School of Mathematical Sciences

News on statistical mechanics for complex systems menu

News on statistical mechanics for complex systems

Constantino Tsallis
(CBPF, Brazil)
Tue, 13/11/2012 - 16:00
Seminar series: 
Strong thermodynamical arguments exist in the literature which show that the entropy S of say a many-body Hamiltonian system should be extensive (i.e., S(N)~N) independently from the range of the interactions between its elements. If the system has short-range interactions, an additive entropy, namely the Boltzmann-­Gibbs one, makes the job. For long-range interactions, nonergodicity and strong correlations are generically present, and nonadditive entropies become necessary to preserve the desired entropic extensivity. These and recently related points (q-Fourier transform, large-deviation theory, nonlinear quantum mechanics) will be briefly presented. BIBLIOGRAPHY: (i) J.S. Andrade Jr., G.F.T.da Silva, A.A. Moreira, F.D. Nobre and E.M.F. Curado, Phys. Rev. Lett. 105, 260601 (2010); (ii) F.D. Nobre, M.A. Rego­-Monteiro and C. Tsallis, Phys. Rev. Lett. 106, 140601 (2011); (iii)