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Abstract

The interactive growth method is used to model the topol-
ogy of real networks. Packet traffic is simulated crossing
this network using the closed-loop packet transfer mecha-
nism Transmission Control Protocol. Comparisons are made
for traffic on regular and scale-free networks with open-loop
and closed-loop packet transfer mechanisms. Packet life-
times and queue behaviour for long range dependent sources
(LRD) are compared with short range dependent Poisson
sources (SRD) at the same loadings. The effects of varying
server strengths are studied as are the results of imposing
packet loss. The robustness of results is tested by varying
patterns of hosts and using different networks with similar
parameters. A marked difference is seen between outputs
from the two source types, SRD and LRD, emphasizing
that long range dependence in sources is an important fac-
tor. Changing host patterns for interactive growth networks
produces very similar results indicating a good degree of ro-
bustness in the simulations. However, these results are very
different from those obtained for regular and scale-free net-
work simulations using an open-loop transfer mechanism.
This demonstrates the need for more accurate models such
as the interactive growth model, and for the simulation of
closed-loop algorithms such as transmission control proto-
col.

1 Introduction

Over the past few years many studies have been made of
the internet. Measurements and simulations have revealed
the long range dependent nature of packet traffic on the
internet, [?]. In parallel with this work the topology of the
internet has been seen to be a scale-free structure [?, ?, ?].
In this paper, these two aspects of the internet have been
incorporated into one simulation. The intention of these
changes is to model the real internet much more accurately.

Long range dependence (LRD) in internet traffic was
first demonstrated by [?]. The strength of LRD can be char-
acterised by the Hurst parameter, H, (see [?]) which varies
between 0.5 and 1. The value H = 0.5 is equivalent to a
traffic trace having no LRD (thus, it is short range depen-
dent, SRD); the value H = 1 represents the maximum level
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of long range dependence. Fig. 1 illustrates the difference
between LRD and SRD sources of traffic. Batch averages
have been taken from binary data representing packets com-
ing from a source. The plot in Fig. 1(b) shows variances
in these batch average values measured for runs of 100,000
batches. A range of batch sizes and H values have been
used. Comparing H = 0.5 (SRD) with H = 0.974 (LRD),
it can be seen that the decay in variance with increasing
batch size is much less at the higher H value. This illus-
trates an important property of LRD traffic. Even taking
very large batches, the mean value can still vary consider-
ably between batches. This is linked to the bursty nature of
LRD traffic as depicted in Fig. 1(a). Very long sequences
of 1’s or 0’s are possible, so even very long runs cannot
be relied upon to produce a predictable average number
of packets. Poisson sources are short range dependent and
therefore do not exhibit this bursty behaviour.

The second main characteristic of LRD traffic is that it
is self-similar. This can be illustrated by measuring packet
frequencies over different time scales (Fig. 1(c)). It can
be seen that changes in time scale do not change the gen-
eral appearance of the traffic. In Fig. 1(d), a plot of the
auto-correlation function for LRD traffic shows that this
self-similarity results in a power law decay with increas-
ing lag. At a Hurst parameter of 0.97 a very slow power
law decay is seen. At an H value of 0.5 the source is short
range dependent and the autocorrelation decays much more
rapidly. The slope of this log-log plot, given by β, is related
to the Hurst parameter by the formula:

H = 1− β/2. (1)

In earlier work, we simulated packet traffic in regular
networks, [?, ?], using an open-loop packet transport mech-
anism. Networks using LRD and Poisson sources were com-
pared. The transmission control protocol (TCP) [?] is the
dominant packet transfer mechanism in today’s internet.
TCP is favoured in the internet because most data is sent
from one host to another, and needs to be sent without
error. TCP requires all packets sent to be acknowledged
by the receiver before further packets can be dispatched.
In this way packets are only sent when a connection be-
tween sender and receiver is established. Any packets not
acknowledged by the receiver are sent again. This mecha-
nism provides a very reliable method for data transfer.

Since TCP is a closed-loop protocol we would expect
behaviour different to that seen with the open-loop sim-
ulations. Erramilli et al., (2002),[?], have already shown
that TCP feedback modifies self-similarity in offered traffic
without creating or removing the self-similarity itself. In
this paper we use a simplified model of the most commonly
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Figure 1. The difference between LRD and SRD traffic sources. (a) A bursty source of traffic. LRD traffic is characterised
by long bursts in both the ’on’ and ’off’ states. (b) The effects of batch size on the variance of the average value as LRD is
increased. At high H values variances remain relatively high as batch size increases: for low H values and SRD (H = 0.5)
variances fall off rapidly with increasing batch size. (c) Decay in the autocorrelation function. The function decays rapidly
for SRD sources (H = 0.5), but very slowly for sources with H = 0.97 (close to the maximum possible level of LRD). (d)
Self-similarity in packet traffic. Plots of packet frequencies over different time scales reveal the same general appearance -
that is ’self-similarity’ (reproduced from Leland et al, [?])

used version of TCP.
Clearly the real internet is not a regular network! Much

work has been done to describe its topology. It has been ar-
gued to be a scale-free network (see references given above)
with a power law distribution of the probability of node
connectivities(degrees) given by [?, ?] :

P (k) ∼ Ck−γ (2)

with γ ≈ 2.22. Here C is a constant and k is the node
degree.

To model the actual internet more accurately we have
used interactive growth (IG) networks [?]. These are a new
type of scale-free network. They are generated by reflecting
the process by which the internet grows in reality. The In-
teractive Growth (IG) model [?], resembles the dynamical
properties that have been observed [?, ?] in the Internet his-
tory data. For example, newly added nodes have no more
than two links connecting to already existing nodes; and

new links not only connect new nodes to old nodes, but also
connect between old nodes. The IG model matches well the
degree distribution and the rich-club phenomenon of BGP
and Traceroute as graphs, [?]. Zhou and Mondragon have
shown in this paper that they accurately model both the
node degree distribution and the tier structure. The inter-
net exhibits a so-called disassortive mixing, where highly
connected nodes are more likely pointing to less connected
nodes.

The rich-club phenomenon emphasizes the fact that rich
nodes are densely interconnected with each other. This
property does not conflict with the disassortive mixing be-
haviour, because just a small number of connections be-
tween the rich nodes can make a significant difference on
the network structure. The disassortive mixing is the rea-
son that the rich-club phenomenon was ignored before, but
it is an important detail of the complexity of the Internet
topology.

As shown in Fig.2, there are actually two ingredients



that can be responsible for accurately matching degree dis-
tribution and the rich-club phenomenon:

• New links not only connect new nodes to old nodes,
but also connect between old nodes;

• Newly added nodes have no more than two links con-
necting to already existing nodes.

These two dynamical properties have been observed in
detail, see [?, ?], and also the Internet history data, where
further references are available. However, whether a new
link between old nodes starts from a host node (that a new
node attaches to), or starts from a chosen old node, has not
yet been supported by analysis on the actual measurement
data. The reason that the Bu, [?] or Dorogovtsev, [?] mod-
els do not represent the Internet as accurately as the IG
model could be because all their new nodes are connected
by the same number of new links (for the Internet, it is set
to be 3).

New nodes, equivalent to new customers, bring new
traffic load to rich nodes which act as service providers
would in real networks. This results in both an increase
in traffic volume and a change in the traffic pattern around
the rich nodes. This change in turn triggers the addition of
new links between the rich nodes and other nodes in order to
balance network traffic and optimise network performance.

In our previous simulations with regular networks we
used the same service rate for each node. However, the
node connectivities are all equal in a regular network. By
contrast, some nodes in IG networks have very high degrees,
and using the same service rate for each node would be
inappropriate. Hence we relate the service rate at each
node to its connectivity.

2 Network Traffic Model

We based our simulations on an IG network. The exponent
γ in eqn. (2) was fixed as 2.22 as is claimed for the real
internet, [?]. Each node can be either a host or a router.
Routers contain a single routing queue that receives pack-
ets in transit across the network, and releases them back
into the network. The service rate, s, at which packets are
released by routers is determined by the equation:

s = 0.25na (3)

The simulation is of the fixed increment time advance type
[?], so that the rate s may be measured in packets per time
tick of the simulation. In eqn. (??): n is the node de-
gree, and a represents the server strength. The parameter
a ranges between 1 and 2 in the results presented here.

Hosts have the same routing function as routers with
similar routing queues, but they also act as sources and
each has a transmit buffer. LRD and Poisson traffic sources
create packets that are stored in the transmit buffers until
they may be released into the network. The way in which
this is done is described below.

We use a simplified version of TCP Reno [?] as the net-
work transfer mechanism. Reno is the most widely used
version of TCP at present. Our version originates from
that described by [?]. The two main mechanisms used by
TCP Reno are called slow-start and congestion avoidance.

Slow-start is described in detail below. It is the mechanism
applied when files start, or packets sent have not been ac-
knowledged within a certain time limit. Congestion avoid-
ance is applied when the slow-start mechanism has reached
its limit. It only affects long files in networks working well
within their capacity. Our simplified version only applies
to slow-start because in the actual internet this mechanism
affects all connections and also dominates for most connec-
tions. Congestion avoidance has a much smaller effect by
comparison.

We use the family of Erramilli interval maps as the basis
for each LRD traffic source, [?], f = f(m1,m2,d) : I → I,
where

f(x) =

(
x+ (1− d) (x/d)m1 , x ∈ [0, d],
x − d ((1− x)/(1− d))m2 , x ∈ (d, 1],

(4)

where d ∈ (0, 1). The parameters m1, m2 ∈ [3/2, 2] induce
map intermittency. The map f is used to produce an orbit
of real numbers xn ∈ [0, 1]. This orbit is converted into a
binary on-off sequence where ‘Off’ is represented by values
falling in the interval [0, d], and ‘On’ by values falling in the
interval (d, 1]. It should be noted that all possible binary
sequences are available from the map f . If the map f is
in the ‘On’ state, each iteration of f represents a packet
generated. One sojourn period in the ‘On’ side of the map
represents a whole file. These files are then windowed using
the slow-start algorithm, adding another dynamical layer
to the system. The algorithm is as follows:

At a given host i in the network, and time t = n, there
is a current state, xi(n), and a current window size, wi(n),
for the number of packets that can be sent at time t = n.
The window size has a maximum value wmax. There is
also a residual file size, si(n), at node i which is given by

the number of iterates of f such that fsi(n)(xi(n)) > d,

and fsi(n)+1(xi(n)) < d. The source will send pi(n) =
min{wi(n), si(n)} packets. The full dynamics therefore takes
the form, (see Erramilli et al., 2002, [?]) :

1. xi(n) < d, i.e. no packet generated -

wi(n+ 1) = 0, and xi(n+ 1) = f(xi(n)); (5)

2. xi(n) > d, i.e. packet generated -

wi(n+ 1) =

(
1, if xi(n − 1) < d,

min{2wi(n), wmax}, otherwise,

(6)

and xi(n+ 1) = fpi(n)(xi(n)).
This algorithm applies if all packets in a window are ac-

knowledged before the retransmission timeout (RTO) limit
is reached. If packets take longer than this to be acknowl-
edged the window is sent again with the RTO doubled and
the window size set to zero. When the map is ‘Off’ the
window size is zero and no packets are sent.

This initial value of RTO is calculated using the expo-
nential averaging method, [?]. This method keeps a running
average of all round trip times. This average is weighted to-
wards more recent round trips, and is used in calculating
the RTO.
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Figure 2. The evolution of an interactive growth(IG) network.

Our routing algorithm uses a pre-calculated look-up ta-
ble of shortest paths. All links between nodes are assumed
to have unit length. At each time step packets are for-
warded from the head of each routing queue. If an ac-
knowledgement packet reaches its destination, this triggers
the release of the next window of packets from that host.
The number of packets forwarded from the routing queues
is given by eqn. (3).

A simple set of rules are used for forwarding packets
from the routing queue or source:

• The shortest path to the destination for each node
neighbouring the source is read from the look-up ta-
ble. A neighbour that is the minimum distance from
the destination is selected.

• If several neighbours share this minimum distance,
the neighbour that has had the fewest packets for-
warded to it by the source is chosen.

• If the number of packets forwarded are equal a ran-
dom selection is made.

• If the neighbour chosen is at its routing queue length
limit the packet is dropped.

3 Simulation Results

This paper presents an extension of our previous work with
regular lattices and open-loop traffic, see [?, ?].

In Fig. 3, a comparison is made between the different
topologies and packet transport algorithms used in this and
the previous work. Four combinations are considered:

• an IG network with a TCP closed-loop algorithm;

• a Manhattan network with an open-loop algorithm;
• an IG network with an open-loop algorithm; and

• a Manhattan network with a TCP closed-loop algo-
rithm.

The network size is 1024 nodes and the host density is
589/1024 in all cases. The server strength index a of eqn.
(2) is set to 1 for all four combinations. For the Manhattan
network, hosts are selected randomly; for the IG network,
connectivity 1 and 2 nodes are selected to be hosts. This

reflects the real case more closely than a random distribu-
tion. (The difference that this makes is analysed in Fig. 7
below).

In Fig. 3(a) average lifetimes are plotted against load
for the four cases with LRD traffic sources at each host.
Here the average lifetime is simply the average time spent
by packets in the network. The load is the average number
of packets produced by each traffic source per time tick of
the simulation.

Note that average lifetimes include the waiting time
in transmit buffers. Measurements from actual networks
would not include this. In addition loads quoted are those
offered to the transmit buffers, rather than the loads exit-
ing from the buffers. We have arranged things this way to
allow the end users experience to be modelled.

Clearly the closed-loop TCP algorithm results in much
longer lifetimes for both types of network. The reason for
this becomes clear when you consider TCP. The require-
ment that packets be acknowledged before the next window
is sent is quite conservative. Hence new windows cannot be
sent by hosts more frequently than the round trip times.
Congestion is responded to immediately because it causes
an increase in RTT’s and makes sources back off. Since file
sizes are not so large, and window sizes are often reset to 1
due to the RTO limit, throughput can never be that high.
This results in packets being delayed in the transmit buffer;
this is the primary cause of increased packet lifetimes. In
contrast the open-loop algorithm does not react to con-
gestion and allows queues to build up at routers. At high
enough loads the open-loop networks become congested and
lifetimes approach those of the closed-loop networks.

In addition, Fig. 3(a) shows that the network topol-
ogy is also a very important factor. In fact, a Manhattan
network with an open-loop algorithm has longer lifetimes
than an IG network with a closed-loop algorithm. This is
because of the much shorter average path lengths in the IG
network. The average path length in the Manhattan net-
work is 16 ’hops’ (one ’hop’ is the distance between neigh-
bouring nodes). In an IG network ordinary nodes connect
to rich nodes with a high probability, and rich nodes also
connect to one another preferentially. This leads to much
shorter average path lengths. For the IG network used here
the average path length is only 5 hops.

In Fig. 3(b) the same measurements are made with
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Figure 3. Comparisons between the open-loop simulations and closed-loop simulations on regular networks and scale-free
IG networks. Network sizes and host densities are the same for all simulations.

Poisson traffic sources substituted for LRD sources. Results
are very similar. The earlier onset on congestion reported
in [?, ?] is still present.

Fig. 3(c) shows throughput plotted against load. The
throughput is defined as the number of packets reaching
their destination per unit time per host. Results are con-
sistent with those for average lifetime. Identical networks
using open-loop algorithms have higher throughputs; the
IG network performs more efficiently for both types of al-
gorithm. Similar behaviour is observed for Poisson sources.

As outlined above, regular open-loop simulations are
fundamentally different to the closed-loop simulations on IG
networks used in this paper. For this reason more detailed
comparisons between these simulations and our earlier work
is not possible.

Fig. 4 shows a comparison of different server strengths.
The two types of source, SRD and LRD, are again consid-
ered. The same IG network with the same pattern of hosts
is used. Results from LRD sources and Poisson sources dif-
fer greatly. Throughputs (Figs 4(c) and 4(d)) at the lower
server strengths (a of equation (3) is set equal to 1 and 1.1)
are qualitatively similar: the throughput matches the load
up to a threshold and then levels out. However, this thresh-
old is more than 50% higher for the Poisson sources. If a
is increased to a value of 1.5 this threshold can no longer

be seen; throughputs for the two source types are similar.
When servers at ‘rich’ nodes are strongest (i.e. a = 2.0)
the situation is reversed: the network with LRD sources
has a higher throughput, able to handle the maximum load
applied to it without becoming overloaded.

Figs 4(a) and 4(b) show average lifetimes for the two
source types. At low loads behaviour is similar to that
seen in our earlier work with regular lattices and open-loop
protocols: lifetimes for Poisson sources are much less than
for LRD. In the case of Poisson sources there is a similar
transition from the free state to the congested state. At
increasing server strengths the transition becomes less pro-
nounced. This is due to the increased network capacity
which slows the onset of congestion.

In Fig. 5, 3D plots show transmit and routing queue
lengths for the same network. Again both types of SRD
and LRD traffic sources were used. Nodes are arranged
in ascending order of connectivity. In Fig. 5(a) and 5(b)
transmit queue lengths are linked to the average lifetimes
for both types of source. At low loads they are very short;
as loads increase they rapidly rise in length.

The routing queues (Figs 5(c) and 5(d)) are much shorter.
There is no pattern to the queue lengths for LRD sources,
with the exception that all queues arise at the higher con-
nectivity nodes. Poisson sources produce different behaviour.
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Figure 4. The number of packets that can be served at each time instant is increased according to a power law na, where n
is the degree of the node and a = 1, 1.1, 1.5, 2.

Figure 5. Queue lengths for host nodes of an IG network are shown as load increases, for both Poisson and LRD sources.
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Figure 6. Effect of varying queue length limit on average packet lifetime and throughput for LRD and Poisson sources.

Queue lengths are much less and queue lengths can be seen
to increase with increasing load. In addition the same nodes
have queues at different loads. This implies that host distri-
bution is important. The highest connectivity nodes build
up queues for all loads. As might be expected these nodes
are the most congested. The server strength, a, is only 1
here. At higher server strengths connectivity becomes less
significant as would be expected.

The fact that much longer queues form in the transmit
buffers shows that these queues provide the main contribu-
tion to average lifetimes.

In Fig. 6 we have simulated the packet dropping of
real networks by limiting the routing queue lengths. The
same network and host pattern as described for Fig. 4 has
been used with a server stength, a, of 1. Very severe packet
loss has been modelled here in order to test the extreme
situation. Real networks generally suffer much less packet
loss.

For LRD sources (Fig. 6(a)) average lifetimes are greatly
reduced when the queue limit is decreased. When queue
lengths are limited packets are dropped at the routers and
therefore re-sent more frequently. This causes shorter waits
in the transmit buffer. This can be seen most clearly at the
very low queue length limit.

In the case of Poisson sources (Fig. 6(b)) average life-
times behave quite differently. Lifetimes peak at a load of
0.3 for the queue limit of 5. This peak shifts to higher val-
ues as the queue limit increases. When there is no queue
limit the lifetime has the ’s’ shape seen previously in regular

networks.
Fig. 6(c) shows throughputs for LRD sources. These

are greatly reduced when a queue limit is applied. At the
smaller queue limits throughput is close to zero. In the case
of Poisson sources (Fig. 6(d)) throughput is similar for the
queue limit of 100, but also much less at the lower queue
limits. However, throughputs are still much higher than for
the LRD sources. This is caused by the shorter queues in
the case of Poisson sources. Most queue lengths are less
than a 100, meaning that this limit has little effect.

In Fig. 7 the same IG network has been used, but hosts
have now been selected randomly with the same density of
589/1024. Results are similar. The network with randomly
placed hosts always performs slightly better than the one
with hosts placed at the low degree hosts. Average lifetimes
are lower and throughput is slightly higher. This shows that
the inclusion of a small number of rich nodes in fact makes
little difference.

All our measurements have been repeated with different
host patterns and IG networks, but keeping host density
and network topology parameters the same. Results have
been very similar indicating a good degree of robustness in
our data.

4 Conclusion

In the work presented here we have carried on from our pre-
vious simulations of regular lattices with open-loop packet
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Figure 7. Average lifetime and throughput characteristics for different topological spreads of hosts in an IG network.

transport mechanisms. By using large IG networks and
TCP our simulations reflect the real internet more closely.

IG networks and other scale-free networks clearly have
very different properties to regular networks. In scale-free
networks a small number of nodes have very high degree
and path lengths are much shorter. TCP is also a closed-
loop rather than an open-loop transport mechanism. The
two are quite different in nature. These differences mean
that only a qualitative comparison is possible between this
and our previous work.

Measurements are robust in that changes in network
and host pattern produce similar results. This fact endorses
the IG method as a means of characterising real scale-free
networks.

As in previous work we have compared LRD and Pois-
son (SRD) sources. As before the two source types produce
results that differ greatly. An important phenomenon is
that LRD sources can cause severe local congestion when
several highly connected nodes are adjacent. This conges-
tion can be greatly reduced by using higher server strengths.
For very high server strengths, networks with LRD sources
may even perform better than those with Poisson sources.

Our results show that severe packet loss can have a dra-
matic effect on throughput. However, to improve the utility
of our results more consideration needs to be taken of the
mechanisms and levels of packet loss in the real network.

We have seen what the user experiences when the net-
work is overloaded. If the load were very low, TCP would
prevent congestion ever occurring. TCP controls conges-

tion within the network quite effectively, but the price is
a greatly reduced throughput. This is seen by the user as
time spent waiting for connections and increased download
times.

In future work we intend to model larger networks and
also consider networks that have dynamical topologies.
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