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Preface

These notes are associated with the course MAS335,Cryptography, given at
Queen Mary, University of London, in the autumn semester of 2002. The notes are
much improved from my original drafts as a result of comments from the students
on the course.

The syllabus for the course reads:

1. History and basic concepts (Substitution and other traditional
ciphers; Plaintext, ciphertext, key; Statistical attack on ciphers).

2. One-time pad and stream ciphers (Shannon’s Theorem; One-
time pad; Simulating a one-time pad; stream ciphers, shift reg-
isters).

3. Public-key cryptography (Basic principles (including brief dis-
cussion of complexity issues); Knapsack cipher; RSA cipher;
Digital signatures).

Optional topics which may be included: secret sharing, quantum cryp-
tography, the Enigma cipher, for example.

Peter J. Cameron
November 27, 2003
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Chapter 1

Basic ideas

1.1 Introduction

Cryptographyrefers to the art of protecting transmitted information from unau-
thorised interception or tampering. The other side of the coin,cryptanalysis, is
the art of breaking such secret ciphers and reading the information, or perhaps
replacing it with different information. Sometimes the termcryptology is used
to include both of these aspects. In these notes I will use the termcryptography
exclusively.

Cryptography is closely related to another part of communication theory, namely
coding theory. This involves translating information of any kind (text, scientific
data, pictures, sound, and so on) into a standard form for transmission, and pro-
tecting this information against distortion by random noise. There is a big dif-
ference, though, between interference by random noise, and interference by a
purposeful enemy, and the techniques used are quite different.

The need for both coding theory and cryptography has been recognised for a
long time. Here, from “The Tale of Lludd and Llevelys” inThe Mabinogion(a
collection of ancient Welsh stories), is a tale that illustrates both subjects.

When Lludd told his brother the purpose of his errand Llevelys
said that he already knew why Lludd had come. Then they sought
some different way to discuss the problem, so that the wind would not
carry it off and the Corannyeid learn of their conversation. Llevelys
ordered a long horn of bronze to be made, and they spoke through
that, but whatever one said to the other came out as hateful and con-
trary. When Llevelys perceived there was a devil frustrating them

1



2 CHAPTER 1. BASIC IDEAS

and causing trouble he ordered wine to be poured through the horn to
wash it out, and the power of the wine drove the devil out.

Here the horn is a cryptographic device, preventing the message from being in-
tercepted by the enemy (the Corannyeid); this is an example of asecure channel,
which we will discuss later. Pouring wine down the horn is a bizarre form of
error-correction.

1.2 Steganography and cryptography

There are two principal ways to keep a message out of the enemy’s hands:

• You can conceal the message and hope that the enemy can’t find it: this is
known assteganography.

• You can scramble the message, and hope that (assuming that it is inter-
cepted) the enemy is unable to unscramble it: this is what is properly known
ascryptography.

We are mainly concerned with cryptography; but here are a few of the many meth-
hods of steganography that have been used or proposed.

• Herodotus relates that one Histauaeus shaved the head of his messenger,
wrote the message on his scalp, and waited for the hair to regrow. On reach-
ing his destination, the messenger shaved his head again and the recipient,
Aristogoras, read the message. Not to be recommended if you are in a hurry!

• Invisible ink comes into this category; the recipient develops the message
by applying heat or chemicals to it.

• A message can be concealed in a much longer, innocent-looking piece of
text; the long text is composed so that a subsequence of the letters (chosen
by some rule known to the recipient) forms the message. For example,
taking every fifth letter of

The prepared letters bring news of amounts

gives the message “Retreat”.

• The message can be photographed and reduced to a tiny speck called a
microdot, which can be concealed in a full stop in an ordinary letter.
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• A recent proposal uses the fact that a molecule of DNA (the genetic material
in all living things) can be regarded as a very long word in an alphabet of
four letters A, C, G, T (the bases adenine, cytosine, guanine and thymine).
Now that the technology exists to modify DNA very freely, it is possible to
encode the message in this four-letter alphabet and insert this sequence into
a DNA molecule. A small amount of DNA can then be concealed in a letter,
in the same way as a microdot. (This method may or may not have been
used.)

Of course, steganography can be combined with cryptography: the message
can be scrambled and then hidden, for extra security.

1.3 Some terms defined

Figure 1.1 shows the general scheme of cryptography. Traditionally, the two par-
ties who want to communicate are called Alice and Bob, and the eavesdropper
who is trying to read their message is Eve. Alice and Bob both have access to
the key, but Eve doesn’t. The black boxes input plaintext and key and output
ciphertext (in Alice’s case), or input ciphertext and key and output plaintext (in
Bob’s).

The terms in the figure have the following meanings.

Plaintext: The plaintext is not quite the same as the message being sent. The
message probably has to be translated into some standard form to be en-
crypted; for example, this might be leaving out the punctuation, turning it
into ASCII code or a sequence of numbers, etc. But there is nothing se-
cret about this stage; knowing the plaintext is equivalent to knowing the
message.

Ciphertext: The ciphertext is what is actually transmitted. In general Alice and
Bob must assume that Eve can get her hands on the ciphertext, and they must
design the system so that this will not enable her to recover the plaintext.

Key: The encryption uses some extra information, known as the key, which can
be varied from one transmission to another. Both Alice and Bob must have
information about the key, in order to perform the encryption and decryp-
tion.

There are three main types of encryption method:
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Figure 1.1: The set-up

Transposition: The order of the letters in the plaintext is rearranged in some
systematic way. The key is the permutation applied to the positions.

Substitution: Individual letters are replaced by different letters in a systematic
way. This may be more complicated than just a single permutation; we may
apply different permutations to the letters in different positions. The key is
the sequence of applied permutations.

Codebook: Complete words in the message are replaced by other words with
quite different meanings. The key is the codebook, the list of words and
their replacements.

Of course, the types are not completely separate, and some or all of them can
be used together.

Note on the word “code” This word is used with many different meanings in
communication theory. Often it just means a scheme for translating information
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from one format to another. Thus, for example, the Morse code (used in early
telegraph and radio communication) would translate the word “Code” into the
sequence

−·−· −−− −·· ·

of dots and dashes, while seven-bit ASCII (used in computer communication and
representation of data) would translate it into the four numbers 67, 111, 100, 101,
or, in binary notation,

1000011110111111001001100101

An error-correcting code translates a string of symbols into a different string
for the purposes of error correction. For example, a[7,4] code might translate
1010 into 1010101.

The term “secret code” might mean what we have called a cipher system, or
perhaps a cryptogram (the result of encrypting a message using a cipher system).

Within cryptography, a code replaces certain key words in the message by
other words or combinations of symbols, as specified in the code book. This is
sometimes contrasted with a cipher, which operates on the individual letters or
symbols.

Pig-Latin

Pig-Latin is a simple form of transposition cipher with a “null” character. These
rules are taken from the Pig-Latin homepage at

http://www.idioma-software.com/pig/home.htm .

For words which begin with a single consonant take the consonant off the front
of the word and add it to the end of the word. Then add ay after the consonant.
Here are some examples:

cat = atcay

dog = ogday

simply = implysay

noise = oisnay

For words which began with double or multiple consonants take the group of
consonants off the front of the word and add them to the end, adding ay at the very
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end of the word. Here are some examples:

scratch = atchscray

thick = ickthay

flight = ightflay

grime = imegray

For words that begin with a vowel, just add yay at the end. For example:

is = isyay

apple = appleyay

under = underyay

octopus = octopusyay

A sample of pig-Latin:

Igpay-Atinlay opensyay upyay ayay ewnay orldway atthay ouyay ev-
ernay ouldway avehay oughtthay ossiblepay. Ybay usingyay Igpay-
Atinlay, ouyay ootay ancay ulfillfay ouryay ascinatingfay uturefay
unctionsfay otay ethay ullestfay ullnessfay astfay. Ouyay illway ebay
ayay etterbay ersonpay, avehay ayay etterbay exsay ifelay, andyay
ebay etterbay anthay ouryay eighborsnay.

Exercises

1.1. (a) Explain in your own words the meaning of the termscryptography,
cryptanalysis, andsteganography.

(b) You want to send a postcard to your family, which will contain a secret
message to your brother. How might you do it?



Chapter 2

Substitution ciphers

In the simplest (monoalphabetic) type of substitution cipher, we take a permuta-
tion of the alphabet in which the plaintext is written, and substitute each symbol
by its image under the permutation. The key to the cipher is the permutation used;
anyone possessing this can easily apply the inverse permutation to recover the
plaintext.

If we take a piece or ordinary English text, ignore spaces and punctuation, and
convert all letters to capitals, then the alphabet consists of 26 symbols, and so the
number of keys is

26! = 403291461126605635584000000.

This is a sufficiently large number to discourage anyone making an exhaustive test
of all possible keys. However, the cipher is usually very easy to break, as we will
see.

We can represent a permutation by writing down the letters of the alphabet in
the usual order, and writing underneath each letter its image under the permuta-
tion. To find the inverse, write the bottom row above the top row, and then sort the
columns so that the new top row is in its natural order. For example, the inverse
of the permutation

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
T H E Q U I C K B R O W N F X J M P S V L A Z Y D G

is

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
V I G Y C N Z B F P H U Q M K R D J S A E T L O X W

7
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The identity permutation is the very simple permutation which leaves each symbol
where it is: not much use for enciphering!

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Finally, the compositiong◦h of two permutations is obtained by applying firstg
and thenh to the alphabet.

Definition A setG of permutations forms agroup if

(a) for allg,h∈G, g◦h∈G;

(b) the identity permutationebelongs toG;

(c) for everyg∈G, the inverse permutationg′ belongs toG.

Theorder of the groupG is the number of permutations it contains.
For example, the set of all permutations of ann-element set is a group, called

thesymmetric groupof degreen and denoted bySn. Its order isn! . The symmetric
groupSn is the set of keys for substitution ciphers with ann-letter alphabet.

2.1 Caesar cipher

The simplest possible substitution cipher is theCaesar cipher, reportedly used
by Julius Caesar during the Gallic Wars. Each letter is shifted a fixed number of
places to the right. (Caesar normally used a shift of three places). We regard the
alphabet as a cycle, so that the letter following Z is A. Thus, for example, the table
below shows a right shift of 5 places.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

The message “Send a hundred slaves as tribute to Rome” would be enciphered
asXjsi f mzsiwji xqfajx fx ywngzyj yt Wtrj . The key is simply
the number of places that the letters are shifted, and the cipher is decrypted by
applying the shift in the opposite direction (five places back).

Some practical details make the cipher harder to read. In particular, it would be
sensible to ignore the distinction between capital and lower case letters, and also
to ignore the spaces between words, breaking the text up into blocks of standard
size, for example
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XJSIF MZSIW JIXQF AJXFX YWNGZ YJYTW TRJXX

(We have filled up the last block with padding.)
The Caesar cipher is not difficult to break. There are only 26 possible keys,

and we can try them all. In this case we would have

XJSIF MZSIW JIXQF AJXFX YWNGZ YJYTW TRJXX
YKTJG NATJX KJYRG BKYGY ZXOHA ZKZUX USKYY
ZLUKH OBUKY LKZSH CLZHZ AYPIB ALAVY VTLZZ
...
SENDA HUNDR EDSLA VESAS TRIBU TETOR OMESS
...

Almost certainly only one of the twenty-six lines will make sense, and it is easy
to break it into words and discard the padding.

There are other tricks that can be used, which will be important later. As
we will see in the next section, in English text, the commonest letter is usually
E. Also, the consecutive letters R, S, T, U are common, and are followed by a
block V, W, X, Y, Z of relatively uncommon letters. If we can spot these patterns,
then we can make a guess at the correct shift. Our example is too short to show
much statistical regularity; but (if we assume that the last two Xs are padding) the
commonest letter is J, and the letters W, X, Y, Z are common while A, B, C, D, E
are rare, so we would guess that the shift is 5 (which happens to be correct). We
will look at this again in the next section.

We will in future use the convention that the plaintext is in lower case and the
ciphertext in capitals.

A famous modern instance of a Caesar shift was HAL, the rogue computer in
the science-fiction story2001: A Space Odyssey. The computer’s name is a shift
of IBM. (The author, Arthur C. Clarke, denied that he had deliberately done this.)

The Caesar shifts form a group. If the alphabet isA = {a0,a1, . . . ,aq−1}, then
the shift byi places can be written asfi : a j 7→ a j+i modq, and we have

fi1 ◦ fi2 = fi1+i2 modq,

f0 = e,

f ′i = f−i modq.

The order of this group isq.
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2.2 Letter frequencies

In any human language (and in most artificial languages as well), words are not
random combinations of symbols, and so they will show various statistical regu-
larities. For example, in English, the commonest letter is E; in a typical (not too
short) piece of English, about 12% of all the letters will be E.

As an example, in the text ofAlice’s Adventures in Wonderland, by Lewis Car-
roll (AAIW for short), the frequencies of the letters (ignoring spaces and punctua-
tion) are given in Table 2.1 (the figure given is the average number of occurrences
among 100 letters), in the column labelled “AAIW”. (The figures in the table are
the average numbers of occurrences among 100 letters of text.) The columns la-
belled “Meaker” and “Garrett” are from the booksCryptanalysisby Helen Fouch́e
Gaines, andMaking, Breaking Codesby Paul Garrett. Gaines (whose book was
published in 1939) took the numbers from a table by O. P. Meaker; Garrett, on the
other hand, simply analysed a megabyte of old email. The French and Spanish
statistics are also quoted by Gaines, from tables by M. E. Ohaver,Cryptogram
Solving. The last column will be explained later.

Note that even for English text the figures vary, though not too much: in AAIW
the most frequent letters, in order, are E, T, A, O, I, H, N, S, R, D, L, U; in Gaines’
table, the order is E, T, A, O, N, I, S, R, H, L, D, U. However, in other languages
the order is quite different. For example, in German, the order is typically E, N, I,
R, S, A, D, T, U, G, H, O.

Figure 2.1 shows a histogram of the expected frequencies, together with the
actual letter frequencies in the message encrypted by Caesar’s cipher. It is clear
by eye that the best fit is obtained if the actual message is shifted five places left.

Pairs of letters (referred to asdigrams) also have their characteristic frequen-
cies. Some of the most common in English are given in Table 2.2. Meaker’s
tables, and those of Pratt and Fraprie, are taken from Gaines.

One can also analyse trigrams, or longer sequences. Among the most comm-
mon trigrams in English are THE, ING, THA, AND, ION.

As an indication of how these frequencies reflect the language, here are three
“random” pieces of text. In each case, in order to split the text into words, a 27-
letter alphabet (consisting of the 26 letters and the space character) has been used;
any punctuation characters in the original text are regarded as spaces, and a string
of spaces is reduced to a single space. In the first piece of text, the computer has
generated random text using the same letter and space frequencies as in AAIW.
In the second, the digram frequencies have been used; and in the third, trigram
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Letter AAIW Meaker Garrett French Spanish Gadsby
A 8.15 8.05 7.73 9.42 12.69 10.96
B 1.37 1.62 1.58 1.02 1.41 2.14
C 2.21 3.20 3.06 2.64 3.93 2.66
D 4.58 3.65 3.24 3.38 5.58 4.12
E 12.61 12.31 11.67 15.87 13.15 0.00
F 1.86 2.28 2.14 0.95 0.46 2.15
G 2.36 1.61 2.00 1.04 1.12 3.61
H 6.85 5.14 4.52 0.77 1.24 4.91
I 6.97 7.18 7.81 8.41 6.25 8.81
J 0.14 0.10 0.23 0.89 0.56 0.23
K 1.07 0.52 0.79 0.00 0.00 1.18
L 4.37 4.03 4.30 5.34 5.94 5.32
M 1.96 2.25 2.80 3.24 2.65 2.07
N 6.52 7.19 6.71 7.15 6.95 8.61
O 7.58 7.94 8.22 5.14 9.49 10.42
P 1.40 2.29 2.34 2.86 2.43 1.91
Q 0.19 0.20 0.12 1.06 1.16 0.05
R 5.02 6.03 5.97 6.46 6.25 4.77
S 6.05 6.59 6.55 7.90 7.60 6.97
T 9.93 9.59 9.53 7.26 3.91 8.50
U 3.22 3.10 3.21 6.24 4.63 4.16
V 0.78 0.93 1.03 2.15 1.07 0.31
W 2.49 2.03 1.69 0.00 0.00 2.80
X 0.13 0.20 0.30 0.30 0.13 0.04
Y 2.11 1.88 2.22 0.24 1.06 3.18
Z 0.07 0.09 0.09 0.32 0.35 0.11

Table 2.1: Letter frequencies
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Actual

Expected

Figure 2.1: Expected and actual letter frequencies in Caesar cipher

frequencies are used. Notice how the random texts resemble the original more
closely as longer sequences are used.

Letter frequencies
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Digraph AAIW Meaker P & F Garrett
TH 3.23 3.51 3.16 3.18
HE 3.23 2.51 1.08 2.17
AN 1.48 1.72 1.08 1.59
IN 1.89 1.69 1.57 2.59
ER 1.68 1.54 1.33 1.95
RE 1.07 1.48 1.25 1.85

Table 2.2: Frequencies of common digrams

Digram frequencies
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Trigram frequencies
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2.3 Breaking a substitution cipher

Breaking a cipher is an art; it cannot be done by applying a formula. But there
are some rules to follow when doing this job. Here is a partly worked example of
breaking a substitution cipher; you should complete the working.

The ciphertext is:

RZOLB QJOWW QBWIR DQFQE VICOB OKOLR UVIDW QFMRO IVTOH
OVZMA UFUIR UVEWM DWOBH UOVYO RQRZO UBWRM TOVRW RZOSZ
ITRQW COIBQ DOTUO VYORQ RZOWR MTOVR BOYRQ BWIVT RQRZO
WRMTO VRAIT OWRIR MROWC ZUYZD QBOHO BSZIB TFSML QVRZO
ARZOL BQJOW WQBCI WJUVO TUJZO DOEIV ZUWRO IYZUV EIAUV
MROFI ROQBY QVRUV MOTIA UVMRO FQVEO BRZIV RZOJU XOTRU
AOIVT WZQMF TRZUW ZILLO VRZOW RMTOV RWCZQ JIUFO TRQFO
IHORZ OFOYR MBOBQ QAUAA OTUIR OFSCO BORZO AWOFH OWJUV
OTUVI TTURU QVRZO LBQJO WWQBC IWJUV OTUJZ OWZUB KOTOX
LFIUV UVEIT UJJUY MFRLI WWIEO QBUJZ OJIUF OTRQE ORRZB
QMEZR ZOWSF FIDMW ZOCIW JUVOT UJZOF OJRRZ OYURS JQBIT
ISCUR ZQMRR UOBOY RQBWL OBAUW WUQVI VTUJZ OAIBB UOTCI
WIFFQ COTQV FSQVO TISQJ JJQBR ZOLMB LQWOR ZOYUR SJQBU
RWLIB RRQQK IZIVT UVYQV RBQFF UVERZ OLBQJ OWWQB WIVTR
ZOSCO BOJQB YOTRQ RIKOI VQIRZ VQRRQ FOIHO DQFQE VIUVW
OIBYZ QJAQB OFMYB IRUHO QBFOW WQVOB QMWLQ WRWXX

We first count the frequencies of the letters. The commonest of the 715 letters,
with their frequencies, are given in the table.

O R Q I U W V B Z
99 72 59 50 49 48 45 43 43

We also notice that RZ is a very common digram, with 23 occurrences. So
we might guess the following identifications:O = e, R = t, Z = h . This
gives

theLB QJeWW QBWIt DQFQE VICeB eKeLt UVIDW QFMte IVTeH
eVhMA UFUIt UVEWM DWeBH UeVYe tQthe UBWtM TeVtW theSh
ITtQW CeIBQ DeTUe VYetQ theWt MTeVt BeYtQ BWIVT tQthe
WtMTe VtAIT eWtIt MteWC hUYhD QBeHe BShIB TFSML QVthe
AtheL BQJeW WQBCI WJUVe TUJhe DeEIV hUWte IYhUV EIAUV
MteFI teQBY QVtUV MeTIA UVMte FQVEe BthIV theJU XeTtU
AeIVT WhQMF TthUW hILLe VtheW tMTeV tWChQ JIUFe TtQFe
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IHeth eFeYt MBeBQ QAUAA eTUIt eFSCe Bethe AWeFH eWJUV
eTUVI TTUtU QVthe LBQJe WWQBC IWJUV eTUJh eWhUB KeTeX
LFIUV UVEIT UJJUY MFtLI WWIEe QBUJh eJIUF eTtQE etthB
QMEht heWSF FIDMW heCIW JUVeT UJheF eJtth eYUtS JQBIT
ISCUt hQMtt UeBeY tQBWL eBAUW WUQVI VTUJh eAIBB UeTCI
WIFFQ CeTQV FSQVe TISQJ JJQBt heLMB LQWet heYUt SJQBU
tWLIB ttQQK IhIVT UVYQV tBQFF UVEth eLBQJ eWWQB WIVTt
heSCe BeJQB YeTtQ tIKeI VQIth VQttQ FeIHe DQFQE VIUVW
eIBYh QJAQB eFMYB ItUHe QBFeW WQVeB QMWLQ WtWXX

The other common letters probably includea, i , o andn. Various clues help
us to make the right identification. For example, consider the stringtQthe , which
occurs several times. Here,the is probably either a word or the beginning of a
word like then . If this is right,tQ ends a word, and the most likely possibility is
thatQ = o.

Another clue is thatWWoccurs four times in the text. Double letters are not
very common in English;ee , ll andss are the most common, so probablyW =
s .

After a certain amount of guesswork of this sort, we begin to recognise more
complicated words, and we find eventually that the substitution is
a b c d e f g h i j k l m n o p q r s t u v w x y z
I D Y T O J E Z U P K F A V Q L G B W R M H C X S N
and the message is

The professors at Bologna were kept in absolute and even humil-
iating subservience to their students. They had to swear obedience to
the student rectors and to the student-made statutes, which bore very
hardly upon them. The professor was fined if he began his teaching
a minute late or continued a minute longer than the fixed time, and
should this happen the students who failed to leave the lecture-room
immediately were themselves fined. In addition, the professor was
fined if he shirked explaining a difficult passage, or if he failed to get
through the syllabus; he was fined if he left the city for a day without
the rector’s permission, and if he married, was allowed only one day
off for the purpose. The city, for its part, took a hand in controlling the
professors, and they were forced to take an oath not to leave Bologna
in search of more lucrative or less onerous posts.

This description of employment conditions for academics in the Middle Ages
is taken from J. D. Knowles,The Evolution of Mediaeval Thought.



16 CHAPTER 2. SUBSTITUTION CIPHERS

Two fictional accounts of substitution ciphers are the stories “The Gold Bug”,
by Edgar Allen Poe, and “The Adventure of the Dancing Men”, a Sherlock Holmes
story by Sir Arthur Conan Doyle.

Worked example Solve the following substitution cipher.

)}&@ˆ {;‘?@ (‘@,( ˆ{?}# $‘{+ˆ ‘;#:ˆ ,(‘@? }#‘:ˆ
;[ˆ‘= ){*‘! }#@‘{ %ˆ.[: ˆ;;)@ ){{#+ !ˆ:;? }#={}
,;}+ˆ @(){* ‘!}#@ )@!#@ ,(ˆ{? }#$‘{ {}@+ˆ ‘;#:ˆ
)@,(ˆ {?}#$ ‘{{}@ ˆ.[:ˆ ;;)@) {{#+! ˆ:;?} #:={}
,_ˆ%* ˆ);}& ‘+ˆ‘* :ˆ‘{% #{;‘@ );&‘$ @}:?= ){%..

Solution: This cipher is surprisingly difficult, as you will find if you try it
for yourself! A hint makes it much easier. The conclusion of the message,.. ,
is padding; you are told that the letter used for padding isx . This gives a lot of
information, since. occurs twice in the rest of the message, andx is usually
preceded bye in English; so we guess thatˆ is e. Now we have the sequence
ex[:e;; which is probably going to beexpress , giving us three more letters.
Now finish the rest yourself!

The moral of this is that a seemingly innocent trait of the cryptographer, such
as always usingx as a filler, may give away crucial information.

2.4 Affine substitutions

The sharp-eyed will have noticed something special about the substitution used
here. It mapsa to I , b to D, c to Y, and so on; advancing the plain letter one place
moves the cipher letter back five places (or forward 21 places). In otherwords, if
the letters of the alphabet are numbered from 0 to 25, so thata is represented by
0, b by 1, . . . ,z by 25, then the substitution takes the form

x 7→ 8+21x (mod 26).

Such a substitution, or the cipher it generates, is calledaffine.
The Caesar shift is a special case of an affine cipher, having the form

x 7→ x+b (mod 26)

for some fixedb. The general form of an affine cipher is

x 7→ ax+b (mod 26)
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for some fixeda andb. The advantage is that the key is simple; instead of needing
a general permutation of the letters, we only need the numbersa andb mod 26.

What affine ciphers are possible, and how can they be inverted?
First we must decide when an affine substitution is a permutation. Consider

the substitutionθ : x 7→ ax+ b (modn). It will fail to be a permutation if there
exist two distinctx1,x2 with

ax1 +b≡ ax2 +b (modn),

that is,ay≡ 0 (modn), wherey = x2−x1. Soθ is a permutation if and only if
the congruenceay≡ 0 (modn) has a solutiony 6≡ 0 (modn).

Let d be the greatest common divisor ofa and n. Then, say,a = a1d and
n = n1d for integersa1,n1. Suppose thatd> 1, so thatn1< n. Puttingy = n1, we
have

ay= a1dn1 = a1n≡ 0 (modn),

soθ fails to be a permutation.
Conversely, suppose thatd = gcd(a,n) = 1. By Euclid’s Algorithm (see the

end of this chapter), there exist integersu,v such thatau+nv= 1. Now, if ay≡ 0
(modn), then

y = (au+nv)y = u(ay)+n(vy)≡ 0 (modn),

soθ is a permutation.
We conclude:

Theorem 2.1 The affine map x7→ ax+b is a permutation if and only ifgcd(a,n) =
1.

What happens if we compose two such maps? Writeθa,b for the mapx 7→
ax+b (modn), where gcd(a,n) = 1. We have

θa,b◦θa′,b′ : x 7→ ax+b 7→ a′(ax+b)+b′,

soθa,b◦θa′,b′ = θaa′,ba′+b′.
The identity permutationx 7→ x is the mapθ1,0. So to find the inverse ofθa,b

in the formθa′,b′, we have to solve the congruences

aa′ ≡ 1 (modn),
ba′+b′ ≡ 0 (modn).
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The first congruence has a unique solution modn, which can be found by Euclid’s
Algorithm as before. Then the second congruence also has a unique solution,
namelyb′ ≡−ba′ (modn).

In particular, withn = 26, we want to invert the mapθ21,8. By trial and
error (or by Euclid’s Algorithm), 21· 5 ≡ 1 (mod 26); and then−5 · 8 ≡ 12
(mod 26). So the inverse ofθ21,8 is θ5,12.

Definition Euler’s totient functionφ is the function on the natural numbers given
by

φ(n) =
{

number of congruence classesa modn
such that gcd(a,n) = 1.

We give a formula for it, which will be proved later.

Theorem 2.2 Let n= pa1
1 pa2

2 · · · par
r , where p1, p2, . . . , pr are distinct primes and

a1,a2, . . . ,ar > 0. Then

φ(n) = pa1−1
1 (p1−1)pa2−1

2 (p2−1) · · · par−1
r (pr −1).

For example, 26= 2 · 13, soφ(26) = 1 · 12 = 12. The congruence classes
coprime to 26 are represented by the odd numbers from 1 to 25 excluding 13.

Theorem 2.3 The set of affine permutations mod n is a group of order n·φ(n).

We have verified the group properties in the earlier argument. For the order,
note that there areφ(n) choices fora andn choices forb.

There are thus 26·12= 318 affine permutations. If we know or suspect that
a substitution cipher is affine, we could try all 318 keys, though this is not trivial
by hand. The method of looking for patterns of consecutive letters does not apply.
Like any substitution cipher, an affine cipher is vulnerable to frequency analysis.
Its advantage is the small size of the key (two numbers rather than a complete
permutation.)
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Worked example Decrypt the following affine substitution cipher:

JZQOU DQGKZ UULYU MKUOX LQJQJ ZQZCW ZQDYU MDXUJ
QRJCE LQEDR CRWGL UUIEJ JZQEP QDEWQ QEDRC RWGCR
JZCGK ZEDJJ ZQYJQ LLJZQ GJUDY

You are given that the frequency distribution in the ciphertext is as follows:

C D E G I J K L M O P Q R U W X Y Z
6 8 7 5 1 13 3 6 2 2 1 15 6 10 4 2 4 10

Solution The commonest letterQ in the given cipher is likely to bee. We
also see that the trigramJZQ occurs five times and so is likely to bethe . This
givesJ=t andZ=h.

The lettersQandZ arex16 andx25 (whereq = 26 here), whilee andh andx4

andx7. Thus the parametersc andd satisfy

4c+d ≡ 16 (mod 26),
7c+d ≡ 25 (mod 26),

from which we findc = 3 andd = 4. From this the entire substitution can be
worked out, and we find the plaintext to be

themo resch oolyo ucomp letet hehig heryo urpot
entia learn ingsl ookat theav erage earni ngsin
thisc hartt heyte llthe story

or, correctly spaced and with punctuation,

The more school you complete, the higher your potential earnings.
Look at the average earnings in this chart; they tell the story!

2.5 Making a substitution cipher safer

A substitution cipher can be solved by frequency analysis, and so is insecure for
all but the shortest messages. However, there are some improvements that can be
made. The first two rely on using a different alphabet for the ciphertext, with more
characters than the plaintext alphabet. For example we could use an alphabet of
100 characters, represented by symbols 00,01, . . . ,99.
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Nulls: These are additional symbols in the cipher alphabet which do not have
any meaning but are inserted in random positions to confuse the frequency analy-
sis.

Homophones: We can translate the same letter in plaintext by several different
letters in ciphertext. For example, if we use a 100-character cipher alphabet, we
can associate about as many characters with each plaintext letter as its percentage
frequency in normal text (say, 12 characters fore, 9 for t , and so on). Then we
randomly decide which character to substitute for each occurrence of a letter. In
the ciphertext, each character will occur approximately the same number of times.
However, the ciphertext is still not random, and patterns of digraphs and trigraphs
can be recognised.

Use of language: We can further confuse the analysis by using words from other
languages, or by careful choice of words. As an example of what can be done, at
least two English novels have been written containing no occurrence of the letter
e, the commonest letter in English. One of these isGadsby, by Ernest Vincent
Wright. The author tied down theE key of his typewriter to write the book. The
first paragraph reads as follows:

If youth, throughout all history, had had a champion to stand up
for it; to show a doubting world that a child can think; and, possi-
bly, do it practically; you wouldn’t constantly run across folks today
who claim that “a child don’t know anything.” A child’s brain starts
functioning at birth; and has, amongst its many infant convolutions,
thousands of dormant atoms, into which God has put a mystic possi-
bility for noticing an adult’s act, and figuring out its purport.

To a casual glance, there is nothing odd about this; but it would pose an obvious
problem for a cryptanalyst if encrypted with a substitution cipher. A frequency
analysis ofGadsbyis included in Table 2.1.

The novelA Void is even more remarkable, having been translated by Gilbert
Adair from the French novelLa Disparitionby Georges Perec, which also lacked
the lettere.

Another trick is to write words “phonetically”, or to use text-messaging ab-
breviations.
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Features of text messaging language such as phonetic spelling (such as “nite”
for “night”), the common omission of vowels (“txt” for “text”), use of abbrevi-
ations (such as AFAIK for “as far as I know”), use of numerals2, 4 and8 for
to , for andate , and use of “emoticons” such as;-) as an essential part of the
text, would give frequency analysis quite different from standard English. I don’t
know whether such analysis of a body of text messages has been done.

Transposition: The substitution can be combined withtransposition, that is,
permuting the order of the characters in the ciphertext in a specified way. This
will help to destroy the patterns of digram and trigram frequencies.

With these improvements, even a substitution cipher can be effective for a
short message which will not receive very sophisticated analysis.

2.6 Related ciphers

A number of ingenious variants on substitution ciphers have been proposed. Many
of these are discussed by Helen Fouché Gaines in the bookCryptanalysis. I will
describe just one here: thePlayfair cipher.

The key to this cipher is a single word. Draw a 5× 5 grid, and starting in
the top left, write the letters of the keyword: a letter occurring more than once is
only written on its first occurrence. Then fill the grid with the remaining letters of
the alphabet. Since there are 26 letters and only 25 spaces, we regardI andJ as
identical for this purpose.

For example, suppose that the keyword isTHOUGHTFULLY. Then the filled
grid is:

T H O U G
F L Y A B
C D E IJ K
M N P Q R
S V W X Z

Now the letters of the message are encrypted two at a time, according to the
following rules:

• First, two identical letters are separated by a dummy letter.
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• Two letters in the same row of the square are replaced by the letters imme-
diately to their right (with the convention that rows “wrap around”, so that
to the right ofK in our square comesC, for example).

• Two letters in the same column of the square are replaced by the letters
immediately below them (with a similar wrap-around convention).

• Two letters not in the same row or column form two corners of a rectangle;
they are replaced by the letters in the opposite corners of the rectangle,
where the letter in the same row as the first letter of the plaintext comes
first.

Suppose, for example, that we want to encrypt the message “I must see you.
Come to the Half Moon at nine”, with the keywordTHOUGHTFULLYas above.
Writing the plaintext in pairs, usingx as a dummy, we get

im us ts ex ey ou co me to th eh al fm ox on at
ni ne

which is encrypted as

CQ TX FT IW PE UG ET PC HU HO DO BY CS UW HP FU
QD PD

The message can then be broken up differently to help conceal its origin.
Decryption is done in the same way as encryption, but replacing “right” and

“below” by “left” and “above” in the second and third rules. Then two ambiguities
must be resolved: first, the choice must be made betweeni andj ; then, dummy
letters must be recognised and removed.

Despite appearances, the Playfair cipher can be regarded as a simple substitu-
tion cipher, over the 676-letter alphabet consisting of all digrams; so a sufficiently
long message can be broken by statistical techniques. However, it has much more
structure resulting from the grid. For example, although any single letter may be
replaced by any other, it is most frequently replaced by the letters immediately to
its right and below it. Moreover, the letter to the right of a given one has a high
probability of being the next letter in the alphabet. Also, ifab is encrypted asCD,
thenba is encrypted asDC.

For example, if we knew thatHU HOencryptsto th , we could infer that
some row or column of the grid contains the consecutive lettersTHOU. We sould
guess that this combination occurs in the keyword (probably at the start).

A worked example of breaking a Playfair cipher using a short crib is given in
the detective storyHave His Carcase, by Dorothy L. Sayers.
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2.7 Number theory

In this section we give more details of some of the number theory which underlies
our discussion of affine ciphers.

Euclid’s algorithm

Euclid’s algorithm is a procedure to find the greatest common divisor of two inte-
gers. In the form of a one-line recursive program it can be written as follows:

if b = 0 then gcd(a,b) := a else gcd(a,b) := gcd(b,a modb) fi

wherea modb means the remainder on dividinga by b.
For example,

gcd(30,8) = gcd(8,6) = gcd(6,2) = gcd(2,0) = 2.

The algorithm can also be used to write gcd(a,b) in the formua+vb for some
integersu,v. We express each successive remainder in this form until we reach
the last non-zero remainder, which is the gcd. In the above example,

6 = 30−3·8
2 = 8−1·6

= 8− (30−3·8)
= (−1) ·30+4·8,

sou =−1, v = 4.
This can be used to find inverses modn. For example, gcd(21,26) = 1, and

Euclid’s algorithm shows that 1= (−4) ·26+5·21; so 5·21≡ 1 (mod 26), and
the inverse of 21 mod 26 is 5.

Euler’s function

In this section we prove Theorem 2.2. We begin with the theorem known as the
Chinese Remainder Theorem.

The following discussion is based on the section on Chinese mathematics in
George Gheverghese Joseph,The Crest of the Peacock: Non-European Roots of
Mathematics, Penguin Books 1992. The fourth-century textSun Tsu Suan Ching
(Master Sun’s Arithmetic Manual) contains the following problem:
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There is an unknown number of objects. When counted in threes,
the remainder is 2; when counted in fives, the remainder is 3; when
counted in sevens, the remainder is 2. How many objects are there?

The problem asks for an integerN such thatN≡ 2 (mod 3), N≡ 3 (mod 5), and
N≡ 2 (mod 7). One solution is given as

N = 2·70+3·21+2·15= 233;

it is clear that adding or subtracting a multiple of 105 from any solution gives
another solution; so the smallest solution is

N = 233−2·105= 23.

A folk-song gives the mnemonic:

Not in every third person is there one aged three score and ten,
On five plum trees only twenty-one boughs remain,
The seven learned men meet every fifteen days,
We get our answer by subtracting one hundred and five over and

over again.

Why does it work? Observe that 70 is congruent to 1 mod 3, to 0 mod 5, and
to 0 mod 7, and similarly for 21 and 15; then 70a+ 21b+ 15c is congruent to
a mod 3, tob mod 5, and toc mod 7, as required.

A similar procedure works in general. We give the result just for two moduli:
it is easily extended to any number by induction.

LetZ/(n) denote the set of congruence classes modn. It is clear that, ifx≡ x′

(modmn), thenx ≡ x′ (modm); so, for x ∈ Z/(mn), there is a well-defined
elementx modm of Z/(m). Similarly with n replacingm.

Theorem 2.4 (Chinese Remainder Theorem)If gcd(m,n) = 1, then the map F
fromZ/(mn) toZ/(m)×Z/(n) defined by

F(x) = (x modm,x modn)

is a bijection.
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Proof: Suppose thatF(x) = F(x′). Thenx modm= x′ modm, that is,mdivides
x− x′. Similarly n dividesx− x′. Sincem andn are coprime, it follows thatmn
dividesx−x′, so thatx = x′ (as elements ofZ/(mn)). ThusF is one-to-one.

Now |Z/(mn)| = mn= |Z/(m)×Z/(n)|; soF must also be onto, and thus a
bijection.

This proof is non-constructive, whereas the original Chinese argument gave an
algorithmic way to compute the inverse ofF . This can be generalised as follows.
Since gcd(m,n) = 1, Euclid’s algorithm shows that there exist numbersa andb
such thatam+bn= 1. Now we see that

am≡ 0 (modm), am≡ 1 (modn),
bn≡ 1 (modm), bn≡ 0 (modn),

so the solution to the simultaneous congruences

x≡ y (modm), x≡ z (modn)

is given by
x≡ bny+amz (modmn).

Remark: In fact F is a ring isomorphism: this simply means thatF(x+ x′) =
F(x)+F(x′) andF(xx′) = F(x)F(x′).

Now gcd(x,mn) = 1 if and only if gcd(x,m) = 1 and gcd(x,n) = 1. In other
words, ifF(x) = (y,z), then gcd(x,mn)=1 if and only if gcd(y,m) = 1 and gcd(z,n) =
1. Since Euler’s function gives the number of congruence classes coprime to the
modulus, the Chinese Remainder Theorem implies that

φ(mn) = φ(m)φ(n)

if gcd(m,n) = 1.
This extends to products of any number of pairwise coprime factors. Thus

φ(pa1
1 · · · p

ar
r ) = φ(pa1

1 ) · · ·φ(par
r )

if p1, . . . , pr are distinct primes.
So, to complete the proof of the theorem, we have to show only thatφ(pa) =

pa−1(p−1) = pa− pa−1 for p prime anda> 0. This holds because, of thepa con-
gruence classes modpa, the ones not coprime topa are precisely those divisible
by p, of which there arepa−1.
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Exercises

2.1. Mpuk hu Lunspzo dvyk, woyhzl, vy zlualujl dopjo pz ayhuzmvytlk puav
huvaoly Lunspzo dvyk, woyhzl, vy zlualujl dolu zvtl Jhlzhy zopma pz hwwsplk
av pa. Aol svunly fvby woyhzl, aol tvyl thyrz fvby huzdly dpss yljlpcl.

2.2.
The following problem is taken from Chin Chiu Shao’s bookSu Shu Chiu

Chang(Nine Sections of Mathematics), written in 1247. A ko is a unit of volume.

Three thieves,A, B andC, entered a rice shop and stole three vessels
filled to the brim with rice but whose exact capacity was not known.
When the thieves were caught and the vessels recovered, it was found
that all that was left in VesselsX, Y andZ were 1 ko, 14 ko and 1 ko
respectively. The captured thieves confessed that they did not know
the exact quantities they had stolen. ButA said that he had used a
horse ladle (capacity 19 ko) and taken the rice fromX. B confessed to
using his wooden shoe (capacity 17 ko) to take the rice from vesselY.
C admitted that he had used a bowl (capacity 12 ko) to help himself
from the rice from vesselZ. What was the total amount of rice stolen?

2.3. (a) Solve the simultaneous congruencesx≡4 (mod 13), x≡5 (mod 17).
(b) Find the inverse of 20 mod 77.

2.4. (a) Show that an affine permutationθ modq is completely determined if we
know its effect on some two different congruence classes modq.

(b) Show that every permutation inSq is affine if and only ifq≤ 3.

(c) For q = 26, show that each affine permutation has 0, 2 or 26 fixed points,
and that the average number of fixed points is 1. Can you generalise this to any
value ofq?



Chapter 3

Stream ciphers

Substitution ciphers have been used since time immemorial. As we have seen,
they are vulnerable to frequency analysis based on the statistics of the language
used. Although frequency analysis was first developed by Arab cryptographers
in the tenth century, substitution ciphers continued to be used until quite recently.
Simon Singh, inThe Code Book, tells the dramatic story of how the breaking, by
Elizabeth’s cryptanalysts, of the cipher used by Mary Queen of Scots led to her
trial and execution in 1587. Apparently Mary and her conspirators thought their
cipher was secure.

Eventually, it was realised that better ciphers were needed. Many schemes
were tried, but the essential idea was to use different substitutions for different
letters of the plaintext. The general name of a cipher based on this principle is a
stream cipher. In this chapter we discuss stream ciphers.

We begin with a general principle, known asKerckhoffs’ Principle:

Alice and Bob must always assume that Eve knows the encryption
system they are using, as well as having intercepted the ciphertext.
All they can hope to keep secret is the key.

For, although cryptographers continually invent new systems, knowledge of these
systems will soon spread in the intelligence community.

3.1 The Vigeǹere cipher

In 1562, Blaise de Vigeǹere invented a cipher in which a different Caesar shift is
applied to each letter of the plaintext.

27
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Suppose that we shift the first letter by 5, the second by 14, the third by 23,
the fourth by 4, and the fifth by 18. Thus the wordenemy would be encrypted as
JBBQQ. Notice that the two occurrences ofe in the original message are replaced
by different letters (J andB). Conversely, different letters in the plaintext become
the same in the ciphertext.

The key to this cipher is the sequence(5,14,23,4,18). Vigeǹere’s idea was
that, instead of having to remember the sequence of numbers, it is enough to
remember the letters obtained by shifting the lettera by these numbers. In this
case,aaaaa would becomeFOXES; this is the key to the cipher.

We can represent the process by aVigeǹere square, as shown in Table 3.1.
Write down the plaintext with the key immediately under it:

e n e m y
F O X E S
J B B Q Q

Now look in rowe and columnF to find the first letter in the ciphertext to beJ .
Repeat for the remaining letters.

What if the message is longer than the key? Vigenère’s idea here was to repeat
the key as often as necessary:

e n e m y p a t r o l s
F O X E S F O X E S F O
J B B Q Q U O Q V G Q G

So the ciphertext isJBBQQ UOQVG QG.
So the key is a simple word or phrase which can be easily memorised and can

be changed frequently.

Breaking the Vigenère cipher

The Vigeǹere cipher is a great advance on the monoalphabetic substitution cipher,
and was used for hundreds of years. However, it has two weaknesses, which
eventually led to a system of cryptanalysis for it. These are that the cipher applied
to each letter is a simple Caesar shift, which is very easy to break, and the fact that
the key string repeats after a relatively short number of steps.

Suppose that we knew that the keyword contains five letters. Then we can
divide the ciphertext into five strings, where the first string contains the first, sixth,
eleventh, . . . , letter; the second string contains the second, seventh, twelfth, . . . ,
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a A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
b B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
c C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
d D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
e E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
f F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
g G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
h H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
i I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
j J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
k K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
l L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
mM N O P Q R S T U V W X Y Z A B C D E F G H I J K L
n N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
o O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
p P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
r R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
s S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
t T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
u U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
v V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
w W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
x X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Table 3.1: Vigeǹere square
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letter; and so on. Now each string is a Caesar cipher and can be attacked by the
methods we have already discussed. (We cannot use digram or trigram frequencies
here, since letters which are consecutive in one of the substrings were five steps
apart in the original message. But the letter frequency analysis, and in particular
the frequency patterns of consecutive letters in the alphabet, can be applied.) Once
we have a conjectured decryption of each string, we can reassemble them to give
the message.

How do we determine the length of the key? We could simply use trial and
error. The frequency analysis is not likely to give sensible answers unless the
assumed length is a small multiple of the true length.

A more systematic method uses repeats in the ciphertext. A common digram
like th will probably occur many times in a reasonably long message. If the key
length is 5, then the number of different encryptions of it is (at most) 5, and two
occurrences will be encrypted in the same way if their positions in the plaintext
differ by a multiple of 5. If the key isFOXES, thenth will be encrypted asYV,
HE, QL, XZ, or LM, according as its starting position is congruent to 1, 2, 3, 4 or 5
mod 5.

If we notice that the digramYV occurs in positions 1, 66, and 111 of the
message, we might guess that it representsth , and that the length of the key is a
common factor of 65 and 110. Since gcd(65,110) = 5, we would deduce that the
key has length 5. We have more information too: if our guesses are correct, then
the first two letters of the key are also revealed asFO.

Two digrams could agree by chance, so it is safer to apply the method to
trigrams, if we have a reasonable amount of ciphertext.

The first person to propose this method was Charles Babbage, better known as
the inventor of the “Difference Engine” and the “Analytical Engine” (two mechan-
ical computers) in the nineteenth century. Babbage never published his decryption
method, and Simon Singh speculates that it might have been used by British In-
telligence (who would want the method kept secret!) A few years later, Friedrich
Kasiski proposed a similar method which now carries his name.

Chi-squared

The method can be mechanised to some extent. We now describe a method for
suggesting a solution to a Caesar cipher, which can be applied after we have found
the length of the keyword. This uses thechi-squared statistic, which statisticians
use for measuring the goodness of fit of data. Unlike statisticiaans, we make no
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assumptions about the distribution of our data, and draw no conclusions about the
significance of the result; the method simply suggests a possible decryption.

It should be stressed that in simple cases, pattern matching by eye is perfectly
satisfactory; but it is easier to tell the computer to optimize a complicated function
than to do some pattern matching.

Suppose thatn objects are put intoq boxes, where the probability that each
object is put into theith box ispi (with ∑ pi = 1). The expected number of objects
in theith box isei = npi . Suppose that the actual number in theith box isai . Then
the chi-squared statistic is

X =
q

∑
i=1

(ai−ei)2

ei
.

The smaller the value ofX, the better the data fit the prediction.
Now suppose we have a piece of text of lengthn encoded with a Caesar shift,

which we want to find. We apply what we hope is the inverse shift to the text. If
we are right, then the result should be plaintext, and the letter frequencies should
approximate those in English text, that is,ei = npi , wherepi is the relative pro-
portion of the occurrences of letteri in English. So we calculate the chi-squared
statistic, whereai is the actual number of occurrences of letteri in the shifted text.
If we are right, its value will be small. So we try all 26 shifts; the most likely
decryption is the one with the smallest value ofX.

This method only uses letter frequencies and makes no use of digrams, tri-
grams, etc. So it can be applied separately to all the substrings of a Vigenère
enciphered text, once we know the period.

Here is a worked example. The following is encrypted with a Vigenère cipher
with key of length 5.

FZFGW BOPFW LWKRA SUQSY JHSIJ DHFVW ICCWA YHFRY GMEIJ
XWPXW WCKXZ JPXRC FBASX MOSMF LBLXZ NBDXG ICLRU JCOXO
NQBWZ JVXHH JSMIV NBQSL MSYSG PVBVK NGQIJ BOPVW FRFRY
GIQML MOARG UWZXM WSPSJ HCKZW WGXXA TBPMF NHXRV BVXXA
XHEIM XSLJS GCLOL MCRKZ YOIMU JKFXZ TIQTA HHRVW XCOGG
SJBVK FHFSF XGLWZ JKXWU TBPMV JFFRY NBEIJ TKKQA SRXWO
JZIEK XVBGG ZZAJG WHEIZ THAEQ ROAIZ JFCIW QJBVQ XZBIH
DOKHK YIMMV BVBXZ JFQLW UZBEK ZFBSX ROHMF LOAEA XMZLS
NBTSM QRYIO TFQLL MSQVG ZPIIG KUBXL NBDYH FBATA HYFRY
YVBHS NGFIK BVBRK ZRAIF QMXAZ NHBVS GPFXO NHETA SYBCW
XFXRU QCPIT DVBV
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The first of the five substrings that we have to analyse is obtained by taking
the first letter of each block; it is
FBLSJDIYGXWJFMLNIJNJJNMPNBFGMUWHWTNBXXGMYJTHXSFXJTJNTS
JXZWTRJQXDYBJUZRLXNQTMZKNFHYNBZQNGNSXQD.
The letter frequencies in this substring are given in the third column of Table 3.2.

We calculate the chi-squared values using the frequency data fromAlice’s Ad-
ventures in Wonderland. Table 3.2 gives the calculation for shifts 0 and 5; it is
easy to automate this to work out all values.

We find that, for a shift of 5, the value of chi squared is 23.99. The smallest
value for any other shift is 281.56, for a shift of 1. This strongly suggests that the
shift is 5 and the first letter of the keyword isF.

By the same method (and the results are as clear-cut in all cases), we find the
shifts for the other substrings to be 14,23,4,18, so that the keyword isFOXES.
The decrypted text is

Alice was beginning to get very tired of sitting by her sister on the
bank and of having nothing to do: once or twice she had peeped into
the book her sister was reading, but it had no pictures or conversations
in it, and “what is the use of a book,” thought Alice, “without pictures
or conversations?” So she was considering, in her own mind (as well
as she could, for the hot day made her feel very sleepy and stupid),
whether the pleasure of making a daisy-chain would be worth the
trouble of getting up and picking the daisies, when suddenly a White
Rabbit with pink eyes ran close by her.

In fact, finding the period can also be mechanised to some extent, using a
method due to William Friedman. See Garrett’s book for a description of this.

3.2 Stream ciphers

The cryptographers now had two tasks. First, they had to find a way of producing
a non-repeating key; second, to make the frequency analysis more difficult, they
had to use an arbitrary permutation of the alphabet in each position, rather than
just a shift. The two tasks require completely different ideas.

These complications also make it much more difficult to use the ciphers, espe-
cially in situations such as a battlefield signal unit. Thus it was necessary to move
from hand to machine for the encryption and decryption.
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Letter Frequency Observed Expected Expected
% Shift 0 Shift 5

A 8.15 0 7.58 0.73
B 1.37 5 1.27 2.32
C 2.21 0 2.06 0.12
D 4.58 3 4.26 1.96
E 12.61 0 11.73 0.65
F 1.86 5 1.73 7.58
G 2.36 4 2.20 1.27
H 6.85 3 6.37 2.06
I 6.97 2 6.48 4.26
J 0.14 11 0.13 11.73
K 1.07 1 1.00 1.73
L 4.37 3 4.06 2.20
M 1.96 5 1.82 6.37
N 6.52 11 6.06 6.48
O 7.58 0 7.05 0.13
P 1.40 1 1.30 1.00
Q 0.19 4 0.18 4.06
R 5.02 2 4.67 1.82
S 6.05 4 5.63 6.06
T 9.93 6 9.23 7.05
U 3.22 2 2.99 1.30
V 0.78 0 0.73 0.18
W 2.49 4 2.32 4.67
X 0.13 9 0.12 5.63
Y 2.11 4 1.96 9.23
Z 0.07 4 0.65 2.99

∑(o−e)2/e 1949.79 23.99

Table 3.2: A chi-squared calculation
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One more thing to remember is that we are not restricted to using the Roman
alphabet for our ciphers. We can translate our message into a string in any alphabet
at all, and use this as the plaintext. In particular, the plaintext could be a string of
digits (so that the alphabet is{0,1,2,3,4,5,6,7,8,9}, or a string of binary digits
(so that the alpabet is just{0,1}.

In the 1930s, a standard International Telegraph Code was agreed (see Fig-
ure 3.3). This is based on a code invented by Baudot, whose name has given rise
to the wordbaudfor the rate of information transmission. The ITC translates the
26 letters and 6 control characters into sequences of length 5 from a two-letter
alphabet. With hindsight and familiarity with computers, we regard the symbols
of the alphabet as 0 and 1; but originally they were two voltage levels in interna-
tional telegraphy (+80 and−80 volts), or “hole” and “no hole” in punched paper
tape. The names of the symbols don’t matter, but the names 0 and 1 will be very
convenient later.

Using the ITC, a message is encoded into a string of zeros and ones. We
can regard this as a string of length 5n over the alphabet{0,1}, or as a string of
lengthn over an alphabet of 32 symbols (the 26 letters and six control characters),
whichever is more convenient.

Generating the key

The best key is a completely random sequence of letters from the alphabet. Such
a sequence is called a “one-time pad”. As we will see later, the one-time pad
provides an absolutely secure form of encryption; no possible deductions about
the plaintext can be made from knowledge of the ciphertext if this system is used
properly.

However, it is very difficult to generate a truly random sequence. (There are
rumours that people were employed by the CIA to toss coins all day and write
down the results to produce one-time pads for the two-letter alphabet (whose let-
ters might be called “heads” and “tails” in this case). It seems very likely that
one-time pads were produced and used by intelligence services. Peter Wright, in
Spycatcher, records the finding of one-time pads in the personal possessions of
suspected Soviet spies in London by MI5 during the Cold War.

The difficulties of producing a random key led to various types of mechani-
cal or electronic devices for producing what are known as “pseudo-random” keys.
These are sequences of letters which, although not random, behave in many ways
like a random sequence, so that a short sequence of the key gives very little infor-
mation about the rest of the key. In particular, we require that each letter occurs
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A 11000
B 10011
C 01110
D 10010
E 10000
F 10110
G 01011
H 00101
I 01100
J 11010

K 11110
L 01001

M 00111
N 00110
O 00011
P 01101
Q 11101
R 01010
S 10100
T 00001
U 11100
V 01111
W 11001
X 10111
Y 10101
Z 10001

Letters 11111
Figures 11011

Line feed 01000
Carriage return 00010

Word space 00100
All space 00000

Table 3.3: International teleprinter code
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with the same frequency, and similarly for digrams, trigrams, etc. We also require
that the sequence does not repeat during the transmission of a typical message.

Every deterministic finite machine which outputs a string of characters must
eventually repeat; its output will beultimately periodic. That is because the ma-
chine must be in one of a finite (possibly very large) number of states at any
moment. If it operates continuously, it must eventually return to the same state
that it was in at some previous time. From that point on, its behaviour will be
the same as on the previous occasion; so the output is periodic. (The period may
be very large. For example, a computer with 128 megabytes of memory has 230

transistors, each capable of being in two states; so the number of configurations
is 2230

. In principle, the period could be as large as this number, approximately
10300000000.)

We will look later at some of pseudo-random number generators which have
been used in practice.

Combining key and plaintext

The Vigeǹere square gives a method of combining plaintext with key to give ci-
phertext. We can descibe it more simply by identifying the lettersA...Z with the
elements 0. . .25 of Z/(26). Then the combination of plaintext letterp and key
letterk gives the ciphertext letterz= p+ k, where the addition is mod 26. Then
decrypting simply involves subtraction mod 26:p = z−k.

In the Second World War, the Japanese military ciphers often used the digits
0· · ·9 as symbols. The ciphers would also often use a codebook where various
commonly used terms were encoded as groups of four digits. Thus, for exam-
ple,0700 could refer to thekōkū tokushi musentai(Air Special Radio Unit), and
4698 to thekōkū tokushu j̄ohōtai (Air Special Intelligence Unit). The key was a
string of pseudo-random digits, and the encryption was addition mod 10, or addi-
tion without carrying. Thus, encrypting4698 with key 7251 would give1849 .
Once again, decryption is subtraction mod 10 (subtraction without borrowing).

The same principle can be used in the simpler case of the binary alphabet. The
rules for addition without carry give the addition table of the integers mod 2 (the
finite field with two elements, often called thebinary field:

+ 0 1
0 0 1
1 1 0
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Then, if the plaintext and key are strings of zeros and ones, we just add the mod 2;
for example:

Plaintext: 01001001010. . .
Key: 10100010011. . .

Ciphertext: 11101011001. . .

Latin squares

It is possible to generalise the way in which we combine the plaintext and key to
form the ciphertext in a stream cipher.

For each character of the key we associate a function mapping plaintext char-
acters to ciphertext characters. This mapping must be a permutation, so that the
recipient can invert it to recover the plaintext. So the addition table must have the
property that each character appears exactly once in each column.

A Latin square of orderq is anq×q array whose entries are taken from an
alphabet ofq symbols such that each symbol occurs exactly once in each row and
column. This is a stronger requirement than we need; we will see later why it is a
good feature from a cryptographic point of view, as we will see later.

In particular, the Vigeǹere square, the addition table of 0, . . . ,9 mod 10, and
the addition table of the binary field (with the borders removed) are Latin squares.
However, there are many other Latin squares. The exact number is not known; it
is known that there are upper and lower bounds for the number of Latin squares
of orderq of the form(cq)q2

for positive constantsc.
For example, here is a Latin square of order 10, using the alphabet{0, . . . ,9}.

I have bordered it with row and column indices for ease of use in enciphering.

0 1 2 3 4 5 6 7 8 9
0 8 6 3 1 2 5 9 7 0 4
1 1 8 4 3 7 0 6 5 9 2
2 4 1 6 2 3 8 0 9 7 5
3 9 3 2 4 0 7 5 1 6 8
4 6 2 5 7 4 1 3 0 8 9
5 0 9 7 6 8 4 1 2 5 3
6 2 7 0 5 6 9 8 3 4 1
7 5 4 9 8 1 2 7 6 3 0
8 7 5 8 0 9 3 2 4 1 6
9 3 0 1 9 5 6 4 8 2 7
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(This random Latin square was produced by a Markov chain algorithm due to
Jacobson and Matthews.)

Thus, encrypting the plaintext 4698 with key 7251 using this square gives
the ciphertext 0065. (For example, the entry in row 4 and column 7 is 0.) A
Latin square used in this way is called asubstitution table. Thecolumnsof the
substitution table are the permutations of the alphabet associated with the key
symbols. In the above, the key symbol 0 corresponds to the permutation(

0 1 2 3 4 5 6 7 8 9
8 1 4 9 6 0 2 5 7 3

)
,

or in “cycle notation”(0,8,7,5)(1)(2,4,6)(3,9).

We summarise a stream cipher in the following definition.

Definition: A stream cipherover an alphabet ofq symbolsa1, . . . ,aq requires
a key, a random or pseudo-random string of symbols from the alphabet with the
same length as the plaintext, and asubstitution table, a Latin square of orderq
(whose entries are symbols from the alphabet, and whose rows and columns are
indexed by these symbols). If the plaintext isp1p2 . . . pn and the key isk1k2 . . .kn,
then the ciphertext isz1z2 . . .zn, wherezt = pt ⊕ kt for t = 1, . . . ,n; the operation
⊕ is defined as follows:

ai ⊕a j = ak if and only if the symbol in the row labelledai and the
column labelleda j of the substitution table isak.

We extend the definition of⊕ to denote this coordinate-wise operation on
strings: thus, we writez= p⊕k, wherep,k,zare the plaintext, key, and ciphertext
strings.

We also define the operation	 by the rule thatp = z	k if z= p⊕k; thus,	
describes the operation of decryption.

3.3 Fish

A simple improvement of the Vigenère cipher is to encipher twice using two dif-
ferent keysk1 andk2. Because of the additive nature of the cipher, this is the same
as enciphering withk1 +k2. The advantage is that the length of the new key is the
least common multiple of the lengths ofk1 andk2. For example, if we encrypt a
message once with the keyFOXESand again with the keyWOLVES, the new key
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is obtained by encrypting a six-fold repeat ofFOXESwith a five-fold repeat of
WOLVES, namely

BCIZWXKLPNJGTSDASPAGQJBWOTZSIK

The new key has period 30. Re-encrypting with a word of length 7 such as
JAGUARSwould have the effect that the new key has period 210.

This idea was exploited in the Second World War German cipher codenamed
“Fish”, so-called because it used the Siemens T52 machine known asSägefisch
(sawfish). This cipher, which was broken by the Bletchley Park cryptanalysts, is
less well-known than the Enigma cipher, but is probably of even greater signifi-
cance, since it was used for strategic messages, troop dispositions, etc., between
the German High Command and the theatres of war. The bookCode Breakers:
The Inside Story of Bletchley Park(edited by F. H. Hinsley and Alan Stripp) gives
more detail about breaking this cipher, which has been described as the greatest
intellectual achievement of the war.

The Fish cipher employed the 5-bit International Telegraph Code, described
earlier in this chapter. The five bits of each character in the plaintext were sepa-
rated into five bitstreams which were enciphered separately and then reassembled
into a sequnce of 5-bit words for transmission.

The encryption of each substream was by means of a stream cipher, generated
by a mechanical device. The first stage consisted of one Vigenère cipher for each
substream; the periods of these ciphers were 41, 31, 29, 26 and 23. Each cipher
was implemented by a toothed wheel; the teeth could be extended or retracted,
corresponding to a 1 or a 0 in the corresponding keyword. The wheels advanced
one place after encrypting one bit from each stream in parallel. This was followed
by a second cipher, like a Vigenère cipher but where we sometimes advance to the
next letter of the keyword and sometimes remain with the same one, depending
on the operation of two further wheels. The periods of the second ciphers were
43, 47, 51, 53 and 59, while the control wheels had periods 37 and 61. (The
precise method of operation, and a diagram of the machine, appear in the book
Code Breakers.) Figure 3.1 shows a diagram of the machine, from Tony Sale’s
“Codes and Ciphers” web page.

Since the wheel sizes are pairwise coprime, the period of the keystring gener-
ated by such a cipher is their product:

23· · ·61= 16033955073056318658.

The keys of the different Vigeǹere ciphers and the control wheels could be set, but
the lengths of the wheels was fixed.
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Figure 3.1: The S̈agefisch cipher machine

It would have been possible for the Bletchley Park cryptanalysts to have as-
sembled models of the cipher machines. But they felt that the supply of parts for
such machines would have drawn attention to the fact that they were attempting to
break the cipher. So instead they built electronic machines (including Colossus,
the first stored-program computer) out of readily available parts used for telephone
switchgear. This move from mechanical to electronic methods in cryptography
was probably the most significant result of the Bletchley Park codebreakers.
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3.4 One-time pads

A one-time pad is a stream cipher whose key is a random sequence of symbols
from the alphabet. This means that, if the size of the alphabet isq and the length of
the key isn, then each of theqn keystrings has probability 1/qn. Said another way,
each alphabet symbol is equally likely to appear in each position, and the symbols
in the various positions are mutually independent. You may want to revise some
elementary probability theory at this point (especially conditional probability and
random variables).

Theorem 3.1 A one-time pad is secure against statistical attack.

Before we can prove the theorem, we have to say what it means. Before we
receive the message, we have some prior estimate of the probabilities of various
messages that might be sent (based perhaps on the statistics of language, perhaps
on what we think that Alice might be saying to Bob). Letp = p0 denote the event
that the plaintext string is the particular stringp0. (Here we are thinking ofp as a
random variable andp0 as a particular value that it might take.) Thus, probabilities
P(p = p0) are assumed.

After we have intercepted a particular ciphertext stringz0, our new estimate
of the probability is the conditional probabilityP(p = p0 | z= z0). For example,
if we can decrypt the cipher and determine that the plaintext sent wasp1, then
P(p = p1 | z= z0) = 1, while P(p = pi | z= z0) = 0 if pi 6= p1. This represents
the state where we have gained the maximum amount of information. A weaker
requirement is just that our estimates of the probabilities of the various plaintexts
have been changed by knowledge of the ciphertext.

Now Shannon’s Theorem asserts that, if the key is random, then

P(p = p0 | z= z0) = P(p = p0)

for any plaintextp0. Thus, not only is it true that we cannot decrypt the message,
but we cannot get any more information at all!

Let us prove this. By definition,

P(p = p0 | z= z0) =
P(p = p0 andz= z0)

P(z= z0)
.

Now the eventp= p0 andz= z0 is the same as the eventp= p0 andk = k0, where
k denotes the key, andp0⊕ k0 = z0. (Any two of the plaintext, key and cipher-
text uniquely determines the third.) Now the plaintext and the key are obviously
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independent, so we haveP(p = p0 andk = k0) = P(p = p0) ·P(k = k0) = P(p =
p0)/qn, whereq is the alphabet size andn the length of the strings.

Let us computeP(z= z0). The ciphertextz0 can arise in many ways, from any
plaintextpi and keyki satisfyingpi⊕ki = z0. These events are pairwise disjoint.
So, is∑ denotes the sum over all such pairs(pi ,ki), we have

P(z= z0) = ∑P(p = pi) ·P(k = ki)

= ∑P(p = pi)/qn

= 1/qn.

Here the first equation holds because of the assumption that the keys are ran-
dom, and the second just says that the prior probabilities of the various plaintexts
must add up to 1.

Finally, we get

P(p = p0 | z= z0) =
P(p = p0)/qn

1/qn = P(p = p0),

and the proof is complete.

In fact an even stronger property holds. If we already know the decryption
of part of the ciphertext, then clearly this will alter our estimated probabilities
for the rest of the text. However, knowledge of the ciphertext does not give any
further information! We will see that, for a widely used class of stream ciphers
(those based on shift registers), this assumption is far from true: knowledge of
the ciphertext and a small amount of plaintext enables the cipher to be broken
completely.

3.5 Golomb’s Postulates

How do we tell if a sequence is random?
This is a very deep question, and several different solutions have been pro-

posed. By definition, ‘random’ means ‘selected from the set of all possible se-
quences, any sequence being equally likely’, or (what amounts to the same thing,
‘the symbols in the string are chosen independently with equal probability’. But
this definition refers to the set of all possible sequences, and doesn’t tell us any-
thing about a single sequence. Indeed, any sequence can occur, even a constant
sequence!

A completely different definition was proposed by Kolmogorov, who said:
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A sequence is random if it cannot be generated by an algorithm with
a short description (i.e. much shorter than the sequence itself).

Using this definition, the keystring of the Fish cipher, or the string of digits ofπ,
is not random. However, the definition is not easy to apply.

A more practical test was given by Golomb, who proposed three postulates.
To state Golomb’s postulates, we need a couple of definitions. Suppose thata =
a0a1 . . .an−1 is a binary sequence. We regard it as cyclic, so thata0 is regarded as
following an−1. A run in the sequence is a subsequence such that all the entries
are the same, which is as long as possible: that is, either a row of 1s with 0s at
each end, or a row of 0s with 1s at each end. Thecorrelationof two sequencesa
andb is defined to be∑aibi . The correlation of the sequencea with a cyclic shift
of itself is called anautocorrelationof a; it is in phaseif the shift is zero, andout
of phaseotherwise. Thus, the autocorrelation is∑aiai+m, where the subscripts
are modn; it is in phase ifm = 0 and out of phase otherwise. (Sometimes in
the literature a renormalisation is applied to the correlation; this doesn’t affect the
postulates below.)

Golomb’s postulates are the following:

(G1) The numbers of 0s and 1s in the sequence are as near as possible ton/2
(that is, exactlyn/2 if n/2 is even, and(n±1)/2 if n is odd).

(G2) The number of runs of given length should halve when the length is in-
creased by one (as long as possible), and where possible equally many runs
of given length should consist of 0s as of 1s.

(G3) The out-of-phase autocorrelation should be constant (independent of the
shift).

A sequence satisfying these postulates is called apseudo-noise sequenceor
PN-sequence.

For example, consider the sequence

000100110101111

which we regard as being continued for ever in cyclic fashion. There are seven 1s
and eight 0s, so (G1) is true. The runs are as follows:

• four of length 1, two 0s (beginning at positions 8 and 10) and two 1s (be-
ginning at 3 and 9);
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• two of length 2, one 00 (beginning at 4) and one 11 (beginning at 6);

• one of length 3, 000 beginning at 0;

• one of length 4, 1111 beginning at 11.

So (G2) is satisfied. For (G3), compare the sequence with each of its cyclic shifts:

000100110101111
100010011010111
110001001101011
111000100110101
111100010011010
011110001001101
101111000100110
010111100010011
101011110001001
110101111000100
011010111100010
001101011110001
100110101111000
010011010111100
001001101011110

We see by inspection that the autocorrelation of any two rows is equal to 4. Of
course the in-phase autocorrelation is 8.

Exercise: Write down a string of ‘random’ bits, say of length 32. (That is, try
to avoid any obvious patterns.) How close does your string come to satisfying
Golomb’s postulates?

Now toss a coin 32 times to generate random bits. Does this string fit Golomb’s
postulates better?

3.6 Shift registers

One method which has been widely used for generating pseudo-random binary
sequences involves shift registers.

Figure 3.2 shows a shift register.
Each of the boxes in the shift register contains one bit (zero or one). The shift

register is controlled by a clock which ticks at discrete time intervals. When the
clock ticks, the contentsx0 andx1 of the first two boxes are added (mod 2); then
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Figure 3.2: A shift register

the contents of each box is shifted one place left (that of the first box is output)
and the result of the addition is put in the last box.

Suppose that the boxes initially contain 0001. Then, at successive clock ticks,
they become 0010, 0100, 1001, 0011, 0110, 1101, 1010, 0101, 1011, 0111, 1111,
1110, 1100, 1000, 0001, and the machine outputs the sequence

000100110101111

At this point, the contents have returned to their original values, and the machine
then repeats the same cycle indefinitely.

We see that, for this particular shift register, every possible binary 4-tuple ex-
cept 0000 occurs precisely once in a cycle as the contents of the boxes. Moreover,
the contents of the boxes at stagen become the next four bits of the output string.
So, if we consider the string as continuing indefinitely, and if we look at it through
a window which shows just four bits at a time, then we see each of the 24−1 = 15
non-zero 4-tuples just once in each cycle. Note that we could start with any non-
zero 4-tuple and the same cycle would be obtained.

On the other hand, if we start with 0 in each box, then the contents of the boxes
will always be 0, and the output string consists entirely of zeros – not very good
as a pseudo-random string.

In general, a shift register works in the same way. It is specified by giving

(a) the number of boxes;

(b) which boxes are connected to the “adder”.
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If there aren boxes, we speak of ann-bit shift register. Its configuration at any
given time is the binaryn-tuple giving the contents of the boxes at that time.

For reasons that will become clear in the next section, it is convenient to de-
scribe a shift register by a polynomial over the binary field. The degreen of the
polynomial is the number of boxes; the coefficient ofxi is 1 if i = n or if the ith
box is connected to the adder, and 0 otherwise. (We number the boxes from 0 on
the left ton−1 on the right.) Thus, the polynomial describing the shift register in
Figure 3.2 is

x4 +x+1.

Proposition 3.2 Suppose that a shift register is described by the polynomial

xn +
n−1

∑
i=0

aix
i .

Then its output sequence is given by the recurrence relation

xk+n =
n−1

∑
i=0

aixk+i .

Proof: Suppose that the configuration is(u0, . . . ,un−1). At the next clock tick,
the adder computest = ∑n−1

i=0 aiui . The nextn bits output are, in order,xk = u0,
xk+1 = u1, . . . , xk+n−1 = un−1, xk+n = t. Hence the sequence is given by the
recurrence relation.

An n-bit shift register (one withn boxesx0, . . . ,xn−1) which starts in a non-
zero configuration must return to its starting point in at most 2n−1 steps, since
there are exactly this many non-zero configurations it can have. Thus, its period is
at most 2n−1. An n-bit shift register is said to beprimitive if is period is 2n−1;
that is, if it has the property that, if the starting configuration is non-zero, then
each of the 2n−1 non-zeron-tuples occurs once as a configuration in the course
of a cycle. The next theorem asserts that primitive shift registers exist with any
given number of bits.

Theorem 3.3 For any positive integer n, there is a primitive n-bit shift register.

Of course, it is easy to construct a shift register with a moderate number of
bits, say 30 or 100. We can ensure (by choosing a primitive shift register) that its
output sequence will not repeat during the lifetime of the universe!
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Algebraic formulation

The behaviour of the shift register can be described algebraically. Ifx= (x0,x1,x2,x3)
are the contents of the shift register at any moment, andy= (y0,y1,y2,y3) the con-
tents after the clock ticks, then we have

y0 = x1

y1 = x2

y2 = x3

y3 = x0 + x1

or, in matrix terms,y′ = Ax′, whereA is the matrix
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 .
(Herex′ is the transpose ofx, the column vector corresponding to the row vector
x.)

The matrixA satisfiesA15 = I , and no smaller power ofA is equal toI . If V
denotes the 4-dimensional vector space over the binary field, then for any non-zero
vectorx∈V, the fifteen vectors

x′,Ax′,A2x′, . . . ,A14x′

are distinct and comprise all the non-zero vectors inV.
The connection between the polynomial and the matrix is simple:

The polynomial of a shift register is equal to the characteristic poly-
nomial (and to the minimal polynomial) of its matrix.

For, given a polynomialf (x) = xn+an−1xn−1+ · · ·+a1x+a0, thecompanion
matrix of f is defined to be the matrix

C( f ) =


0 1 0 . . . 0 0
0 0 1 0 . . . 0
... ... ... ... ... ...
0 0 0 . . . 0 1
−a0 −a1 −a2 . . . −an−2 −an−1


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with zeros everywhere except for ones above the diagonal and the coefficients of
f in reverse order with the sign changed in the bottom row. It is a standard result
that the characteristic and minimal polynomials ofC( f ) are both equal tof . Now
over the binary field,−a is the same asa, and the matrix associated with the shift
register is preciselyC( f ), so has the same characteristic and minimal polynomials.

We call a polynomial of degreen primitive if its associated shift register is
primitive. Now the following theorem holds:

Theorem 3.4 A primitive polynomial is irreducible.

The proof of this theorem depends on the theory of finite fields and is beyond
the scope of the course.

Example: Suppose thatn = 4. How do we find all the primitive polynomials?
First we find the irreducible polynomials. Let

f (x) = x4 +ax3 +bx2 +cx+d

be a polynomial overZ/(2), so that all the coefficients are 0 or 1. There are
24 = 16 polynomials altogether. Now, by the remainder theorem, iff (0) = 0, that
is, d = 0, thenx is a factor off (x); and if f (1) = 0, that is, 1+ a+ b+ c+ d = 0,
thenx−1 is a factor (note thatx−1 is the same asx+ 1. So we must haved = 1
anda+b+c = 1. Of the sixteen polynomials, just four pass these tests, namely

x4 +x+1, x4 +x2 +1, x4 +x3 +1, x4 +x3 +x2 +x+1.

Now there is an irreducible polynomial of degree 2, namelyx2 +x+1, and

(x2 +x+1)2 = x4 +x2 +1

is reducible. This leaves three polynomials. All of them are irreducible, since we
have exhausted all the possible factorisations.

Now x4 + x+ 1 is primitive; this is the polynomial of the shift register with
which we started. Similarly it can be checked thatx4 + x3 + 1 is primitive. How-
ever, if we take the polynomialx4+x3+x2+x+1 (with corresponding recurrence
relationxi+4 = xi+3 + xi+2 + xi+1 + xi), the starting configuration 0001 generates
the sequence

000110001100011. . .

of period 5. The other starting configurations also produce output of period 5.
This polynomial is not primitive.
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Stream ciphers from shift registers

The sequences generated by shift registers are not of course random. In Kol-
mogorov’s sense, they are very far from being random, since they are generated by
a very simple machine. However, they are pseudo-noise sequences in Golomb’s
sense:

Theorem 3.5 The output sequence of any primitive shift register satisfies Golomb’s
postulates.

It is easy to see that postulate (G1) is satisfied. Remember that every non-zero
n-tuple occurs exactly once as the configuration of the shift register in the course
of the cycle. Now of the 2n−1 possible non-zeron-tuples, 2n−1−1 begin with
zero and 2n−1 with one; so the cycle contains 2n−1−1 zeros and 2n−1 ones, in
accordance with (G1).

We will not prove all of the theorem here; the proof uses the theory of finite
fields. In fact, the string of length 15 which we used in the preceding chapter is
the output of the shift register with which we began this chapter.

Breaking a shift register

Although primitive shift registers have many good properties, such as satisfying
Golomb’s postulates, they have one fatal flaw: it doesn’t take much information
to break a stream cipher based on a shift register.

Theorem 3.6 Suppose that a stream cipher is based on an n-bit shift register.
Suppose that2n consecutive bits of ciphertext and the corresponding plaintext are
known. Then the cipher can be broken.

Proof: From the 2n bits of ciphertext and corresponding plaintext, we obtain 2n
consecutive bits of the keystring, sayu0,u1, . . . ,u2n−1. From Proposition 3.2, we
have

un = a0u0 +a1u1 + · · ·+an−1un−1,

un+1 = a0u1 +a1u2 + · · ·+an−1un,

. . .

u2n−1 = a0un−1 +a1un + · · ·+an−1u2n−2
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This looks like a set of linear equations for theus, with theas as coefficients. But
remember that in this case we know theus but not theas. So we regard them
as equations for the unknownsa0, . . . ,an−1. There are equally many equations as
unknowns (namelyn), and it is possible to show that the equations have a unique
solution.

Thus we can determine the shift register, and then simulate its action (starting
with the configuration(u0, . . . ,un−1) to find the entire keystring.

The moral of the story is that any device that produces a long-period sequence
from a small amount of data is vulnerable.

Example: Suppose that 11010110 is part of the output of a 4-bit shift register.
We obtain the equations

0 = a0 + a1 + a3,
1 = a0 + a2,
1 = a1 + a3,
0 = a0 + a2 + a3.

These equations have solutiona0 = 1, a1 = 0, a2 = 0, a3 = 1. So the shift register
has polynomialx4 +x3 +1, and a period of its output is

1101011001000111

We see that the shift register is primitive.

How could 2n bits of plaintext be obtained? There are a number of methods.
First of all, by guesswork. If Alice always starts her letters with “Dear Bob,”
we can make use of this fact. Another method would be to physically steal the
plaintext from either Alice or Bob.

The breaking of the Fish cipher illustrates how Alice’s carelessness can help
Eve. The first step that led to the breaking of the Fish cipher occurred when the
cryptanalysts discovered that two long messages had been enciphered using the
same key (that is, the same settings and initial state of the wheels). Thus, we have

z= p⊕k, z′ = p′⊕k,

where⊕ here denotes bitwise binary addition. From the properties of binary
addition, we deduce that

z⊕z′ = p⊕ p′.
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This means that, when the two ciphertexts are added, the key dieappears, and
we have the sum of two plaintexts. Now these can be teased apart by frequency
analysis, to find the two plaintextsp andp′. Now we can find the keyk = p⊕z.
The cryptanalysts used the key to deduce the structure of the cipher machine. This
is similar to (but rather more complicated than) our use of 2n bits of key to break
ann-bit shift register.

Worked example Theseven-bit ASCII coderepresents letters, digits, and punc-
tuation as characters from the set of integers in the range 32. . .127; the capi-
tal lettersA...Z are represented by 65. . .90, and lower-case lettersa...z by
97. . .112. Integers in the range 0. . .31 are used for control codes. The integers
are then written in base 2, as 7-tuples of zeros and ones.

You intercept the string

0000110110111010101111110111010011011110010011110000101100010101010101

You have reason to believe that it is a message in seven-bit ASCII encrypted by
means of a stream cipher based on a seven-bit shift register, and that the first two
letters of the message areSu. Decrypt the string.

Solution The 7-bit ASCII code forSu is 10100111110101. Subtracting
these fourteen bits of plaintext from the first fourteen bits of ciphertext gives us
fourteen bits of key: 10101010011011. So the equations for the shift register are

0 = a0 + a2 + a4 + a6

0 = a1 + a3 + a5

1 = a0 + a2 + a4

1 = a1 + a3 + a6

0 = a0 + a2 + a5 + a6

1 = a1 + a4 + a5

1 = a0 + a3 + a4 + a6

Solving, we find(a0, . . . ,a6) = (1,1,0,1,0,0,1), so the shift register polynomial
is x7+x6+x3+x+1. Now we can continue the key to 70 bits using the recurrence
relationxn+7 = xn+6+xn+3+xn+1+xn and subtract it from the ciphertext to obtain
the plaintext, and then divide the plaintext into 7-bit blocks and decode each block
to obtain the message:Surrender!
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3.7 Finite fields

Any serious investigation of shift registers must observe that they are very closely
connected with finite fields. A field is a set with two operations (addition and
multiplication) in which the ‘usual rules’ apply. For example, the rational, real or
complex numbers, or the integers modulop (wherep is prime) are fields.

The finite fields were classified by Galois around 1830:

Theorem 3.7 The order of a finite field must be a prime power. For every prime
power q, there is a field with q elements, and it is unique up to isomorphism.

The field withq elements is denoted by GF(q) (for ‘Galois field’) in honour
of Galois.

Two properties of finite fields are important here:

Theorem 3.8 The multiplicative group of a finite field is cyclic.

This means that GF(q) contains an elementα with the property that all the
q−1 non-zero elements are powers ofα. Thus,αq−1 = 1, but no smaller power
of α is equal to 1. Such an elementα is said to be aprimitive elementof GF(q).
The number of primitive elements of GF(q) is equal toφ(q−1), whereφ is Euler’s
function.

Theorem 3.9 Let p and p1 be primes. The fieldGF(pn) contains a subfield
GF(pm

1 ) if and only if p= p1 and m divides n. In this case, there is a unique
subfieldGF(pm) of GF(pn).

Now let q be a given prime power. The field GF(qn) contains a unique sub-
field GF(q). For each elementθ∈GF(qn), there is aminimal polynomialof θ over
GF(q), that is, a monic polynomial satisfied byθ. This polynomial is always irre-
ducible, and its degree is equal tom if the smallest subfield of GF(qn) containing
GF(q) andθ is GF(qm).

The monic polynomial ofθ has degreen if and only if θ lies in no subfield of
GF(qn) containing GF(q) (except GF(qn) itself). Every irreducible polynomial of
degreen over GF(q) is the minimal polynomial of exactlyn elements of GF(qn).

Now consider the case whereq = 2. We begin by reversing the procedure and
constructing GF(24) as an example. Letα be a root of the irreducible polynomial
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x4 +x+1 over GF(2). Thus,α4 +α+1 = 0, or (since−1 = +1) α4 = α+1. We
can make a table of powers ofα as follows:

α0 = 1
α1 = α
α2 = α2

α3 = α3

α4 = α + 1
α5 = α2 + α
α6 = α3 + α2

α7 = α3 + α + 1
α8 = α2 + 1
α9 = α3 +α
α10 = α2 + α + 1
α11 = α3 + α2 + α
α12 = α3 + α2 + α + 1
α13 = α3 + α2 + 1
α14 = α3 + 1

andα15 = 1 = α0, so the sequence repeats (like the shift register). We see thatα
is a primitive element of the field GF(24); the field consists of zero and the fifteen
powers ofα.

Using this table as a table of logarithms, we can do arithmetic in the field. For
example,

(α2 + α +1)+(α3 + α2 + α) = α3 +1,

(α2 + α +1) · (α3 + α2 + α) = α10 ·α11= α6 = α3 + α2.

Now let β = α7. We have

β2 = α14 = α3 +1,

β3 = α6 = α3 + α2,

β4 = α13 = α3 + α2 +1.

So we see thatβ4 = β3+1, so thatβ satisfies the primitive polynomialx4+x3+1.
Similarly we find thatγ = α3 satisfies the irreducible but not primitive poly-

nomialx4 + x3 + x2 + x+ 1, whileδ = α5 has minimal polynomialx2 + x+ 1 and
lies in a subfield GF(4) consisting of the elements 0,1,α5,α10.
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The three irreducible polynomials of degree 4 each have four roots. The irre-
ducible polynomialx2 +x+1 has two roots. The two elements 0,1 have minimal
polynomialsx andx+1 respectively of degree 1. Thus all elements of GF(16) are
accounted for.

Theorem 3.10 Let θ be an element ofGF(2n) with minimal polynomial f(x) of
degree n. Then f(x) is a primitive polynomial (in the sense that the associated
shift register has period2n−1) if and only ifθ is a primitive element ofGF(2n).

For example, suppose thatn = 4. The proper subfields of GF(16) are

GF(2)⊆GF(4)⊆GF(16),

where GF(2) is the binary fieldZ/(2). So there are 12 elements of GF(16) which
lie in no proper subfield, and thus 12/4 = 3 irreducible polynomials of degree 4.
Moreover, there areφ(15) = 2 · 4 = 8 primitive elements of GF(16), and hence
8/4 = 2 primitive polynomials. These agree with what we found by hand earlier.

3.8 Latin squares

Why do we need a Latin square for the substitution table in a stream cipher?
In the article “Japanese Army Air Force Codes at Bletchley Park and Delhi”,

by Alan Stripp, in the bookCode Breakers: The Inside Story of Bletchley Park
(edited by F. H. Hinsley and Alan Stripp), the following example is given of a
substitution table supposedly used in the Japanese Army Air Force cipher J6633
(Figure 3.4).

By inspection, it is not a Latin square. It fails in various ways; for example,

(a) symbol 0 occurs twice in column 4 (in rows 2 and 6);

(b) symbol 1 occurs twice in row 1 (in columns 6 and 8).

The consequences of these two flaws are quite different.
Having a repeated element in a column means that the column is not a permu-

tation of the alphabet, and so we cannot use the key to decrypt unambiguously.
If the ciphertext letter was 0 and the corresponding key letter was 4, we wouldn’t
know whether the plaintext letter was 2 or 6.

Having a repeated element in a row does not stop us from decrypting the mes-
sage. But it destroys the randomness of the key, and gives the cryptanalyst a small
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0 1 2 3 4 5 6 7 8 9
0 4 9 5 3 2 7 0 1 6 8
1 7 5 0 9 3 2 1 8 1 4
2 3 1 7 2 8 0 9 6 9 7
3 0 8 4 7 0 1 3 4 5 2
4 5 3 2 4 9 3 8 2 7 6
5 9 0 1 6 7 5 4 7 2 3
6 2 6 8 0 0 9 7 5 3 1
7 6 2 6 1 4 8 6 0 8 5
8 1 7 9 7 1 4 5 9 0 7
9 8 4 3 5 5 6 2 3 4 0

Table 3.4: Japanese Army Air Force cipher J6633

amount of leverage: the ciphertext string now carries a small amount of infor-
mation about the plaintext. For example, suppose that we are using the square
in Figure 3.4. If the ciphertext symbol 0 is received, Eve can be sure that the
plaintext isnot 4, since 0 doesn’t occur in the fourth row of the table.

To take this to extremes, suppose that we used a substitution square in which
the columns were permutations but all rows were constant, say

0 1 2 3 4 5 6 7 8 9
0 4 4 4 4 4 4 4 4 4 4
1 7 7 7 7 7 7 7 7 7 7
2 3 3 3 3 3 3 3 3 3 3
3 0 0 0 0 0 0 0 0 0 0
4 5 5 5 5 5 5 5 5 5 5
5 9 9 9 9 9 9 9 9 9 9
6 2 2 2 2 2 2 2 2 2 2
7 6 6 6 6 6 6 6 6 6 6
8 1 1 1 1 1 1 1 1 1 1
9 8 8 8 8 8 8 8 8 8 8

In this case, the plaintext letter 0 is always replaced by the ciphertext letter 4,
regardless of the key. In other words, this is a simple substitution cipher, and
the key is irrelevant. It can be broken by standard frequency analysis. The same
general principle applies even if rows are not constant, as the next example shows.
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Worked example A message in a 3-letter alphabet{1,2,3} has been encrypted
using a random keystring and the substitution table

1 2 3
1 2 3 1
2 1 2 2
3 3 1 3

The message has length 3. Before intercepting the ciphertext, your estimates
of the probabilities of plaintext strings are

P(112) = 0.1, P(231) = 0.2, P(332) = 0.3, P(313) = 0.4,

and all other probabilities zero.
You intercept the ciphertext 132. Calculate the conditional probabilities of the

plaintext strings given this information.
Does your answer contradict Shannon’s Theorem?

Solution We follow the argument in the proof of Shannon’s Theorem. First
we have to decide which keys would encrypt each possible plaintext as the given
ciphertext. We see that 112⊕ k = 132 holds fork = 322 or 323 (the ambiguity
because of the two occurences of 2 in the second row of the table). SoP(z= 132|
p = 112) = 2/27. Similarly, 231⊕k = 132 holds fork = 113 ork = 133, giving
P(z= 132| p = 231) = 2/27; and 332⊕k = 132 holds fork = 212,232,213,233,
so thatP(z= 132| p = 332) = 4/27. Finally, 313⊕k = 132 is impossible, since
2 does not occur in the third row of the table; soP(z= 132| p = 313) = 0.

The Theorem of Total Probability gives

P(z= 132) =
2
27
· 1
10

+
2
27
· 2
10

+
4
27
· 3
10

+0· 4
10

=
18
270

.

From Bayes Theorem we find

P(p = 112| z= 132) =
(2/27) · (1/10)

18/270
=

1
9
,

P(p = 231| z= 132) =
(2/27) · (2/10)

18/270
=

2
9
,

P(p = 332| z= 132) =
(4/27) · (3/10)

18/270
=

2
3
,

P(p = 313| z= 132) = 0.



3.8. LATIN SQUARES 57

These are not the same as the prior probabilities, so we have gained some
information. However, Shannon’s Theorem is not contradicted, since one of its
hypotheses asserts that the substitution table is a Latin square, which is not true in
this case.

Latin squares are very plentiful. Their first practical use was in experimental
design in statistics, where they were introduced by R. A. Fisher. (He is commem-
orated in Caius College, Cambridge, by a stained glass Latin square in a window
of the dining hall: see Figure 3.3.)

Figure 3.3: The R. A. Fisher window in Caius College, Cambridge

In the early days of the subject, it was recommended that randomization of the
experiment should include choosing a random Latin square for the design. The
only way this could be done was by tabulating all Latin squares of relatively small
order, and choosing one at random from the tables. (The famous tables of Fisher
and Yates include such lists.) Subsequently this practice was abandoned. Now,
however, a Markov chain method for choosing a random Latin square has been
proposed by Jacobson and Matthews.

Another feature of Latin squares is that we can construct them by building
up row by row. Fork≤ n, we define ak×n Latin rectangleto be an array with
entries from the set{1, . . . ,n} such that each symbol occurs once in each row and
at most once in each column. Now anyk×n Latin rectangle withk< n can be
“completed” to a Latin square.

Self-inverse squares

Let A = (ai j ) be a Latin square of ordern. We can construct three further squares
from A as follows. Suppose thatai j = k.

• A(12) has( j, i) entryk. (ThusA(12) is the transpose ofA.)

• A(13) has(k, j) entry i. (This is sometimes called theadjugateof A.)
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• A(23) has(i,k) entry j. (This is sometimes called theconjugateof A.)

The reason for the notation is as follows. We can completely describe a Latin
squareA by the list ofn2 triples(i, j,k) for which the(i, j) entry of the square is
k. For example, the square

A =
1 2 3
2 3 1
3 1 2

would be given by the nine triples

(1,1,1),(1,2,2),(1,3,3),(2,1,2),(2,2,3),(2,3,1),(3,1,3),(3,2,1),(3,3,2).

These can be written as the columns of a 3×9 array:1 1 1 2 2 2 3 3 3
1 2 3 1 2 3 1 2 3
1 2 3 2 3 1 3 1 2

 .
Now the squareA(12) is obtained by interchanging the first and second rows in this
array; and similarly for the others. In the above example,A(12) is the same asA
(asA is symmetric), while

A(23) =
1 2 3
3 1 2
2 3 1

.

Proposition 3.11 If A is a Latin square, so are A(12), A(13), and A(23).

This holds because, when we represent a Latin square as a set of triples as
above, then a triple is uniquely determined by any two of its elements. (This
means that specifying any two of the row, column and entry determines the other.)
This property is still satisfied if we permute the entries.

If A is the substitution square used for encryption with a stream cipher, then
A(13) is the substitution square used for decryption of the same cipher: this follows
immediately from the definitions. Hence we will call this square theinverseof A.

A Latin square is calledself-inverseif it is equal to its inverse square. If this
property holds, then we have the simplification that the same square is used for
both encryption and decryption.

The Vigeǹere squareA, whose(i, j) entry is i + j modq, is not in general
self-inverse. However, if we take the(i, j) entry to bej − i modq, we do obtain
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a self-inverse Latin square: for, ifj − i ≡ k (modq), then j − k≡ i (modq).
(This is actually the squareA(23).) Forq = 4, the subtraction square is

0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0

In the caseq = 2, of course, subtraction is the same as addition, and the Vi-
geǹere square is self-inverse.

There are many other self-inverse Latin squares apart from the subtraction
square.

The 3×9 array we constructed above from a Latin square is a particular case of
anorthogonal array. We will see later how such arrays are used in secret sharing
schemes.

3.9 Entropy

The concept of entropy originated in nineteenth-century thermodynamics as a
measure of the disorder of a complicated physical system. Shannon introduced
it into information theory, where it provides a very convenient measure of in-
formation. The background probability theory can be found in any book on the
subject, or in theNotes on Probabilityon the Web.

Let X be a random variable on a probability spaceS with probability func-
tion P. (Recall that this simply means thatX is a function onS . In elementary
probability theory we assume that the values ofX are numbers, but they can be
anything at all. Here we only consider finite probability spaces.) The entropy ofX
is a measure of our ignorance about the value ofX (or, equivalently, the amount of
information we would gain if we performed an observation and learned the value
of X). This interpretation suggests that the entropy ofX should be zero ifX is
constant (since then measuringX will tell us nothing we don’t already know) and
maximum if all the values ofX have the same probability.

The definition is as follows. Theentropyof X is given by the formula

H(X) =
n

∑
i=1

Pr(X = xi) log2Pr(X = xi),

wherex1, . . . ,xn are the possible values ofX.
It is easily verified thatX has the required properties:
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Proposition 3.12 1. H(X) ≥ 0, with equality if and only if there is a value x
such thatPr(X = x) = 1.

2. If X takes n values x1, . . . ,xn, then H(X)≤ log2(n), with equality if and only
if Pr(X = xi) = 1/n for i = 1, . . . ,n.

Example Suppose that I toss a fair coinn times; the values of the random vari-
ableX are the 2n possible bitstrings produced (where, say, heads= 1, tails= 0).
ThenH(X) = log22n = n. That is,n random bits have entropyn. So the units of
entropy are “bits”; observing a random variableX gives us “the same amount of
information” as knowledge ofH(X) random bits.

If A is an event with non-zero probability, then theconditional random vari-
able XA = X | A is defined by the rule that

Pr(XA = xi) = Pr(X = xi | A) =
Pr(X = xi andA)

Pr(A)
.

The random variableX | A now has entropyH(X | A) according to the usual for-
mula.

In particular, letX andY be random variables. For each valuey j of Y, there is
a conditional entropyH(X | (Y = y j)). Then we define the conditional entropy of
X givenY to be the weighted average (expected value) ofH(X | (Y = y j)); that is,

H(X |Y) =
m

∑
j=1

H(X | (Y = y j))Pr(Y = y j),

wherey1, . . . ,ym are the values ofY.
A short calculation shows that

H(X |Y) = H(X,Y)−H(Y),

whereH(X,Y) is the entropy of the random variableZ = (X,Y) whose values are
pairs(xi ,y j) of values ofX andY.

We interpretH(X | Y) as the remaining uncertainty aboutX after doing an
experiment to measureY. Indeed, the following holds:

Proposition 3.13 For any two random variables X and Y, we have H(X | Y) ≤
H(X), with equality if and only if X and Y are independent.

Thus, if X andY are independent, then knowledge ofY gives no information
aboutX.
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Let us apply these ideas to cryptography. If we are in Eve’s position, we
should regard the plaintext, key, and ciphertext as random variables. We will
probably have some assumptions about the relative likelihood of various plaintext
messages: a spy is unlikely to be sending a passage of Shakespeare as plaintext
(though the plaintext may be hidden in passage of Shakespeare, or Shakespeare’s
works may be used in another way in creating a cipher). This knowledge cor-
responds to a probability distribution on the plaintexts, from which the entropy
H(P) of the plaintext can be calculated. (HereP is the random variable whose
values are the actual plaintexts.)

Once Eve intercepts a ciphertext, she can in principle compute some infor-
mation about the plaintext. This may be complete information (that is, Eve can
decrypt the cipher), or perhaps just some change in the probabilities. The condi-
tional entropyH(P | Z) is Eve’s remaining uncertainty about the plaintext given
the ciphertext; it is zero if she can decrypt the message.

In this form, Shannon’s theorem states that, if Alice uses a one-time pad, then
H(P | Z) = H(P): in other words, Eve gets no information about the plaintext
from knowledge of the ciphertext.

Exercises

3.1. Prove Proposition 3.12.

3.2. Prove thatH(X |Y) = H(X,Y)−H(Y).

3.3. CalculateH(P) andH(P | Z) in the worked example on page 56.
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Chapter 4

Public-key cryptography: basics

In this chapter we describe the revolutionary approach to cryptography that emerged
in the second half of the twentieth century:Public-key cryptography.

4.1 Key distribution

We have seen that it is possible to construct an ‘unbreakable’ cipher using ran-
domness: this is the one-time pad, whose key is a string of characters as long as
the message.

One weakness of all the ciphers we have studied so far is the problem ofkey
distribution. If Eve can get hold of the key, then she can decrypt the cipher. On the
other hand, Alice and Bob must both know the key, or they cannot communicate.
So they must share the key by some secure method which Eve cannot penetrate.

In the classical field of espionage, a spy is given the key (which might be one
copy of the one-time pad, the other copy being held by the home agency) before
being sent out into the field. Since the key must not be re-used, the spy can only
send as much information as the key he possesses. Then he must return to base
for a new one-time pad. This system can work well, if the spy keeps the pad
on his person and destroys each page when it is used. One of the stories told
by Peter Wright inSpycatcherrelates how MI6 agents found a one-time pad in
the possessions of a suspected spy; they copied the pad and returned it, and were
subsequently able to read the communications. Of course, having a one-time pad
on your person might be extremely dangerous!

Other ciphers use a key which is smaller than the message. For example, a
military commander might be issued with a set of keys, and instructed to use a

63
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new key every month according to some schedule. But if the enemy captures the
keys, then all communications can be read until the whole set of keys is changed;
this change may be difficult in wartime.

The commercial use of cryptography since the second world war introduced
new problems. Commercial organisations need to exchange secure communica-
tions; the only way of exchanging keys seemed to be by using trusted couriers.
The amount of courier traffic began to grow out of control. It was the invention of
public-key cryptography which gave us a way round the key distribution problem.

That there is a possible way around the problem is suggested by the following
fable. Alice and Bob wish to communicate by post, but they know that Eve’s
agents have control of the postal service, and any letter they send will be opened
and read unless it is securely fastened. Alice can put a letter in a chest, padlock
the chest, and send it to Bob; but Bob will be unable to open the chest unless he
already has a copy of Alice’s key!

The solution is as follows. Alice puts her letter in the chest, padlocks it and
sends it to Bob. Now Bob cannot open the chest. Instead, he puts his own padlock
on the chest and sends it back to Alice. Now Alice removes her padlock and
returns the chest to Bob, who then simply has to remove his own padlock and
open the chest.

A little more formally, let Alice’s encryption and decryption functions beeA

anddA, and let Bob’s beeB anddB. This means that Alice encrypts the plaintext
p aseA(p); she can also decrypt this top, which means thatdA(eA(p) = p.

Now Alice wants to send the plaintextp to Bob by the above scheme. She first
encrypts it aseA(p) and sends it to Bob. He encrypts it aseB(eA(p)) and returns
it to Alice. Now we have to make a crucial assumption:

eA andeB commute, that is,eA◦eB = eB◦eA.

Now Alice has(eB ◦eA)(p), which is equal toeA ◦eB(p) = eA(eB(p)) according
to our assumption. Alice can now decrypt this to givedA(eA(eB(p))) = eB(p)
and send this to Bob, who then calculatesdB(eB(p)) = p. At no time during the
transaction is any unencrypted message transmitted or any key exchanged.

Note that the operations of putting two padlocks onto a chest do indeed com-
mute! The method would not work if, instead, Bob put the chest inside another
chest and locked the outer chest; the operations don’t commute in this case.

If the letter that Alice sends to Bob is the key to a cipher (say a one-time pad),
then Alice and Bob can now use this cipher in the usual way to communicate
safely, without the need for the to-and-fro originally required. The system only
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depends on the security of the ciphers used by Alice and Bob for the exchange,
and the fact that they commute.

Now if Alice and Bob use binary one-time pads for the key exchange, then
these conditions are satisfied, since binary addition is a commutative operation.

However, further thought shows that this is not a solution at all! Suppose that
Alice wants to send the stringl securely to Bob (perhaps for later use as a one-
time pad). She encrypts it asl⊕kA, wherekA is a random key chosen by Alice and
known to nobody else. Bob re-encrypts this as(l⊕kA)⊕kB, wherekB is a random
key chosen by Bob and known to nobody else. Now(l ⊕kA)⊕kB = l ⊕kB)⊕kA,
so when Alice re-encrypts this message withkA she obtains

((l ⊕kB)⊕kA)⊕kA = (l ⊕kB⊕ (kA⊕kA) = l ⊕kB,

and when Bob finally re-encrypts this withkB he obtains

(l ⊕kB)⊕kB = l .

This is the exact analogue of the chest with two keys.
If Eve only intercepts one of these three transmissions, it is impossible for

her to read the message, since each is securely encrypted with a one-time pad.
However, we must assume that Eve will intercept all three transmissions. Now if
she simply adds all three together mod 2, she obtains

(l ⊕kA)⊕ (l ⊕kA⊕kB)⊕ (l ⊕kB) = l ,

and she has the message!

4.2 Complexity

In trying to wrestle with this problem, Diffie and Hellman came up with an even
more radical solution to the problem of key sharing: it is not necessary to share the
keys at all! The reason for the insecurity of the above protocol is that decryption is
just as simple as encryption for someone who possesses the key; indeed, for binary
addition, it is exactly the same operation. (A cipher with this property is called
symmetric.) The trick is to construct an asymmetric cipher, where decryption is
ruinously difficult even if you are in possession of the key.

In order to understand this, we must look at what is meant when we say that a
problem iseasyor difficult. This is the subject-matter ofcomplexity theory. What
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follows is a brief introduction to complexity theory. You can find much more
detail either in the lecture notes at
http://www.maths.qmul.ac.uk/ ˜ pjc/notes/compl.pdf ,
or in books such as M. R. Garey and D. S. Johnson,Computers and Intractability:
A Guide to the Theory of NP-Completeness.

The subject of computational complexity grew out of computability theory,
originally due to Alan Turing (who was also one of the most successful crypt-
analysts of the twentieth century). Turing succeeded in showing that there are
some mathematical problems which cannot be solved by a machine carrying out
an algorithm.

In order to demonstrate this, Turing had to analyse the process of computation.
He proposed a model, called aTuring machine, and showed that it can carry out
any process which can be described algorithmically. Said otherwise, a Turing ma-
chine can ‘emulate’ any computer, real or imagined, that has ever been proposed.
Seventy years later, despite the efforts of physicists and philosophers, Turing’s
claim still stands.

A Turing machine consists of two parts: atapeand ahead.

• The tape is made up of cells stretching infinitely far in both directions. Like
the RAM or the hard disc of a computer, it stores information; each cell can
either be blank or have a symbol from an alphabetA written on it. The one
difference between a Turing machine and a real computer is that the tape is
infinite; but we assume that only finitely many tape squares are not blank.
So we could regard the memory as finite but unbounded; if more memory is
needed for a computation, it is always available.

• The head is a machine which can be in any one of a finite number of states;
it resembles the CPU of a computer. The head also has access to one square
of the tape.

The configuration of the machine is given by describing

• the string of symbols written on the non-blank squares of the tape;

• the state of the head, and its position (the square which it is scanning).

Now the machine operates as follows. It has a program, a finite set of rules de-
termining what it does at any moment. The action is determined by the state of
the head and the symbol on the square which it is scanning. The program can
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direct the head to change into a specified state, and either to change (or erase) the
symbol on the tape square, or to move one place to the left or the right.

One (or more) of the states is distinguished as a ‘halting state’. In order to
perform a computation, we place a finite amount of information on the tape and
put the head in a particular state scanning a particular square. Then the machine
starts operating; if it reaches a halting state, its output is the information written
on the tape.

Now we can say that a function is computable if there is a Turing machine
which computes it. For example, if the tape alphabet is the set of digits{0,1, . . . ,9},
we could design a machine so that, if the numberN is written (in the usual way
in base 10) on the tape and the machine is started immediately to the right of the
string, it calculatesN2, writes the answer on the tape, and halts. All that such a
machine needs is an appropriate program (which might, for example, include the
usual multiplication table), and it can square a number of any size.

Clearly this is a very basic kind of machine. But adding facilities such as
increasing the number of states, or giving it extra tapes (even changing the tape
into a two-dimensional array), or allowing the machine to access any tape square
within a fixed distance of the head, we do not change the class of computable
functions. Turing showed that there exist mathematical functions which are not
computable in this sense.

Now complexity changes the question “Can this function be computed?” to
the question “How long will it take to compute it?” Variations are possible, such
as “How much memory will I need for the computation?” Clearly the precise
answers will depend on the precise details of the Turing machine, so we ask the
question in a fairly broad-brush way.

First let us be clear that we are not interested in one-off questions of a general
kind such as “Is Goldbach’s Conjecture true?” Aproblemin this context means
a whole class ofproblem instances. We specify a problem by saying what data
comprises the problem instance, and what answer we require (which might be just
‘Yes’ or ‘No’, or might be some data such as the square ofN).

We measure thesizeof a problem instance by the number of tape squares
needed to write down the input data. It makes little difference if we decide to
use only the binary alphabet, and define the size of a problem instance to be the
number of bits of input data. (For example, if we write the numberN in base 2
instead of base 10, we need only log2(10) = 2.30. . . times as many tape squares;
a constant factor does not matter here.

Now we organise problems intocomplexity classesas in the following exam-
ples:
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• A problem lies inP, or is polynomial-time solvable, if there is a Turing
machine which can solve an instance of the problem of sizen in at most
p(n) for some polynomialp.

• A problem lies inNP, or is non-deterministic polynomial-time solvable, if
there is a Turing machine which can check the correctness of a proposed
solution of a problem instance of sizen in at mostp(n) steps, for some
polynomialp.

• A problem lies inPSpace, or is polynomial-space solvable, if there is a
Turing machine which can solve an instance of the problem of sizen using
at mostp(n) tape squares, for some polynomialp.

• A problem lies inExpTime, or is exponential-time solvable, if there is a
Turing machine which can solve an instance of the problem in at most 2p(n)

steps, for some polynomialp.

Clearly a problem of higher complexity is harder, and this is a very practical
thing to know. If a problem takesn3 steps to solve, and each step takes a nanosec-
ond, then an instance of size 1000 can be solved in a second, and an instance of
size 10000 in three months. However, if it takes 2n steps, then we can solve an
instance of size 30 in a second, while an instance of size 100 will take longer than
the age of the universe! The general paradigm is that polynomial-time problems
are easy, while exponential-time problems are hard. (Of course much depends
on the degree and coefficients of the polynomial; but this works well as a rule of
thumb.)

Now we have:

Theorem 4.1 P⊆ NP⊆ PSpace⊆ ExpTime.

As this is not a course on complexity, we will not prove this in detail; but a
few comments on the proof might help explain the concepts. The first inclusion
holds because finding a solution is easier than checking a proposed solution.

The second inclusion holds because, if we can check any proposed solution in
polynomial time, the check only use a polynomial number of tape squares. So we
simply work through all possible solutions until we find one that works.

The last inclusion follows because, if the alphabet has sizeq, thenp(n) tape
squares can only hold at mostqp(n) possible strings. If the computation took more
than this number of steps, we would have to revisit a previous configuration then
the machine would be in an infinite loop, and would not finish at all.
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One thing remains to be stressed. It is (relatively) easy to show that a problem
lies in a particular complexity class. Strictly, we have to show that there is a
Turing machine which solves it efficiently. In practice, it is enough to find some
algorithm which solves the question efficiently. Then translating that algorithm
into a Turing machine may increase the number of steps, but not enough to affect
our broad-brush conclusions.

However, it is very difficult to show that a problem isnot in a particular com-
plexity class, since we would have to show that no possible Turing machine, or
no possible algorithm, can solve the problem efficiently enough. There are many
instances of problems where the naive algorithm has been superseded by a much
more efficient algorithm.

Thus, it is known thatP is properly contained inExpTime, and so at least one
of the inclusions in Theorem 4.1 must be proper. It is conjectured that they are
all proper. For example, there are problems inNP (the so-calledNP-complete
problems) which have been studied for a long time, and nobody has ever managed
to find an algorithm to solve any of them in polynomial time.

Our rough equivalences will be:

‘easy’ = P,

‘hard’ = NP-complete.

The NP-complete problems are the ‘hardest’ problems inNP. If a polynomial-
time algorithm were ever found for one of them, then we would conclude thatP =
NP. It is conjectured that this is not the case. (The Clay Mathematical Institute
has offered one million dollars for a proof or disproof of this, as one of its seven
millennial problems.)

4.3 Public-key cryptography

The idea of public-key cryptography based on the fact that there are easy and hard
problems was devised by Diffie and Hellman in the 1970s. This is one of the great
ideas of the twentieth century!

In order to explain how a cipher can be secure when the key is publicly avail-
able, we now formulate the general setup of cryptography a bit more carefully.

Let P be the set of plaintext messages that users of the system might wish to
send. (Thus,P might be the set of all strings of letters and punctuation marks, or
strings of zeros and ones, or certain strings of dots and dashes.) LetK be the set
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of keys, andZ the set of ciphertexts. Then there is anencryption function

e : P ×K → Z

and adecryption function
d : Z×K → P

which must satisfy the relationship

(PK1) d(e(p,k),k) = p.

This simply says that encryption followed by decryption using the same key must
recover the original plaintext.

Now the first requirement of public-key cryptography is:

(PK2) Evaluatingeshould be easy.

(PK3) Evaluatingd should be difficult.

(Here, ideally, we should use the equations of the preceding section, that is, ‘easy’
means ‘polynomial-time’, while ‘hard’ means ‘NP-complete’. In practice, it al-
most always means something less precise than this.)

This means that we may assume that Eve not only knows the ciphertextz that
Alice sent to Bob, but she also knows the keyk and the functionseandd used for
encoding and decoding; so all she has to do is to evaluated(z,k). However, this
is a hard problem, and we can assume that, even with the most advanced current
technology, it will take her (say) a hundred years to evaluate this function. By that
time, the protagonists are all dead and the information has no value.

However, there is a problem here. If decryption is hard, how does Bob (the
legitimate recipient) manage to do it? The answer is that there is yet another layer.
There is a setS of secret keys, together with an inverse pair of functions

g : S →K , h : K → S .

(Think of the mnemonics ‘go public’ and ‘hide’.) Now we make the following
requirements:

(PK4) Evaluating the composite functiond∗(z,s) = d(z,g(s)) is easy.

(PK5) Evaluatingg is easy

(PK6) Evaluatingh is hard.



4.3. PUBLIC-KEY CRYPTOGRAPHY 71

Assumption (PK4) means that, givens andz, it is easy to computep such that
d(z,k) = p (or equivalentlye(p,k) = z) for the uniquek which satisfiesh(k) = s
(or equivalentlyg(s) = k). Note that this does not mean that it is easy to compute
g(s) = k and thend(z,k) = p, since the latter computation is assumed to be hard;
there should be an easy way to compute the composite functiond∗.

Now let us see how the system works. Alice wants to send a message to Bob
which is secure from the eavesdropper Eve. Bob chooses a ‘secret key’ from the
setS and tells nobody of his choice. He computes the corresponding ‘public key’
k = g(s) ∈ K and makes this available to Alice. Bob is aware that Eve will also
have access to his public keyk. We observe that this computation is assumed to
be easy.

Alice wants to send Bob the plaintext messagep. Knowing his public keyk,
she computes the ciphertexte(p,k) and sends this to Bob. (This computation is
also easy.)

Bob is now faced with the problem of decrypting the message. But Bob al-
ready knows the secret keys, and so he only has to do the easy computation of
p = d∗(z,s). Sinceg(s) = k, we havep = d(z,k), so thatp is indeed the correct
plaintext that Alice wanted to send.

What about Eve? Her position is different, since she doesn’t know the secret
key. Either she has to computed(z,k) directly (which is hard), or she could decide
to compute Bob’s secret keys by evaluating the functions= h(k) (which is also
hard).

Note that Eve knows in principle how to evaluate either of these functions; the
only thing keeping the cipher secure is the complexity of the computations. The
important thing is that the secret key, which enables Bob to decrypt the message,
is never communicated to anyone else; Bob chooses it, and uses it only to decrypt
messages sent to him.

Now in principle we have a method for any set of people to communicate
securely. Suppose we have a number of usersA,B,C, . . .. Each user chooses his
or her own secret key: thus, Alice choosessA, Bob choosessB, and so on. These
choices are never communicated to anyone else. Now Alice computeskA = g(sA)
and publishes it; and similarly Bob computeskB = g(sB) and so on. Then anyone
who wishes to send a messagep to Alice first obtains her public keykA (which
may be in a directory or on her Web page), and then encrypts it asz = e(p,kA)
and transmits this to Alice. She can calculatep = d∗(z,sA) = d(z,kA); but nobody
else can read the message without performing a hard calculation.

Some terminology that is often used here is that of ‘one-way functions’. A
function f : A→ B is said to beone-wayif it is easy to computef but hard to
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compute the inverse function fromB to A. It is a trapdoor one-way function
if there is a piece of information which makes the computation of the inverse
function easy. Thus, for public-key cryptography, we want encryption to be a
trapdoor one-way function, where the key to the trapdoor is the secret key; the
function from secret key to public key should be a one-way function.

4.4 Digital signatures

There is a serious potential weakness of public-key cryptography. Eve cannot read
Alice’s message to Bob. But, since Bob’s key is public, Eve can write her own
message to Bob purporting to come from Alice, encrypt it with Bob’s key, and
substitute it for Alice’s authentic message on the communication channel. Is there
a way around this?

Indeed there is. We make two further assumptions, namely:

(PK7) The setP of plaintext messages is the same as the setZ of ciphertexts.

(PK8) e(d(z,k),k) = z for anyz∈ Z andk∈K .

The first assumption is not at all restrictive. Almost always, in practice, both sets
will consist of all binary strings. The second assumption strictly follows from the
others. Condition (PK1) says that decryption is the inverse of encryption; that
is, the functionsp 7→ e(p,k) andz 7→ d(z,k) are inverse bijections (the second
undoes the effect of the first). Now inverse functions on finite sets work ‘both
ways round’, so the first undoes the effect of the second; this is exactly what
(PK8) claims. The reason that we make this assumption is that in practice the
functions may not quite be bijections, or the sets of potential plaintexts may be
infinite.

Alice wants to send the plaintextp to Bob, in such a way that it cannot be
faked by Eve. First, bizarrely, she pretends thatp is a ciphertext anddecrypts it
using her own secret key! In other words, she computesu = d(p,kA). The result,
of course, appears to be gibberish.

Now she writes a preamble in plaintext saying “This is a signed message from
Alice”, and now encrypts the whole thing using Bob’s public key; that is, she
calculatesz= e(u,kB) = e(d(p,kA),kB). She sends this message to Bob.

Now Bob decrypts this message using his own secret key, obtainingd(z,kB) =
u. He sees the statement “This is a signed message from Alice”, followed by some
gibberish. Now he does another strange thing: heencryptsthe gibberish, using
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Alice’s public key (as if it were a message he wanted to send to Alice). This gives
e(u,kA), which is equal top by our assumption (PK8) (sinced(p,kA) = u). Then
Bob has the intended message.

Assumption (PK8) further tells us that the equatione(u,kA) = p is equivalent
to d(p,kA) = u. Thus, the only person who could compute this is the holder of
Alice’s secret key, namely Alice herself; so Bob is assured that the message is
from Alice. (For Eve to fake such a message, she is faced with the same problem
as in decrypting a message from Alice, that is, either computed(p,kA), or compute
h(kA); both are hard problems.)

4.5 The knapsack cipher

We have seen how a scheme for public-key cryptography can be designed, based
on trapdoor one-way functions (and so ultimately on the existence of functions
which are hard to compute). Now we turn to the question of finding practical
examples on which to base a cipher system. In this chapter we look at a couple
of examples which have not caught on; in the next, we turn to two of the most
popular schemes, RSA and El-Gamal.

One of the earliest problems to be shown to beNP-complete was theknapsack
problem. Unofficially, we are given a knapsack with a volume ofb units, and
items of volumea1,a2, . . . ,ak units. We want to know whether we can fill the
knapsack using some of the items.

More formally, the input data for this problem consists of the numberb and
the list(a1,a2, . . . ,ak) of numbers. Since a number between 2m and 2m+1−1 can
be written in base 2 usingmbits, we see that the size of a numbera when regarded
as input data is about log2(a), and so the size of the data for this problem is about

log2(b)+
k

∑
i=1

log2(ai).

We are asked to find ak-tuple(e1,e2, . . . ,ek), where eachei is equal to 0 or 1, such
that

k

∑
i=1

eiai = b

if possible, or discover that no such tuple exists. This problem is inNP, since
we can very easily check a purported solution by simple arithmetic. But finding a
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solution is harder. In principle, we have 2k possiblek-tuples to check, and if there
is no solution we might have to look at all of them. This is not a proof that the
problem is hard, since there may be a smarter way to do it; but this problem is
indeed known to be hard:

Theorem 4.2 The knapsack problem isNP-complete.

Recall that this theorem makes two assertions:

(a) The problem is inNP; that is, we cancheckwhether a proposed solution
(e1,e2, . . . ,ek) is correct in a polynomial number of steps. (The check is
just integer addition!)

(b) If an algorithm tosolvethe problem in a polynomial number of steps were
found, then we would know thatP = NP (which is believed not to be the
case).

For example, suppose that we are given the list

(323,412,33,389,544,297,360,486)

and a target number 1228. If we try thegreedy algorithm, which says “at each
stage, put the largest item which will fit into the knapsack”, we obtain

1228= 544+684= 544+486+198= 544+486+33+165,

and then we are stuck. So the greedy algorithm fails to solve the problem.
In the end, exhaustive search of some kind reveals that

1228= 412+33+297+486.

As can be imagined, a similar problem with 100 numbers of 50 digits each would
present quite formidable difficulty.

Now we can make a cipher based on this hard problem as follows. The public
key consists of ak-tuple(a1,a2, . . . ,ak) of integers. In order to encrypt a message,
we first write it as a string of bits, and break it into blocks of lengthk. Now the
block (e1,e2, . . . ,ek) is encrypted as the integer

a =
k

∑
i=1

eiai = b,
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and this integer is transmitted.
In order to break the cipher it is necessary to solve this instance of the knapsack

problem, which is hard! Of course, we also need a secret key so that the intended
recipient can decrypt the message.

The way the key is constructed illustrates one important thing about compu-
tational complexity, which we haven’t stressed so far. For a problem to be easy,
it is necessary that there is an algorithm which solvesany instance efficiently. It
may be that some (perhaps just a few) instances are hard; then the problem will
be classified as hard, even if most cases are actually easy. In other words, we are
measuring ‘worst-case complexity’ rather than ‘average-case complexity’.

Now there are indeed some instances of the knapsack problem which are easy
to solve. These correspond to the so-called super-increasing sequences.

The sequence(a1,a2, . . . ,ak) of positive integers is calledsuper-increasingif
each term is greater than the sum of its predecessors, that is, if

i−1

∑
j=1

a j < ai

for i = 1, . . . ,k. If the data in the knapsack problem is super-increasing, then
the greedy algorithm we met earlier, that is, “put into the knapsack the largest
object which will fit”, is guaranteed to solve the problem. In other words, leti
be the largest index for whichai ≤ b; then setei = 1 andej = 0 for j > i, and
(recursively) solve the knapsack problem for the integerb−ai with the sequence
(a1, . . . ,ai−1). The reason for this is that, if theith item is the largest one which
fits in the knapsack, then we must use it; the larger objects don’t fit and, even if all
the smaller objects were used, they would not fill the knapsack. (This argument
shows a bit more: if a solution exists, then it is unique.)

For example, the sequence 1,2,4,8, . . . of powers of 2 is super-increasing; the
above algorithm is exactly what we do when we express an integer in base 2. For
example,

27= 16+11= 16+8+3 = 16+8+2+1,

where we take at each step the largest power of 2 not exceeding what we have left.
We cannot just use a super-increasing sequence as public key, since Eve could

recognise that it is super-increasing and use the greedy algorithm to decrypt the
cipher. So we have to disguise it. This can be done as follows. Bob chooses a
super-increasing sequence(a1,a2, . . . ,ak). Then he chooses an integern> ∑ai

and an integeru with gcd(n,u) = 1, and builds the new sequence(a∗1,a
∗
2, . . . ,a

∗
k),
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where
a∗i = uai modn

for i = 1, . . . ,k. It is very unlikely that these numbers will still be super-increasing,
so Bob can use them as the public key.

Now to encipher the binary string(e1, . . . ,ek), Alice computesb∗= ∑eia∗i , and
sends this to Bob. To decrypt this, he calculates the inversev of u modn, using
Euclid’s Algorithm (as we have seen before). Then he calculatesb = vb∗ modn.
Now we have

b ≡ vb∗ (modn)
= v∑eia

∗
i

≡ v∑ei(uai) (modn)

= (uv)∑eiai

≡ ∑eiai (modn).

But bothb and∑eiai are smaller thann. (Remember that we chosen> ∑ai .) So,
if they are congruent modn, then they are actually equal:

b = ∑eiai .

So Bob has only to solve an easy instance of the knapsack problem (with super-
increasing data) in order to decrypt the message.

For example, suppose that we take the super-increasing sequence

(1,3,7,15,31,63,127,255).

Take the modulus 557, which is greater than the sum of the terms in the sequence,
and multiply by the coprime inteteger 323 to get the sequence

(323,412,33,389,544,297,360,486).

Now the bit string 01100101 (charactere in 8-bit ASCII) is encoded as 412+
33+ 297+ 486= 1228. To decrypt this without solving a ‘hard’ instance of the
knapsack problem, Bob knows that the inverse of 323 mod 557 is 169 (having
found that 169·323−98·557= 1); then he calculates 1228·169 mod 557, which
is 328; and then he applies the greedy algorithm to get

328= 255+73= 255+63+10= 255+63+7+3
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so that the bit string is 01100101 as required.
For added security one can apply the ‘disguising’ transformation of multi-

plying by u mod n several times over (with different choices ofn andu) before
publishing the key.

This was the first practical public-key cryptosystem to be proposed; it was
invented by Merkle and Hellman, soon after the basic principles of public-key
cryptography had been stated by Diffie and Hellman. It is not actually used today.
The problem is it is thought that keys obtained by disguising super-increasing
sequences in this way are somehow special, and the knapsack problem for such
keys may turn out to be easier than it is for completely general instances of the
knapsack problem. Once any doubt has been cast on a cipher system, people are
reluctant to use it!

4.6 A cipher using a code

Another system was proposed by McEleice, based on the theory of error-correcting
codes. This is an entirely different topic, which we summarise briefly. Consider
the following list of sixteen binary strings of length 7:

0 0 0 0 0 0 0
1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 0 0
1 1 1 1 1 1 1
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1

A little checking shows that any two of these 7-tuples differ in at least three po-
sitions. This means that, if one of them is transmitted through a noisy channel
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which might make a singleerror (that is, change a 0 to a 1 orvice versa), the
received sequence will still be closer to the transmitted sequence than to any other
sequence in the list.

The sixteen 7-tuples have another important property. They consist of all pos-
sible linear combinations of four of them (over the integers mod 2); that is, they
form a 4-dimensional subspace of the 7-dimensional vector space over GF(2), the
field of integers mod 2. We can take a basis as the rows of the matrix

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .
This provides a very simple way to encode information. If the message to be
transmitted is the binary 4-tuplee = (e1,e2,e3,e4), then we encode it as the 7-
tuple

eG= e1a1 +e2a2 +e3a3 +e4a4

using matrix multiplication over GF(2) (wherea1, . . . ,a4 are the rows ofG).
Decoding is more difficult, since (assuming that an error might have occurred)

we have in principle to compare the received word to all 16 codewords to see
which is nearest.

We can generalise all this. IfG is a k× n matrix over GF(2) with rank k,
then we can encode a binaryk-tuplee into ann-tupleeGby matrix multiplication,
which is easy. If some errors occur (in a pattern which the code can correct), then
to decode we must find the particular one of the 2k codewords which is nearest to
the received word. This looks hard; and indeed it has been shown that the problem
of decoding an arbitrary linear code isNP-complete.

However, there some codes with particular algebraic structure for which ef-
ficient decoding algorithms exist. These are widely used in practice; for exam-
ple, Reed–Solomon codes in CD players, Reed–Muller and Golay codes in space
probes.

Our small example gives us an indication of how there can be a ‘hard way’
and an unexpected ‘easy way’ to decode. Suppose we are using the 16-word code
of length 7 given earlier. The hard way to decode is to compare the received
word with each transmitted word to find out which is nearest. For example, if
(0111001) is received then we find that the seventh row of the table,(0011001),
differs from it in the second position, and must be the transmitted word (assuming
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at most one error). However, the followingsyndrome decodingmethod is more
straightforward. LetH be the matrix

H =



0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


If the received word isv, we calculatevH, which is a string of three bits. Regard
this string as the base 2 representation of an integerm in the range 0. . .7. If m= 0,
then the received word is correct; ifm= 1, there is an error in themth position.

In our case,
(0,1,1,1,0,0,1)H = (0,1,0)

and(0,1,0) is the number 2 in base 2, so the second digit is wrong.
You might like to try to explain why this works. This material is covered in the

Coding Theory course (MAS309), or in books such as Ray Hill,A First Course in
Coding Theory.

McEleice’s idea is to use the fact that encoding is easy and decoding is difficult
as the base of a public-key cipher.

Suppose that Alice wants to send a message to Bob. First, Bob chooses a large
code for which an efficient decoding algorithm exists. He also chooses a random
permutation and applies it to the columns of the matrixG. The resulting matrix
G∗ is the public key.

If Alice wants to send the binaryk-tuple e to Bob, she first calculateseG∗,
and then randomly changes a few of the entries (this corresponds to making some
random errors). This is transmitted to Bob.

By applying the inverse of his permutation to the cipher, Bob obtains a word
encoded usingG, which he can decode efficiently (correcting the errors at the
same time!) using the decoding algorithm forG.

However, Eve is faced with decoding a word encoded withG∗, which looks
like an ‘arbitrary’ linear code. Without the benefit of the algebraic structure, it is
hard to decode.

In terms of the last section of the notes, the encryption function is just ma-
trix multiplication e 7→ eG. Decryption consists of error-correction followed by
recoveringe from eG. The functiong from secret key to public key is applying a
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permutation to the columns ofG; the inverse function involves finding a permuta-
tion which converts the ‘unknown’ code into one for which an efficient decoding
algorithm is known.

Any public-key cipher can be attacked in two ways: either try to decrypt di-
rectly, or try to reconstruct the private key from the public key. In the case of
McEleice’s cipher, the latter attack is more likely. We may be able to use the
structure of the code in some way.

In our example, some sets of four columns are linearly independent and some
are linearly dependent. If we take the set of triples of columns whose complements
are linearly dependent, we get a recognisable picture which gives the structure of
the code:

u u u
u uu
u

"
"
"
"
""

�
�
�
�
�
��

b
b
b
b

bb

T
T
T
T
T
TT

&%
'$

2 6 4

3

1

5
7

Even if the code is presented in arbitrary order, we can build a similar picture
and map it onto this one; this will tell us how to rearrange the columns into an
order for which our syndrome decoding algorithm will work.

Exercises

4.1. I claim that

37332305417280604729= 7392847577×5049786977

and that the two factors are prime. About how many arithmetic operations are
required

1. to check that my multiplication is correct,

2. to check that the factors are prime,

3. to find the factorisation in the first place?

(You may take an arithmetic operation to be a single addition, subtraction, multi-
plication or division of integers.)
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4.2. For Alice and Bob to share a key over an insecure channel, it is necessary
that their encryption functions should commute with each other. In which of the
following cases does this condition hold?

1. Caesar shifts;

2. affine substitutions;

3. arbitrary substitutions;

4. stream ciphers with alphabet{0, . . . ,q−1}, where the substitution table is
addition modq;

5. stream ciphers with arbitrary alphabet and arbitrary substitution table.

Which of these would be suitable for actual use?
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Chapter 5

Public-key cryptography: RSA and
El-Gamal

In this chapter we will describe the RSA and El-Gamal cryptosystems, the most
popular public-key cryptosystem at present. We need some number-theoretic
background first.

5.1 More number theory

The RSA enciphering function has the formTd : x 7→ xd modn for some suitable
n andd. In order to be able to decipher, we must be assured that this function is
one-to-one. So we first discuss the number-theory required for this question.

Euler and Carmichael

Recall Euler’s phi-functionφ(n) whose value is the number of elements ofZ/(n)
(the integers modn) which are coprime ton. We calculated this function back in
Notes 2:

Theorem 5.1 (a) If n = pa1
1 · · · par

r , where pi are distinct primes and ai > 0, then
φ(n) = φ(pa1

1 · · ·φ(par
r ).

(b) If p is prime and a> 0, thenφ(pa) = pa− pa−1 = pa−1(p−1).

A well-known theorem of Fermat (often calledFermat’s Little Theorem) as-
serts that, ifp is prime, thenap−1 ≡ 1 (modp) for any numbera not divisible
by p. This theorem was generalised by Euler as follows:

83
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Theorem 5.2 If gcd(a,n) = 1, then aφ(n) ≡ 1 (modn).

Proof Let x1,x2, . . . ,xm be all the elements ofZ/(n) which are coprime ton,
wherem= φ(n). Suppose that gcd(a,n) = 1. Thena has an inverseb modn, so
thatab≡ 1 (modn). Now letyi = axi modn, and considery1, . . . ,ym. We have

• gcd(yi ,n) = 1, since gcd(a,n) = gcd)xi ,n) = 1;

• y1, . . . ,ym are all distinct: for ifyi = y j , thenbyi = byj , that is,baxi ≡ baxj

(modn), or xi ≡ x j (modn), soxi = x j .

Thus, the set{y1, . . . ,ym} is the same as the set{x1, . . . ,xm} (possibly in a different
order), so their products are the same:

∏xi = ∏yi ≡∏axi = am∏xi (modn).

Since thexi are coprime ton, so is their product, and it has an inverse modn.
Multiplying the equation by this inverse we getam≡ 1 (modn), as required.

One very important fact about Fermat’s Little Theorem is that it cannot be
improved:

Theorem 5.3 Let p be prime. Then there exists a such that ap−1 ≡ 1 (modp)
but no smaller power of a is congruent to1 mod p.

Such an elementa is called aprimitive rootor primitive elementmodp. Since
all its powers up to thep−2nd are distinct, we see that every non-zero element
of Z/(p) can be expressed as a power ofa. This is very similar to a theorem we
stated without proof for finite fields in Notes 5; the proof given here easily adapts
to the result for finite fields as well. (Note that the integers modulo a prime do
form a field; this is used in the proof.)

For example, the powers of 3 mod 7 are

31≡ 3, 32≡ 2, 33≡ 6, 34≡ 4, 35≡ 5, 36≡ 1 (mod 7)

so that 3 is a primitive root of 7. But 2 is not a primitive root of 7, since 23≡ 1.
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Proof We begin with a couple of examples to get the feel of the problem. Sup-
pose thatp = 17. Then the order of every non-zero element modp divides 16.
If there is no primitive element (one of order exactly 16), then the order of every
element would divide 8. But the polynomialx8−1 has at most 8 roots in the field
Z/(17), so this can’t be the case.

Next considerp = 37. The orders of all elements must divide 36; if the order
of an element is smaller than 36, then it must divide either 12 or 18. But there
are at most 12+18 such elements (arguing as above), so there must be a primitive
element.

In general we need to refine this crude counting a bit. Here is the general
proof.

Let a be any element with gcd(a, p) = 1. We define theorder of a mod p to
be the smallest positive integermsuch thatam≡ 1 (modp). In the proof below,
we write equality in place of congruence modp for brevity, so that this condition
will be writtenam = 1.

Now the order of any element dividesp−1. For suppose thata has orderm,
wherep−1 = mq+ r and 0< r <m. Then

1 = ap−1 = (am)q ·ar = ar ,

contradicting the definition ofm. Sor = 0 andm dividesp−1.
Given a divisormof p−1, how many elements of ordermare there? Letf (m)

be this number. Now we have:

• f (m) ≤ φ(m) for all m dividing p− 1. For this is clearly true iff (m) =
0, so suppose not. Then there exists some elementa with orderm. Now
the elementsa0 = 1,a1, . . . ,am−1 are all distinct and satisfy the polynomial
equationxm−1 = 0. But a polynomial of degreem over a field has at most
m roots; so these are all the roots. Now it is easy to see thatar has orderm
if and only if gcd(r,m) = 1; so there are exactlyφ(m) elements of orderm
in this case.

• ∑
m|p−1

f (m) = p−1. This is because each of thep−1 non-zero elements of

Z/(p) has some order!

• ∑
m|p−1

φ(m) = p−1. This follows from the fact that the number of integersa

with 0≤ a≤ p−1 and gcd(a, p−1) = (p−1)/m is preciselyφ(m), which
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is quite easy to see; check it for yourself using the fact that gcd(a, p−1) =
(p−1)/m if and only if gcd(a/m,(p−1)/m) = 1.

From these three statements it follows thatf (m) = φ(m) for all m dividing
p−1. In particular,f (p−1) = φ(p−1) > 0, so there are some elements which
have orderp−1, as required.

Our proof actually shows us a little more: the number of primitive roots of
the primep is φ(p−1). For example,φ(7−1) = φ(2 ·3) = 2, so there are two
primitive roots of 7, namely 3 and 5.

Now it is not true that Euler’s extension of the little Fermat theorem is best
possible. For example, suppose that gcd(a,35) = 1. Then gcd(a,7) = 1, soa6≡ 1
(mod 7). Similarly, gcd(a,5) = 1, soa4 ≡ 1 (mod 5). From this we deduce
that a12 ≡ 1 (mod 7) and a12 ≡ 1 (mod 5), so a12 ≡ 1 (mod 35). On the
other hand,φ(35) = φ(7) ·φ(5) = 6·4 = 24, so Euler only guarantees thata24≡ 1
(mod 35).

Carmichael’s lambda-functionλ(n) is defined to be the least numberm such
thatam≡ 1 (modn) for all a such that gcd(a,n) = 1. It follows from Euler and
the argument we used above thatλ(n) always dividesφ(n), but it may be strictly
smaller; for example,φ(35) = 24 butλ(35) = 12. (We can see thatλ(35) cannot
be less than 12 since, for example, 26≡ 29 (mod 35) and 24≡ 16 (mod 35).)

Theorem 5.4 (a) If n = pa1
1 · · · par

r , where pi are distinct primes and ai > 0, then
λ(n) = lcm{λ(pa1

1 , . . . ,λ(par
r )}.

(b) If p is an odd prime and a> 0, thenλ(pa) = φ(pa) = pa− pa−1 = pa−1(p−
1).

(c) λ(2) = 1, λ(4) = 2, andλ(2a) = 2a−2 for a≥ 3.

The fact thatλ(p) = p−1 for all primesp is a consequence of Theorem 5.3.
Fermat tells us thatap−1 ≡ 1 (modp) for all a coprime top, and the theorem
tells us that no smaller exponent will do.

Suppose thatn is the product of two distinct primes, sayn = pq. The theorem
asserts thatλ(n) = lcm(p− 1,q− 1). To show this, letm = lcm(p− 1,q− 1).
Now, for any integerx coprime ton, we havexp−1≡ 1 (modp), and soxm≡ 1
(modp), since p− 1 dividesm. Similarly xm ≡ 1 (modq). By the Chinese
Remainder Theorem,xm≡ 1 (modn).
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In the converse direction, suppose thata is primitive element modp, andb a
primitive element modq. Use the Chinese Remainder Theorem to findc such that

c≡ a (modp), c≡ b (modq).

Then it is easy to see that the order ofc mod n is a multiple both ofp− 1 and
of q−1, and hence ofm. Som is the smallest positive number such thatxm≡ 1
(modn) for all x coprime ton; that is,λ(n) = m.

We will not need the other cases of the above theorem.

For example, we haveλ(35) = lcm(λ(7),λ(5)) = lcm(6,4) = 12, as we found
earlier.

Power maps

Now consider the transformation

Td : x 7→ xd modn.

First, we shall simply consider this transformation acting on the set

U(n) = {x∈ Z/(n) : gcd(x,n) = 1

of x with gcd(x,n) = 1. (Note that if gcd(x,n) = 1 then gcd(xd,n) = 1 for all d.)

Proposition 5.5 The transformation Td is one-to-one on U(n) if and only if d sat-
isfiesgcd(d,λ(n)) = 1. So the number of d for which Td is one-to-one isφ(λ(n)).

We will prove this just in the reverse direction. Suppose that gcd(d,λ(n)) = 1.
Then there existse with de≡ 1 (modλ(n)). Then, sincexλ(n) = 1, we have
xde = x for all x coprime ton; that is,TeTd is the identity map, and soTd has an
inverse.

For example, forn = 35, the invertible maps areT1, T5, T7 andT11. The map
T13 is equal toT1 onU(35) sincex12≡ 1 (mod 35) for anyx∈U(35).

This condition is not sufficient forTd to be one-to-one on the whole ofZ/(n).
For example, taken = 9. Thenλ(n) = φ(n) = 6, and the numberd = 5 saatisfies
gcd(d,λ(n)) = 1. Now the fifth powers mod 9 are given in the following table:

x 0 1 2 3 4 5 6 7 8
x5 mod 9 0 1 5 0 7 2 0 4 8
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So, in accordance with Proposition 5.5,T5 is one-to-one on{1,2,4,5,7,8} (the
numbers coprime to 9); but it maps all the others to zero.

However, there is a special case where we can guarantee thatTd is invertible
onZ/(n):

Proposition 5.6 Let n be the product of distinct primes. Ifgcd(d,λ(n)) = 1, then
Td : x 7→ xd modn is one-to-one onZ/(n).

Here is the proof in the case thatn is the product of two primes. (This is
the only case that is required for RSA, but the proof can be modified to work in
general.)

We use the fact thatxp≡ x (modp) for any primep. (If p doesn’t dividex,
this follows from Fermat’s little theorem; ifp | x it is trivial.) Hencexk(p−1)+1≡ x
(modp) for anyk> 0.

Now, if e is the inverse ofd modλ(n), thende≡ 1 (modλ(n)), and hence
de≡ 1 (modp−1), sincep−1 dividesλ(n). From the preceding paragraph, we
see thatxde≡ x (modp). Similarlyxde≡ 1 (modq), and soxde≡ 1 (modn),
by the Chinese Remainder Theorem.

For example, suppose thatn = 15. Thenλ(n) = lcm(2,4) = 4, and we can
choosed = 3. The table of cubes mod 15 is:

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x3 mod 15 0 1 8 12 4 5 6 13 2 9 10 11 3 7 14

We see thatT3 is indeed one-to-one.

5.2 The RSA cryptosystem

Preliminaries

The system depends on the following problems. The easy problems are all inP.
Unfortunately the hard problems are not known to beNP-complete!

Easy problems

(1) Test whether an integerN is prime.

(2) Givena andn, find gcd(a,n) and (if it is 1) find an inverse ofa modn.

(3) Calculate the transformationTd : x 7→ xd modN.
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Hard problems

(4) Given an integerN, factorise it into its prime factors.

(5) Given an integerN, calculateλ(N) (or φ(N)).

(6) GivenN andd, find esuch thatTe is the inverse ofTd modN.

Notes about the easy problems My job is to persuade you that they are easy,
not to give formal proofs that they belong to the classP.

Problem (1): Note that trial division does not solve this problem efficiently.
For a numberN requiringn bits of input is one which hasn digits when written
in base 2, and hence is of size roughly 2n; its square root is about 2n/2, and trial
division would require about half this many steps in the worst case. Only in 2002
was an algorithm found which solves this problem in a polynomial number of
steps, by Manindra Agrawal, Neeraj Kayal and Nitin Saxena at the Indian Institute
of Technology, Kanpur. However, the result had been widely expected, since
‘probabilistic’ algorithms which tested primality with an arbitrarily small chance
of giving an incorrect answer have been known for some time. We will consider
the question of primality testing further at the end of this chapter.

Problem (2): This is solved by Euclid’s algorithm, as we have seen.
Problem (3). On the face of it, this problem seems hard, for two reasons:

• First, the numberxd will be absolutely vast, with aboutd logx digits (and
remember that the number of digits ofd is part of the size of the input; ifd
has 100 digits, thenxd has too many digits to write down even if the whole
universe were our scrap paper).

• Second, we have on the face of it to performd−1 multiplications to find

xd = x ·x ·x· · ·x d factors.

But these difficulties can both be overcome:

Proposition 5.7 The number ad modn can be computed with at most2log2d
multiplications of numbers smaller than n and the same number of divisions by n;
this can be done in a polynomial number of steps.



90 CHAPTER 5. PUBLIC-KEY CRYPTOGRAPHY: RSA AND EL-GAMAL

The first difficulty is easily dealt with: we do all our calculations modn. Thus,
to calculateab modn, wherea,b< n, we calculateab as an integer, and take the
remainder on division byn. We never have to deal with a number larger thann2

in the calculation.
We can reduce this number of multiplications required fromd−1 to at most

2 log2d as follows.
Write d in base 2:d = 2a1 + 2a2 + · · ·+ 2ak. Suppose thata1 is the greatest

exponent. Thenk≤ a1 +1 anda1≤ log2d.
By a1−1 successive squarings, calculatex2,x22

, . . . ,x2a1 .
Now

xd = x2a1 ·x2a2 · · ·x2ak

can be obtained byk−1 further multiplications. The total number of multiplica-
tions required isa1 +k−2< 2log2d.

This informal description of the algorithm can be translated into a formal proof
that problem (3) can be solved in polynomial time.

For example, let us compute 123321 (mod 557).
First we find by successive squaring

i 0 1 2 3 4 5 6 7 8

1232i
mod 557 123 90 302 413 127 533 19 361 540

Now 321= 28 +26 +1, so two further multiplications mod 557 give

123321≡ 540·19·123≡ 234·123≡ 375 (mod 557).

Notes about the hard problems Problems (4)–(6) are not known to beNP-
complete, so it is possible that they may not be as hard as we would like. However,
centuries of work by mathematicians has failed to discover any ‘easy’ algorithm to
factorise large numbers. (We will see later that the advent of quantum computation
would change this assertion!)

We will be concerned only with numbersN which are the product of two
distinct primesp andq. So we really need the special case of (4) which asks:

Given a numberN which is known to be the product of two distinct
prime factors, find the factors.

Even this problem is intractable at present.
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However, if we know thatN is the product of two distinct primes, then prob-
lems (4) and (5) are equivalent, in the sense that knowledge of a solution to one
enables us to solve the other.

Proposition 5.8 Suppose that N is the product of two distinct primes. Then, from
any one of the following pieces of information, we can compute the others in a
polynomial number of steps:

• the prime factors of N;

• φ(N);

• λ(N).

For suppose first thatN = pq where p andq are primes (which we know).
Thenφ(N) = (p− 1)(q− 1) can be found by simple arithmetic. Also,λ(N) =
lcm(p−1,q−1) = (p−1)(q−1)/gcd(p−1,q−1); the greatest common divisor
can be found by Euclid’s Algorithm, and the rest is arithmetic.

Suppose that we knowφ(N). Then we know the sum and product ofp andq,
(namely,p+ q = N−φ(N) + 1 andpq= N); and so the two factors are roots of
the quadratic equation

x2− (N−φ(N)+1)x+N = 0,

which can be solved by arithmetic (using the standard algorithm for finding the
square root).

The case where we knowN andλ(N) is a bit more complicated. Suppose that
p is the larger prime factor. Thenλ(N) = lcm(p−1,q−1) is a multiple ofp−1,
and dividesφ(N). Let r = N modλ(N) be the remainder on dividingN by λ(N).
Then

• N−φ(N)≡ r (modλ(N)), sinceλ(N) | φ(N);

• N− φ(N) = p+ q− 1 < 2λ(N), sinceλ(N) ≥ p− 1 > q (assuming that
N> 6).

SoN−φ(N) = r or N−φ(N) = r + λ(N). We can solve the quadratic for each of
these two possible values ofφ(N); one of them will give us the factors ofN.
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Example Suppose thatN = 589 andλ(N) = 90. Now 589 mod 90= 49. Trying
φ(N) = 540, we get that the prime factors ofN are the roots of the quadratic

x2−50x+589= 0,

so that
p,q = 25±

√
625−589= 25±6 = 31,19.

There is no need to try the other case.

Example Suppose thatN = 21 andλ(N) = 6. ThenN−φ(N) = 3 or 9. In the
first case the quadratic isx2− 4x+ 21 = 0, which has imaginary roots. In the
second, it isx2−10x+ 21 = 0, with roots 3 and 7. Note that we only need the
second case ifq−1 dividesp−1, since otherwiseλ(N)≥ 2(p−1).

Finally, we remark that, ifφ(N) or λ(N) is known, then problem (6) is easy.
For we choosee to be the inverse ofd modλ(N), using Euclid’s Algorithm.

In the other direction, if we know a solution to problem (6) (that is, if we know
d ande such thatTe is the inverse ofTd mod N), we can often factoriseN. The
algorithm is as follows. We assume thatN is the product of two primes (neither
of them being 2).

Let de− 1 = 2a · b, whereb is odd. Choose a randomx with
0< x< N.

First, calculate gcd(x,N). If this is not 1, we’ve found a factor
already and we can stop.

If gcd(x,N) = 1, we proceed as follows. Lety = xb modN. If
y≡±1 (modN), the algorithm has failed. Repeatedly replacey by
y2 modN (remembering the preceding value ofy – more formally,
z := y andy := y2 modN) until y≡±1 (modN).

If y≡−1 (modN), the algorithm has failed.
However, if y ≡ 1 (modN), then we have foundz such that

z2 ≡ 1 (modN) and z 6≡ ±1 (modN). Then gcd(N,z+ 1) and
gcd(N,z−1) are the prime factors ofN.

Remarks:

• The chance that gcd(x,N) 6= 1 is very remote. However, we should make
this test, since the rest of the algorithm depends on the assumption that the
gcd is 1.
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• The loop where we doz := y andy := y2 modN will be repeated at mosta
times. For we know thatλ(N) dividesde, so thatxde≡ x (modN). Since
x is coprime toN, it has an inverse, and soxde−1 ≡ 1 (modN). But
xde−1 = x2a·b ≡ y2a

, wherex≡ xb, so aftera successive squarings we cer-
tainly have 1; the loop will terminate no later than this step.

• If z2 ≡ 1 (modN), thenN dividesz2−1 = (z+ 1)(z−1). Both the fac-
tors lie between 1 andN−1, so gcd(N,z+ 1) and gcd(N,z−1) are proper
divisors ofN. They are coprime, so they must be the two prime factors of
N.

• It can be shown that, choosingx randomly, the probability that the algorithm
succeeds in factorisingN is approximately 1/2. So, by repeating a number
of times with different random choices ofx if necessary, we can be fairly
sure of finding the factorisation ofN.

Example Suppose thatN = 589 and we are told that the private exponent cor-
responding tod = 7 is e = 13. Nowde−1 = 90 = 2 ·45. Apply the algorithm
with x = 2. We do have gcd(2,589) = 1. Nowy = 245 mod 589= 94. At the next
stage,z= 94 andy= z2 mod 589= 1. So the factors of 589 are gcd(589,95) = 19
and gcd(589,93) = 31 (these gcds are found by Euclid’s algorithm).

Implementation

Bob chooses two large prime numberspB andqB. This involves a certain amount
of randomness. It is known that a fraction of about 1/(k ln10) of k-digit numbers
are prime. Thus, if Bob repeatedly chooses a randomk-digit number and tests it
for primality, in mk trials the probability that he has failed to find a prime number
is exponentially small (as a function ofm). Each primality test takes only a poly-
nomial number of steps. The chances of success at each trial can be doubled by
the obvious step of choosing only odd numbers; and excluding other small prime
divisors such as 3 improve the chances still further. We conclude that in a poly-
nomial number of steps (in terms ofk), Bob will have found two primes, with an
exponentially small probability of failure.

Knowing pB andqB, Bob computes their productNB = pBqB. He can also
computeλ(NB) = lcm(pB−1,qB−1). He now computes a large ‘exponent’eB

satisfying gcd(eB,kB) = 1 (again by choosing a randome and using Euclid’s al-
gorithm). The application of Euclid’s algorithm also gives the inverse ofeB mod
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λ(NB), that is the numberdB such thatTdB is the inverse ofTeB, where

TeB : x 7→ xeB (modNB).

Proposition 5.6 shows that the maps are inverses on all ofZ/(NB), sinceNB is the
product of two primes.

Bob publishesNB andeB, and keeps the factorisation ofNB and the numberdB

secret.
If Alice wishes to send a message to Bob, she first transforms her message into

a numberx less thanNB. (For example, if the message is a binary string, break it
into blocks of lengthk, where 2k < NB, and regard each block as an integer in the
interval [0,2k−1] written to the base 2. Now she computesz= TeB(x) and sends
this to Bob.

Bob deciphers the message by applying the inverse functionTdB to it. This
gives a number less thanNB and congruent tox modNB. Sincex is also less than
NB, the resulting decryption is correct.

If Eve intercepts the messagez, she has to computeTdB(z), which is a hard
problem (problem (6) above). Alternatively, she could computedB from the pub-
lished value ofeB. SincedB is the inverse ofeB mod λ(NB), this requires her
to calculateλ(NB), which is also hard (problem (5)). Finally, she could try to
factoriseNB: this, too, is hard (problem (4)). So the cipher is secure.

RSA signatures

Since the plaintext and ciphertext are both integers smaller thanNB, and the en-
cryption function is a bijection, the RSA system supports digital signatures.

If Alice and Bob have both chosen a key, then Alice can sign her message to
Bob by the method for digital signatures that we described earlier. That is, Alice
‘decrypts’ with her secret keyTdA before encrypting with Bob’s public key; after
decrypting, Bob then ‘encrypts’ with Alice’s public key to get the authenticated
message.

Remark We saw that, if we knoweandd such thatTd is the inverse ofTe modN,
then we have a very good chance of factorisingN. The moral of this is that, if your
RSA key is broken (that is, if Eve comes to know bothe andd), it is not enough
to keep the sameN and choose differentd ande, since you must assume that Eve
now knows the factors ofN. You must begin again with a different choice of two
primesp andq.
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5.3 Primes and factorisation

Primality testing is easy, but factorisation is hard. This assertion is the basis of the
security of the RSA cipher. In this section, we consider it further.

Primality testing

The basic algorithm for primality testing, which you learn in Algorithmic Mathe-
matics, is trial division. In a very crude form it asserts that, ifn> 1 andn is not
divisible by any integer smaller than

√
n, thenn is prime.

The first thing to say about this algorithm is that, with minor modification, it
leads to a factorisation ofn into primes. Ifn is not prime, then the first divisor
we find will be a primep, and we continue dividing byp while this is possible to
establish the exact power ofp. The quotient is divisible only by primes greater
thanp, so we can continue the trial divisions from the point where we left off.

The second thing is that this simple algorithm does not run in polynomial time:
the input is the string of digits ofn, and the number of trial divisions is about

√
n,

roughly 2k/2 if n hask digits to the base 2.
It is a bit surprising at first that primality testing can be easier than factori-

sation. This holds because there are algorithms which decide whether or not a
number is prime without actually finding a factor if it is composite! Two exam-
ples of such theorems are:

Theorem 5.9 Little Fermat Theorem: If n is prime then xn ≡ x (modn) for
any integer x.

Wilson’s Theorem: n is prime if and only if(n−1)! ≡−1 (modn).

We have seen the proof of the little Fermat theorem. Here is Wilson’s Theo-
rem.

Suppose that p is prime.We know that every numberx in the set{1, . . . , p−1}
has an inversey mod p (so thatxy≡ 1 (modp)). The only numbers which are
equal to their inverses are 1 andp−1: for if x is equal to its inverse, thenx2 ≡ 1
(modp), so thatp dividesx2−1 = (x−1)(x+ 1), andp must divide one of the
factors. The otherp−3 numbers in the range can be paired with their inverses, so
that the product of each pair is congruent to 1 modp. Now multiplying all these
numbers together gives

(p−1)! ≡ 1·1(p−3)/2 · (p−1)≡−1 (modp).
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Conversely,suppose that p is composite. If q is a prime divisor ofp, then
certainlyq divides(p−1)!, and so(p−1)! is congruent to a multiple ofq mod p,
and cannot be prime.

Can either of these results give us a quick test for primality?
As we explained in the last section, there is an efficient way to calculate

xn modn, involving at most 2 log2n multiplications of numbers not exceedingn
and calculation of the remainder modn after each multiplication. Thus, for exam-
ple, 2589≡ 326 (mod 589), so we know that 589 is composite without finding
any of its factors.

Unfortunately, this test doesn’t work in the other direction. For example,
2341≡ 2 (mod 341), even though 341= 11·31 is not prime. We say that 341 is
a pseudoprime to the base 2. In general,n is apseudoprimeto the basea if n is not
prime butan ≡ a (modn). Pseudoprimes are not very common, and if we are
prepared to take the small risk that the number we chose is a pseudoprime rather
than a prime, then we could simply accept such numbers.

We could feel safer if we checked different values. For example, although
341 is a pseudoprime to base 2, we find that 3341≡ 168 (mod 3), so that 341 is
definitely composite.

Unfortunately even this does not give us complete confidence. ACarmichael
numberis defined to be a number that is a pseudoprime to every possible base but
not a prime. It seems unlikely that such numbers exist, but they do!

Proposition 5.10 The positive integer n is a Carmichael number if and only if it
is composite andλ(n) divides n−1.

For a Carmichael number can have no repeated prime divisors: ifp2 dividesn
then pn modn is a multiple ofp2 and so not equal top. Now for such numbers
we know thatxm≡ x (modn) if and only if λ(n) dividesm−1.

Now considern = 561= 3 ·11·17. We haveλ(n) = lcm(2,10,16) = 80 and
80 divides 560, so 561 is a Carmichael number.

Refinements of this test due to Solovay and Strassen and to Rabin gave fast
algorithms which could conclude either thatn is certainly composite or thatn is
‘probably prime’, where our degree of confidence could be made as close to 1 as
required.

Wilson’s theorem doesn’t have the drawback of Fermat’s Little Theorem: it
is a necessary and sufficient condition for primality. That is, if(n− 1)! ≡ −1
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(modn), thenn is prime; if not, not. Unfortunately, unlike the situation of cal-
cluating powers of integers, nobody has ever discovered a quick method of cal-
culating factorials modn for given n. (The natural method would requiren−1
multiplications.)

The method finally used by Agrawal, Kayal and Saxena was a kind of com-
bination of these two approaches, together with some ingenuity. They begin with
the remark thatn is prime if and only if

(x−1)n≡ xn−1 (modn)

aspolynomials, rather than integers. This is because the coefficients in(x−1)n

are binomial coefficients
(n

i

)
; if n is prime, then

(n
i

)
is a multiple ofn for i =

1, . . . ,n−1, but if n has a prime factorq then
(n

q

)
is not a multiple ofn.

This is no good as it stands; we can raisex− 1 to thenth power with only
2 log2n multiplications, but the polynomials we have to deal with along the way
have as many asn terms, too many to write down. So the trick is to work
mod (n,xd− 1) for some carefully chosen numberd. I refer to their paper for
the details.

Factorisation

There is not a lot to say about factorisation: it is a hard problem! There are
some special tricks which have been used to factorise huge numbers of some spe-
cial forms, such asFermat numbers22n

+ 1 andMersenne numbers2p− 1 (for
p prime). Of course, we would avoid such special numbers when designing a
cryptosystem.

However, one should not overestimate the difficulty of factorisation. Numbers
with well over 100 digits can be factorised with today’s technology. The gap be-
tween primality testing and factorisation is sufficiently narrow that it is necessary
to keep updating an RSA system to use larger primes.

Later we may touch on quantum computing and see why the advent of this
technology (if and when it comes) will allow efficient factorisation of large num-
bers and make the RSA system insecure.

We discuss briefly just one factorisation technique:Pollard’s p− 1 method.
This method works well if the numberN we are trying to factorise has a prime
factorp such thatp−1 has only small prime power divisors. Suppose that we can
choose a numberb such that every prime power divisorq of p−1 satisfiesq≤ b.
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The algorithm works as follows. Choose any numbera> 1, and by successive
powering computex = ab! modN. By assumption, every prime power divisor of
p−1 is at mostb, and hence dividesb!. Hencep−1 dividesb!. Thus,ab! ≡ 1
(modp) by Fermat’s Little Theorem, so thatp dividesx−1. By assumption,p
dividesN. Hence gcd(x−1,N) is a multiple ofp, and so is a non-trivial divisor of
N. (Indeed, in the RSA case, ifN is the product of two primes, then gcd(x−1,N)
will be a prime factor ofN.)

Here is an example. LetN = 6824347 andb = 10. Choosinga = 2, we find
thatx = 5775612 and gcd(x−1,N) = 2521. Thus, 2521 is a factor ofN, and with
a bit more work we find that it is prime and thatN = 2521· 2707 is the prime
factorisation ofN.

The method succeeds because

2521−1 = 23 ·32 ·5·7

and all the prime power divisors are smaller than 10. Of course, if this condition
were not satisfied, the method would probably fail. If we replace 2521 by 2531 in
the above example, we find thatN = 2531·2707= 6851417,x = 210! modN =
6414464, and gcd(x−1,N) = 1.

Because we have to calculateab! modN by successively replacingabyai mod
N for i = 1, . . . ,b, we have to performb−1 exponentiations modN. So the method
will not be polynomial-time unlessb≤ (logN)k for somek. So we are only guar-
anteed success in polynomial time if the prime-power factors ofp−1 for at least
one of the divisors ofN are at most(logN)k – this is small compared to the mag-
nitudes of the primes involved, which may be roughly

√
N.

Thus, in choosing the primesp andq for an RSA key, we should if possible
avoid primes for whichp−1 orq−1 have only small prime power divisors; these
are the most vulnerable.

5.4 Diffie–Hellman key exchange

The functions used for the RSA cipher can also be used to implement the key-
exchange protocol that we discussed at the very beginning of our discussion of
public-key cryptography. This system of key exchange actually predates the RSA
cipher.

Assume that Alice wants to send a secret message to Bob. Alice and Bob agree
on a modulusp, a prime number. (They must share the primep, so they must
assume that Eve can get hold of it!) Each of them chooses a number coprime to
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λ(p) = p−1, and computes its inverse. These numbers are not revealed. Alice
chooseseA anddA, Bob chooseseB anddB. Note that our commutation condition
is satisfied:

TeATeB(x) = xeAeB mod p = TeBTeA(x).

In terms of our analogy,TeA is Alice putting on her padlock, whileTdA is Alice
removing her padlock.

Now Alice takes the messagex and appliesTeA; she sendsTeA(x) to Bob. Bob
appliesTeB and returnsTeBTeA(x) to Alice. Alice appliesTdA and returns

TdATeBTeA(x) = TdATeATeB(x) = TeB(x)

to Bob, who then appliesTdB and recoversTdBTeB(x) = x, the original message.
Nobody has yet discovered a weakness in this protocol like the weakness we

found using one-time pads. In other words, even if Eve intercepts all the messages
TeA(x), TeBTeA(x) andTeB(x) that pass to and fro between Alice and Bob, there is
no known easy algorithm for her to discoverx (even given the modulusp).

Contrast this with the standard RSA protocol: First, it allows a pair of users to
communicate securely, whereas RSA allows any two users in a pool to communi-
cate; secondly, three messages have to be sent, rather than just one; thirdly, what
is secret and what is public are different in this case (the prime is public but the
exponent is secret).

The security of this protocol depends on the fact that, ify= xe (modp), then
knowledge ofx andy does not allow an easy calculation ofe. For suppose that Eve
could solve this problem. Recall that Eve knowsxeA, xeB andxeAeB (the three mes-
sages exchanged during the protocol). If she could usexeA andxeAeB to discovereB,
she could find its inversedB modulop−1 and then calculate(xeB)dB mod p = x,
the secret message.

Thus, the security of this method depends on the fact that the following prob-
lem is hard:

Givenx, y, and a primep such thaty≡ xe mod p, find e.

This is known as thediscrete logarithm problem, since in a sensee is the
logarithm ofy to basex (where our calculations are in the integers modp, rather
than in the real numbers as usual). This problem is believed to be at least as
difficult as factorisation, although (like factorisation) it is not known to beNP-
complete.

If it happens that the order ofx mod p is small (so that there are only a few
distinct powers ofx modp), thenecan be found by exhaustive search. So, to make
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the problem hard, the order ofx should be as large as possible. Ideally, choosex
to be a primitive root modp (an element of orderλ(p) = p−1).

Example Suppose thatp = 30491 andx = 13. Thenx2 = 169, x3 = 2197,
x4 = 28561, andx5 ≡ 1 (modp). So the discrete logarithm problem is easily
solved. On the other hand, 2 is a primitive root mod 30491, so all the powers
20,21,22, . . . ,230489 are distinct, and finding which one is a particular elementy
will be very laborious.

How do we cheeck that 2 is a primitive root mod 30491, without actually
working out all these powers? We know that 230490≡ 1 (mod 30491), by Fer-
mat’s Little Theorem. So the order of 2 must be a divisor of 30490. We factorise
30490 into prime factors: 30490= 2 ·5 ·3049. So anyproperdivisor would have
to divide the product of two of these primes. So we check that none of 22·5, 22·3049

and 25·3049 is congruent to 1 mod 30491. So in this case we only have to check
three powers of 2; but it is necessary to factorisep−1.

5.5 El-Gamal

The El-Gamal cryptosystem is a rival to RSA and is widely used. Its ssecurity is
based on the difficulty of the discrete logarithm. It works as follows.

Bob chooses a prime numberp and a primitive rootg mod p. (Remember
that this is an element such that the powersg0,g1, . . . ,gp−2 are all distinct mod-
ulo p, and include all the non-zero congruence classes modp. We saw in The-
orem 16 that primitive roots exist for any primep.) He also chooses an integer
a∈ {1, . . . , p−2}, and computesh = ga (modp). His public key is(p,g,h); the
numbera is kept secret.

Alice wants to send a plaintextx to Bob, encoded as an integer in the range
{1, . . . , p−1}. She chooses a random numberk, also in this range, and computes
y1 = gk (modp) andy2 = xhk (modp). The ciphertext is the pair(y1,y2).

Note that

• the ciphertext is twice as long as the plaintext;

• there arep−1 different ciphertexts for each plaintext, one for each choice
of the random numberk.
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Bob receives the message(gk,xhk) mod p. He knows the numbera such that
h = ga mod p; so he can compute

hk ≡ (ga)k ≡ (gk)a mod p

without knowing Alice’s secret numberk. Now he can findx by “dividing” y2 =
xhk by hk; more precisely, he uses Euclid’s algorithm to find the inverse ofhk mod
p and multipliesy2 by this inverse to get the plaintextx.

Eve, intercepting the message, is faced with the problem of finding either

• the numbera for whichh≡ ga (modp), so that she can then use the same
decrypting method as Bob; or

• the numberk for which y1 ≡ gk (modp), so that she can findhk directly
and hence findx.

Either approach requires her to solve the Discrete Logarithm problem, and so may
be assumed to be difficult. No better way of trying to break the cipher is known.

Note that, if Eve does have the computational resources to solve a discrete log-
arithm problem, she should employ them on the first of the above problems. For if
this is solved, then she knows Bob’s private key and can read all his mail. Solving
the second only gives her Alice’s random numberk, which will be different for
each message, so the same job would have to be done many times.

Here is a brief example. Suppose that Bob chooses the primep = 83, the
primitive rootg = 2, and the numbera = 30, so thath = 230 mod 83= 40. Bob’s
public key is(83,2,40). Suppose that Alice’s plaintext isx = 54 and her random
number isk = 13. Then Alice’s ciphertext is

(gk,xhk) mod p = (58,71).

Bob computes 5830 mod 83= 9. By Euclid’s algorithm, the inverse of 9 mod 83
is 37; and so the plaintext is 37·71 mod 83= 54.

El-Gamal signatures

Using the El-Gamal scheme for digital signatures is a bit more complicated than
using, say, RSA. This is because, as we saw, the ciphertext in El-Gamal is twice
as long as the plaintext, and depends on the choice of a random numberk. So,
to sign a message, Alice cannot simply pretend that the message is a cipher and
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decrypt it with her private key! Instead, she adds further data whose purpose is to
authenticate the message.

Suppose that Alice’s El-Gamal public key is(p,g,h), wherep is prime andg
is a primitive root modp. Thenh≡ ga (modp), where the numbera is known
only to Alice.

To sign a messagex∈ {1, . . . , p−1}, Alice chooses a random numberk satis-
fying gcd(k, p−1) = 1. Then using Euclid’s algorithm, she computes the inverse
l of k mod p−1. Now she computes

z1 = gk mod p,

z2 = (x−az1)l mod p−1

The signed message is(x,z1,z2). Just as in the case of encryption, note that it
is longer than (in this case, three times as long as) the unsigned message, and
it depends on a random numberk. Alice then encrypts this message with Bob’s
public key and sends it to Bob.

On receipt, Bob decrypts the message, and finds three components. The first
component is the plaintextx. The second and third components comprise the
signature. Bob accepts the signature as valid if

hz1zz2
1 ≡ gx (modp).

We have to show that

• if Alice follows the protocol correctly, this condition will be satisfied;

• Eve cannot forge the signature (i.e. produce(x,z1,z2) satisfying this condi-
tion) without solving a discrete logarithm problem.

The first condition is just a case of checking;

hz1zz2
1 ≡ gaz1gkl(x−az1) (modp).

Note thatgp−1≡ 1 (modp), so exponents ofg can be read modulop−1. Now
kl ≡ 1 (modp−1), sogkl(x−az1) ≡ gx−az1 (modp). Then

hz1zz2
1 ≡ gaz1gx−az1 ≡ gx (modp).

The second part is a bit more complicated and the argument will not be given
here. It is clear that Eve cannot do Alice’s computation without knowinga. We
have to be sure that there is no other way that she could produce a forgery.
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Example Suppose that Alice’s public key is(107,2,15), with secret number
11, so that 2 is a primitive root mod 107, and 211≡ 15 (mod 107). Suppose that
Alice wants to send the message 10 to Bob and sign it. She choosesk = 17; this
number is coprime to 106, and its inverse is 25. The signature is(z1,z2), where

z1 = 217 mod 107= 104,

z2 = (10−11·104) ·25 mod 106= 58.

So she encrypts the plaintext(10,104,58) with Bob’s public key and sends it to
Bob. (Note that the one numberx has now become six numbers in the ciphertext!)

Bob, having decrypted the message, obtains(10,104,58). He tests whether

15104·10458≡ 210 (mod 107),

and, since this is the case, he is assured that the message is from Alice.

5.6 Finding primitive roots

The El-Gamal system requires each user to choose a primep and a primitive root
g mod p. How does he find a primitive root? This is a problem which is itself not
easy. There are two approaches that have been used.

One approach is to observe that it is not crucial for the operation of the method
thatg is a primitive root; all we require is thatg should have many different powers
mod p, so that the discrete logarithm cannot be solved by exhaustive search. So
all that Bob has to do is to choose a numberg and check thatgi 6≡ 1 (modp) for
all not-too-largei. (If he can factorisep−1, he can test whetherg is a primitive
root in only a few steps by the method of the earlier example; if it is not a primitive
root, he can find out what its order actually is by continuing this analysis.)

Another is to observe that there are some special primes for which it is easy to
find a primitive root. One way to do this is as follows.

A pair (q, p) of prime numbers is called aSophie Germain pairif p = 2q+1.
These are so-called because, in 1825, Sophie Germain proved a special case of
Fermat’s Last Theorem for exponents which are the smaller of a Sophie Germain
pair. The important thing is that it appears (though it is not proved yet) that there
are lots of such prime pairs. So it is not too inefficient to find a primeq, and then
test whetherp = 2q+1 is also prime.

Now we have the following result.
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Proposition 5.11 let (q, p) be a Sophie Germain pair. Suppose that1< x< p−2.
Then x is a primitive root mod p if and only if xq≡−1 (modp).

For the order ofx mod p dividesp−1 = 2q by Fermat’s Little Theorem, and
is not 1 or 2 (since the only elements with these orders are 1 andp−1); so the
order isq or 2q.

Suppose thatx is a primitive root (of order 2q), and lety = xq mod p. Then
y2≡ 1 (modp), buty 6≡ 1 (modp); soxq≡ y≡−1 (modp).

Conversely, suppose thatx is not a primitive root; thenx has orderq, soxq≡ 1
(modp).

In our earlier example,(41,83) is a Sophie Germain pair, so to test whether 2
is a primitive root mod 83, we only have to decide whether 241≡−1 (mod 83).
This can be done directly, but the calculation can be simplified still further using
tools from Number Theory (the so-called Quadratic Reciprocity Law of Gauss).
This is beyond the scope of this course, but is discussed in the Number Theory
course.

Sophie Germain was the first female mathematician in western Europe. She
faced many difficulties in being accepted as a serious mathematician. She com-
municated by letter with many of the famous mathematicians of the time, such as
Gauss and Lagrange, signing her name “Monsieur LeBlanc”. Gauss learned that
his correspondent was a woman in a curious way.

He lived in Braunschweig in eastern Germany. When Napoleon’s armies in-
vaded in 1806, Germain asked the military commander, who was a family friend,
to take special care of Gauss. (As a child, she had read the story of how Archimedes
had been killed by a Roman soldier during the invasion of Syracuse, and dreaded
that Gauss would suffer the same fate.) On asking to whom this special attention
was due, Gauss was surprised to learn that “Monsieur LeBlanc” was a woman.

Exercises

5.1. Bob’s RSA public key is(8633,151).

(a) Encrypt the plaintext 1000 for transmission to Bob.

(b) Factorise 8633.

(c) Decrypt the ciphertext 8119 which was sent to Bob.

(d) Sign the text 5000 for Bob.
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5.2. This question shows how sometimes we can restrict the prime divisors of
numbers of special form.

Let Fn be theFermat number22n
+1. Suppose thatp is a prime divisor ofFn.

(a) Show that the order of 2 modp is 2n+1.

(b) Deduce thatp≡ 1 (mod 2n+1).

(c) Find a prime divisor ofF5.

(d) Show (without actually doing the calculations) that this prime divisor ofF5

could be found by Pollard’sp−1 method, takinga = 3 andb = 8.

5.3. (a) Show that 91 is a pseudoprime to base 3.

(b) Show that 1105 is a Carmichael number.

5.4. Bob’s El-Gamal public key is(53,2,3),

(a) Encrypt the plaintext 10 for transmission to Bob.

(b) What is Bob’s secret number?

(c) Decrypt the ciphertext(44,45) which was sent to Bob.

(d) Sign the text 30 for Bob, and verify that the signature is valid.
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Chapter 6

Secret sharing and other protocols

In this chapter we will see two things: protocols for purposes similar to sending
secret messages but with variations; and other kinds of attacks on cipher systems
and how they might be analysed.

6.1 Secret sharing

The President of the Commercial Bank of Nod is the only person who holds a
secret password which opens the bank vault. He realises that he can’t always be
around, and sometimes it is necessary to open the vault in his absence. But he
doesn’t trust any of his employees with the password. So he wants to give each of
the two Vice-Presidents of the bank some partial information, so that only if the
two of them combine their information can they open the vault. How can he do
this?

He could simply give half the password to each Vice-President. But then there
is a risk that one of the Vice-Presidents will guess the other half of the password:
this is much easier than guessing the whole password. He wants a method where
the information given to each Vice-President is no help to him in guessing the
password on his own.

This is not difficult. He can simply encrypt the password, and give one Vice-
President the ciphertext and the other the key. Together they can decrypt the pass-
word and open the vault. But if the cipher is a secure one such as a one-time pad,
one Vice-President alone cannot break it, or even get any information about it (by
Shannon’s Theorem).

Slightly more formally, suppose that the password is a string over an alphabet

107
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A with q symbols. LetL be aq× q Latin square whose rows and columns are
labelled byA, and whose entries are symbols fromA. Suppose thatz = z1 . . .zn

is the password. Choose any random stringa = a1 . . .an of symbols ofA, and let
b = b1 . . .bn be the string for whichai⊕bi = zi for i = 1, . . . ,n, wheres⊕ t is the
symbol in rows and columnt of the square. (This is slightly different from the
way we did it before but the difference is immaterial.)

As usual, we writez = a⊕b to mean coordinatewise operation, that is,zi =
ai⊕bi for i = 1, . . . ,n.

For example, letA = {0, . . . ,q−1} be the set of integers modq, andL is the
addition table modq (so thats⊕ t = s+ t modq).

This example can easily be extended to the case where there arek Vice-
Presidents, and it is required that only allk acting together can open the vault.
Let us suppose that the Latin square is the addition table modq. In this case, the

jth Vice-President is given the informationa( j) = a( j)
1 . . .a( j)

n , where

z= a(1)⊕a(2)⊕·· ·⊕a(k).

(For an arbitrary Latin square the method is the same, but we have to be careful
about the order we do the additions.)

Not only is it true that anyk−1 of the Vice-Presidents cannot work out the
password; they cannot get any information at all about it. For example, suppose
that the firstk−1 Vice-Presidents co-operate. They can calculate

b = a(1)⊕a(2)⊕·· ·⊕a(k−1).

Now
b⊕a(k) = z,

but because of the Latin square property, in each row every symbol occurs once,
so without knowledge ofa(k) all strings are equally likely!

We can extend this idea still further with a definition as follows. Letk andt
be positive integers withk> t, and letA be an alphabet ofq symbols. A(k, t)
orthogonal arrayoverq is defined to be an arrayM with k rows andqt columns
with entries fromA, having the following property:

Given anyt rows of M, and anyt elementsa1, . . . ,at of A, there is
exactly one column ofA in which the entriesa1, . . . ,at occur (in that
order) in thet chosen rows.
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The numbersk andt are called thedegreeandstrengthrespectively of the orthog-
onal array. The number of columns must beqt , since this is the number of choices
of a t-tuple(a1, . . . ,at).

Recall that, for a Latin square with symbol set{1, . . . ,n}, we constructed an ar-
ray with three rows andq2 columns, where the three entries of each column give
the row number, column number, and symbol contained in a cell of the square.
The defining properties of a Latin square translate into the fact that this is an or-
thogonal array of degree 3 and strength 2. (A row and column uniquely determine
a symbol; a row and symbol uniquely determine a column; and a column and
symbol uniquely determine a row.)

A (k, t) secret sharing schemeis a scheme in which each ofk individuals is
given a member of a setSin such a way that anyt of the individuals acting together
can determine the identity of a secret members of S, but not−1 individuals can
get any information abouts.

Theorem 6.1 From an orthogonal array of degree k and strength t over A, we can
construct a(k−1, t) secret sharing scheme over the set An of strings of length n
of elements of A.

The construction works as follows. We can taken = 1, since to “encode” a
string we simply deal with its characters one at a time.

Suppose thatM is an orthogonal array of degreek and strengtht overA. The
arrayM is regarded as public.

Now M hasqt columns. Exactlyqt−1 of these have the property that the
secrets appears in the last row. Choose one of these columns at random, and
give the entry in itsith row to theith individual in the secret-sharing scheme for
i = 1, . . . ,k−1.

Now by the properties of an orthogonal array, anyt of the individuals can, by
pooling their information, determine the chosen column ofM, and hence its last
entry, which is the secret. However, the information held by anyt−1 individuals
only determines a set ofq columns, with the property that each symbol occurs in
the last row of precisely one of these columns. So the individuals concerned can
obtain no information about the secret.

Thus, a Latin square gives a(2,2) secret sharing scheme, and we have seen
that we can use it to construct a(k,k) secret sharing scheme for anyk.

Orthogonal arrays with higher strength are a bit harder to construct. Here is a
very nice construction due to K. A. Bush:
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Theorem 6.2 Let q be a prime power, and t a positive integer less than q+ 1.
Then there exists an orthogonal array of degree q+ 1 and strength t over an al-
phabet of size q (and hence a(q, t) secret sharing scheme over an alphabet of
size q).

In this case, the alphabet is the finite field GF(q) with q elements. The array
is constructed as follows.

Consider polynomials of degreet−1. Each such polynomial has the form

f (x) = a0 +a1x+ · · ·+at−1xt−1,

wherea0,a1, . . . ,at−1 ∈ GF(q). So there areq choices for each of thet coeffi-
cients, and henceqt polynomials.

From any polynomialf (x), we construct a column of lengthq+ 1 as follows.
If the elements of GF(q) are numberedu1, . . . ,uq, we put f (ui) in the ith row, for
i = 1, . . . ,q. In the(q+1)st row, we put the leading coefficientat−1 of f (x).

This gives an array withq+ 1 rows andqt columns. It remains to show that
it is an orthogonal array of strengtht. Suppose we seek a column in which rows
i1, . . . , it contain entriesz1, . . . ,zt respectively.

Suppose first that none of these rows is the(q+1)st. To ease notation, we put
ui j = v j for j = 1, . . . , t. Then we have to show that there is a unique polynomial
f (x) of degree at mostt−1 such that it takes prescribed values att given points,
namely

f (v j) = zj , j = 1, . . . , t.

This is true in general; the method for finding the polynomial is known asLa-
grange interpolation. In the case of a finite field, it can be proved by simple
counting. We give this argument, and then the general proof (which has the ad-
vantage of being constructive).

First, we observe that there is at most one polynomial of degree≤ t−1 taking
these values. For iff andg were two such polynomials, thenf −g would be zero
at each pointv1, . . . ,vt , contradicting the fact that a polynomial cannot have more
roots than its degree. (This part of the argument works for any field.)

Now, there areqt choices of thet valuesz1, . . . ,zt , and there areqt choices of
the coefficients of the polynomial

f (x) = a0 +a1x+ · · ·+at−1xt−1,

so each list of values must be realised by a polynomial.
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The constructive method works as follows. Let

gi(x) = ∏
j 6=i

(x−v j)
(vi−v j)

.

Then we havegi(vi) = 1, andgi(v j) = 0 for j 6= i. Hence

f (x) =
t

∑
i=1

zigi(x)

satisfiesf (vi) = zi for i = 1, . . . , t.

Now suppose that one of the rows (say the last) is the(q+1)st. Then in place
of what went before, the last equation is nowat−1 = zt . This equation determines
at−1, and so we have to interpolate a polynomialh of degree≤ t−2 taking the
othert−1 values

h(vi) = zi−at−1vt−1
i , i = 1, . . . , t−1.

By the same argument as before, there is a unique such polynomial.

The implementation of this secret-sharing scheme is remarkably simple. The
President takes the secret password to be the coefficient ofxt−1 in the polynomial,
and chooses the coefficients of lower-degree terms at random. Then he evaluates
the polynomial on the elements of the field, and gives one value to each Vice-
President.

Any t of the Vice-Presidents can now use Lagrange interpolation, as described
above, to find the unique polynomial of degree at mostt−1 taking the values they
have been given. Its leading coefficient is the secret. On the other hand, fewer
thant Vice-Presidents can gain no information at all about the secret.

Example Figure 6.1 is the orthogonal array of degree 4 and strength 3 con-
structed by the above method. I have transposed the array for convenience in
printing. We take all polynomials of degree at most 2 over GF(3) = {0,1,2}. The
components of the 4-tuple aref (0), f (1), f (2), and the coefficient ofx2 in f (x)

Run your fingers down any three columns of the array on the right, and you
should find that each of the 33 = 27 possible triples occur exactly once.

Remark Bush’s orthogonal arrays are known, in different terminology, asReed-
Solomon codes, and are used for error correction in CD players.
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Polynomial 4-tuple
0 0000
1 1110
2 2220

x 0120
x + 1 1200
x + 2 2010
2x 0210
2x + 1 1020
2x + 2 2100

x2 0111
x2 + 1 1221
x2 + 2 2001
x2 + x 0201
x2 + x + 1 1011
x2 + x + 2 2121
x2 + 2x 0021
x2 + 2x + 1 1101
x2 + 2x + 2 2211
2x2 0222
2x2 + 1 1002
2x2 + 2 2112
2x2 + x 0012
2x2 + x + 1 1122
2x2 + x + 2 2202
2x2 + 2x 0102
2x2 + 2x + 1 1212
2x2 + 2x + 2 2022

Figure 6.1: An orthogonal array



6.2. OTHER PROTOCOLS 113

6.2 Other protocols

Session keys

Public-key cryptography is slower than cryptography based on a shared secret key.
So many systems, including PGP, have an initial round where a public-key cipher
is used to share a secret key between the two participants of a session. The key is
used only for that communication session.

The simplest way to do this is a modification of the Diffie–Hellman method.
It has the advantage that the key itself is not transmitted, even in enciphered form.

Alice and Bob share a prime numberp and a primitive rootg mod p. (They
must assume that Eve knowsp andg as well.) Now Alice choses a numbera
in the range{0, . . . , p−2} and Bob choosesb in the same range. Alice computes
ga mod p and sends it to Bob; Bob computesgb mod p and sends it to Alice. Now
each of them can compute(ga)b = (gb)a mod p; this is the session key.

To obtain the key, Eve knowsga andgb, but needs eithera or b to proceed
further; so she needs to solve a discrete logarithm problem. Since a new key can
be chosen for each session, Eve cannot pre-compute the discrete logarithm of a
public key as in the case of El-Gamal.

Note that, as opposed to the protocol described before, this method requires
only two, rather than three, transmissions, and these are asynchronous (that is,
they can occur in either order).

What else?

Protocols for many other tasks have been derived. For example, Alice can send
Bob a message which he has a 50% chance of being able to decrypt, and Alice
herself doesn’t know whether or not Bob can decrypt it. Similarly, she can send
him a message which allows him to learn one or other of two secrets, so that Alice
does not know which secret Bob has learned. Bob may construct a smart card
which knows his secret key, and can prove that it knows it, but without revealing
the secret key.

Fanciful as these may sound, they have been suggested to solve real practical
problems. The last protocol, for example, has been proposed by Shamir as the
basis for an electronic passport.
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6.3 Other kinds of attack

For the most part, we have imagined Eve as just a snooper who intercepts a mes-
sage from Alice to Bob and must be prevented from knowing its contents. There
are more active roles that she can play. Here are a few examples. There has been a
lot of work on deciding whether the ciphers we have discussed are secure against
this kind of attack. Sometimes we must imagine that Eve is someone who works
in Alice’s or Bob’s organisation, or someone who has complete control of the
communication channel between them.

• Eve may have access to some ciphertexts from Alice to Bob together with
the corresponding plaintext. Does this help her break future messages?

• Eve may, in some circumstances, be able to persuade Alice to encipher
messages of Eve’s choosing. Carefully-chosen messages may give more
information than arbitrary messages.

• Eve may be able to impersonate Alice to a greater or lesser degree. For
example, she can certainly send Bob a message claimimg to come from
Alice, encrypted with Bob’s public key. Alice can foil this by signing or
authenticating her messages; we have seen how to do this in both RSA and
El-Gamal. Even in this case, Eve may be able to send Bob some previously-
intercepted ciphertexts instead ot the current ciphertext that Alice wants to
send.

• Alice may later wish to repudiate a message she has sent to Bob, claiming
that it was a forgery from Eve. If it is signed (and the signature includes a
date and time), this should not be possible; but it seems difficult to prevent
Alice from claiming that her private key has been obtained illicitly by Eve.

6.4 Social issues

Now that more-or-less unbreakable encryption is available to all, we have to ask:
Do we value this privacy more than we fear that criminals, terrorists and others
will be able to profit from it? There is a serious clash here between the ideal of
civil liberty and the desire for law and order.

Some governments such as that of the USA have attempted to limit the com-
plexity of the ciphers used by their citizens so that the intelligence and law-
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enforcement agencies can read their communications. In an increasingly glob-
alised society this is difficult to implement; in the long run it is probably doomed
to failure. In any case, if a citizen sends messages using some unbreakable ci-
pher, the authorities will be aware of this and will investigate the citizen and his
correspondents by more conventional methods!
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Chapter 7

Quantum effects

There was a time when the newspapers said that only twelve men
understood the theory of relativity. I do not believe there ever was
such a time . . . On the other hand, I think I can safely say that nobody
understands quantum mechanics.

Richard Feynman,
The Character of Physical Law

In this final chapter we consider some very recent developments based on the
mysteries of quantum theory. I cannot attempt to explain these mysteries (and I
needn’t be ashamed to say that I don’t understand them myself), but I have tried to
lay out what quantum theory has to say about the behaviour of subatomic systems,
and how this behaviour is relevant to cryptography.

There are two aspects which we treat in turn. First, the possibility of building
a quantum computer has been raised. Such a gadget could efficiently solve the
hard problems on which modern public-key cryptography depends (factorisation
and discrete logarithm). Second, a cryptosystem has been proposed which allows
Alice and Bob to detect if their communication has been compromised before any
secret plaintext is entrusted to the communication channel.

7.1 Quantum basics

Like any physical theory, the purpose of quantum mechanics is to predict the
result of a measurement on a physical system. But unlike all other theories, it
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does not usually predict a single value, but offers only a probabilistic prediction,
along the lines “the electron’s spin will be in the direction of the magnetic field
with probability 1

2, and will be in the opposite direction with probability1
2”.

At the same time, the system is affected by the measurement; the action of
measurement changes the state of the system into one which depends on the result
of the measurement.

We turn these principles into a more mathematical format. According to quan-
tum mechanics, the state of a physical system is described by a unit vector in a
certain complex inner product space (more precisely, a Hilbert space) called the
state space, whose dimension may be finite or infinite depending on the system
being considered.

An unobserved system “evolves” by what might be regarded as a rotation of
the state space. More precisely, a system in statev at a certain time is in stateUv at
some later time, whereU is aunitary transformation (this means thatU−1 = U

>
,

where the bar denotes complex conjugation. The exact form ofU is determined
by the laws of quantum mechanics (the Schrödinger equation).

However, when we make a measurement on the system, something different
happens. A measurement is described by aHermitian transformationH of the
state space (one satisfyingH = H

>
). Now a standard theorem of linear algebra

says that, ifH is Hermitian, then the space has an orthonormal basis consisting
of eigenvectors ofH. We assume for simplicity that the eigenvalues ofH are
all distinct, so thatHe= λe holds for a one-dimensional space of eigenvectorse
(given the eigenvalueλ). Now the laws of quantum mechanics state the following:

• The result of a measurement associated withH is an eigenvalueλ of H.

• If the system was in statev before the measurement, wherev = ∑aλeλ is
the expression forv in terms of an orthonormal basis of eigenvectors, then
the probability that the result of the measurement isλ is |aλ|2. (These prob-
abilities sum to 1 becausev is a unit vector.)

• If the result of the measurement isλ, then immediately after the measure-
ment the state of the system has “jumped” toeλ.

Another theorem of linear algebra asserts that the eigenvalues of a Hermitian
transformation are real numbers. This corresponds to the statement that the result
of any physical measurement is a real number, even though the formalism uses
vector spaces over the complex numbers.
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7.2 Quantum computing

The standard systems considered in a quantum theory course, such as the hydro-
gen atom, have infinite-dimensional state spaces. However, to describe how to
deal with a single bit of information quantum-mechanically, we only need a two-
dimensional state space, whose basis vectors describe the two possible results of
measuring the bit.

Thus, aqubit (short for “quantum bit”) is a system whose state space is two-
dimensional, spanned by the vectorse0 ande1. The operatorH associated with
the measurement of the bit is

H =
(

0 0
0 1

)
relative to this basis. ThusHe0 = 0 andHe1 = e1. So the eigenvalues ofH are 0
and 1, and the corresponding eigenvectors aree0 ande1.

A typical state of the system (a unit vector in this space) has the formae0+be1,
wherea andb are complex numbers satisfying|a|2 + |b|2 = 1. If the system is in
this state, we regard it as being in asuperpositionof the statese0 (bit value 0) and
e1 (bit value 1). If we measure the value of the bit, we find that the probability
that it is zero is|a|2, while the probability that it is one is|b|2.

The matrix

U =
1√
2

(
1 1
1 −1

)
is unitary. It satisfiesUe0 = (e0 + e1)/

√
2 andUe1 = (e0− e1)/

√
2. Suppose

that we have a circuit whose effect on a qubit (in one unit of time) is to applyU
to the state vector. If we prepare the system with the bit taking a definite value,
either 0 or 1, then one time unit later the bit is “smeared out” between the two
states, that is, the result of a measurement will be 0 with probability1

2, and 1
with probability 1

2. Since the equations are linear, the subsequent evolution of the
system will be a superposition of the two states describing the evolution starting
from a value 0 and from a value 1. In other words, the computer can perform two
computations simultaneously!

The circuit which realizesU is called aHadamard gate.
More generally, ann-qubit system has state space which has a basis consisting

of unit vectorses, wheres runs over all 2n possible binary strings of lengthn. If
we set up the system with each qubit taking a definite value, and then pass each
one through a Hadamard gate, the resulting state will be an equal superposition
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of all 2n possible states, and we have a computer which can do 2n calculations at
once.

This is the basis of the power of a quantum computer. In very rough terms:
with n qubits at our disposal, we can regard the 2n strings as representing the
integers 1, . . . ,2n, and we can do trial divisions ofN by all these numbers simulta-
neously, arranging the circuitry so that only values which divide exactly give rise
to an output. Thus, we can factorise numbers as large as 22n with such a machine.

This is a rough description ofShor’s algorithm, which uses a quantum com-
puter to factorise large numbers efficiently. Space does not allow a more precise
description.

Other tasks which quantum computers can do very quickly include sorting,
and solving the discrete logarithm problem. We see that neither RSA nor El-
Gamal will be secure if a practical quantum computer is ever built.

The theory of quantum computing is well understood. The difficulties now
are, in some sense, only technological ones. However, they are very severe. Most
obviously, a quantum computer uses a single electron or atomic nucleus to store
one qubit of information. (For example, as we saw earlier, if an electron is in a
magnetic field, then a measurement of its spin will be either in the direction of the
magnetic field or in the opposite direction, and we can take these two states ase0

ande1.) Now a single electron is very sensitive to interference from a cosmic ray
or from thermal agitation by its surroundings. Thus, errors creep in at a very high
rate.

By contrast, a bit in a classical computer is stored in a transistor where the
difference between “charged” and “discharged” is of the order of trillions of elec-
trons. A cosmic ray may eject a few of these electrons without affecting the bit.
Classical computers are extremely reliable and fault-tolerant.

7.3 Quantum cryptography

In this section we will see how one of the key properties of quantum theory, that a
measurement changes the state of the system, can be used to produce a “tamper-
proof” cipher, where Alice and Bob can tell (with probability arbitrarily close
to 1) whether Eve has been intercepting their communication, before any plaintext
is actually sent.

The cryptosystem uses photons as opposed to electrons. These are the quanta
of the electromagnetic field, and except in “photon traps” in cutting-edge research
labs, they go their way at the speed of light, so are ideal for transmitting messages
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but useless for computation. Some properties of photons which we will use are:

(i) A photon has a polarisation, in a direction perpendicular to the direction of
travel. (Think of it as like a wave vibrating in a direction perpendicular
to the direction of travel. This is really a simplification, since in fact a
photon can have two vibrations superimposed, but it is good enough for the
argument here.) Note that, for example, “up” and “down” describe the same
polarised state.

(ii) It is possible to prepare a photon which is polarised in any prescribed direc-
tion.

(iii) We can measure the polarisation in any direction; the answer to our measure-
ment will be either “yes” or “no”. If the actual polarisation direction makes
an angleθ with the direction of the measurement, then the answer “yes”
will be obtained with probability cos2θ, and “no” with probability sin2θ;
these sum to 1, as probabilities should. Note that measurements in two per-
pendicular directions give exactly the same information. In particular, then,
if we measure in the direction of the actual polarisation, we certainly get the
answer “yes” (as cos0= 1); and if we measure perpendicular to the actual
polarisation, we get the answer “no” (as cosπ/2 = 0). In any other case, the
result is random.

(iv) After the measurement, if the result was “yes”, then the photon will be po-
larised in the direction of the measurement; if the result was “no”, it will be
polarised in the perpendicular direction.

The cryptosystem now works as follows. Alice and Bob use quantum effects
to share a random sequence of bits, which they then use as a conventional one-time
pad. We assume that all channels of communication between them are tapped by
Eve.

Stage 1: Alice chooses independently two random binary sequences of lengthN,
saya1a2 . . .aN andb1b2 . . .bN. The numberN should be a bit more than twice as
long as the length of the plaintext bitstring, as we will see. Fori = 1, . . . ,N, she
prepares a photon whose state of polarisation is given in the following diagram,
depending on(ai ,bi). (The direction of travel is perpendicular to the paper, and
the angles between adjacent lines areπ/4.)
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Note thatai determines the choice of “orthogonal” (horizontal and vertical) or
“diagonal” axes, andbi determines which of the two axes to use.

Bob chooses a random binary sequence of lengthN, sayc1c2 . . .cN (before the
photons are sent). Now, ifci = 0, he measures the polarisation of theith photon
in the vertical (or equivalently the horizontal) direction, and definesdi = 0 if he
finds that the polarisation is horizontal anddi = 1 if it is vertical. On the other
hand, ifci = 1, then he measures the polarisation of theith photon in one of the
diagonal directions (again, the two measurements are equivalent, so he can make
either), and setsdi = 0 if he finds the polarisation to be in the NW–SE direction,
anddi = 1 if it is in the NE–SW direction.

Note that

• if ai = ci , thenbi = di ;

• if ai 6= ci , thendi is random:P(di = bi) = P(di 6= bi) = 1
2. For in this case,

Bob’s measurement is at an angle ofπ/4 or 3π/4 to the actual polarisation,
and cos2θ = sin2θ = 1

2 if θ = π/4 or θ = 3π/4.

Stage 2: Now Alice and Bob communicate in the ordinary way (over a line
which might be insecure). Alice reads out her sequencea1 . . .aN, and Bob reads
out his sequencec1 . . .cN. Since the sequences are both random, the number of
places where they agree will be a binomial random variable Bin(N, 1

2), with mean
N/2 and varianceN/4 (that is, standard deviation

√
N/2); so it is very likely that

the number lies in the rangeN/2± c
√

N for some moderate constantc. In this
situation, we will say “the sequences agree at aboutN/2 places”.

Stage 3: Now Alice and Bob discard the terms of their sequencesb1 . . .bN and
d1 . . .dN apart from those where thea and c sequences agree. They use what
remains as a one-time pad. Since it is a subsequence of Alice’s original random
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sequenceb1 . . .bN, it is a random sequence, of length aboutN/2. By Shannon’s
Theorem, their communication will be secure.

Note that 3N random bits have to be chosen in order to produce a shared key
of length aboutN/2: this is in a sense the price paid for secrecy.

How could Eve attack this cipher?
If she uses any information she gains in stages 2 and 3, she will only be able to

obtain about half of the one-time pad, which is no better than guessing randomly.
For although she knows which subsequence of the original sequence will be used,
she does not know the contents of this subsequence, since Alice and Bob do not
reveal theb andd sequences at this stage.

What if Eve intercepts the photons? She can measure the polarisations, and
then either let these photons continue their journey to Bob, or replace them with
new photons whose polarisation is hers to choose. We show that, not only Eve
cannot get hold of more than half of the key even in this way, but that Alice and
Bob can detect her tampering. I will just consider the case where she sends the
photons on to Bob after measuring the polarisations.

Eve must set up detectors according to some binary sequencee1 . . .eN, just as
Bob does. Her sequence may be random or determinate: for example, she might
set them all horizontally. But her choices will agree with Alice’s random choices
about half the time, and with Bob’s about half the time, independently. So she can
only be sure of getting aboutN/4 bits of the one-time pad.

To see how we detect tampering, note that if Eve choosesei = ai , then she does
not change the state of the photon and so her interference is undetectable. How-
ever, if she choosesei 6= ai , and ifci = ai , then Alice and Bob have an even chance
of detecting the interference. For suppose thatai = ci = 0 andei = 1. Then Eve
changes the polarisation of the photon from orthogonal to diagonal (each of the
two diagonals having probability12. For each possible state, Bob has probability1

2
of measuring horizontal polarisation, and1

2 of measuring vertical polarisation. So
the probability that he measures the opposite of what Alice sent is1

2 ·
1
2 + 1

2 ·
1
2 = 1

2.
Now Alice and Bob adopt the following procedure. They choose their se-

quences(ai), (bi) and(ci) of lengthN + 2n rather thanN (wheren is to be spec-
ified later). By Stage 2, they have agreed on aboutN/2+ n positions where their
sequences(bi) and (di) will agree, if there has been no eavesdropping. Alice
choosesn positions at random from this subsequence, and reveals their contents
to Bob. If there is no eavesdropping, then Bob will have exactly the same bits in
these positions as Alice. However, if Eve has been at work, the probability that
Bob’s bit disagrees with Alice’s in one of these positions is1

4 (since this requires
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thatei 6= ai and that the randomness in quantum theory produces a result different
from what was sent, each of which independently has probability1

2). So the prob-
ability that Alice and Bob are in complete agreement on the bits Alice reads out
is only (3/4)n.

This probability can be made arbitrarily small by choosingn large enough. For
example, ifn = 73, then(3/4)n < 1/109, so the chance that Eve’s interference is
undetected is less than one in a billion. Increasing this ton = 241 would reduce
the chance to less than one in 1030.
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