School of Mathematical Sciences

Research menu

Error message

Notice: Undefined index: HTTP_ACCEPT_LANGUAGE in include_once() (line 2 of /var/www/sites/default/settings.php).

Publications Archive

This page lists older publications in Applied Mathematics

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
2004 2005 2006

Publications 2006

  1. S. Groote and C. Beck, Scaling behaviour of non-hyperbolic coupled map lattices, (nlin.CD/0603397), Phys. Rev. E 74, 046216 (2006)
  2. C. Beck, Laboratory tests on dark energy, (astro-ph/0512327), J.Phys. Conf. Ser. 31, 123 (2006)
  3. C. Beck, Stretched exponentials from superstatistics, (cond-mat/0510841), Physica A 365, 96 (2006)
  4. C. Beck, Superstatistical Brownian motion, (cond-mat/0508263), Progr. Theor. Phys. Suppl. 162, 29 (2006)
  5. C. Beck, Dark energy, chaotic fields, and fundamental constants, (astro-ph/0502211), in: Frontiers of Fundamental Physics, eds. B.G. Sidharth, F. Honsell and A. de Angelis, p. 137-146, Springer, Berlin (2006)
  6. O. Jenkinson, Ergodic optimization, Discr. & Cont. Dyn. Sys. Ser. A, 15 (2006), 197-224.
  7. O. Jenkinson, Every ergodic measure is uniquely maximizing, Discrete & Continuous Dynamical Systems, 16 (2006), 383-392.
  8. O. Jenkinson, R. D. Mauldin & M. Urbanski, Ergodic optimization for countable alphabet subshifts of finite type, Ergodic Theory & Dynamical Systems, 26 (2006), 1791-1803.
  9. T. Prellberg, J. Krawczyk, and A. Rechnitzer, Polymer simulations with a flat histogram stochastic growth algorithm, Computer Simulation Studies in Condensed Matter Physics XVII, pages 122-135, Springer Verlag, 2006
  10. T. Prellberg, P. Kleban, and J. Fiala, Cluster approximation for the Farey fraction spin chain, J. Stat. Phys. 123 (2006) 455-471
  11. P. Cameron, T. Prellberg, and D. Stark, Asymptotic enumeration of incidence matrices, J. Phys.: Conf. Ser. 42 (2006) 59-70.
  12. J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, Self-avoiding random walk with multiple site weightings and restrictions, Phys. Rev. Lett. 96 (2006) 240603; selected for Virt. J. Biol. Phys. Res. 12 (2006)
  13. P. Cameron, T. Prellberg, and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combinat. 13 (2006) R85
  14. H. Touchette, Comment on "First-order phase transition: equivalence between bimodalities and the Yang-Lee theorem", Physica A 359, 375-379, 2006. (cond-mat/0503029)
  15. H. Touchette, C. Beck, Nonconcave entropies in multifractals and the thermodynamic formalism, J. Stat. Phys. 125, 455-471, 2006. cond-mat/0507379 published version
  16. M. Costeniuc, R.S. Ellis, H. Touchette, Nonconcave entropies from generalized canonical ensembles, Phys. Rev. E 74, 010105(R) (1-4), 2006. cond-mat/0605213 published version
  17. H. Touchete, M. Costeniuc, R.S. Ellis, B. Turkington, Metastability within the generalized canonical ensemble, Physica A 365, 132-137, 2006. cond-mat/0509802 published version
  18. M. Costeniuc, R.S. Ellis, H. Touchette, B. Turkington, Generalized canonical ensembles and ensemble equivalence, Phys. Rev. E 73, 026105 (1-8), 2006. cond-mat/0505218 published version
  19. D. Jogia, J.A.G. Roberts and F. Vivaldi, An algebraic geometric approach to integrable maps of the plane, J. Phys. A 39, 1133-1149 (2006).
  20. F. Vivaldi and J.H. Lowenstein, Arithmetical properties of a family of irrational piecewise rotations, Nonlinearity 19 (2006) 1069-1097.
  21. F Vivaldi, The arithmetic of discretized rotations, in p-adic Mathematical Physics, A Y Khrennikov, Z Rakic, I V Volovich editors, AIP Conference Proceedings 826, AIP, Melville, New York (2006) p 162-173.
  22. N. Baba, W. Just, H. Kantz, and A. Riegert; Accuracy and efficiency of reduced stochastic models for chaotic Hamiltonian systems with time scale separation Phys. Rev. E 73 (2006) 066228
  23. W. Just; Phase transitions in coupled map lattices and in associated probabilistic cellular automata, Phys. Rev. E 74 (2006) 046209

Publications 2005

  1. D.K. Arrowsmith, M. di Bernardo and F. Sorrentino, Effects of variations of load distribution on network performance, Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on 23-26 May 2005 Page(s):3773 - 3776
  2. D.K. Arrowsmith, R.J. Mondragon and M. Woolf, Data Traffic, Topology and Congestion, in: Complex Dynamics in Communication Networks (Eds L. Kocarev and G. Vattay), p.127-158 (Springer) 2005
  3. C. Beck and M.C. Mackey, Could dark energy be measured in the lab?, Phys. Lett. B 605, 295 (2005). (astro-ph/0406504)
  4. C. Beck, G. Benedek, A. Rapisarda, and C. Tsallis (eds.), Complexity, Metastability, and Nonextensivity, World Scientific, Singapore (2005)
  5. C. Beck, E.G.D. Cohen, S. Rizzo, Atmospheric turbulence and superstatistics, Europhysics News 36, 189 (2005); cond-mat/0508257
  6. C. Beck, E.G.D. Cohen, H.L. Swinney, From time series to superstatistics, Phys. Rev. E 72, 056133 (2005); cond-mat/0507411
  7. C. Beck, Superstatistical turbulence models, in Proceedings of MPA Garching 'Interdisciplinary Aspects of Turbulence' (2005); physics/0506123
  8. C. Beck, Superstatistics: Recent developments and applications, in 'Complexity, Metastability and Nonextensivity', eds. C. Beck, G. Benedek, A. Rapisarda, and C. Tsallis, World Scientific (2005); cond-mat/0502306
  9. C. Beck, Dark energy, chaotic fields, and fundamental constants, in Proceedings of 'Frontiers of Fundamental and Computational Physics', Udine (2005); astro-ph/0502211
  10. S. Bullett and M. Freiberger, Holomorphic Correspondences Mating Chebyshev-like Maps with Hecke Groups, Ergod. Th. and Dynam. Sys. 25 (2005), 1057-1090
  11. I. Goldsheid and B. Khoruzhenko, Thouless formula for random non-Hermitian Jacobi matrices. Isr. J. Math. 148, 331-346 (2005).
  12. O. Jenkinson & M. Pollicott, Orthonormal expansions of invariant densities for expanding maps , Advances in Mathematics, 192 (2005), 1-34
  13. O. Jenkinson, Maximum hitting frequency and fastest mean return time, Nonlinearity, 18 (2005), 2305-2321.
  14. O. Jenkinson,D. Mauldin and M. Urbanski, Zero temperature limits of Gibbs-equilibrium states for countable alphabet subshifts of finite type, Journal of Statistical Physics, 119 (2005), 765-776.
  15. N. Korabel, A.V. Chechkin, R. Klages, I.M. Sokolov, and V.Yu. Gonchar, Understanding Anomalous Transport in Intermittent Maps: From Continuous Time Random Walks to Fractals, Europhys. Lett. 70, 63--69, (2005)
  16. J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, Pulling absorbing and collapsing polymers off a surface, JSTAT (2005) P05008
  17. J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, Layering transitions for adsorbing polymers in poor solvents, Europhys. Lett. 70 (2005) 726-732
  18. L. Rass, Pandemic bounds for an epidemic on an infinite lattice, Mathematical Biosciences, 195 (2), 194-209 (2005)
  19. R.S. Ellis, P. Otto and H. Touchette, Analysis of phase transitions in the mean-field Blume-Emery-Griffiths, Ann. Appl. Prob. 15, 2203-2254, 2005.
  20. M. Costeniuc, R.S. Ellis, H. Touchette, Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model, J. Math. Phys. 46, 063301, 2005.
  21. H. Touchette, C. Beck, Asymptotics of superstatistics, Phys. Rev. E 71, 016131, 2005.
  22. M. Costeniuc, R.S. Ellis, H. Touchette, B. Turkington, The generalized canonical ensemble and its equivalence with the microcanonical ensemble, J. Stat. Phys. 119, 1283-1329, 2005. (cond-mat/0408681)
  23. H. Touchette, R.S. Ellis, Nonequivalent ensembles and metastability, in Complexity, Metastability and Nonextensivity, C. Beck, G. Benedek, A. Rapisarda, C. Tsallis (eds), World Scientific, 2005.
  24. J A G Robers and F Vivaldi, Signature of time-reversal symmetry in polynomial automorphisms over finite fields, Nonlinearity 18 (2005) 2171-2192.
  25. J.H. Lowenstein, G. Poggiaspalla, and F. Vivaldi, Sticky orbits in a kicked oscillator model, Dynamical Systems 20 (2005) 413-451.
  26. G. Toulouse and F.J. Wright, Catastrophe Theory. In Encyclopedia of Physics, 3/e, R. G. Lerner, G. L. Trigg (eds.), WILEY-VCH, ISBN: 3-527-40554-2, pp 250-258, October 2005.
  27. G. Radons, W. Just, and P. Häussler (Eds.); Collective dynamics of nonlinear and disordered systems, (Springer, 2005)
  28. W. Just; On Symbolic Dynamics of Space--Time Chaotic Models, in Collective dynamics of nonlinear and disordered systems, G. Radons, P. Häussler, and W. Just (Eds.), (Springer, 2005), p.339-357
  29. H.G. Schuster and W. Just; Deterministic Chaos, (Wiley-VCH, 2005)
  30. A. Riegert, N. Baba, K. Gelfert, W. Just, and H. Kantz; Hamiltonian chaos acts like a finite energy reservoir: Accuracy of the Fokker-Planck approximation, Phys. Rev. Lett. 94 (2005) 054103
  31. W. Just and F. Schmüser; On phase transitions in coupled map lattices, in Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems, Eds. J.-R. Chazottes and B. Fernandez, Lecture Notes in Physics 671 (Springer, 2005), p.33-64
  32. S. Hallerberg, W. Just, and G. Radons; Analytic properties of the Ruelle zeta function for mean field models of phase transition, J. Phys. A 38 (2005) 5097-5109

Publications 2004

  1. M. Barenco and D.K. Arrowsmith, The autocorrelation of double intermittency maps and the simulation of computer packet traffic , Dynamical Systems, 19(1) 2004, 61-74.
  2. D.K. Arrowsmith and M.Woolf, Modelling of TCP packet traffic for a large interactive growth network Proc. IEEE Systems and Circuits, Vancouver, 2004 V, 477-480.
  3. E. Gutierrez and D.K. Arrowsmith, Control of a double impacting mechanical oscillator using displacement feedback, International Journal of Bifurcation and Chaos, 14 No. 9 (2004), 3095-3113.
  4. O. Bandtlow, Estimates for norms of resolvents and an application to the perturbation of spectra, Math. Nach. 267 (2004), 3-11
  5. C. Beck, Chaotic scalar fields as models for dark energy, Phys. Rev. 69D , 123515 (2004). (astro-ph/0310479)
  6. C. Beck, Chaotic quantization and the parameters of the standard model, Proc. Idea-Finding Symposium Frankfurt, 3 (2004), EP Systema (Debrecen)
  7. C. Beck, Superstatistics: Theory and Applications, Cont. Mech. Thermodyn. 16, 293 (2004). (cond-mat/0303288)
  8. C. Beck, Superstatistics in hydrodynamic turbulence, Physica 193D , 195 (2004). (physics/0303061)
  9. C. Beck, K.E. Daniels, and E. Bodenschatz, Defect turbulence and generalized statistical mechanics, Physica 193D, 208 (2004). (cond-mat/0302623)
  10. C. Beck, Generalized statistical mechanics of cosmic rays, Physica 331A, 173 (2004). (cond-mat/0301354)
  11. C. Beck, Nonextensive scalar field theories and dark energy models, Physica 340A, 459 (2004). (cond-mat/0312433)
  12. C. Beck and E.G.D. Cohen, Superstatistical generalization of the work fluctuation theorem, Physica 344A, 393 (2004). (cond-mat/0312399)
  13. C. Beck, Superstatistics, escort distributions, and applications, Physica 342A, 139 (2004). (cond-mat/0312134)
  14. C. Beck, Multifractal Analysis, in Encyclopedia of Nonlinear Science, ed. A. Scott, Routledge (2004)
  15. C. Beck, String Theory, in Encyclopedia of Nonlinear Science, ed. A. Scott, Routledge (2004)
  16. C. Beck, Free Energy, in Encyclopedia of Nonlinear Science, ed. A. Scott, Routledge (2004)
  17. O. Jenkinson and L. Zamboni Characterisations of Balanced Words via Orderings, Theor. Comp. Sci., 310 (2004), 247-271.
  18. O. Jenkinson, On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture, Stochastics and Dynamics, 4 (2004), 63-76.
  19. O. Jenkinson and M. Pollicott, Entropy, exponents and invariant densities for hyperbolic systems: dependence and computation, in "Modern Dynamical Systems and Applications", C.U.P., 2004, pp 365-384.
  20. M. Freiberger, Matings between Kleinian groups isomorphic to C2 * C5 and quadratic polynomials, Conform. Geom. Dyn. 7 (2003), 11-33.
  21. N. Korabel and R.Klages, Fractality of deterministic diffusion in the nonhyperbolic climbing sine map, CHAOTRAN proceedings, Physica D 187, 66--88 (2004) (special issue)
  22. L. Matyas and R.Klages, Irregular diffusion in the bouncing ball billiard, CHAOTRAN proceedings, Physica D 187, 165-183 (2004) (special issue)
  23. R. Klages, H. van Beijeren, P. Gaspard, and J.R. Dorfman (eds.), Microscopic Chaos and Transport in Many-Particle Systems: Introductory comments, CHAOTRAN proceedings, Physica D 187, 1-4 (2004) (special issue)
  24. R. Klages, I.F. Barna, and L. Matyas, Spiral modes in the diffusion of a single granular particle on a vibrating surface, Phys. Lett. A 333, (2004) 79-84.
  25. T. Prellberg and J. Krawczyk, Flat histogram version of the pruned and enriched Rosenbluth method, Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)
  26. J. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, Stretching of a chain polymer adsorbed at a surface, JSTAT (2004) P10004
  27. T. Prellberg and A. L. Owczarek, Polymer Collapse in High Dimensions: Monte Carlo Simulation of Lattice Models, in Computer Simulation Studies in Condensed Matter Physics XVI, pages 147-151, Springer Verlag, 2004
  28. V. M. Rothos, A. Berger, and R.S. MacKay, A criterion for non-persistence of Travelling Breathers for Perturbations of the Ablowitz-Ladik lattice Lattice, Discrete and Continuous Dynamical Systems B 4 (2004) 911-920
  29. E. V. Doktorov, N. P. Matsuka, and V. M. Rothos, Dynamics of Ablowitz-Ladik soliton train, Phys Review E 69 (2004) 056607
  30. J H Lowenstein, K L Kouptsov and F Vivaldi, Recursive tiling and geometry of piecewise rotations by π/7, Nonlinearity 17 (2004) 371-395.
  31. H. Kantz, W. Just, N. Baba, K. Gelfert, and A. Riegert; Fast chaos versus white noise - entropy analysis and a Fokker-Planck model for the slow dynamics, Physica D 187 (2004) 200-213
  32. A. Fichtner, W. Just, and G. Radons; Analytical investigation of modulated time-delayed feedback control, J. Phys. A 37 (2004) 3385-3391
  33. J. Schlesner, A. Amann, N. Janson, W. Just, and E. Schöll; Self-stabilization of chaotic domain oscillations in superlattices by time-delayed feedback control, Semicond. Sci. and Tech. 19 (2004) 34-36
  34. C. v. Loewenich, H. Benner, and W. Just; Experimental relevance of global properties of time-delayed feedback control, Phys. Rev. Lett. 93 (2004) 174101
  35. W. Just, H. Benner, and C. v. Loewenich; On global properties of time-delayed feedback control: weakly nonlinear analysis, Physica D 199 (2004) 33-44

Publications 2003

  1. D.K. Arrowsmith, R.J. Mondragon, J.M.Pitts, M. Woolf, Internet packet traffic congestion , Nonlinear Dynamics for Coding Theory and Network Traffic in the IEEE Proceedings of Systems and Circuits, Vol 3, 2003, pp746-749.
  2. J. A. G. Roberts, D. Jogia, and F. Vivaldi, The Hasse-Weil bound and integrability detection in rational maps, J. Nonl. Math. Phys. 10 (2003) 165-179.
  3. J. A. G. Roberts and F. Vivaldi, Arithmetical method to detect integrability in maps, Phys. Rev. Lett. 90 No. 3 (2003) [034102].
  4. F Vivaldi and I Vladimirov, Pseudo-randomness of round-off errors in discretized linear maps on the plane, Int. J. of Bifurcations and Chaos 13 (2003) 3373-3393.
  5. O. Jenkinson, L.F. Gonzalez & M. Urbanski, On transfer operators for continued fractions with restricted digits, Proc. London Math. Soc., 86 (2003), 755-778.
  6. C. Beck, Lagrangian acceleration statistics in turbulent flows, Europhys. Lett. 64, 151 (2003)
  7. C. Beck and E.G.D. Cohen, Superstatistics, Physica 322A, 267 (2003)
  8. Shaun Bullett and Marianne Freiberger, Hecke Groups, Polynomial Maps and Matings, Int. J. Modern Physics B, 17(2003), 3922-3931.
  9. L. Rass and J. Radcliffe, Spatial Deterministic Epidemics, Mathematical Surveys and Monographs, Vol.102, American Mathematical Society (2003).
  10. L. Rass, Book Review: of Branching Processes in Biology by Marek Kimmel and David E Axelrod, in The Quarterly review of Biology, Vol 78 No 1 p84. (2003)
  11. V. M. Rothos, M. Inarrea, and V. Lanchares, Chaotic rotations of an asymmetric body with time-dependent moments of inertia and viscous drag, Int. J. Bif. Chaos , 134 (1), 117--127, (2003).
  12. V. M. Rothos, Homoclinic Intersections in Perturbed Lattice modified KdV equation, Theoretical and Mathematical Physics , 13 (2), 393-409, (2003).
  13. V. M. Rothos and E. Doktorov, Homoclinic Structure for Nonlinear Integrable Wave Equations: New Approach, Proceedings of the Sixth International Conference on Mathematical and Numerical Aspects of Wave Propagation, Waves 2003, 717-723, Springer-Verlag, (2003).
  14. V. M. Rothos and D. E. Pelinovsky, Evans Function for the AKNS problem with Algebraic Solitons, Proceedings of the Sixth International Conference on Mathematical and Numerical Aspects of Wave Propagation, Waves 2003, 729-735, Springer-Verlag, (2003).
  15. V. M. Rothos and E. Doktorov Homoclinic Orbits for Soliton Equations Solvable via the Quadratic Bundle, Physics Letters A 314 (2003) 59-67
  16. V. M. Rothos, A. Aigner, and A. R. Champneys, A new barrier to the existence for moving kinks in Frenkel-Kontorova lattices, Physica D 186 (2003) 148--170
  17. V. M. Rothos, E. Doktorov, and T. Matsuka, Perturbation-induced radiation by Ablowitz-ladik soliton, Phys Rev E 68 (2003) 066610
  18. I. Goldsheid and B. Khoruzhenko, Regular Spacings of Complex Eigenvalues in One-Dimensional Non-Hermitian Anderson Model. Comm. Math. Phys. 238, 505-524 (2003).
  19. W. Just, H. Benner, and E. Reibold; Theoretical and experimental aspects of chaos control by time-delayed feedback, Chaos 13 (2003) 259-266
  20. W. Just, S. Popovich, A. Amann, N. Baba, and E. Schöll; Improvement of time-delayed feedback control by periodic modulation: analytical theory of Floquet mode control schemes, Phys. Rev. E 67 (2003) 026222-1 - 026222-10
  21. W. Just, H. Kantz, M. Ragwitz, and F. Schmüser; Nonequilibrium physics meets time series analysis: measuring probability currents from data, Europhys. Lett. 62 (2003) 28-34
  22. W. Just, K. Gelfert, N. Baba, A. Riegert, and H. Kantz; Elimination of fast chaotic degrees of freedom: On the accuracy of the Born approximation, J. Stat. Phys. 112 (2003) 277-292
  23. G. Sauermann and W. Just; Frequencies of Bogoliubov coupled oscillators with resonant three particle interaction, J. Phys. A 36 (2003) 4321-4336
  24. W. Just, H. Benner, and E. Schöll; Control of chaos by time-delayed feedback: a survey of theoretical and experimental aspects, in Advances in Solid State Physics 43, B. Kramer (Ed.), (Springer 2003), p.589-603
  25. J. Unkelbach, A. Amann, W. Just, and E. Schöll; Time-delay autosynchronization of the spatio-temporal dynamics in resonant tunneling diodes, Phys. Rev. E 68 (2003) 026204
  26. J. Schlesner, A. Amann, N. B. Janson, W. Just, and E. Schöll; Self-stabilization of high frequency oscillations in semiconductor superlattices by time-delay autosynchronisation, Phys. Rev. E 68 (2003) 066208

Publications 2002

  1. T. Bousch & O. Jenkinson, Cohomology classes of dynamically non-negative C^k functions, Inventiones Mathematicae, 148 (2002), 207-217.
  2. O. Jenkinson & M. Pollicott, Calculating Hausdorff dimension of Julia sets and Kleinian limit sets, American Journal of Mathematics, 124 (2002), 495-545.
  3. O. Jenkinson, Smooth Cocycle Rigidity for Expanding Maps, and an Application to Mostow Rigidity, Mathematical Proceedings of the Cambridge Philosophical Society, 132 (2002), 439-452.
  4. C. Beck, Spatio-temporal Chaos and Vacuum Fluctuations of Quantized Fields (World Scientific, 2002)
  5. C. Beck, Non-extensive statistical mechanics approach to fully developed hydrodynamic turbulence, Chaos, Solitons and Fractals 13 , 499 (2002)
  6. C. Beck, Non-additivity of Tsallis entropies and fluctuations of temperature, Europhys. Lett. 57 , 329 (2002)
  7. C. Beck, Nonextensive methods in turbulence and particle physics, Physica 305A , 209 (2002)
  8. C. Beck, Generalized statistical mechanics and fully developed turbulence, Physica 306A , 189 (2002)
  9. C. Beck, Chaotic strings and standard model parameters, Physica 171D , 72 (2002)
  10. D.K. Arrowsmith and M. Woolf, Packet Traffic Congestion in Networks, ATCM 2002, 34-43, (publ. ATCM, Inc.)
  11. D.K. Arrowsmith, Nonlinear Modelling of Internet Packet Traffic, ERCIM News, Vol 50, 2002, 9-10.
  12. J.M. Pitts, J.A. Schormans, M. Woolf, R.J. Mondragón, D.K. Arrowsmith, End-to-end performance in real time IP networks with self-similar behaviour, IEEE Trans on Acoustics, Speech, and Signal Processing, 4 2002, 4044.
  13. R.J.Mondragón, J.M. Pitts and D.K. Arrowsmith, Minimising end-to-end delays in the presence of self-similar traffic, Proc. XVIII World Telecom. Cong.(Paris) 12(1), 2002, p1.
  14. M. Woolf, D.K. Arrowsmith, R.J. Mondragon, J.M. Pitts, Optimization and Phase Transitions in a Chaotic Model of Data Traffic, Phys Rev E 66 046106.
  15. E. Ferretti Manffra, W. Just, and H. Kantz; Invariant densities of delayed maps in the limit of large time delay, Phys. Rev. E 65 (2002) 016211
  16. H. Benner and W. Just; Control of chaos by time delayed feedback in high power ferromagnetic resonace experiments, J. Kor. Phys. Soc. 40 (2002) 1046-1050
  17. O. Beck, A. Amann, E. Schöll, J.E.S. Socolar, and W. Just; Comparison of time-delayed feedback schemes for spatio-temporal control of chaos in a reaction-diffusion system with global coupling, Phys. Rev. E 66 (2002) 016213-1 - 016213-6
  18. N. Baba, A. Amann, E. Schöll, and W. Just; Giant improvement of time delayed feedback control by spatio-temporal filtering, Phys. Rev. Lett. 89 (2002) 074101-1 - 074101-4

Publications 2001

  1. O. Jenkinson, Rotation, Entropy, and Equilibrium States, Trans. Amer. Math. Soc., 353 (2001), 3713-3739.
  2. O. Jenkinson, Geometric Barycentres of Invariant Measures for Circle Maps, Ergodic Theory & Dynamical Systems, 21 (2001), 511-532.
  3. O. Jenkinson, Directional Entropy of Rotation Sets, Comptes Rendus Acad. Sci. Paris, t. 332, Serie 1 (2001), 921-926
  4. O. Jenkinson, Strong cocycle triviality for Z^2 subshifts, Theor. Comp. Sci., 262 (2001), 191-213.
  5. O. Jenkinson & M. Pollicott, Computing the dimension of dynamically defined sets : E2 and bounded continued fractions , Ergodic Theory & Dynamical Systems, 21 (2001), 1429-1445.
  6. P. Coveney & O. Bandtlow, On the existence of dynamical systems with exponentially decaying collision operators, J. Phys. A: Math. Gen. 34 (2001) 4585-4599
  7. C. Beck, G.S. Lewis, H.L. Swinney, Measuring non-extensitivity parameters in a turbulent Couette-Taylor flow (with G.S. Lewis and H.L. Swinney), Phys. Rev 63E , 035303(R) (2001)
  8. C. Beck, Scaling exponents in fully developed turbulence from nonextensive statistical mechanics, Physica 295A , 195 (2001)
  9. A. Hilgers, C. Beck, Higher-order correlations of Tchebyscheff maps (with A. Hilgers), Physica 156D , 1 (2001)
  10. B.K. Shivamoggi, C. Beck, A note on the application of non-extensive statistical mechanics to fully developed turbulence, J. Phys. (Math. and Gen.) 34A , 4003 (2001).
  11. C. Beck, On the small-scale statistics of Lagrangian turbulence, Phys. Lett. 287A , 240 (2001)
  12. C. Beck, Dynamical foundations of nonextensive statistical mechanics, Phys. Rev. Lett. 87 , 180601 (2001)
  13. S Bullett and C Penrose, Regular and Limit Sets for Holomorphic Correspondences, Fundamenta Mathematica 167(2001), 111-171.
  14. R.J. Mondragon, D.K. Arrowsmith, J.M. Pitts, Chaotic maps for traffic modelling and queueing performance analysis, Performance Evaluation, 43, 2001, 223-240.
  15. R.J. Mondragon, D.K. Arrowsmith, J.M. Pitts, Controlling self-similar traffic and shaping techniques, Nonlinear Control in the Year 2000 (Lecture Notes in Control and Information Sciences, 259(2), Springer-Verlag, Berlin) 2001, 149-161.
  16. J Pettigrew, J A G Roberts and F Vivaldi, Complexity of regular invertible p-adic motions, Chaos 11 (2001) 849-857. [ps]
  17. F Vivaldi, Experimental mathematics with Maple, Chapman & Hall/CRC, London (2001). [home]
  18. E. Ferretti Manffra, H. Kantz, and W. Just; Periodic orbits and topological entropy of delayed maps, Phys. Rev. E 63 (2001) 046203
  19. W. Just, H. Kantz, C. Rödenbeck and M. Helm; Stochastic modelling: Replacing fast degrees of freedom by noise, J. Phys. A 34 (2001) 3199-3213
  20. W. Just, M. Bose, S. Bose, H. Engel, and E. Schöll; Spatio-temporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reaction-diffusion system, Phys. Rev. E 64 (2001) 026219
  21. W. Just; Equilibrium Phase Transitions in Coupled Map Lattices: A Pedestrian Approach, J. Stat. Phys. 105 (2001) 133-142
  22. F. Schmüser and W. Just; Non-equilibrium behaviour in unidirectionally coupled map lattices, J. Stat. Phys. 105 (2001) 525-559

Publications 2000

  1. C. Beck, Applications of generalized thermostatics to fully developed turbulence, Physica 277A , 115 (2000)
  2. C. Beck, Non-extensive statistical mechanics and particle spectra in elementary interactions, Physica 286A , 164 (2000)
  3. C. Roedenbeck, C. Beck, and H. Kantz, Dynamical systems with time scale separation: Averaging, stochastic modelling, and Central Limit Theorems, Proceedings of the workshop `Stochastic Climate models', Birkhaeuser (2000)
  4. D Bosio and F Vivaldi, Round-off errors and p-adic numbers, Nonlinearity 13 (2000) 309-322.
  5. R. Carretero-Gonzales, D. K. Arrowsmith, and F. Vivaldi, One-dimensional dynamics for traveling fronts in coupled map lattices, Phys Rev E 61 (2) 2000, pp 1329-1336.
  6. S Bullett and W Harvey, Mating quadratic maps with Kleinian groups via quasiconformal surgery, Electronic Research Announcements of the AMS, 6(2000),21-30.
  7. S Bullett, A Combination Theorem for Covering Correspondences and an Application to Mating Polynomial Maps with Kleinian Groups, Conform. Geom. Dyn., 4(2000),75-96.
  8. R.J.Mondragon, D.K. Arrowsmith and J.M. Pitts, Chaotic Maps for Traffic Modelling and Queueing Performance Analysis Electronic Letters, 36 2000 pp 184-186.
  9. R.J.Mondragon, D.K. Arrowsmith & J.M. Pitts, "Traffic modelling and queueing performance using chaotic maps", IEEE Proc. of Nonlinear dynamics in Electronics (ed. Setti et al), World Scientific, 2000, 56-60.
  10. C.M. Place & D.K. Arrowsmith, Control of Transient Chaos in Tent Maps near Crisis, I: Fixed points, Phys Rev E 61 (2) 2000, pp 1357-1368.
  11. C.M. Place & D.K. Arrowsmith, Control of Transient Chaos in Tent Maps near Crisis, II: Periodic orbits, Phys Rev E 61 (2) 2000, pp 1369-1381.
  12. O. Jenkinson, Frequency locking on the Boundary of the Barycentre Set , Experimental Mathematics, 9 , 2000, 309-317.
  13. O. Jenkinson and M.Pollicott, Ergodic properties of the Bolyai-Renyi expansion , Indag. Math.N.S., 11 , 2000, 399-418.
  14. O. Jenkinson and M.Pollicott, Computing Invariant Densities and Metric Entropy, Comm. Math. Phys., 211 2000, 687-703.
  15. L. Rass & J. Radcliffe, Global asymptotic convergence results for multi-type models, Int'l Jnl Appl. Math and Comp Sci., 10 (1) 2000, pp 63-79.
  16. W. Just, E. Reibold, and H. Benner; Time-delayed feedback control: theory and application, Proc. of the 5th Experimental Chaos Conf. (Ed. M. Ding, W. Ditto. Al Osborne, L. Pecora, and M. Spano, World Scientific, Singapoore 2000).
  17. W. Just and H. Kantz; Some considerations on Poincare maps for chaotic flows, J. Phys. A 33 (2000) 163-170
  18. F. Schmüser, W. Just, and H. Kantz; On the relation between coupled map lattices and kinetic Ising models, Phys. Rev. E 61 (2000) 3675-3684
  19. W. Just, E. Reibold, K. Kacperski, P. Fronczak, J. Holyst, and H. Benner; Influence of stable Floquet exponents on time-delayed feedback control, Phys. Rev. E 61 (2000) 5045-5056
  20. W. Just; On the eigenvalue spectrum for time-delayed Floquet problems, Physica D 142 (2000) 153-165
  21. E. Covas, R. Tavakol, D. Moss and A. Tworkowski, 'Torsional oscillations in the solar convection zone', Astronomy & Astrophysics, 360, L21-L24,2000
  22. D Bosio and F Vivaldi, Round-off errors and p-adic numbers, Nonlinearity 13 (2000) 309-322. [ps]
  23. R. Carretero-Gonzales, D. K. Arrowsmith, and F. Vivaldi, One-dimensional dynamics for traveling fronts in coupled map lattices, Phys Rev E 61 (2) (2000), 1329-1336. [ps]
  24. J H Lowenstein and F Vivaldi, Embedding dynamics for round-off errors near a periodic orbit, Chaos 10 (2000) 747-755. [ps]

Publications 1999

  1. D.K. Arrowsmith & J.W. Essam, Chromatic polynomials and mod-q flows on directed graphs and their applications, CRM Proc. and Lecture Notes: Graph Colourings and Applications (eds. P. Hansen adn O. Marcotte), pp. 1-20, AMS, 1999.
  2. D.K.Arrowsmith & R.J.Mondragon, Stability Region Control for a parametrically forced Mathieu Equation, Meccanica, 34(6) 401-410.
  3. P. Ashwin, E. Covas and R. Tavakol, Transverse instability for non-normal parameters Nonlinearity 9 563, 1999.
  4. M. Banaji and P. Glendinning, Towards a quasi-periodic mean field theory of globally coupled oscillators, Phys. Lett. A 251 297- 302, 1999.
  5. C. Beck, Physical Meaning for Mandelbrot and Julia sets, Physica D 125 171, 1999.
  6. S. Bullett and C. Penrose, Perturbing circle-packing Kleinian groups as correspondences, Nonlinearity 12 635-672, 1999.
  7. B. V. Chirikov and F. Vivaldi, An algorithmic view of pseudochaos, Physica D 129 (1999) 223-235.
  8. E. Covas and R. Tavakol, Multiple forms of intermittency in PDE dynamo models, Phys. Rev. E 60 5435-5438, 1999.
  9. E. Covas, R. Tavakol, A. Tworkowski, A. Brandenburg, J. Brooke and D. Moss, The influence of geometry and topology on axisymmetric mean-field dynamos,Astronomy & Astrophysics,345 669-679, 1999.
  10. P. Glendinning and J. Wiersig, Fine structure of mode-locked regions of the quasi-periodically forced circle map, Phys. Lett. A 257 65-69, 1999.
  11. P. Glendinning, The stability boundary of synchronized states in globally coupled dynamical systems, Phys. Lett. A 259 129-134, 1999.
  12. A. Hilgers and C. Beck, Hierarchical coupled map lattices as cascade models for hydrodynamical turbulence, Europhys. Lett. 45 552, 1999.
  13. A. Hilgers and C. Beck, Approach to Gaussian stochastic behaviour for systems driven by deterministic chaotic forces, Phys. Rev. E 60 5385, 1999.
  14. R.J.Mondragon, A Model of Packet Traffic using a Random Wall Model, Int. Jnl. of Bif. and Chaos 9 1381-1392, 1999.
  15. R.J.Mondragon, D.K. Arrowsmith, J.M. Griffiths and J.M. Pitts, Chaotic Maps for Network Control: Traffic Modelling and Queueing Performance Analysis, Performance and Control of Network Systems III, 19-22 Sept. 1999, Boston.
  16. J.Radcliffe and L.Rass, Strategic and genetic models of evolution, Math. Biosci. 156 291-307, 1999.
  17. L.Rass and J. Radcliffe, The derivation of certain pandemic bounds, Math. Biosci. 156 147-165, 1999.

Publications 1998

  1. C. Beck, Spontaneous symmetry breaking in a coupled map lattice simulation of quantized Higgs fields, Phys. Lett. , 248A 386-392, 1998.
  2. J. M. Brooke, J. Pelt, R. Tavakol and A. Tworkowski, Grand minima and equatorial symmetry breaking in axisymmetric dynamo models, Astronomy & Astrophysics.332, 339,1998.
  3. E. Covas, R. Tavakol, A. Tworkowski and A. Brandenburg, Axisymmetric mean field dynamos with dynamic and algebraic alpha-quenchings, Astronomy & Astrophysics, 329, 350,1998.
  4. P. Glendinning, Intermittency and strange nonchaotic attractors in quasi-periodically forced circle maps. Phys. Lett. A. 244 545-550, 1998.
  5. J. H. Lowenstein and F. Vivaldi, Anomalous transport in a model of Hamiltonian round-off, Nonlinearity 11 132-135, 1988.
  6. R.J. Mondragon, D.K. Arrowsmith, L.G. Samuel, J.M.Pitts, The Maps control paradigm:using chaotic maps to control telecoms networks, Broadband Communications, The Future of Telecommunications, Eds. P. Kuhn and R. Ulrich, Chapman & Hall, London, , 371-382, 1998.
  7. R.J. Mondragon, L.G. Samuel and J.M Pitts, Applications of Non-linear Dynamics to Network Modelling, Proc. of the XV-th UK Teletraffic Symposium on Performance Engineering in Information Systems, Durham, 1998.
  8. J. Radcliffe & L.Rass, 'Spatial Mendelian Games' Math. Biosciences 151, 191-218, 1998.
  9. J. Radcliffe & L.Rass, 'Convergence results for contact models in genetics and evolutionary game theory', Jnl of Biol. Sys 6 (4) 411-426, 1998.
  10. A. Tworkowski, R. Tavakol, A, Brandenburg, J.M. Brooke, D. Moss and I. Tuominen, Intermittent Behaviour in Axisymmetric Mean Field Dynamo Models, Monthly Notices of the Royal Astronomical Society,296,287,1998. P
  11. A. Tworkowski, E. Covas, R. Tavakol and A. Brandenburg, Mean field dynamos with algebraic and dynamic alpha-quenchings,Studia Geoph. et Geod.,42, 356,1998.
  12. X-S. Zhang and F. Vivaldi, Small perturbations of a discrete twist map, Annales de l'Institut Henri Poincare (Physique Theorique) 68 507-523, 1998.

Publications 1997

  1. D.K. Arrowsmith & P. Ramsden, Sensitive dependence in control systems and reachable sets. Dynamics and Stability of Systems, 12 3 (1997) 213-240.
  2. C. Beck, Coupled map lattices simulating hydrodynamical turbulence, Physica D , 103 (1997) 528-536.
  3. S.R. Bullett, Review : Complex Dynamics and Renormalization (by C.T.McMullen) Bull. London Math. Soc. 29 (1997) 248-250
  4. S.R. Bullett, The Dynamics of the Rabbit' (English soundtrack for video by Francois Tisseyre, Adrien Douady, Dan Sorenson), EcoutezVoir (Paris) 1997.
  5. R. Carretero, D.K. Arrowsmith & F.Vivaldi, Mode-locking in Coupled Map Lattices, Physica D , 103 (1997) 381-403.
  6. R. Dow, Additive cellular automata and global injectivity, Physica D110 ,67-91.
  7. A. Hilgers and C. Beck, Turbulent behaviour of stock exchange indices and foreign currency exchange rates, Int.J.Bif.Chaos 7 (1997) 1855-1860.
  8. A. Hilgers and C. Beck, Coupled map lattices simulating fully developed turbulent flows, in: Applied Nonlinear Dynamics and Stochastic Systems near the Millenium, eds. J.B. Kadtke and A. Bulsara, American Institute of Physics CP411 (1997), 11-17.
  9. J. Gilson, Relativistic Wave Packing and Quantization, Speculations in Science and Technology, 20, (1), (1997), 21-31.
  10. P. Glendinning, Differential equations with bifocal homoclinic orbits, Int. J. Bif. & Chaos, 1997, 7, 27-37.
  11. C. Laing and P. Glendinning, Bifocal homoclinic bifurcations, Physica D, 1997, {\bf 102}, 1-14.
  12. P. Glendinning, Inaccessible attractors of weakly dissipative systems, Nonlinearity., 1997, {\bf 10}, 507-522.
  13. P. Glendinning and L.P. Perry, Melnikov analysis of chaos in a simple epidemiological model, J. Math. Biol., 1997, {\bf 35}, 359-373.
  14. J. Lowenstein, S. Hatjispyros & F. Vivaldi, Quasi- periodicity, global stability and scaling in a model of hamiltonian round-off, Chaos,., 1 (1) (1997) 49-66.
  15. D. Nucinkis, D.K. Arrowsmith & F.Vivaldi, Some statistical properties of discretized quasi-periodic orbits, Nonlinearity., 10 (1997) 1643-1674.
  16. R.J. Mondragon & D.K. Arrowsmith, Tracking unstable fixed points in parametrically dynamic systems, Physics Letters A.,229 (1997) 88-96.
  17. R.J. Mondragon & D.K. Arrowsmith, On Control of Coupled Map Lattices, Int. Jnl. of Bifurcation and Chaos, 7(2) (1997) 383-399.
  18. R.J. Mondragon, L.G. Samuels & J.M. Pitts, Fast Self- Similar Traffic Generation, 14th UKTS, 8, 1997, 1-4.
  19. R.J. Mondragon, L.G. Samuels & J.M. Pitts, Towards the Control of Communication Networks by Chaotic Maps:Source Aggregation, Proc. ITC15 "Teletraffic contributions for the information age." (ed. V.Ramaswami and P.E. Wirth, Elsevier), 1369- 1378.
  20. J. Radcliffe & L. Rass, Discrete time spatial models arising in genetics, evolutionary game theory and branching processes', Mathematical Biosciences 140 (2), 1997, 101-129.
  21. J. Radcliffe & L. Rass, Saddle point methods in spatial models of biological systems', Proceedings of the 7th International Colloquium on Differential Equations, VSP, Zeist 1997, 347-354.
  22. J. Radcliffe & L. Rass, The asymptotic spatial behaviour of a class of epidemic models, VSP, Zeist 1997, 355-362.
  23. S. Simons, Analytical inversion of a particular type of banded matrix, J.Phys.A 30 1997, 755.
  24. S. Simons, A new derivation of the agglomerate size distribution for a constant coagulation kernel, J.Aerosol Sci. 28 1997, 1393.
  25. E. Covas, A. Tworkowski, A. Brandenburg and R. Tavakol, Dynamos with different formulations of the dynamic alpha effect, Astronomy & Astrophysics, 317,610, 1997.
  26. E. Covas, A. Tworkowski, R. Tavakol and A. Brandenburg, Robustness of truncated alpha-omega dynamos with a dynamic alpha,Solar Physics,172,3,1997

Publications 1996

  1. D.K. Arrowsmith, A.N. Lansbury, R.J. Mondragon, Control of the Arnold Circle Map. Int Jnl of Bif & Chaos, 6(3) (1996) 437-453.
  2. D.K. Arrowsmith, Review: Y Kuznetsov:Applied Bifurcation Theory, Bull. Amer. Math. Soc. 33 (1996), 377-380.
  3. C. Beck, Dynamical Systems of Langevin Type, Physica A 233 (1996), 419-440.
  4. S. Bullett, Complex Maps (Györ Summer School in One-dimensional Dynamics), TEMPUS Lecture Notes in Discrete Mathematics and its Applications 14 (1996).
  5. J.Gilson, Calculating the Fine Structure Constant, Physics Essays, 9, (2) (1996) 342-353.
  6. P. Glendinning and C. Laing. A homoclinic hierarchy, Phys. Lett. A, 1996, 211, 155-160.
  7. P. Glendinning and C. Sparrow, Shilnikov's saddle-node bifurcation' Int. J. Bif. & Chaos 6 (1996), 1153-1160.
  8. P. Glendinning and T. Hall `Zeros of the kneading invariant and topological entropy for Lorenz maps, Nonlinearity 9 (1996) 999-1014.
  9. J. Radcliffe & L. Rass, Nonlinear equations in multitype epidemics', in Invited Lectures Delivered at the 6th International Colloquium on Differential Equations 2, Plovdiv, Bulgaria, 1996, 239-248.
  10. J. Radcliffe & L. Rass, The asymptotic behaviour of a reducible system of non-linear integral equations', Rocky Mountain Journal of Mathematics 26 (2) 1996, 731-752.
  11. S. Simons, On the steady state equation for particles undergoing simultaneous Brownian diffusion and coagulation, J.Phys.A 29 1996, 303.
  12. S. Simons, On the steady state solutions of the coagulation equation, J.Phys.A 29 1996, 1139.
  13. S. Simons, An iterative algorithm for matrix inversion which is always convergent, The Mathematical Gazette, 80 1996, 567.

Publications 1995

  1. D.K. Arrowsmith & R. Dow, Linear Cellular Automata with inputs, Jnl of Complex Systems, Complex Systems.,9 (1995), 399-429.
  2. C. Beck, From the Perron-Frobenius equation to the Fokker- Planck equation. J. Stat. Phys.,79 (1995), 875-894.
  3. C. Beck, Chaotic quantization of field theories, Nonlinearity, 8 (1995), 423 - 441.
  4. C. Beck, T. Tel, Path integrals in the symbol space of chaotic mappings, J. Phys A, 28 (1995), 1889-1907.
  5. C. Beck & G. Gürbüz, Sunspot activity curves and intermittent chaotic behaviour, Int. J. Bif. Chaos 5 (1995), 1213-1219.
  6. C. Beck, Stochastic processes from deterministic dynamics, in Chaos: The interplay between stochastics, classics and quanta, (eds. P.Garbaczewski, M. Wolf, A. Weron) Springer, New York, 1995.
  7. C. Beck, From Ruelle's transfer operator to the Schrödinger operator, Physica 85 (1995) 459.
  8. S.R. Bullett & C. Penrose, Dynamics of holomorphic correspondences, XIth Congress of Mathematical Physics (ed. D. Lagolnitzer), International Press, Cambridge, Mass., USA, (1995) 261-272.
  9. S.R. Bullett & G. Mantica, Plato, Apollonius and Klein: Playing with spheres, Physica D 86 (1995) 113-121.
  10. P.R. Chastell, P.A. Glendinning, J. Stark, Locating bifurcations in quasiperiodically forced systems, Phys. Lett. A , 200, (1995) 17-26.
  11. P. Glendinning, Bifurcations and rotation numbers for maps of the circle associated with flows on the torus and models of cardiac arythmias. Dyn.Stab.Syst., 10 (1995) 367-386.
  12. P. Glendinning, Island Chair models and gradient systems. J.Math.Biol., 32 (1995) 171-178.
  13. P. Glendinning, Robust new routes to chaos in differential equations. Phys.Lett.A, 168 (1995), 40-46.
  14. J. Radcliffe & L.Rass, Spatial branching and epidemic processes, Proceedings of the 3rd International Conference on Mathematical Populations Dynamics, 1,147-170, 1995.
  15. J. Radcliffe & L. Rass, Multitype contact branching processes', Lecture Notes in Statistics, 99 , Branching Processes: Proceedings of the First World Congress, Springer-Verlag, New York, Berlin, Heidelberg, 1995, 169- 179.
  16. L. Rass, H.Bahai & I. Esat, A factorial design approach to investigate the effect of geometry in drill string connectors, Journal of Energy Resources Technology, 117 (1995), 101-107.
  17. F. Vivaldi & P. Morton, Bifurcations and discriminants for polynomials maps. Nonlinearity , 8 (1995) 571-584.
  18. F. Vivaldi & S. Hajispyros, A family of rational zeta functions for the quadratic map. Nonlinearity, 8 (1995).

Publications 1994

  1. D.K. Arrowsmith & C.M. Place, Dynamische Systeme. Specktrum Verlag, Berlin (1994), pp 503.
  2. D.K.Arrowsmith & F.Vivaldi, Geometry of p-adic Siegel discs. Physica D , 71 (1994) 222-236.
  3. D.K.Arrowsmith & J.W.Essam, Chromatic and Flow polynomials. J.of Comb. Theory , (B) (1994) 349-362.
  4. D.K.Arrowsmith & J.W.Essam, Reciprocity and polynomial properties for even flow and potential polynomials on directed graphs. J.of Comb., Probability & Computing (CUP), 3 (1994) 1-11.
  5. D.K.Arrowsmith & J.W.Essam, Restricted colourings and flows on graphs and directed percolation. Advances in Statistical Mechanics, J.of Inst.Sci.Res. (1994) 143-152.
  6. C. Beck, C. Schroer & G. Roepstorff, Driven Chaotic Motion in Single- and Double-Well Potentials}, Physica 72D (1994) 211.
  7. C. Beck, Chaotic cascade model for turbulent velocity distributions, Phys. Rev. 49 (1994), 3641.
  8. S.R. Bullett & C. Penrose, Mating quadratic maps with the modular group, Inventiones Mathematicae 115 483-511. (1994)
  9. S.R. Bullett & C. Penrose, A gallery of iterated correspondences, Experimental Mathematics 3 (1994) 85-105.
  10. S.R. Bullett & P. Sentenac, Ordered orbits of the shift, square roots and the devil's staircase, Math Proc Cam Phil Soc 115 (1994) 451-481.
  11. S.R. Bullett, A. Beardon & P. Rippon, Periodic orbits of difference equations, Proc Roy Soc Edin 125A (1995) 657-674.
  12. J. Gilson, Vacuum Polarization and the Fine Structure Constant, Speculations in Science and Technology, 17 (3), (1994) 201-204.
  13. P. Glendinning, Island chain models and gradient systems. J. Math. Biol., 32 (1994) 171-178
  14. P. Glendinning, Stability, instability and chaos: an introduction to the theory of nonlinear differential equations, CUP, Cambridge
  15. S.Simons, Statistical mechanical distributions for small numbers of systems, American Journal of Physics, 62 (1994) 515.
  16. S.Simons & D.Harper, A class of solutions of the time- dependent reaction-diffusion equation for the processes A + A Æ 0 , J.of Physics A 27, L63 (1994).
  17. Z.Wu, I.Colbeck, S.Simons, Determination of the fractal dimension of aerosols from kinetic coagulation, J.of Phyiscs D , 27 (1994) 2291.
  18. Z.Wu, I.Colbeck, S.Simons, 1994. Kinetic coagulation , aerosol agglomerates and the fractal dimension, Proc.of the 8th annual cof.of the aerosol soc., March 1994.p.24.
  19. R.Sharp & M.Pollicott. Rates of recurrence for 7% and Rq extensions of subshifts of finite type. Journ.London Math.Soc., in press, 1994.
  20. R. Sharp & M.Pollicott, Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature. Inventiones Mathematicae, in press 1994.
  21. R.Sharp. Periodic points and rotation vectors for torus diffeomorphisms, Topology, in press, (1994).
  22. R. Sharp & M.Pollicot. Comparison theorems and orbit counting in hyperbolic geometry. Duke Math.Journal, 1994
  23. F.Vivaldi. Cellular automata & finite fields, Physica D, 79 (1994) 115-131.

Publications 1993

  1. D. Arrowsmith & F.Vivaldi. Some p-adic representations of the Smale Horseshoe. Phys.Lett., A, 176, 1993, 292-294.
  2. S.R. Bullett &J. Stark, Renormalising the simple pendulum' (with J Stark), SIAM Review 35 (1993) 631-640.
  3. C.Beck, F. Schlogl, Thermodynamics of Chaotic Systems, Cambridge University Press, 1993.
  4. P. Glendinning, The anharmonic route to chaos: kneading theory, Nonlinearity, 6 (1993) 349-367.
  5. P. Glendinning, M.R.E. Proctor, Travelling waves with spatially resonant forcing: bifurcations of a modified Landau equation, Int. J. Bif. & Chaos, 3 (1993) 1447-1455
  6. P. Glendinning & C. Sparrow, Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps, Physica D , 62 (1993) 22-50
  7. J. Radcliffe & L.Rass, Reducible epidemics: choosing your saddle, Rocky Mountain Journal of Math.V, 123 (2), (1993), 725-752.
  8. R. Sharp, Closed orbits in homology classes for Anosov flows. Ergodic Theory Dyn.Syst., 13 (1993) 387-408, 1993.
  9. R. Sharp & R.Schwartz, The correlation of length spectra of two hyperbolic surfaces. Commun.Math. Phys., 153 (1993) 423-430.

Publications 1992

  1. D. Arrowsmith & C.M.Place, Dynamical Systems: Differential equations, maps and chaotic behaviour,.Chapman & Hall (1992) pp 323.
  2. C. Beck & D. Graudenz, Symbolic dynamics of successive quantum mechanical measurements, Phys. Rev. 46A 9 (1992), 6265.
  3. C. Beck, Effects of Roundoff Errors on Chaotic Dynamics, in EUSIPCO 92, (eds. J. Vandewalle and A. Oosterlinck), Elsevier, New York (1992).
  4. S.R. Bullett, Critically finite correspondences and subgroups of the modular group, Proc Lond Math Soc (3) 65 (1992) 423-448.
  5. S.R. Bullett & G. Mantica, Group theory of hyperbolic circle- packings, Nonlinearity 5 (1992) 1085-1109.
  6. N. Buric, I.Percival, J.H.E.Cartwright & O.Piro, On modular smoothing and scaling functions for mode locking. Phys.Letts.A, 163 (1992) 63-67.
  7. P. Glendinning, Robust new routes to chaos in differential equations. Phys. Lett. A , 168 (1992), 40-46.
  8. S. Hatjispyros & F.Vivaldi, Galois theory of periodic orbits of polynomial maps. Nonlinearity, 5 (1992) 961-978.
  9. I.C. Percival, Exact results on the critical function for the motion of an electron driven by two plane waves. Phys.Letts.A, 165 (1992) 320-324.
  10. I.C. Percival, Chaos Reigns. Article in The New Scientists Guide to Chaos, Penguin Books (1992).
  11. I.C. Percival, N.Buric, J.H.E.Cartwright & O.Piro, On modular smoothing and scaling functions for mode locking. Phys.Letts.A, 163 (1992) 63-67.
  12. I.C. Percival. Quantum Records , Quantum Chaos, Quantum Measurement. eds. P.Cvitanovic, A.Wirzba, NATO ASI Series, Kluwer, 357 (1992) 199-204.
  13. I.C. Percival & N.Gisin. Wave-function approach to dissipative processes: Are there Quantum Jumps? Phys.Letts. A, 167 (1992) 315-318.
  14. I.C. Percival & N.Gisin. The Quantum state diffusion model applied to open systems. J.Phys A, 25 (1992) 5677-5691.
  15. S.Simons, On the solution of the time independent equation for the diffusion of coagulating clusters, Phys.Lett. A, 171, (1992), 172
  16. R. Sharp, Prime orbit theorems with multi-dimensional constraints for Axiom A flows. Monatshefte für Mathematik, 114 (1992) 261-304.
  17. F. Vivaldi, Geometry of linear maps over finite fields. Nonlinearity, 5 (1992) 133-147.
  18. F. Vivaldi, Dynamics over irreducible polynomials. Nonlinearity, 5 (1992) 941-960.