
1 Real numbers (review)

In Convergence and Continuity, the real numbers R were introduced ax-
iomatically, though most of the axioms were glossed over as intuitive or
familiar. The one that was stressed, because it characterises the real num-
bers, and distinguishes them from the rationals is the axiom of completeness.
Informally, this expresses the property of R that it has “no gaps”. More for-
mally, this is done by insisting that every subset S ⊂ R that is bounded
above has a least upper bound in R.

That approach, however, uses the fact that R is ordered, whereas we
want to build the theory of metric spaces on a notion of distance. Recall

Definition 1.1. A sequence (sn) in R is a Cauchy sequence if, given any
ε > 0, there exists Nε ∈ N such that |sn − sm| ≤ ε for all n,m ≥ Nε.

Completeness of the reals can be expressed as follows: for every Cauchy
sequence (sn) there is a number α ∈ R such that sn → α. It turns out that
these two ways of expressing completeness of R

• every bounded subset has a least upper bound in R;

• every Cauchy sequence has a limit in R,

are equivalent. The second is appropriate for us here.
If we look now at the two central concepts of the Convergence and Con-

tinuuity module, we see that they too are expressed in terms of distance.
A sequence (sn) converges to α ∈ R if, roughly, the distance between sn
and α can be made arbitrarily small by taking n sufficiently large. And a
function f : R → R is continuous at α if the distance between f(x) and
f(α) can be made arbitrarily small by making the distance between x and α
sufficiently small. (NB. The above are not rigorous definition of convergence
of sequences and continuity of functions. So go to your notes or a textbook
for rigorous definition, and verify that the only property of real numbers
that is needed is that a natural notion of distance can be defined on them.
A suitable choice for the distance between x and y is |x− y|.)

One of the aims of this course will be to set up a framework within which
we can state and prove generalisations of familiar results about R. Example
of results that hold in much greater generality are (a) every continuous
function f : [a, b]→ R on a bounded interval [a, b] is bounded, and (b) every
sequence (sn) in [a, b] has a convergent subsequence. That framework is
described in the following section.
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2 Metrics and norms

Definition 2.1. Let X be a non-empty set. A function % : X ×X → R is
called a metric on X if it satisfies

M1. %(x, y) > 0 if x 6= y, and %(x, x) = 0,

M2. %(x, y) = %(y, x),

M3. %(x, z) ≤ %(x, y) + %(y, z),

where x, y and z are arbitrary elements of X.

Example 2.2. R with the usual (Euclidean) metric %(x, y) = |x− y|.

Example 2.3 (Euclidean or `2-distance). Rn with the Euclidean metric

%(x, y) =

(
n∑

i=1

|xi − yi|2
)1/2

,

where xi and yi are coordinates of the points x and y respectively.

Example 2.4 (Manhattan or `1-distance). Rn with the metric

%(x, y) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xn − yn| .

Example 2.5 (`∞-distance). Rn with the metric

%(x, y) = max
{
|x1 − y1|, |x2 − y2|, . . . , |xn − yn|

}
.

Example 2.6. C[a, b], the set of all continuous real functions on [a, b], with
the metric

%(f, g) = sup
x∈[a,b]

|f(x)− g(x)| . (1)

Example 2.7. B(S), the set of all bounded real functions on a set S, with
the metric

%(f, g) = sup
x∈S
|f(x)− g(x)| . (2)

Note that when S = [a, b], equations (1) and (2) define the same metric.
However the sets on which those metrics are defined are different in the two
examples. (We return to this point later.)
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Example 2.8 (discrete metric). For any set X, define the metric % by

%(x, y) =

{
1 if x 6= y;

0 otherwise.

Of course, it is necessary to check that all the above examples are indeed
metrics, i.e., that they satisfy Definition 2.1. Usually it is easy to check
conditions M1 and M2 (symmetry), but M3 may require more work. We’ll
consider just the more important or trickier examples here, leaving the others
as exercises.

Consider for instance the metric % on R defined in Example 2.2. It is
clear that % satisfies M1 and M2. For M3, we need to show that %(x, z) ≤
%(x, y) + %(y, z), for all x, y, z ∈ R. But this is just the assertion that
|x − z| ≤ |x − y| + |y − z| for all x, y, z ∈ R, which is the familiar “triangle
inequality” for real numbers.

Example 2.3 (continued). Conditions M1 and M2 are easy to check. (Do
this!) For the triangle inequality M3 we need to check that√∑

i
(xi − zi)2 ≤

√∑
i
(xi − yi)2 +

√∑
i
(yi − zi)2,

for all points x = (xi), y = (yi), z = (zi) in Rn. Here, and in what follows,
all summations are over i = 1, . . . , n.

For brevity, write ui for xi− yi and vi for yi− zi and note that xi− zi =
ui + vi. The inequality we need to prove becomes√∑

i
(ui + vi)2 ≤

√∑
i
u2i +

√∑
i
v2i .

Since both sides of this inequality are positive, we can square both of them
to obtain an equivalent inequality

∑
i
(ui + vi)

2 ≤
∑

i
u2i +

∑
i
v2i + 2

√∑
i
u2i

√∑
i
v2i ,

which simplifies to

∑
i
uivi ≤

√∑
i
u2i

√∑
i
v2i .

But this is the well-known Cauchy-Schwarz inequality.
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Example 2.7 (continued). Suppose f, g, h : S → R are bounded real-
valued functions on S. Since f and g are bounded, so also is f − g. So
%(f, g) = supx∈S |f(x) − g(x)| = 0 is the supremum of a bounded set and
hence well defined.

It is clear that %(f, g) ≥ 0, Also,

%(f, g) = 0 ⇔ sup
x∈S
|f(x)− g(x)| = 0

⇔ |f(x)− g(x)| = 0, for all x ∈ S
⇔ f(x) = g(x), for all x ∈ S.

So M1 holds.
For M2, note that %(f, g) = supx∈S |f(x)−g(x)| = supx∈S |g(x)−f(x)| =

%(g, f).
M3 requires only a little more work. Let α ∈ S be arbitrary. By defi-

nition, %(f, g) = supx∈S |f(x) − g(x)| and so |f(α) − g(α)| ≤ %(f, g). Simi-
larly, |g(α) − h(α)| ≤ %(g, h). By the triangle inequality for real numbers,
|f(α)− h(α)| ≤ |f(α)− g(α)|+ |g(α)− h(α)| ≤ %(f, g) + %(g, h). But α ∈ S
was chosen arbitrarily, so %(f, h) = supx∈S |f(x)− h(x)| ≤ %(f, g) + %(g, h).

Example 2.5 is a discrete analogue of Example 2.7, so you should be able
to adapt the argument above to that example too.

Definition 2.9. We call the pair (X, %) a metric space if X is a non-empty
set and % is a metric on X.

Note that M3 expresses a general triangle inequality for general metric
spaces: if x, y, z are points in X then the distance from x to z cannot exceed
the sum of the distances from x to y and from y to z.

Definition 2.10. If (X, %) is a metric space and A ⊂ X then % is also a
metric on A. The metric space (A, %) is called a subspace of (X, %).

Example 2.11. A continuous function on a bounded closed interval is al-
ways bounded. Therefore C[a, b] is a subspace of B[a, b] whenever −∞ <
a < b < +∞. (Refer to Examples 2.6 and 2.7. We already noted that the
metrics agree.) In fact C[a, b] is a strict subspace of B[a, b] since there are
bounded functions that are not continuous.

If X is a linear space, it is often possible to express the metric % in terms
of a function of one variable that can be thought of as the length of each
element (i.e., its distance from 0).

4



Definition 2.12. Let X be a vector space over R (or over C). A function
‖ · ‖ : X → R is called a norm on X if it satisfies

N1. ‖x‖ > 0 if x 6= 0, and ‖0‖ = 0,

N2. ‖λx‖ = |λ| ‖x‖ for all x ∈ X and λ ∈ R (or λ ∈ C),

N3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

A linear space with a norm is called a normed space.

A normed space can be viewed quite naturally as a metric space.

Theorem 2.13. Suppose X is a linear space with norm ‖ · ‖. The function
%(x, y) = ‖x− y‖ is a metric on X.

Proof. M1 follows from N1, since %(x, x) = ‖x−x‖ = ‖0‖ = 0, and %(x, y) =
‖x−y‖ > 0, when x 6= y. M2 follows from N2, through the chain of equalities

%(x, y) = ‖x− y‖ = ‖−1 · (y − x)‖ = |−1| · ‖y − x‖ = %(y, x).

For M3, observe that

%(x, y) + %(y, z) = ‖x− y‖+ ‖y − z‖ ≥ ‖x− y + y − z‖ = ‖x− z‖ = %(x, z),

where the inequality is N3.

However, not every metric arises in this way; one can have a metric % on
a vector space X such that %(x, 0) does not have the properties of a norm.

Example 2.14. In Examples 2.2, 2.3 and 2.4, the metrics are generated by
the norms ‖x‖ = |x|, ‖x‖ = (

∑n
i=1 |xi|2)1/2 and ‖x‖ =

∑n
i=1 |xi| respectively.

Example 2.15. The metrics (1) and (2) are generated by the norms

‖f‖ = sup
x∈[a,b]

|f(x)| and ‖f‖ = sup
x∈S
|f(x)| .

A further way to obtain metric spaces is by taking a product of other
metric spaces. For example, if (X1, %1) and (X2, %2) are both metric spaces,
then so is (X1 ×X2, %), where % : (X1 ×X2)

2 → R is defined by any of:

• %
(
(x1, x2), (y1, y2)

)
= %1(x1, y1) + %2(x2, y2),

• %
(
(x1, x2), (y1, y2)

)
=
√
%1(x1, y1)2 + %2(x2, y2)2, or

• %
(
(x1, x2), (y1, y2)

)
= max

{
%1(x1, y1), %2(x2, y2)

}
.

It’s not particularly difficult to prove the above claim, but we won’t do so
here.

5




