1.

Also,

A′−1 =

[
−
√
−dN1

2

a b
2

]
=

[
−1

1

][
a b

2√
−dN1

2

]
= u

[
−1

1

][
y x
y−1

]
,

with

u =

√
a

√
−dN1

2
, x =

b/2

u
, and y =

a

u
.

7.3 Lemma. Let h =

[
y x
y−1

]
with y 6= 0. Then h = k1

[
ζ
ζ−1

]
k2, with k1, k2 ∈ SO(2) and

ζ2 =
1 + x2y2 + y4 +

√
(1 + x2y2 + y4)2 − 4y4

2y2
.

Proof. We may assume that x 6= 0. By the Cartan decomposition of SL2(R), there exist

k1, k2 ∈ SO(2) and ζ > 1 such that h = k1

[
ζ
ζ−1

]
k2. Write k1 =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
for

θ ∈ [0, 2π]. Applying both sides of h = k1

[
ζ
ζ−1

]
k2 to i as fractional linear transformations,

and using that SO(2) stabilizes i, we get

y2i+ xy =
cos(θ)ζ2i+ sin(θ)

− sin(θ)ζ2i+ cos(θ)
.

Simplifying and comparing the coefficients of i and the constant terms, we get

−ζ2xy sin(θ) = cos(θ)(ζ2 − y2), (1− ζ2y2) sin(θ) = xy cos(θ).

Note that, since x, y 6= 0, we have sin(θ), cos(θ) 6= 0 and y 6= ±ζ,±1/ζ. Hence, we can divide
the above two equations and after simplification obtain y2ζ4− (1 +x2y2 + y4)ζ2 + y2 = 0, which
gives the lemma.

Finally, we can give the proof of Lemma 6.2: Apply Lemma 7.3 with x = (b/2)/u and

y = a/u, where u =

√
a
√
−dN1

2 , to get

A′−1 = uk1

[
ζ
ζ−1

]
k2,
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with ζ as in the statement of the lemma and k1, k2 ∈ SO(2). Then

gA′ = au−1

[
k1

tk−1
1

]
u2

a

[
ζ
ζ−1

]
[
ζ−1

ζ

]
[k2

tk−1
2

]
,

as required. Now (44) follows from (48).

8 Formulas for Fourier coefficients

We again consider the situation where F ∈ S
(2)
k (Sp4(Z)), k even, is a Hecke eigenform and

is a Saito-Kurokawa lift of f ∈ S2k−2(SL2(Z)). For every prime p < ∞ let αp be the Satake
parameter of f at p. Let a(S) denote the Fourier coefficient of F at S ∈ P2.

8.1 Proposition. Let S =

[
a b/2
b/2 c

]
∈ P2 be such that a(S) 6= 0. Assume that disc(S) = N2

1d

where d < 0 is a fundamental discriminant. Let L = c(S) = gcd(a, b, c). For any prime p <∞,
set ap = vp(N1) and bp = vp(L) and let δp =

(
d
p

)
be the Legendre symbol (by convention, δp = 0

if p divides d). Let CS be the constant defined by (45). Then

a(S) = CS(N1)−3/2 det(S)
k
2

∏
p|N1

bp∑
i=0

p
i
2

(αap−i+1
p − α−ap+i−1

p

αp − α−1
p

− δpp−
1
2
α
ap−i
p − α−ap+i

p

αp − α−1
p

)
. (49)

Proof. By Proposition 3.1 and (45),

a(S)e−2πTr(S) = ΦS
F (1) = CS

∏
p≤∞

BS
p (1).

Using Lemma 6.2, it follows that

a(S) = CS det(S)k/2
∏
p<∞

BS
p (1).

Hence, by Lemma 6.1,

a(S) = CS det(S)k/2
∏
p|N1

BS′
p

(
h
(
vp(L), vp

(N1

L

)))
= CS det(S)k/2

∏
p|N1

BS′
p (h(bp, ap − bp)).

By our remarks in Sect. 4, the non-archimedean local components πp of the automorphic rep-
resentation πF are of the form χp1GL(2) o χ−1

p for an unramified character χp of Q×p (type IIb).
In fact, χp is the unramified character with χp(p) = αp. Substituting the formulas in iii) and v)
of Theorem 2.1 for the local Bessel functions, we obtain (49).

Proposition 8.1 has been generalized to Hilbert-Siegel modular forms in [14].
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The formula of Das-Kohnen-Sengupta

Let f(τ) =
∑∞

n=1 c(n)e2πinτ ∈ S2k−2(SL2(Z)) be an elliptic eigenform, with k even, and assume
that F is the Saito-Kurokawa lift of f . If αp is the Satake parameter at p, then

c(pµ) = pµ(2k−3)/2 α
µ+1
p − α−µ−1

p

αp − α−1
p

.

Hence formula (49) may be rewritten as

a(S) = CSN
−3/2
1 det(S)

k
2

∏
p|N1

bp∑
i=0

p
i
2 p−(ap−i)(2k−3)/2

(
c(pap−i)− δpp−

1
2 p(2k−3)/2c(pap−i−1)

)

= CSN
−k
1 det(S)

k
2

∏
p|N1

bp∑
i=0

pi(k−1)
(
c(pap−i)− δppk−2c(pap−i−1)

)
.

Now assume that L = c(S) = N1. This is equivalent to saying that S is a multiple of a matrix
with fundamental discriminant. More precisely, putting n = L = N1, we see that S = nT where
T ∈ P2 is such that disc(T ) = d. Hence,

a(nT ) = CnT n
−k det(S)

k
2

∏
p|n

bp∑
i=0

pi(k−1)
(
c(pap−i)− δppk−2c(pap−i−1)

)

= CT n
−k det(S)

k
2

∏
pν ||n

ν∑
i=0

pi(k−1)
(
c(pν−i)− δppk−2c(pν−i−1)

)

= CT det(T )
k
2

∏
pν ||n

ν∑
i=0

p(ν−i)(k−1)
(
c(pi)− δppk−2c(pi−1)

)
.

This coincides with the formula in Lemma 3.1 of [3]. Comparison with this formula shows that

CT det(T )
k
2 is a Fourier coefficient of the modular form of weight k − 1/2 corresponding to f

under the Shimura lifting.

9 Another proof of the classical Maass relations

In this section we will give another proof of the Maass relations satisfied by the Fourier coef-
ficients of a Saito-Kurokawa lift using our knowledge about Bessel models for the underlying
automorphic representation, without recourse to the classical construction. This proof will not
use Theorem 5.4.

9.1 Theorem. Let F be a cuspidal Siegel Hecke eigenform of weight k with respect to Sp4(Z)
which is a Saito-Kurokawa lift. For S ∈ P2, let a(S) denote the Fourier coefficient of F at S.
Then

a(

[
a b

2
b
2 c

]
) =

∑
r|gcd(a,b,c)

rk−1 a(

[
ac
r2

b
2r

b
2r 1

]
). (50)
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Proof. Let S =

[
a b

2
b
2 c

]
. As usual, we write disc(S) = N2

1d where d is a fundamental discriminant.

Let c(S) = L. For r|L, set S(r) =

[
ac
r2

b
2r

b
2r 1

]
. By Proposition 3.1 and (45),

a(S)e−2πTr(S) = ΦS
F (1) = CS

∏
p≤∞

BS
p (1).

Using Lemma 6.2, we get

a(S) = CS det(S)k/2
∏
p<∞

BS
p (1).

Hence, by Lemma 6.1,

a(S) = CS det(S)k/2
∏

p|L or p|(N1/L)

BS′
p

(
h
(
vp(L), vp

(N1

L

)))
= CS det(S)k/2

(∏
p|L

BS′
p

(
h
(
vp(L), vp

(N1

L

))))( ∏
p-L
p|N1

BS′
p

(
h(0, vp(N1))

))
.

Analogously,

a(S(r)) = CS(r) det(S(r))k/2
∏

p|N1/r

BS′
p

(
h
(

0, vp

(N1

r

)))
= CS(r) det(S(r))k/2

( ∏
p|L

p|N1/r

BS′
p

(
h
(

0, vp

(N1

r

))))( ∏
p-L
p|N1

BS′
p

(
h(0, vp(N1))

))
.

If N1/r is not divisible by p, then BS′
p (h(0, vp(N1/r))) = 1 by our normalizations. Hence, the

second condition under the first product sign can be omitted. Since CS = CS(r) by Lemma 6.3,
we conclude from the above equations that

rk−1a(S(r))
∏
p|L

BS′
p

(
h
(
vp(L), vp

(N1

L

)))
=
a(S)

r

∏
p|L

BS′
p

(
h
(

0, vp

(N1

r

)))
.

Applying
∑

r|L to both sides gives(∑
r|L

rk−1a(S(r))
)∏
p|L

BS′
p

(
h
(
vp(L), vp

(N1

L

)))
= a(S)

∑
r|L

1

r

∏
p|L

BS′
p

(
h
(

0, vp

(N1

r

)))
.

Since our assertion is a(S) =
∑

r|L r
k−1a(S(r)), we are done if we can prove that

∏
p|L

BS′
p

(
h
(
vp(L), vp

(N1

L

)))
=
∑
r|L

1

r

∏
p|L

BS′
p

(
h
(

0, vp

(N1

r

)))
. (51)
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Let pα1
1 · . . . · pαss with αj > 0 be the prime factorization of L. Then the right hand side of (51)

equals

α1∑
i1=0

. . .

αs∑
is=0

1

pi11 · . . . · p
is
s

s∏
j=1

BS′
pj

(
h
(

0, vpj

( N1

pi11 · . . . · p
is
s

)))
=

α1∑
i1=0

. . .

αs∑
is=0

s∏
j=1

(
p
−ij
j BS′

pj

(
h(0, vpj (N1)− ij)

))

=
s∏
j=1

( αj∑
ij=0

p
−ij
j BS′

pj

(
h(0, vpj (N1)− ij)

))
.

The left hand side of (51) equals

s∏
j=1

BS′
pj

(
h(αj , vpj (N1)− αj)

)
.

Hence, (51) is proved if we can show that

BS′
pj

(
h(αj , vpj (N1)− αj)

)
=

αj∑
i=0

p−ij B
S′
pj

(
h(0, vpj (N1)− i)

)
(52)

for all j. This follows from the implication ii) ⇒ iii) of Theorem 2.1, since, by our remarks in
Sect. 4, the non-archimedean local components πp of πF are of the form χ1GL(2) o χ−1 for an
unramified character χ of Q×p (type IIb).

This theorem proves the Maass relations for the Saito-Kurokawa liftings constructed via
representation theory, as indicated in the diagram (3). Since the proof comes down to properties
of local p-adic Bessel functions, we expect similar relations to exist for other types of Siegel
modular forms constructed from CAP type representations. This will be the topic of future
investigations.

10 A new characterization of Saito-Kurokawa lifts

There are several different ways to characterize when a Siegel eigenform F of weight k with
respect to Sp4(Z) is a Saito-Kurokawa lift. It was proved in the early 1980’s by Maass, Andrianov
and Zagier [11, 1, 31] that F is a Saito-Kurokawa lift if and only if F satisfies the classical Maass
relations (33). Since then, several other equivalent conditions have been discovered [6, 7, 18, 23];
we refer to [19] for a survey. All those conditions involve checking infinitely many relations on
the Fourier coefficients of F . The advantage of those conditions, on the other hand, is that they
also apply to non-eigenforms. Indeed, a Siegel cusp form F of weight k with respect to Sp4(Z)
satisfies any of those conditions if and only if it lies in the Maass Spezialschar, i.e., it is a linear
combination of eigenforms that are Saito-Kurokawa lifts.

In [19], some new characterizations for a Siegel eigenform being a Saito-Kurokawa lift were
proved. These involved a single condition on the Hecke eigenvalues at a single prime. Unlike
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the conditions referred to in the previous paragraph, the new characterizations of [19] are only
applicable to eigenforms.

Below, we prove yet another condition that if satisfied implies that a Siegel eigenform is a
Saito-Kurokawa lift. Like in [19], this new condition only applies to Hecke eigenforms (though
we need this only at a single prime) and involves checking a single condition. However, unlike
in [19], this new condition is phrased purely in terms of Fourier coefficients; thus, it is closer in
spirit to the original relations of Maass, Andrianov, and Zagier. Indeed, this new condition, as
phrased in (54) below, is nothing but a single “Maass relation on average”.

Let
F (Z) =

∑
S∈P2

a(S)e2πiTr(SZ)

be a Siegel cusp form of weight k with respect to Sp4(Z). Let D < 0 be a discriminant and
L > 0 an integer. Recall that H(D;L) denotes the set of equivalence classes of matrices in P2

whose content is equal to L and whose discriminant is equal to DL2. We define

ã(D;L) =
1

|H(D;L)|
∑

[S]∈H(D;L)

a(S). (53)

In other words, ã(D;L) is the average of the Fourier coefficients of F over matrices of discrimi-
nant DL2 and content L. We now state our result.

10.1 Theorem. Let F be a Siegel cusp form of weight k with respect to Sp4(Z). Suppose that
there is a prime p such that F is an eigenform for the local Hecke algebra at p (equivalently, F
is an eigenform for the Hecke operators T (p) and T (p2)). For each discriminant D < 0 and each
positive integer L, let ã(D;L) be defined as in (53). Then the following are equivalent.

i) F lies in the Maass Spezialschar.

ii) There exists a fundamental discriminant d < 0 such that ã(d; 1) 6= 0 and

ã(d; p) = ã(dp2; 1) + pk−1 ã(d; 1). (54)

Proof. Suppose that F lies in the Maass Spezialschar. Then ã(D;L) = a(D;L) where a(D;L)
is defined as in Theorem 5.1. It follows immediately from Theorem 5.1 that (54) is satisfied for
all d and p. A special case of the main result of [24] tells us that there exists a fundamental
discriminant d < 0 such that ã(d; 1) 6= 0.

Next, suppose that there exists a fundamental discriminant d < 0 such that ã(d; 1) 6= 0. Since
F is an eigenform of the local Hecke algebra at p, there exists a well-defined representation πp of
GSp4(Qp) attached to F . Indeed, for each irreducible subrepresentation π′ of the representation
of G(A) generated by ΦF , the local component of π′ at p is isomorphic to πp. By writing F as a
linear combination of Hecke eigenforms, applying Theorem 5.4 on each of these eigenforms and
then putting it all together, we conclude that, for all non-negative integers l,m,

ã(dp2m; pl) = p(l+m)k ã(d; 1)Bp(h(l,m)),
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where Bp is the spherical vector in the (Sd, 1, θp)-Bessel model for πp. The relation (54) together
with the non-vanishing of ã(d; 1) now implies that

Bp(h(1, 0)) = Bp(h(0, 1)) + p−1. (55)

Using Theorem 2.1, it follows that one of the Satake parameters of πp is p±1/2. Thus, each
irreducible subrepresentation of the representation of G(A) generated by ΦF is non-tempered
at p. By a result of Weissauer [30], it follows that each irreducible subrepresentation of the
representation of G(A) generated by ΦF is of CAP-type. This is equivalent to saying that F lies
in the Maass Spezialschar.

Theorem 10.1 tells us that if an eigenform F lies in the orthogonal complement of the Maass
Spezialschar and satisfies ã(d; 1) 6= 0 for some fundamental discriminant d < 0, then

ã(d; p) 6= ã(dp2; 1) + pk−1 ã(d; 1)

for every prime p. We end this section with a slightly weaker version of this result that applies
to non-eigenforms.

10.2 Theorem. Let F be a Siegel cusp form of weight k with respect to Sp4(Z). Suppose that
F lies in the orthogonal complement of the Maass Spezialschar. For each discriminant D < 0
and each positive integer L, let ã(D;L) be defined as in (53). Let d < 0 be a fundamental
discriminant such that ã(d; 1) 6= 0. Then, for all sufficiently large primes p, we have

ã(d; p) 6= ã(dp2; 1) + pk−1 ã(d; 1). (56)

Proof. Write F =
∑s

i=1 Fi such that each Fi is a Hecke eigenform. Let ãi(D;L) be the quantity
corresponding to Fi. Denote ci = ãi(d; 1). So we have

∑s
i=1 ci = ã(d; 1) 6= 0.

Now, as in the proof of Theorem 10.1, let πi,p be the representation of GSp4(Qp) attached
to Fi at each prime p. Note that by our assumption, and by the result of Weissauer [30], the
representation πi,p is tempered. As before, we have

ãi(dp
2m; pl) = p(l+m)k ãi(d; 1)Bi,p(h(l,m)),

where Bi,p is the spherical vector in the (Sd, 1, θp)-Bessel model for πi,p. This implies that

ã(d; p)− ã(dp2; 1)− pk−1 ã(d; 1) = pk
s∑
i=1

ci(Bi,p(h(1, 0))−Bp(h(0, 1))− p−1). (57)

Using Sugano’s formula, and using the fact that the local parameters of πi,p lie on the unit circle,
it is easy to check that

lim
p→∞

p(Bi,p(h(1, 0))−Bi,p(h(0, 1))− p−1) = −1.

So (57) implies that

lim
p→∞

p1−k(ã(d; p)− ã(dp2; 1)− pk−1 ã(d; 1)) = −
s∑
i=1

ci = −ã(d; 1) 6= 0.

It follows that ã(d; p)− ã(dp2; 1)− pk−1 ã(d; 1) 6= 0 for all sufficiently large primes p.
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