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Preface

The three subjects of the title (codes, matroids, and permutation groups) have
many interconnections. In particular, in each case, there is a polynomial which
captures a lot of information about the structure: we have the weight enumerator
of a code, the Tutte polynomial (or rank polynomial) of a matroid, and the cycle
index of a permutation group.

With any code is associated a matroid in a natural way. A celebrated theorem
of Curtis Greene asserts that the weight enumerator of the code is a specialisation
of the Tutte polynomial of the matroid. It is less well known that with any code
is associated a permutation group, and the weight enumerator of the code is the
same (up to normalisation) as the cycle index of the permutation group.

There is a class of permutation groups, the so-cdB#8 groups which are
closely associated with matroids. More precisely, the IBIS groups are those for
which the irredundant bases (in the sense of computational group theory) are the
bases of a matroid. The permutation group associated with a code is an IBIS
group, and the matroid associated to the group differs only inessentially from the
matroid obtained directly from the code.

For some IBIS groups, the cycle index can be extracted from the Tutte poly-
nomial of the matroid but notice versafor others, the Tutte polynomial can be
obtained from the cycle index but nate versa This leads us to wonder whether
there is a more general polynomial for IBIS groups which “includes” both the
Tutte polynomial and the cycle index. Such a polynomial (Eb#e cycle index
is given in the last chapter of these notes (an expanded version of [5]).

Whether or not there is a more general concept extending both matroids and
arbitrary permutation groups, and giving rise to a polynomial extending both the
Tutte polynomial and the cycle index, | do not know; | cannot even speculate what
such a concept might be.
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The other theme of these notes is codes &grthe integers mod 4, where
there have been some important recent developments. These codes fit naturally
into the framework of permutation groups, but not so easily into the matroid
framework. Carrie Rutherford has shown in her Ph.D. thesis [27] that we need
a pair of matroids to describe such a code, and even then the correspondence is
not exact; no natural matroid polynomial generalises the Lee weight enumerator.
Moreover, the permutation group is not an IBIS group.

The remainder of the notes is concerned with developing the basics of codes,
matroids and permutation groups, and their associated polynomials. For fur-
ther background, see MacWilliams and Sloane [22] for codes, Oxley [25] or
Welsh [30] for matroids, Cameron [4] or Dixon and Mortimer [13] for permu-
tation groups, and Harary and Palmer [18] for the use of the cycle index in com-
binatorial enumeration. Another book by Welsh [31] gives further insights on
polynomial aspects of codes and matroids. | refer to the Classification of Finite
Simple Groups, but detailed knowledge of this is not required; see Gorenstein [15]
for an overview.

These notes accompany a short course of lectures given at the Universitat Po-
litecnica de Catalunya in Barcelona in March 2002. | have included a few ex-
ercises at the end of each chapter. | am grateful to the course participants for
comments which have led to some improvements in the notes.

Peter J. Cameron
London, March 2002



CHAPTER 1

Codes

This chapter provides a very brief introduction to the theory of error-correcting

codes. The highlight is the theorem of MacWilliams, asserting that the weight
enumerator of a linear code determines that of its dual. The standard proof is
algebraic, but we will see a combinatorial proof in Chapter 4.

1.1 Encoding and decoding

We begin with an example.

Suppose that we are transmitting information, in the form of a long string of
binary digits, over a channel. There is a small probability, say 1 %) th@t a bit
error occurs, that s, the received bit is not the same as the transmitted bit; errors in
different bits are independent. In the course of sending, say, 1000 bits, the chance
of an erroris - (1— 10‘6)103, or about 1 in 1000, which may be unacceptably
high.

Suppose that instead we adopt the following scheme. Break the data into
blocks of four. Now for each 4-tupla = (a3, ap,az,a4), we encodet by multi-
plying by the matrix

1000012

c_|0 100101
001011 0]
000111

(Arithmetic is performed in théinary field GF(2) = Zy.) The first four bits of
c = aGare just the bits od; the purpose of the other three bits is error correction.

1
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We transmit the string.
Suppose that a 7-tupkeis received. We calculate= bH, where

0 0 1

T

I
PR RRPROO
P OORR
oOrRrORrRO

11

If s=0, weassumehatb is the transmitted codeword. Otherwises the base 2
representation of an integein the range 1..,7; we assumehat there was a
single bit error in position, that is, we complement théh entry ofb. Then we

read the first four bits db and assume that these were the bits transmitted.

We will see shortly that our assumptions are correct provided that at most one
error occurs to the bits di. So the probability that the assumptions are wrong
is1—(1-10%7—-7x105(1—-10%)5, which is about 21 x 10~ Now we
have to send 250 blocks, so the error probability is about 1 in 190000000, much
smaller than before!

It remains to justify our claims. First, by listing all the 7-tuples of the f@G)
we find that each of them except 0 has at least three 1s. Moreover, since @is set
is just the row space ds, it is closed under subtraction; so any two elements of
C differ in at least three positions.This means that, if at most one error occurs, the
resulting vectob is either inC (if no error occurs) or can be uniquely expressed
in the formc+ g, wherec € C andg is the vector with 1 in positiomand zero
elsewhere. In the latter casewas the sequence transmitted.

Now we can also check thaH = O for all c € C. (For this, it is enough to
show thatGH = 0, since vectors i€ have the formaG.) Then

(c+&a)H =gH =ith row ofH,

andH has the property that ii$h row is the base 2 representationiofSo our
claims about the correctness of the decoding procedure (assuming at most one
error) are justified.

The price we pay for the much improved error correction capability of this
scheme is slower transmission rate: instead of 1000 bits, we have to send 1750
bits through the channel. We say that the&e of the code is 47.

To summarise: we encode the information (in blocks of four bits) as elements
of the sefC, and transmit these. The propertiesGopermit error correction. We
call the seC acode and its elementsodewords

The codeC is an example of ddamming code The decoding method we
described is calledyndrome decoding
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1.2 Weights and weight enumerator

Let F be a set called thalphabetandn a positive integer. Avord of lengthn
over F is simply ann-tuple of elements of; sometimes we writeyay---an
instead of(aj,ap,...,a,). In the most important case heffe,is a field; in this
chapter, this is always assumed to be the caseodkis just a set of words, that
is, a subset oF". We always require a code to have at least two words, since
a code with one word would convey no information (since we would know for
certain what message was sent). The words in a code are catlesords

The codeC is linear over the fieldF if it is a subspace of". A linear code of
lengthn and dimensiork is referred to as am, k| code.

From an algebraic point of view, a linear, k| code is ak-dimensional sub-
space of am-dimensional vector spaceith a fixed basis It is this basis which
makes coding theory richer than the elementary theory of a subspace of a vector
space.

Let C be aln,k|] code. We can descrili@ by agenerator matrix Gak x n
matrix G whose rows form a basis f@, so that

C={aG:acFX}.

We can also descril by aparity check matrix Ha (n— k) x n matrix such that
C is the null space ofl ', that is,

C={ceF":cH' =0}.

(This is the transpose of the matitik of the preceding section.) The generator
and parity check matrices for a given code are of course not unique.
Thedual code C of C is the set

Ct={xeF":x-c=0forallceC},
where- denotes the standard inner productéh that is,
a-b=aby+aby+---+ambp.

Proposition 1.1 A generator matrix for C is a parity check matrix for-Cand
vice versa

TheHamming distance (@, b) between wordsa andb is the number of coor-
dinates where they differ:

d(ab)=[{i:1<i<na #bi}|
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Let e be a positive integer. The co@is e-error-correctingif, for any word
v, there isat most onecodewordc € C for whichd(v,c) <e. Thus, ifC is used
for transmitting information, and up ®errors occur during the transmission of a
codeword, then the correct codeword can be recovered uniquely.

The minimum distancef C is the smallest distance between two different
codewords. By the Triangle Inequality, if the minimum distance is at least2
thenC is e-error-correcting: for, ifd(v,c1) < eandd(v,c;) < g, thend(cy,cp) <
2e. Conversely, if the minimum distance is @r smaller, it is easy to find a word
lying at distance= or smaller from two different codewords. So we have:

Proposition 1.2 A code is e-error-correcting if and only if its minimum distance
is at least2e+ 1.

Theweightwt(c) is the number of non-zero coordinatescothat is, wfc) =
d(c,0), where 0 is the all-zero word. Thainimum weighbf C is the smallest
weight of a non-zero codeword.

Proposition 1.3 If C is linear, then its minimum distance is equal to its minimum
weight.

Proof Since wtc) = d(c,0), every weight is a distance. Converselyg;, cy) =
wt(cy — ¢2); and, sinceC is linear,c; — ¢z € C; so every distance is a weight.

Thus, the minimum weight is one of the most significant parameters of a linear
code. Indeed, if ain, k] code has minimum weight, we sometimes describe it
as an[n,k, d] code.

If F is finite, theweight enumerator W(X,Y) of the codeC is the homoge-
neous polynomial

n - .
We(X,Y) = § XM WOyw©) — § A X" 1Y
2 3

whereA is the number of words of weighin C.

Two codesC,C’ of lengthn over F are monomial equivalenif C' can be
obtained fromC by permuting the coordinates and multiplying coordinates by
non-zero scalars. This is the natural equivalence relation on linear codes, and pre-
serves dimension, weight enumerator, and most significant properties (including
minimum weight).

What can be said about generator matrices of the same, or equivalent, codes?
Elementary row operations on a matrix do not change its row space, and so leave
the code unaltered. Column permutations, and multiplying columns by non-zero
scalars, replace the code by an equivalent code. (The third type of elementary
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column operation, adding a multiple of one column to another, does not preserve
the structure of the code.) Thus equivalence classes of codes correspond to equiv-
alence classes of matrices under these operations (i.e. arbitrary row operations,
column permutations and scalar multiplications).

A simple example of a code is the binagpetition codef lengthn, consisting
of the two words(0,0,...,0) and(1,1,...,1); its minimum weight is clearly.
Its dual is the binargven-weight codeonsisting of all words of even weight; its
minimum weight is 2.

The Hamming code of the previous section i&7a&4] binary linear code. If
a= 1100, theraG = 1100110, a word of weight 4. Repeating for all 4-tupdes
we find that the code contains seven words of weight 3 and seven of weight 4, as
well as the all-0 and all-1 words (with weight O and 7 respectively). So the weight
enumerator is

X7+ 7XAY3 4+ 7X3Y 4+ Y7,

the minimum weight is 3, the minimum distance is also 3, and the code is 1-error-
correcting (which should come as no surprise given the decoding procedure for
it).

Further calculation shows that the dual c@feconsists of the zero word and
the seven words of weight 4 i@; its weight enumerator iX’ + 7X3Y%, and its
minimum weight is 4.

No brief account of codes would be complete without mention of the cele-
brated binaryGolay code This is a[24,12, 8] code with weight enumerator

X?4 4+ 759X 10Y8 -+ 257612y 12 4 759X By 104 Y24,

This code isself-dual that is, it is equal to its dual. Its automorphism group is the
Mathieu group Mg.

1.3 MacWilliams’ Theorem

From the weight enumerator of a codewe can calculate the weight enumer-
ator of the dual cod€", using the theorem of MacWilliams:

Theorem 1.4 Let C be ann,k| code overiGF(q). Then the weight enumerators
We and W of C and its dual are related by

Wei (X,Y) = % (X+(q=1)Y, X —Y).
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Proof We give here the classical proof, which is algebraic in nature. In Chapter 4,
we will see a different, combinatorial proof.

We letx be any non-trivial character of the additive group of(GHthat is,
homomorphism from this group to the multiplicative group of complex numbers).
If = pis prime, so that Gfg) = Zp, then we can takg(k) = €%/P. It is easily
verified that

X(x) =0.
xeGF(q)
Now let f (v) = X" WMYWY) for v e GF(q)" (a term in the sum for the weight
enumerator), and

gu= Y Xxuvfy
veGHq)"

for ue GF(q)". Then we have

= f -V).
U;Q(U) VEGZF(q)n (V)U;X(U v)

We evaluate this sum in two ways. First, note that the inner sum on the right
is equal tgC| if ve C*, sincex(0) = 1; and, forv ¢ C*, x(u-v) takes each value
in GF(q) equally often, so the sum is zero. So the whole expressi(fl| iimes
the sum of the term$§(v) overv € C+, that is,

ECQ(V) = [CWeL (X,Y).

ve

On the other hand, if we put

0 ifx=0,
5()‘):{1 if x £ 0,

for x € GK(q), then, withu = (u,...,u,), we have

n
g(u) = > I_l>(16<Vi)Y6(Vi)X(UlV1 + 4 UnVn)
V1,...,\n€GF(q) i=

n

- |-l 3 XYy (uv).
i=lveGF(q)

Now the inner sum here is equalXo+ (g—1)Y if u; =0, and toX —Y if u; # 0.
So
g(u) = (X+ (q— DY) MU (X — Y)W,

andy cc9(u) =We((X+(g—1)Y, X -Y). So we are done.
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We saw that the weight enumerator of the Hamming cod¢’is- 7X4Y3 +
7X3Y#4Y’. So the weight enumerator of the dual code is

%((X +Y) H7XAY)HX =Y+ 7(X+Y)3 (X =Y)*+ (X =Y) =XT+7X53Y4,

as we showed eatrlier.

Exercises

1.1. LetH be thed x 29 — 1 matrix whose columns are the base 2 representa-
tions of the integers,1..,29 — 1. Show that thg2? — 1,29 — d — 1] binary code
with parity check matrixH is 1-error-correcting, and devise a syndrome decoding
method for it.

1.2. You are given 12 coins, one of which is known to be either lighter or heavier
than all the others; you are also given a beam balance. Devise a scheme of three
weighings which will identify the odd coin and determine if it is light or heavy; the
coins weighed at each step should not depend on the results of previous weighings.
What is the connection between this problem and error-correcting codegpyver
{0,+1,-1}?

1.3. Thedirect sum G & C, of two code<C; andC; is obtained by concatenating
each word ofC; with each word ofC,. Show that ifC; is a[nj,ki,d;] code for

i =1,2, thenCy & Cy is a[ny + ng, kg + ko, min{d;,d>}] code. Show also that
We,ac, (X,Y) =We, (X, Y)W, (X,Y). Show also how to construct

(@) a[ng +ny, min{ky, ko },d1 + dz] code;
(b) a [nlnz, kzkz, dldz] code.

Why is there no general construction ofra + ny, kg + kp, d1 + dp] code?

1.4. A code (not necessarily linear) is said todystematidn a given set ok
coordinate positions if every-tuple of symbols from the alphabet occurs in these
positions in exactly one codeword. (Such a code con@lim®dewords, wherk

is the size of the alphabet.)

(a) Prove that a linear code is systematic in some set of coordinate positions.

(b) Prove that a code of lengthwhich is systematic in every set kitoordinate
positions has minimum distande= n—k+ 1.

(A code with the property of (b) is calledrmaximum distance separaltede, or
MDS code)
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1.5. LetA be the binary code spanned by the word 01101001 and all words
obtained by cyclic shifts of the first seven positions (fixing the last position). Show
thatAis a[8,4,4] code. (This is amxtended Hamming code
Let X be obtained fronA by reversing the first seven positions (fixing the last
position). Show thafN X contains only the all-0 and all-1 words. Hence show
that
G={(a+x,b+xa+b+x):abecAxeX}

is a[24,12 8] code. (This is théextended) Golay code

1.6. Anoctadin the Golay code is a set of eight coordinate positions supporting
a codeword of weight 8. For any codeward: G, let 11(c) be the restriction of

c to the positions of an octad. Prove tHat(c) : c € G} is the even-weight code

Es of length 8. Now, for any subs&t of Eg, let 1~ (X) be the restriction to the
complement of the octad of the dete C: 11(c) € X}. Show that

(@)t ({0}) is a[16,5, 8] code;

(b) ™ (Eg) is a[16,11,4] code (each word occurring from two different code-
words differing at all positions of the octad);

(c) If X={00000000110000001010000001100000, thenrt—(X) is a[16,7, 6]
code;

(d) If X ={000000001100000010100000100100001000100010000100
100000101000000%, thentt—(X) is a nonlinear code consisting of 256
words of length 16 with minimum distance 6.

1.7. Prove that the Golay code, and the each of the codes constructed in (a),
(b) and (d) of the preceding exercise, is of maximum possible cardinality for a
binary code of its length and minimum distance. (Hint: Look up the Hamming
and Plotkin bounds. Part (d) is more difficult!)



CHAPTER 2

Codes over Z4

The largest binary linear code with length 16 and minimum weight 6 has dimen-
sion 7, and thus has 128 codewords. However, this is beaten by a non-linear code,
theNordstrom—Robinson codehich has minimum distance 6 and has 256 code-
words. (Both of these codes were constructed in Exercise 1.3.)

This codeC has an additional property: for any codewardnd integer with
0 <i < n, the number of codewora$satisfyingd(c,c’) = i depends only ohand
not on the chosen codewocd= C. A code with this property is calledistance-
invariant. Another way of stating this property is as follows: for alE C, the
weight enumerator of the code— c (the codec translated by-c) is the same.
Any linear codeC is distance-invariant, but it is rare for a non-linear code to have
this property.

In the case of the Nordstrom—Robinson code, the weight enumerator is

X161 112x1%6 4 30x8Y8 4+ 112¢°y10 L y16,

This has an even more remarkable property. If there were a lineaCatth this
weight enumerator, then the MacWilliams theorem would show\Wat= W¢.
For this reason, the code is calleamally self-dual

It turns out that the Nordstrom—Robinson code is the first member of two in-
finite families of non-linear codes, théerdock codesindPreparata codesThe
nth codeK,, andP, in each sequence have lengtht4and are distance-invariant,
and their weight enumerators are related by the transformation of MacWilliams’
Theorem. (They are said to li@mal duals)

For twenty years this observation defied explanation, until a paper by Ham-

mons, Kumar, Calderbank, Sloane andéJdl] presented the answer to the puz-
zle. We now describe this briefly.
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2.1 The Gray map

The solution involves codes over the alphabgtthe integers mod 4. We re-
gard the four elements @, as being arranged around a circle, and define the dis-
tanced, between two of them as the number of steps apart they are: for example,
d.(1,3) = 2, butd (0,3) = 1. Now we replace the Hamming distance between
two wordsa = (ay,...,a,) andb= (by, ..., bn) of Z} by theLee distancedefined

by ]
dL(a, b) = ZldL(a;,bi).

Similarly theLee weighof ais wt (a) =d_(a,0).
Now, if C is aZs-linear code, that is, an additive subgroupZ, then theLee
weight enumeratoof C is given by

LWc(X,Y) = Z:XZ“_WtL(C)YWTL(C).
cc

(Note that the maximum possible Lee weight of a word of lengigh2n.)

It turns out that there is a version of MacWilliams’ Theorem connecting the
Lee weight enumerators ofZ-linear codeC and its duaC* (with respect to the
natural inner product).

The setZ4, with the Lee metridl,, is isometric to the s@% with the Hamming
metric, under thé&ray mapy, defined by

y(0)=00, y(1)=01 y(2) =11 y(3)=10
2 11

0 00

(More generally, a Gray map on the integers m8ds2a bijection toZ5 such
that the images of consecutive integers lie at Hamming distance 1. Gray maps are
used in analog-to-digital conversion.)

Now we extend the definition of the Gray map to map fréfto Z2" by

y(a,---,an) = (Y(a),---,Y(@n))

It is easily seen that is an isometry fronZ] (with the Lee metric) t&Z2" (with
the Hamming metric).
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The Gray map is non-linear, so the image dfglinear codeC is usually a
non-linear binary code. But the isometry property shows y{@} is necessarily
distance-invariant, and that its weight enumerator is equal to the Lee weight enu-
merator ofC. Thus, taking &j4-linear code and its dual, and applying the Gray
map, we obtain a pair of formally self-dual non-linear binary codes.

Hammonset al. show that, if this procedure is applied to thg analogue of
the extended Hamming codes and their duals, then the Preparata and Kerdock
codes are obtained. Thus, the mystery is explained. (There is a small historical
inaccuracy in this statement. They obtained, not the original Preparata codes, but
another family of codes with the same weight enumerators.)

There is a more general weight enumerator associated Vidtilmear code
C. This is thesymmetrised weight enumeratirC, defined as follows:

SWe(X,Y,Z) = Zcxno(c)Yng(c)ans(C),

ce

whereng(c) is the number of coordinates 6f equal to zerony(c) the number

of coordinates equal to 1; ands(c) the number of coordinates equal to 1 or 3.
Since these coordinates contribute respectively 0, 2, and 1 to the Lee weight, we
have

LWc(X,Y) = SWe (X2, Y2, XY).

2.2 Chains of binary codes

Another approach t&a-linear codes is via a representation as pairZ.sf
linear codes. Le€ be aZas-linear code. We construct binary codesandC, as
follows. C; is obtained just by reading the wordS®modulo 2; andC; is obtained
by selecting the words & in which all coordinates are even, and replacing the
entries 0 and 2 mod 4 by 0 and 1 mod 2.

Theorem 2.1 The pair(Cy,Cy) of binary codes associated witt7a-linear codes
C satisfies

(@) G CCyy
(b) [C] = [Cy|-|Cf;

(C) Ve, (X,Y) = SWe(X, X,Y)/|Co] and W, (X,Y) = SWe(X,Y,0).
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Proof (a) If ve C, then doublingv gives a word with all coordinates even; the
corresponding word i€, is obtained by readingmod 2. SaC; C Co.

(b) Cy is the image o€ under the natural homomorphism fréfi) to Z5, and
C, is naturally bijective with the kernel of this map; K& = |Cy] - |C;].

The proof of (c) is an exercise.

We call a pair(Cy,Cy) of binary linear codes witle; C C; a chain of binary
codes.

Every chain of binary codes arises froZglinear code in the manner of the
theorem. For suppose that binary co@gandC; are given withCy C C,. Let

C={vi+2v:v; €Cy, v €Cy},

where the elements 0 and 14§ are identified with 0 and 1 i, for this construc-
tion. Then the preceding construction appliedCtoecoversC; andCy. So every
chain of codegthat is, every paifCy,Cy) with C; C Cy) arises from &4-linear
code.

However, the correspondence fails to be bijective, and many important prop-
erties are lost. Fore example, the ti#ig-codes

{000,110220,330} and {000,112 220,332}

give rise to the same pair of binary codes (Wth= C, = {000,110}) but have
different symmetrised weight enumerators (and so different Lee weight enumera-
tors).

The problem of describing all4-linear codes arising from a given chain has
not been solved. It resembles in some ways the “extension problem” in group
theory.

Exercises

2.1. Prove that the Nordstrom—Robinson code as defined in Exercise 1.3 is
distance-invariant and has the claimed weight enumerator.

2.2. Prove Theorem 2.1(c). Verify the conclusion directly for the two codes in the
example following the theorem. Construct the images of these two codes under
the Gray map.

2.3. Show that th&4-linear code with generator matrix

1 3 2 1 00

OO wtr
o O

2 1
1 2
3 1

N~ O

1 0 1
1 0 3
10 0
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is equal to its dual and has Lee weight enumerator
X1 4-112x1%® 1 30x8y8 + 112xOY10 1 y16,
(This is the code whose Gray map image is the Nordstrom—Robinson code.)
2.4. Prove that, for ang, b € Z4, we have
y(@+b) =y(@) +y(b) + (v(a) + y(—a)) * (y(b) + y(—b)),

wherex denotes componentwise produg; b) « (c,d) = (ac, bd).

Hence prove that a (not necessarily linear) binary dode equivalent to the
Gray map image of a linedf, code if and only if there is a fixed-point-free
involutory permutatioro of the coordinates such that, for allv € C, we have

U+Vv+ (u+uo)*(v+vo) €C,

wherex is the componentwise product of binary vectors of arbitrary length.
(Defineo so that, ifu = y(c), thenuo = y(—c); this permutation interchanges
the two coordinates corresponding to each coordinate diilemde.)
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CHAPTER 3

Matroids

The notion of linear independence of a family of vectors in a vector space satisfies
two simple conditions (namely, a subfamily of a linearly independent family is lin-
early independent, and the well-knowrchange properjy from which most of

its familiar properties hold: the existence and constant size of bases, the rank and
nullity theorem, etc. These properties crop up in various other situations. Indeed,
the exchange property is credited to Steinitz who observed it for the notion of al-
gebraic independence of elements in a field over an algebraically closed subfield.
This leads to the concept of the transcendence degree of a field extension. Fur-
thermore, subsets of the edge set of a graph which induce acyclic graphs (forests),
and subfamilies of families of sets possessing systems of distinct representatives,
also satisfy these conditions.

The underlying abstract structure was given the name “matroid” by Whitney
(a generalisation of “matrix”). Tutte observed that a two-variable generalisation
of the chromatic polynomial of a graph could also be extended to this setting;
this is theTutte polynomiabf the matroid. In this chapter, we provide a brief
introduction to these concepts.

3.1 The basics

Let E be a set. Amatroid Mon E is a pair(E, 7), whereJ is a non-empty
family of subsets oE (calledindependent seXsvith the properties

@ifl e JandJ C I, thend € 7;

15



16 Chapter 3. Matroids

(b) (theexchange propenyf 11,12 € 7 and|l1| < |I2], then there existe € I\ |1
such that;u{e} € J.

As noted earlier, matroids were introduced by Whitney to axiomatise the no-
tion of linear independence in a vector space. Indedsljsfa family of vectors in
a vector spac¥, andJ is the set of linearly independent subset&othen(E, 7)
is a matroid. Such a matroid is called@ctor matroid

Note that we speak of a family rather than a set of vectors here, since the same
vector may occur more than once. (Any family containing a repeated vector is to
be regarded as linearly dependent.) If we think of the vectors as tdoéumns
of a matrix, we can regard the detof elements of the matroid as the index set
{1,2,...,n} for the columns; then a subdetf E is independent if and only if the
family of columns with indices in is linearly independent.

More formally, arepresentatiorof a matroid(E, 7) over a fieldF is a map
X from E to anF-vector space with the property that a sulisef E belongs to
g if and only if x(1) is linearly independent. Two representatiogng’ of M are
equivalentf there is an invertible linear transformation \dfwhose composition
with X is X'

We will frequently meet the special case wh&&onsists of all the vectors
in an n-dimensional vector space over @&ff. This will be referred to as the
(complete) vector matrojcand denoted by (n,q).

As referred to in the introduction, the following are also examples of matroids:

(a) LetE be a finite family of elements in a vector space, drtie set ofaffine
independensubfamilies. (A family(v; : j € J) is affine independent if the
relationy cjvj = 0, wherec; are scalars witty ¢; = 0, implies thatcj =0
for all j.) Then(E, 7) is a matroid. Such a matroid is callaffine

(b) LetK be an algebraically closed field containing an algebraically closed sub-
field F. Let E be a finite family of elements ok, and 7 the set of all
subfamilies ofE which are algebraically independent o¥er Then(E, 7)
is a matroid. Such a matroid is callathebraic

(c) LetG = (V,E) be a finite graph (loops and multiple edges are allowed). Let
J be the set of all subse#sof E for which the graphV,A) is acyclic (that
is, a forest). TherE, 7) is a matroid. Such a matroid is callgdaphic and
is denoted byM(G).

(d) Let (Xe: e € E) be a family of sets. Lef be the family of all subsetsC E
for which the subfamily(Xe : e € |) possesses a transversal (that is, there is
afamily (xe : e€ 1) of distinct elements such tha € X, forallec ). Then
(E,7) is a matroid. Such a matroid is callednsversal
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It follows from the second axiom that all maximal independent sets in a ma-
troid M have the same cardinaliy called therank of M. These maximal inde-
pendent sets are called thasesof M. It is possible to recognise when a family
B of subsets oE consists of the bases of a matroid BnThis is the case if and
only if

(a) no element of8 properly contains another;

(b) if B, B, € B andy € B, \ By, then there exists € B; \ B, such thaB; \ {x} U
{y} € B. (This property is also referred to as techange property

We can extend the definition of rank to all subset€ofthe rankpA of an
arbitrary subseA of E is the cardinality of the largest independent set contained
in A. It is also possible to recognise when a functpfrom the power set of a
setE to the non-negative integers is the rank function of a matroid. (Again, the
exchange property shows that any two maximal independent subget=awé the
same cardinality.)

The set of all complements of basesMfis the set of bases of another ma-
troid M* on E, called thedual of M. This is most easily proved by showing that
conditions (a) and (b) above for a fam#% of sets imply the same condition for
the family of complements.

A flatin a matroidM = (E, 7) is a subseF of E with the property thap(F U
{x})=pF +1forallxc E\F. If pF =kandAis an independent subset®fof
cardinalityk, thenF = {x € E : p(AU {x}) = pA}. A flat whose rank is one less
than that ofE is called ahyperplane

The flats of a matroid form a lattice (in which the meet operation is intersec-
tion), which is atomic and submodular; these properties of a lattice ensure that it
arises as the lattice of flats of a matroid.

There are many other equivalent ways of defining matroids: via circuits, cocir-
cuits, flats, hyperplanes, etc. We do not pursue this here but refer to the books [25]
and [30].

Let M = (E, 7) be a matroid of rank, and letk be a non-negative integer
with k <r. Thetruncationof M to rankk is the matroid orE whose family of
independent sets is

I=A{leg:|l| <k}
The flats of the truncation are all the flats of rank less thafthe original matroid
together with the whole séi.

We conclude with some simple examples of matroids. ffée matroidon a
finite setE is the matroid in which every subseti®fs independent. IfE| = n, this
matroid is denoted bf,. Theuniform matroid U, with r <n, is the truncation
of the free matroid~, to rankr; in other words, its independent sets are all the
subsets ok of cardinality at most.
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3.2 Deletion and contraction

The roots of matroid theory in graph theory explain much of the terminology
used. For example, the use of the lettefor the set of elements of a matroid
arises from its use as the edge set of a graph. In this section, we will meet loops,
deletion and contraction, all of which are more transparent for graphic matroids.

LetM = (E, 7) be a matroid. The elemeat E is called doopif {e} ¢ 7, or
equivalently, ifp{e} = 0. In a graphic matroiceis a loop if and only if it is a loop
of the underlying graph. Thus, an element is a loop if and only if it is contained
in no basis.

The elemené < E is acoloopif itis a loop in the dual matroitf*. Thus,eis a
coloop if and only if it is contained in every basisMf that is,p(AU{e}) = pA+1
whenevere ¢ A. In a graphic matroide is a coloop if and only if it is dridge, an
element whose removal increases by one the number of connected components.

Let e be an element which is not a coloop. Téheletionof E is the matroid
M\e on the setE \ {e} in which a subseA is independent if and only if it is
independent itM (and doesn’t contaig). There is no compelling reason to forbid
the deletion of coloops, but it makes the theory tidier — see the next paragraph.
In a graphic matroid, deletion @corresponds to deletion of the edgé&om the
graph.

Let e be an element which is not a loop. Thentractionof e is the matroid
M/e on the seE \ {e} in which a setA is independent if and only iRU {e} is
independentiM. (Here itis clear that contracting a loop would make no sense, so
our earlier restriction will preserve duality.) In a graphic matroid, contractian of
corresponds to contraction of the edgehat is, identifying the vertices forming
the two ends o€

Proposition 3.1 Let e be an element of the matroid M which is not a loop. Then
e is not a coloop of M, and

(M/e)* =M*\e.
Deletion and contraction form the basic inductive method for studying ma-
troids, as we will see.
3.3 Rank polynomial and Tutte polynomial

LetM be a matroid on the sé&t, having rank functiomp. TheTutte polynomial
of M is most easily defined as follows:

T(M;xy) = AZE(X_ 1)PE=PA(y _ 1)/AI=PA
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For example, the Tutte polynomial of the uniform matroid, is

Ty = 3 (F)oen+ 5 (Fo-v

since a seA of cardinalityi <r satisfiepE — pA=r —i and|A| — pA= 0, while
a setA of cardinalityi > r + 1 satisfiepE —pA =0 and|A| —pA=i—r.

The appearance of the terms- 1 andy — 1 in the polynomial is a historical
accident. Tutte defined his polynomial by a completely different method, depend-
ing on the choice of an ordering of the elements of the matroid, but giving a result
independent of the ordering. Meanwhile, tlamk polynomialof M was defined

as
RIMixy) = 5 505 PAyAPn
AC

Crapo [11] showed that in fadt(M;x,y) = RIM;x—1,y—1).
A number of simple matroid invariants can be extracted from the Tutte poly-
nomial, as the next result shows. The proof is an exercise.

Proposition 3.2 Let M be a matroid on n elements.
(@) The number of bases of M is equal tGVT; 1,1).
(b) The number of independent sets of M is equal (2, 1).
(c) The number of spanning sets of M is equal {MT1,2).

(d) T(M;2,2) = 2",

Calculation of the Tutte polynomial is possible by an inductive method using
deletion and contraction, as follows.

Theorem 3.3 (a) T(0;x,y) = 1, where0 is the empty matroid.
(b) If e is a loop, then T™M; x,y) = yT(M\€& X, y).
(c) If e is a coloop, then TM; x,y) = XT(M/& X, y).
(d) If e is neither a loop nor a coloop, then

TM;xy) =T(M\ex,y)+T(M/ex,y).
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Proof (a)is trivial. For the other parts, we note that each subsétM /eor M\e
corresponds to a pair of subs&tandAuU {e} of M. letM’ = M\eandM” =M /e
(where appropriate), and upg, pw’ andpy- for the rank functions of the three
matroidsM, M’, M”, andE’ =E" = E\ {e}.

If eis a loop, then we have

pmE = pw E/,
pmA = pmAU{e} = pwA,
AU{e}| = Al +1,|E| = [E'| + 1.

Thus the two terms in the sum far(M) are respectively 1 angd— 1 times the
term inT(M’) corresponding té, and so (b) holds.
The other two parts are proved similarly.

As an illustration of the use of the inductive method, we considectihematic
polynomialof a graphG, the polynomiaPg with the property thaPs(k) is equal
to the number of propek-colourings ofG.

Corollary 3.4 Let G= (V,E) be a graph. Then
Ps(k) = (—1)POKKOT(M(G);1-k,0),

wherek(G) is the number of connected components of G pf@) + k(G) the
number of vertices.

Proof The matroidVi(G) associated witl® has rankpE = n— k(G), wheren is
the number of vertices. L&tbe any positive integer.
The chromatic polynomial satisfies the following recursion:

(a) If G hasn vertices and no edges, thBg(k) = k".
(b) If G contains a loop, theRs(k) = 0.
(c) If eis an edge which is not a loop, then

Pc(K) = Pg\e(K) — Pg/e(k),

whereG\e andG/e are the graphs obtained fro@ by deleting and con-
tractinge, respectively.

Here (a) is clear since any vertex-colouring of the null graph is proper; and (b)
is trivial. For (c), we note that, i€ has vertices andw, the proper colourings
of G\ecan be divided into two classes:
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(a) those withe(v) # c(w), which yield proper colourings d;
(b) those withc(v) = c(w), which yield proper colourings d&/e.
Now we show by induction on the number of edges that

Ps(k) = (—1)POKROT(M(G);1—k,0).

This is clear when there are no edges sip@) = 0,k(G) =nandT (M(G)) = 1.
It is also clear if there is a loop, sinddM(G); x,0) = 0 in that case by part (b) of
Theorem 3.3. Ikis a coloop then deletion &increasex by 1 and decreasgs
by 1; alsoPg\e(k) = kPs(k)/(k— 1), since a fractiorfk— 1) /k of the colourings
of G\e will have the ends ot of different colours. So the inductive step is a
consequence of part (c) of Theorem 3.3.

Finally, if e is neither a loop nor a coloop, use (c) above and (d) of Theo-
rem 3.3.

The Tutte polynomials of a matroid and its dual are very simply related:

Proposition 3.5

T(M%xy) = T(M;y,X).

Proof LetAbe a subset dE and letE* = E andA* = E\ A. If py andpy- are
the rank functions oM andM* respectively, we have

A" —pm:(A") = pm(E)—pm(A),
pm+(E") —pm+(A") = |Al—pm(A).

So the term ifil (M*) arising fromA* is equal to the term iff (M) arising fromA
but with x andy interchanged.

3.4 Perfect matroid designs

A perfect matroid desigror PMD, is a matroid having the property that the
cardinality of a flat depends only on its rank. If the rank,iand the cardinality of
ani-flatisk; fori =0,...,r (with, of coursek, = n, the total number of elements
of the matroid), then we describe it as a PRk, ..., k).

In a PMD(ko, kK1, ...,k ), the number of loops iky; deleting the loops gives a
PMD(0,k; — ko, ...,k — ko). So usually nothing is lost by assuming thkat= 0.
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In a PMD(0,kq, ko, ..., k), each element is one of a family kf parallel el-
ements. Identifying these classes, we obtain a POIDky /Ky, ...,k /k1). So
again we often assume thiat= 1. This reduction is a bit more problematic, as
we will see when we consider group actions.

Other operations on PMDs which yield PMDs are deletion, contraction, and
truncation.

Not very many PMDs are known. The list below includes all PMDs with
ko = 0 andk; = 1 which are not proper truncations.

(a) The free matroid on elements (the matroid in which every set is indepen-
dent) is a PMIDO, 1,...,n).

(b) The complete vector matroM(n,q) is a PMD(1,q,¢?,...,9"). (The ele-
ments of this matroid are the vectors in @', and independence is the
usual notion of linear independence.) If we delete the zero vector and shrink
each 1-dimensional subspace to a point, we obtaiptbjective geometry
PG(n—1,q), whichisa PMOO,1,9+1,...,(q"—1)/(g—1)).

(c) The affine geometry A®,q) is a PMD(0,1,0,0°,...,q"). (The elements of
this matroid are the vectors in Gp", but independence is now the notion
of affine independence defined earlier: vectats. . ,vq are affine indepen-
dent if there is no linear dependence

CiVi+---+CqVg =0

wherec; + - -- + ¢q = 0 and thec; not all zero. (An equivalent condition for
d > 1is that the vectorg, —vi,...,Vg — V1 are linearly independent.)

(d) Lett,k,n be positive integers with < k < n. A Steiner system(§k,n)
consists of a seX of n points, and a seB of subsets oEcalled blocks, such
that anyt points are contained in a unique block. From a Steiner system,
we obtain a matroid on the set of points as follows: every set of cardinality
at mostt is independent; and a set of cardinatity 1 is independent if and
only if it is not contained in a block. Thisis a PMD,1,...,t —1,k,n) in
which the hyperplanes are the blocks.

(e) The points and lines of an affine space(d) form a Steiner triple system
(that is, a Steiner systef2, 3,n)) with the property that any three points
not contained in a block lie in a unique subsystem with 9 points (an affine
plane). Marshall Hall [17] discovered that there are other Steiner triple sys-
tems with this property. These are now callédll triple systems Such a
system gives rise to a PMD, 1, 3,9,n) of rank 4, where a 3-set is indepen-
dentifitis not a block, and a 4-set is independent if it is not contained in an
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affine plane. The number of points in a Hall triple system must be a power
of 3.

See Deza [12] for a survey of perfect matroid designs.
The following theorem is due to Mphako [24].

Theorem 3.6 Let M be aPMD(ko, ...,k:). Then the Tutte polynomial of M is
determined by the numberg k. ., k;.

Proof It is enough to determine the numbafm,i) of subsets of the domain
which have cardinalityn and ranki for all mandi: for

r n

T(M;xy) = ; > ami)(x- 1 (y—1)™

wheren = k; is the number of points.
Lets(i, j) be the number afflats containing a givei-flat for j <i. Then

. i n—ky
S(I,J)_r!_ljkl_kh

For let (x1,...,X;) be a basis for g-flat Fj. The number of ways of choosing
Xj+1,---,X% SO that(xs,...,X) is independent is the numerator of the above ex-
pression. Then this set spansiétat F containingFj, and the number of ways of
extending(xy, . ..,X;j) to a basis foF; is the denominator.

Now we have _
i.0)() = 5 am st p).
]:

For the left-hand side counts the number of choices oi-flait F and a subset
of F of cardinalitym. This subset has rankfor somej <i, and spans g-flat
contained in5. So eachm-set of rankj contributess(i, j) to the count.

This is a triangular system of equations &m, j) with diagonal coefficients
s(i,i) = 1. We see that tha(m, j) are indeed determined Iby, ... k.

Exercises

3.1. Prove that algebraic matroids, graphic matroids, and transversal matroids do
indeed satisfy the matroid axioms.
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3.2. In this exercise, we prove that a graphic matroid is representable over any
field.

Let G = (V,E) be a graph, wher® = {vi,...,vh} andE = {ey,...,en}.
Choose arbitrarily an orientation of each edgéhat is, the edge has an initial
and a terminal vertex, which may be the same). Now construat-am matrix
A= (&) as follows:

—1 if ej is a non-loop with initial vertex;;
0 otherwise.

Prove that, given any cycle in the graph, the sum of the columns corresponding
to the edges in the cycle (with sigasl chosen appropriately) is zero. Prove also
that if a set of edges contains no cycle, then there is a row containing a single
non-zero entry in the corresponding columns.

Hence show that, for any field, a set of columns oA is linearly indepen-
dent overF if and only if the corresponding set of edges®fforms an acyclic
subgraph.

3.3. What are the bases, the flats, the hyperplanes, and the rank function of the
uniform matroidU, ,? What is the dual of this matroid?

{ +1 if gj is a non-loop with terminal vertex;
ajj =

3.4. Prove that the matrold 4 is not graphic.

3.5. Prove that every affine matroid can be represented as a vector matroid in a
space of dimension one greater than the one affording the affine representation.

3.6. LetM be a graphic matroid arising from a connected gr@ph (V,E) onn
vertices. Prove that the rank function is given by

pA =n-— K(A)7
wherek(A) is the number of connected components of the gf&pA).

3.7. LetM(G) be a graphic matroid, where the gra@h= (V,E) is connected.
Show that a seA C E is independent itM(G)* if the removal ofA does not
disconnect.

3.8. Construct
(a) non-isomorphic grapl;, G, for which the graphic matroids are isomorphic;

(b) non-isomorphic graphic matroidd(G1),M(G,) which have the same Tutte
polynomial.

3.9. As we mentioned in Chapter 1, the bin&@wlay codeis a[24,12 8| code
containing 759 words of weight 8. Prove that the 759 subsets of cardinality 8
of {1,...,24} which support codewords of weight 8 are the blocks of a Steiner
systemS(5, 8,24).
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3.10. Show that the blocks of a Steiner systgir+- 1, 2t, n) are the supports of
words of minimum weight in a linear binary code if and only if the system has the
symmetric difference propertyf B; and By are blocks for whichB; NBy| =t,
then their symmetric differend®; A By is a block.

Find examples with = 2.
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CHAPTER 4

Matroids and codes

There is a very close correspondence between linear codes, on one hand, and ma-
troids (specifically, representations of matroids) on the other — the two types of
structure correspond exactly, up to the natural definition of equivalence in each
case. Among other things, this correspondence leads us to the theorem of Curtis
Greene, showing that the weight enumerator of a code is a specialisation of the
Tutte polynomial of the corresponding matroid. This then provides a combinato-
rial proof of MacWilliams’ Theorem on the weight enumerators of dual codes.

As we already noted, Carrie Rutherford represent&d-tnear codeC by a
chain of binary codes. She went on to associate a three-variable analogue of the
Tutte polynomial to such a chain. This polynomial specialises to give various
properties ofC (though not its symmetrised weight enumerator). We describe this
in the last section of the chapter.

4.1 The correspondence

Let A be ak x n matrix over a field=, satisfying the condition that the rows of
A are linearly independent, so that the row spacA bas dimensiok.

There are two different structures that can be built friam

First, the row space oA is an[n,k] code overF, that is, ak-dimensional
subspace oF". Now row operations o simply change the basis for the code,
leaving the actual code completely unaltered. Column permutations, and multipli-
cations of columns by non-zero scalars, replace the code by a monomial equivalent
code.

Second, there is a matroM on the se€ = {1,2,...,n}, in which a set is

27
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independent if and only if the family of columns Afwhose indices belong tois
linearly independent. (We cannot quite say that the elemerisaoé the columns
and independence is linear independence, dtngeght have repeated columns.)
More precisely, the functiog mappingi to theith column is a representation of
M overF. How do the elementary operations affect the matroid representation?

We see that row operations &rdon’t changeM but replace the representation
X by an equivalent representation. (Two representations are ecjl@gialentif
they differ by an invertible linear transformation of the embedding vector space.)
On the other hand, column permutations and scalar multiplications remace
by an isomorphic matroid; effectively, permutations re-label the elements, while
scalar multiplications have no effect at all.

So, if we call two matriceA and A’ CM-equivalentif A’ is obtained from
A by a row operation and a monomial transformation of the columns, we see
that CM-equivalence classes of matroids correspond bijectively to both monomial
equivalence classes of linear codes, and equivalence classes of representations of
matroids, under the natural notions of equivalence in each case.

Thus we expect information to transfer back and forth between code and ma-
troid.

It is possible to go directly from the vector matroid to the code, without the
intervening matrix, as follows.

Letvs,..., Vv, be vectors spanning the vector sp&lcel'he corresponding code
is

{(vaf,...;vnf): f eV},

whereV* is the dual space &f, andvf is the image ot underf. THis is because
the function giving theth coordinate of a vector is an element of the dual space,
and these functions form a basis for the dual space.

| leave as an exercise the problem of finding a matrix-free construction of the
matroid from the code.

It is a simple exercise to show the following:

Proposition 4.1 If the matroid M corresponds to the code C, then the dual ma-
troid M* corresponds to the dual code"C

Proof If the matrix A happens to be in the forifi B, wherely is ak x k iden-
tity matrix andB is k x n—k, then both the dual code and the dual matroid are
represented by the matrix BT I,,_y].

4.2 Greene's Theorem

The following theorem was proved by Greene [16].
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Theorem 4.2 Let C be a code over a field with g elements, and M the correspond-
ing vector matroid. Then

WE(x,y) = y=aimiC) (y _\dim(C)T (M; X+ (q— 1)y’ >_<> .
X—=y y

Note that, ifX = (x4 (q—1)y)/(Xx—y) andY = x/y, then
(X-1)(Y-1)=q

So the weight enumerator is an evaluation of the Tutte polynomial along a partic-
ular hyperbola in the “Tutte plane”.

Proof The proofis by induction. Favl, we have the “deletion-contraction rule”
of Theorem 3.3.

The analogues of deletion and contraction of a matroid are the operations of
puncturingandshorteninga code.

To puncture a code at théh position, we simply delete thieh coordinate
from all codewords. To shorten it at tité position, we take the subcode consist-
ing of all codewords with zero in thigh position, and then delete this position.
We denote byC’ andC” the codes obtained by puncturing and shortefng a
specified position. It is easy to see that puncturing and shortening correspond to
deletion and contraction of the corresponding element of the matroid.

A loop in theM corresponds to a coordinate where all codewords have the
entry 0. A coloop is a bit more complicated, but can be described as a coordinate
such that (after row operations) the first entry in that column of the generator
matrix is 1, while all other entries in that column or in the first row are O.

If the elemente of the matroid corresponds to the distinguished coordinate,
we have the following recursive scheme for the weight enumerator:

(a) If C has length 0, theWg (X,Y) = 1.

(b) If eis aloop, theM(X,Y) = XW& (X, Y).

(c) If eis a coloop, them\e(X,Y) = (X + (g—1)Y )WNer (X,Y).
(d) If eis neither a loop or a coloop, then

VVC(X7Y) = YV\é’(X7Y) + (X _Y)V\b”(X7Y)'
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Part (a) is obvious; part (b) holds because each woftl lras one extra zero
than the corresponding word@i. Part (c) holds because each warih C” gives
rise toq words inC (all possible entries occur in the added coordinate), of which
one has the same weightwsandq— 1 have weight one greater.

Finally, suppose that is neither a loop nor a coloop. L& andW, be the
sums of terms iWM¢ corresponding to words with zero, resp. non-zero, entry in
positione. ThenWe =W +Wo. We also havé\er =Wy /X +Wo /Y, andWer =
Wy /X. The assertion follows.

Now induction, together with Theorem 3.3, proves the theorem.

From Theorem 4.2 and Proposition 3.5, we can deduce MacWilliams’ The-
orem 1.4, which shows that the weight enumerator of the dual €adean be
calculated from that of.

Theorem 4.3

Wi (xy) = éwcm (- L)y.x—y).

Proof SinceC' has dimensiom — dim(C) and corresponds to the dual matroid
M*, we have

- di X X+(q—1)Y
_ vydim(C) ry¢ __ v yn—dim(C) .
Wee (X,Y) =Y (X=Y) T (M’_Y’—X—Y )

On the other hand, we have
1
GO+ (@1 X =Y)

_ -dim(C) iy _ \\n-dim(C) ( p\dim(C) .gX X+(q-1Y
a M1y amE)qy)omerT (; 8 XA,
The two expressions are equal.

Note that this proof is entirely combinatorial, in contrast to the algebraic proof
given in Chapter 1.

4.3 Isthere a Z4 version?

There does not seem to be any way to produce a matroid which captures a
Zas-linear code in the way that we have seen for linear codes over fields. How-
ever, we already saw that many features @,dinear codeC are captured by a
pair (C1,Cp) of binary codes. On this basis, Rutherford [27] considered certain
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pairs of matroids, and attached to such pairs a three-variable analogue of the Tutte
polynomial. This polynomial gives some feature<Codis specialisations.

The following section is entirely based on her work.

Let M; andM3 be two matroids on the same getWe say thatM;, M) is a
matroid pair, or thatM is aquotientof My, if there is a matroidN on a seE U X
such thaM; = N/X andM, = N\ X. (Deleting or contracting a set of points just
means deleting or contracting the points one at a time.)

It can be shown that we may chodseandX so that|X| = pwm,(E) — pm, (E),
andX is independent an is spanning ifN. Note that every seA C E which
is independent iM is also independent iM2. This condition however is not
sufficient for(M1, M3) to be a matroid pair: see Exercise 4.3.

Itis true that

(a) of (M1,M>) is a matroid pair, then so $15, M;);
(b) for any matroidvl onn elements(M,F,) and(F;,M) are matroid pairs.

Let (C1,Cy) be a chain of binary codes, amdh and M, the associated ma-
troids. ThenM1,M>) form a matroid pair. This is because we can find matrices
andB such thatA and (Q) are generator matrices f@ andC, respectively; then
we can takeN to correspond to the code with generator matrix

O A
Il B/’
In this case, we call the paiM1, M) amatroid chainoverZ,.
Note that not every matroid pair is a matroid chain, even if the individual

matroids are representable: see Exercise 4.3. Note also thady M) is a
matroid chain oveZ,, then so igM35, M;).

Let M = (M1,M>) be a matroid pair. Rutherford defines tieneralised rank
polynomia) which | shall call for brevity th&kutherford polynomialof the pair to
be

CAMvxy)= § VOISR ATER,
ACBCE

wherep1 and p, are the rank functions d1; andM.. (In fact, we could use
the analogue of the Tutte polynomial rather than the rank polynomial, by putting
v—1x—1y—1in place ofv,x,y here, but the difference is inessential; | have
chosen to follow Rutherford.)

The Rutherford polynomial has a number of interesting specialisations:

Theorem 4.4 Let G ;v,x,y) be the Rutherford polynomial of a matroid pair
M = (M1,Mz). Let RM;; x,y) be the rank polynomial of \Mfori=1,2.
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X

. _ plE .
(@) G(M;v,x,1) = (1+V) R(Ml,—l+v,1+v).

. _ |E|—p2E : y
(b) G(M;v,1,y) = (1+V) R(M2;1+v, —1+v)'

(c) If M1 = Mz = M, then GM;0,X,y) = R(M; X,y).
(d) If My =F; and Mp = M, then GM;0,x,y) = R(M; 1,y).
(e) If My = Ry and My = M, then G;0,x,y) = R(M; X, 1).

However, the fact that a chain of binary codes does not even determine the
symmetrised weight enumerator (or Lee weight enumerator) of the corresponding
Zg-linear code shows that we cannot obtain these weight enumerators from the
Rutherford polynomial by specialisation.

It seems likely that the Rutherford polynomial can be extended to chains of
arbitrary length of codes over arbitrary fields.

Exercises
4.1. Describe the matroids corresponding to the Hamming code of Chapter 1 and
its dual.

4.2. Show that the matroid associated to a linear code is uniform if and only if
the code is MDS. (See Exercise 1.3.)

4.3. Find an example of two matroidd; and M, on a setE such that every
independent set iM; is independent iV but (M1, M>) is not a matroid pair.

4.4. Find an example of two matroidi$; andM, on a setE such that bottiM,
andM; are representable ovép and(M1,M>) is a matroid pair but not a matroid
chain overzZs,.

4.5. Let(M1,M2) be a matroid pair ofit, and letp; be the rank function of;
fori=1,2. Prove that
0< p2A—p1A< p2E—piE

for any setA C E.

4.6. Calculate the weight enumerator of the code associated with a representation
of Uz n over GKQ). Find examples witim = q+ 1.



CHAPTER 5

Permutation groups

In the second half of the notes, we introduce the last strand, permutation groups,
and braid it together with codes and matroids.

Traditionally, permutation groups arise as automorphism groups of algebraic
or combinatorial structures. The procedure here will be a bit different: the groups
will be built from the algebraic structure of codes, and matroids will arise from
the fixed point structure of permutation groups.

Before this, we give a brief account of permutation groups and their associated
cycle index polynomials.

The treatment here is somewhat brief, since full accounts are available else-
where. In addition to the classic treatments by Wielandt [32] and Passman [26],
there are more recent books by Cameron [4] and Dixon and Mortimer [13].

5.1 Orbits and stabiliser

The set of all permutations of a s@tis called thesymmetric groupn Q.
Usually we takeQ to be the sef1,...,n}, and denote the symmetric group &y
for some positive integer. The order oS, is n!.

The convention of usin@ for the permutation domain and lower-case Greek
letters for its elements was established by Wielandt in his book. We also use the
convention that permutations act on the right, so that the imagewfder the
permutationg is denoted byag. Thus, the result of applying the permutatign
followed byh is writtengh, and we havet(gh) = (ag)h.

As is well known, any permutation can be written as a product of disjoint
cycles: we call this theycle decompositionFor example, the permutation of

33
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{1,...,5} whichmaps 1to 4,2to5,3to 1,4 to 3, and 5 to 2 has cycle decompo-
sition (1,4, 3)(2,5). The cycle decomposition is unique up to writing the cycles
in a different order and starting them at different points: for example,

(1,4,3)(2,5) = (5,2)(3,1,4).

If we represent the permutatigras a function digraph, with edgés, ag) for all
a € Q, the digraph has in-degree and out-degree 1 and so is a disjoint union of
cycles; this is precisely the cycle decomposition.

The generalisation to permutation groups is tibkit decompositionwhich
we now discuss.

A permutation group Gn a setQ is a subgroup of the symmetric group on
Q; that is, it is a set of permutations closed under composition and inversion and
containing the identity permutation. Tliegreeof the permutation grou is
1Q|.

Let G be a permutation group d. Define a relation~g on Q by the rule
thata ~g B if there existsg € G with ag = 3. It is easy to see thatg is an
equivalence relation; the reflexive, symmetric and transitive laws follow from the
identity, inverse, and composition propertie<fThe equivalence classeso§
are called therbits of G,, andG is said to bdransitiveif there is a single orbit,
intransitiveotherwise.

Note thatG is transitive if and only if, for alla, € Q, there existgy € G
which mapsa to (3.

The stabiliserof a pointa € Q is the subgroup

Gu={geG:ag=a}.
Now, if B is any point ofQ, then the set
X(a,B) ={g€ G;:ag=p}

is either empty (ifa and 3 lie in different orbits) or a right coset dby. We
see that the number of right cosets is equal to the size of the orbit. This is the
Orbit-Stabiliser Theorem

Theorem 5.1 Let A be an orbit of the permutation group G, anda point ofA.
Then
Gal-A] = [G].

But this is more than a counting result. Suppose that the géapts as a
permutation group on two different se®y andQ,. We say that the actions are
isomorphicif there is a bijectiorf : Q1 — Q5 such that

(aB)g= (0g)6
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for all a € Q1 andg € G. In other words, if we identifyQ1 and Q» according
to the bijectiond, then the permutations corresponding to any group element are
identical.
Now let H be a subgroup o&. The coset space GH is defined to be the
set of right cosets off in G. Now G acts as a permutation group @: H by
the following rule: group elemerg acts as the permutatidtix — Hxg. (This is
clearly well defined, independent of the choice of coset representajividow
the refined version of the Orbit-Stabiliser Theorem states:

Theorem 5.2 Let A be an orbit of the permutation group G, anda point ofA.
Then the actions of G oA and on the coset space: &y are isomorphic.

The isomorphism is given bge = X(a,3) in the earlier notation. The proof
IS an exercise.

It can also be shown that two coset spa@edd andG : K provide isomorphic
actions ofG if and only if the subgroup$l andK are conjugate, that i¥ =
g 1Hg for someg € G.

Thus, to classify the transitive actions®@fup to isomorphism, we list a set of
representatives of the conjugacy classes of subgroups, and form the coset spaces.
To classify all permutation actions, we take arbitrary disjoint unions of the transi-
tive ones.

A permutation grous is semiregulaif the stabiliser of any point is the iden-
tity. It is regular if it is semiregular and transitive. By Theorem 5.2, any regular
action ofG is isomorphic to the action @ on itself by right multiplication (with
Q = G, whereg € G induces the permutation— Xg).

Let G be a permutation group d. Suppose that the sAtC Q is invariant
underG (that is, fixed setwise — this happens if and onlgiis a union of orbits
of G). ThenG” denotes the group of permutationsfinduced by elements of
G. Itis a homomorphic image @; the kernel of the homomorphism is the set of
permutations which fix every point i.

Now suppose that; : i € |) are the orbits 0o6G. For each, letG; = G%. The
permutation group&; are called theransitive constituentsf G.

ThenG is a subgroup of th€artesian producy]ic Gi of the subgroupss;.
Since we are only concerned with finite permutation groups, thieisé&nite, and
the Cartesian product is more usually referred to asliteet product and written

GlX"'XGr,

wherel = {1,...,r}. Note thatG may not be equal to the direct product! In this
sense, the orbit decomposition allows many questions about permutation groups
to be “reduced” to questions about transitive groups, but there is a difficulty go-
ing back: a permutation group is not uniquely determined by its transitive con-
stituents.
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Now let A be any subset of2. ThenGp denotes thesetwise stabiliseof
A, the set of permutations which map the Aeto itself; andG,) denotes the
pointwise stabilisef A, the set of permutations which fix every point@f so
thatG(A) = naeA Go().

ThusGﬁ is the permutation group induced Arby its setwise stabiliser is,
and is isomorphic t&, /G ). This group will be important in the final chapter,
To avoid the double subscript, we denote itGBA|.

We conclude this section with another piece of terminology. Gyebe a per-
mutation group or); for i = 1,2. We say thats; and G, are isomorphic as
permutation group# there is a bijectiord : Q1 — Q» and a group isomorphism
@: G1 — G such that

(0g)6 = (a6)(g9)

for all a € Q1 andg € G;. If two actions of the same group are isomorphic accord-
ing to the earlier definition, then the induced permutation groups are isomorphic
as permutation groups; but the converse is false, since we now permit an automor-
phism ofG.
For example, leG = C, x C, be generated by elemerdsaandb. The actions
given by
a=(L2), b=(34
and
a=(1,2)(3,4), b= (3,4)

are not isomorphic, but their images are isomorphic (indeed, identical) as permu-
tation groups.

5.2 The Orbit-Counting Lemma

The Orbit-Counting Lemma (incorrectly called Burnside’s Lemma in much of
the literature of combinatorial enumeration) is a simple relationship between fixed
points and orbits of a permutation group, which will be crucial in what follows.

Let G be a permutation group di. Forg € G, let fix(g) denote the number
of points ofQ fixed byg. Now the Orbit-Counting Lemma states:

Theorem 5.3 The number of orbits of a permutation group G is equal to the av-
erage number of fixed points of its elements: that is, the number of orbits is

1 .
@ ge%flx(g).
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Proof Construct a bipartite graph as follows. The vertex s€lisG; there is an
edge froma € Q tog € Gif and only if g fixesa.

To prove the theorem, we count the edges of the graph in two different ways.
Clearly the vertexg lies on fixg) edges, and so the number of edges is

ge%fix(g).

On the other hand, the vertexlies on|Gy| edges. By the Orbit-Stabiliser Theo-
rem 5.1, ifA is the orbit containingx, then

|Gal - 4] =[G,

so the number of edges containing a vertexhiis equal to|G|, and the total
number of edges ig5| times the number of orbits.
Equating these two numbers gives the result.

For example, the symmetric groif contains one element with four fixed
points; six elements (the transpositions) with two fixed points; eight elements (the
3-cycles) with one fixed point; and nine elements (the 4-cycles and the double
transpositions) with no fixed points. So the number of orbits is

1

—(1-4+6-2+8-1+9-0)=1.

24
Corollary 5.4 If G is a transitive permutation group of degree>nl, then G
contains an element with no fixed points.

Proof The average number of fixed points is one; the identity fixes more than
one point; so some element fixes fewer than one.

This result is due to Jordan. Despite its simplicity, it has a variety of applica-
tions in number theory and topology: a recent paper of Serre [28] describes some
of these.

In combinatorial enumeration, it is often the case that being able to count the
members of a set and being able to choose one at random are closely related. This
principle applies to the Orbit-Counting Lemma, as observed by Mark Jerrum [20].

Consider the following Markov chain, defined on the element®oin one
step, we move from a point to a randomly chosen neighbourefn the bipartite
graph of Theorem 5.3 (that is, an elemgrt Gy ), and then to a randomly chosen
neighbourB of g (that is, a fixed point o).
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Since it is possible to move from any poimtto any pointf in a single step
(via the identity ofG), the chain is irreducible and aperiodic; so there is a unique
limiting distribution, to which it converges from any initial distribution. This dis-
tribution is easily seen to have the property that the probability f inversely
proportional to the size of the orbit containiiog in other words, the limiting
distribution is uniform on orbits.

It is important to know the mixing time of such a Markov chain, that is, how
rapidly it approaches its limit, and in particular to characterise the permutation
groups for which the chain is rapidly mixing. Very little is known about this!

5.3 Bases and strong generating sets

In practice, one needs a computer to investigate permutation groups. Even
groups of moderate degree can be very large, and finding interesting subgroups
by hand if we are given a set of permutations generating the group is a daunting
task. On the other hand, there are very efficient algorithms for computing with
permutation groups, and it is possible to study groups with degrees in the tens of
thousands without too much trouble.

In this section, we take the first steps in computational permutation group
theory. We are given a s&of permutations which generate a subgrdbipf
S, and we want to be able to do such things as find the ordé€, afhoose a
random element d& (from the uniform distribution), or test an elementSyffor
membership irG.

The first thing we can do is to find the orbits @f For consider the directed
graph onQ with edges(a,as) for all a € Q ands € S. The orbits are precisely
the connected components of this graph. Moreover, for each point in the orbit of
o, we can find avitness an element o6 (in the form of a word in the generators
S) mappinga to B. These witnesses form a setof coset representatives Q@
in G.

Next, a lemma of Schreier shows that, if generators of a group and coset rep-
resentatives for a subgroup are known, then generators for the subgroup can be
computed.

Now we apply this procedure recursively until the group is trivial. At this
point, what we have found is the following:

(a) abasefor G; that is, a sequende@i, ..., 0, ) of points ofQ whose pointwise
stabiliser is the identity;

(b) fori =1,...,r, a setX; of coset representatives f&_1 in G;j, whereG; is
the pointwise stabiliser afo, ..., q;).

Now this information enables us to settle the above questions. We begin with
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the membership test. Suppose that a permutatios, is given. IfG is the trivial
group, we can decide immediately whetlger G. Suppose not. We computigg.
If this is not in theG-orbit of a1, theng ¢ G, and we are done. Otherwise, there
is a uniquex; € X; such thati;g = a1x;. Now gx;1 fixesaq, and we apply the
test recursively to decide Whethg)q1 € Gy; for we haveg € G if and only if
ng[l € G; in this case.

If the test succeeds, then we will eventually find that

ot =1,
thatis,g= X ---x3, withx; € X; fori =1,...,r. This expression is unique, SO
Gl = X -+ [Xal,

and we have found the order & This can also be seen by noting thaf =
|Gi_1 : Gi|, and of course

‘G‘ = ’Go . Gl‘---‘Gr,]_ . Gr’,

sinceGgp = G andG; = 1.
The equation
G=X X1

shows that the union of the sefs, ..., X; generatess; similarly, for anyi, the set
Xir1U---UX generate§s;. The seX = X1 U---UX; is called astrong generating
setfor G.

The unigue representation also shows that if we choose elements uniformly
and independently at random frofp, ..., X3 and multiply them, we obtain a uni-
form random element d&.

We will have more to say about bases later, so we pursue the subject a little
further here. First, we note another property of bases relevant to computational
group theory. Any elememfe G is determined uniquely by the image of a b&se
underg; for, if Bg= Bh, thenBgh! = 1, so thagh—! = 1 (by definition of a base),
andg = h. Thus, it is of interest to find the smallest possible base. Unfortunately,
Kenneth Blaha [1] showed that this problem is NP-complete in general; but there
are some things we can say.

When we are choosing a base, there is clearly no point in choosing agpoint
which is fixed by the stabiliser of its predecessors. So we call aibasieindant
if no base point is fixed by the stabiliser of its predecessors. Usually we consider
only irredundant bases.

Unlike vector spaces, permutation groups can have bases of different cardinal-
ities. Consider, for example, the groGp, acting withn+ 1 orbits as follows: for
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eachi < n, an orbitO; of size 2 on which all generators except ttieact trivially;
and an orbitOg of length 2' on which the group acts regularly. Choasec O
for eachi. Then, for 1<i < n, there is an irredundant base of siz&f the form
(CX]_, - ,Gi,]_,(]o).

On the other hand, there are some restrictions:

Proposition 5.5 The number r of elements in an irredundant base for a permuta-
tion group G of degree n satisfies

log|G|/logn <r <log|G|/log2

Proof We have
|G’ = |Go . G]_‘~~|Gr_1 . Gr|.

Each indexG;_1 : Gj| is at least 2 (since the base is irredundant) and at most
(since it is the length of an orbit @;_1). So

2' <G| <0,
and we are done.

Our earlier example shows that in general no substantial improvement can be
made.

5.4 Primitivity and multiple transitivity

Some transitive groups can be further “reduced”.

Let G be a transitive permutation group éh A G-congruences an equiv-
alence relation o2 which is preserved b¥s. Its equivalence classes form a
partition of Q whose parts are permuted among themselve&byThe set of
equivalence classes is callegystem of imprimitivityand the classes abdocks
of imprimitivity.

A congruence (or the associated system or blocks of imprimitivity) is called
trivial if either it is the relation of equality, or it is the “universal” relatiéhx
Q. Every group preserves the trivial congruences. If there is a non-t@#al
congruence, the@ is said to bemprimitive otherwise it isprimitive.

Note that we have defined these terms only for transitive permutation groups
(see Exercise 5.5). Thus, all the equivalence classessst@ngruence have the
same size. In particular, any transitive permutation group of prime degree is prim-
itive.

If Gis imprimitive, letSbe a system of imprimitivity, anB one of its blocks.
FromG, we construct two smaller permutation groups:
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(a) K = G5, the group of permutations &induced byG;

(b) H = GE = G[B], the group of permutations & induced by its setwise sta-
biliser in G.

Each of these groups is transitive, and it can be shownGhatisomorphic to a
subgroup of thevreath product HNrK. Continuing this reduction iH or K is
imprimitive, we end up with a sequence of primitive groups calledpttmitive
componentsf G.

The next result gives some basic properties of primitive groups.

Proposition 5.6 (a) A transitive permutation group G is primitive if and only if
Gq is a maximal subgroup of G.

(b) Let N be a non-trivial normal subgroup of the transitive group G. Then
the orbits of N form a system of imprimitivity for G. In particular, if G is
primitive, then any non-trivial normal subgroup of G is transitive.

Lett be a positive integer, at mog€2|. The permutation grou@ on Q is said
to bet-transitiveif we can map any-tuple of distinct elements d to any other
sucht-tuple by some element @. We say thatG is multiply transitiveif it is
t-transitive for some > 1.

The problem of determining the multiply transitive permutation groups goes
back to the origins of group theory in the nineteenth century: Galois knew of the
existence of 2-transitive groups P& p), and Mathieu constructed 5-transitive
groupsM12 and M24. The condition oft-transitivity becomes stronger &sn-
creases. The symmetric gro® is n-transitive, and the alternating groéy is
(n—2)-transitive.

However, a definitive result had to wait for the Classification of Finite Sim-
ple Groups (CFSG), as we will see in the next section. Using this classification,
all multiply transitive groups have been determined. In particular, the only 5-
transitive groups apart from symmetric and alternating groups are the two Mathieu
groups mentioned above.

5.5 Modern permutation group theory

The title of this section is taken from a talk by Michael Aschbacher to the
London Mathematical Society in 2001. Aschbacher’s theme was that many ques-
tions about finite permutation groups can be reduced to questions about almost
simple groups (where a group is said toddmost simplef it is an extension of a
non-abelian simple group by a subgroup of its outer automorphism group). Now
the finite simple groups have been classified (though a complete proof has not yet
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been published, so the proof of this claim is not open to scrutiny), and detailed
properties of the known simple groups have been worked out, so such questions
can often be settled.

The Classification of Finite Simple Groups, which we abbreviate to CFSG, is
an enormously complicated theorem; the first complete published proof will cover
many thousands of pages. So for several reasons it is prudent to label clearly a
result proved using CFSG. See Gorenstein [15] for an introduction to the finite
simple groups and to the proof of CFSG.

The reduction works as follows. We have seen a reduction from arbitrary
permutation groups to transitive ones, and from transitive groups to primitive ones.
Now let G be a primitive permutation group d2. We say that is non-basidf
there is an identification d® with F" for some seF and some positive integer
such that the following is true:

each element o has the form

(a17 cee >an) — (alth cee 7aﬂhgn)7

wherehis a permutation of1,...,n}, andgs, ..., gn are permutations
of F.

In other wordsG preserves a non-trivial “power structure” én We say thatG
is basicif it is not non-basic.

This definition is similar in structure to that of transitive and primitive groups:
a permutation group is transitive if it preserves no non-trivial subsé&l,@nd a
transitive group is primitive if it preserves no non-trivial partition.

Now part of the O’Nan—Scott Theorem is the following assertion:

Theorem 5.7 A basic primitive permutation group is affine, diagonal, or almost
simple.

Here a permutation group &ffineif (up to re-labelling the se®) it is a sub-
group of the group
{vi=VA+Cc:AcGL(V),ceV}

of permutations of the finite vector spa¢eand contains all the translations—
v+c. A diagonalgroup has a normal subgrodp', whereT is a non-abelian
simple group and > 2, acting on the set of right cosets of tti@gonal subgroup

D={(t,t,....t):teT}.

Almost simple groups were defined earlier.
Now we consider what kind of information about the finite simple groups is
needed to understand basic permutation groups.
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(a) If Gis affine, therG is the semi-direct product of the translation group’ dify
an irreducible subgroup of GL(V). A similar reduction theorem, due to
Aschbacher, for irreducible linear groups shows that we can further reduce
to the case where the cen@¢H ) of H consists of scalar transformations
andH/Z(H) is almost simple. Typically we now require properties about
the irreducible projective representations of almost simple groups.

(b) If Gis diagonal, then its properties can usually be derived from routine prop-
erties of simple groups.

(c) Inthe case wher@ is almost simple, we need to know about primitive permu-
tation actions (equivalently, maximal subgroups) of almost simple groups.

Many results about primitive permutation groups have been proved by this
method. We restrict ourselves to two applications. The first application is the
classification of the 2-transitive groups. In this case, a very simple form of the
O’Nan-Scott theorem (proved originally by Burnside) shows that a 2-transitive
group is either affine or almost simple. We refer to Cameron [4] and Dixon and
Mortimer [13] for the list of 2-transitive groups and for further details of the argu-
ment.

The second, more recent result is a composite theorem about almost simple
primitive groups. The first part is due to Cameron and Kantor [8], the second to
Liebeck and Shalev [21].

Theorem 5.8 (CFSG) There are absolute constanisms with the following prop-
erties. Let G be an almost simple primitive permutation group of degree n. Sup-
pose that G is not one of the following:

(i) a symmetric or alternating group,sSor An, acting on the set of k-element
subsets of1,...,m} (with n= (}));

(i) a symmetric or alternating group,$Sor An, acting on the set of partitions of
{1,...,m} into | parts of size k, where ki m;

(iii) a classical group, acting on an orbit of subspaces of its natural module.
Then
(@) [G] < n;

(b) G has a base of size at most ¢
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This theorem is in many ways typical of applications of CFSG to permutation
group theory: a group is either “known” (in some more-or-less precise sense) or
“small”.

We saw that the size of an irredundant base for a permutation geoop
degreen lies between logG|/logn and logG|/log2. For primitive groups, Laci
Pyber has conjectured that the lower bound is approximately correct; more specif-
ically, the minimal base size is at madbg|G|/logn, for some constard. Part
(b) of the above theorem is a result in the direction of this conjecture.

Exercises

5.1. Show that the number of ways of writing the cycle decomposition of a
permutatiorg € S, is equal to the order of the centraliserggh S, (the subgroup
of elements commuting witf). Find a formula for this number.

5.2. The Orbit-counting Lemma asserts that the expected value of the number
of fixed points of a random element of the permutation grGuis equal to the
number of orbits ofs. What is the variance of this number?

5.3. LetG be a transitive permutation group énh Let B be a non-empty subset
of Q with the property that, for alij € G, eitherBg= B or BNnBg= 0. Prove that
B is a block of imprimitivity.

5.4. Suppose thdf)| > 2, and letG be a permutation group aR which pre-
serves no non-trivial equivalence relation. Prove tBas transitive (and hence
primitive).

5.5. Prove Proposition 5.6. Is it true that every block of imprimitivity for a
transitive groupG is an orbit of a normal subgroup &f?

5.6. Find a base and strong generating set for the permutation group on the set
{1,2,3,4,5} generated bys = (1,2)(4,5) andt = (2,3)(4,5). Hence find the
order of this group, and determine whether it contdihg, 3)(4,5).

5.7. Prove that the permutation groGpof degree at least 2, is 2-transitive if and

only if
1
— ¥ fix(g)>=2.
6l 29

Generalise.

5.8. Find all systems of imprimitivity foG = S, acting on the se® of ordered
pairs of distinct elements df1,2,3,4}. Hence show that the primitive compo-
nents of a transitive group are not uniquely determined.
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5.9. A permutation groufs is sharply t-transitiveif, given any two ordered-
tuples of distinct elements @, there is auniqueelement ofG carrying the first
pair to the second.

Prove that, in a sharply 2-transitive groGp the identity and the fixed-point-
free permutations form a normal subgradp Show further thal is elementary
abelian, and deduce that the degre€&a$ a prime power. Deduce that,ti> 2,
then the degree of a sharghtransitive group is of the fornp" +t — 2 for some
prime powerp".

Construct a sharply 2-transitive group of degpédor any prime powep'.

5.10. Prove the following strengthening of Jordan’s Theorem (Corollary 5.4), due
to Cameron and Cohen [6]:

Let G be a transitive permutation group of degree 1. Then at least
a proportion ¥n of the elements o6 are fixed-point-free. Equality
holds if and only ifG is sharply 2-transitive.

5.11. Prove that the permutatiofts 2)(3,4)(5,6)(7,8)(9,10)(11,12) and
(1,2,3)(4,5,7)(8,9,11) generate a sharply 5-transitive group of degree 12. (This
is theMathieu group M».)
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Cycle index

The cycle index is a polynomial associated with a permutation group. Unlike the
polynomials we considered earlier for codes and matroid, it has many variables
(possibly as many as the degree of the permutation group). To clarify the process
of substituting into a multivariate polynomi& in indeterminates,,...,s,, we

use the notation

F(s «t)
for the result of substituting the tertnfor s fori =1,...,n.
The cycle index is basic in the theory of combinatorial enumeration pioneered

by Redfield and Blya. We refer to Harary and Palmer [18] for a more detailed
account.

6.1 Definition

Let G be a permutation group on a €t where|Q| = n. For each element
g € G, we can decompose the permutatgimto a product of disjoint cycles; let
ci(g) be the number of-cycles occurring in this decomposition. Now tbgcle
indexof G is the polynomialZ(G) in indeterminates;, . .., s, given by

_ 1 c @@ &

This can be regarded as a multivariate probability generating function for the cycle
structure of a random element & (chosen from the uniform distribution). In
particular,

Ps(X) = Z(G)(s1 « X,§ « 1 fori > 1)

47
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is the probability generating function for the number of fixed points of a random
element ofG, so that substitutinge < O gives the proportion of derangements

in G. In other words, 1
Po(X) = —= § x19).
P

The numbeicy (g) is the number of fixed points @, which we called fixg)
in Chapter 5; the functiog — c1(g) is thepermutation charactef G.

Let us work two examples. First, |& be the symmetric group of degree 4.
Each partition of 4 is the cycle type of some elemenGofand it is not hard to
count the number of elements corresponding to each partition:

Partition| 4 | 31| 22| 211 | 1111
Number| 6| 8| 3 6 1

So

1
= ﬂ(634+83183+3§+632§+31‘)-

Now let us take the same grou acting on the set of 2-element subsets
of {1,2,3,4}. We simply need to find for each shape of permutation the cycle
structure on the set of pairs; we obtain the following:

On points| 4| 31 22| 211 1111
Onpairs | 42| 33| 2211 | 2211 | 111111

Z(G)

So

. 655y + 855 + 9555 + ).

2(6) = 5.

6.2 The cycle index theorem

The cycle index is an important tool in combinatorial enumeration. Typically,
we have a collection of “figures” decorating some set (e.g. colours of the faces of
a regular polyhedron), and we are interested in counting the number of configura-
tions up to some notion of symmetry (given by a group of automorphisms of the
set). More formally, lefA be a set of “figures”, each of which has a non-negative
integer “weight”. The number of figures may be infinite, but we assume that there
are only finitely many figures of any given weight. Thgure-counting seriesf
A'is the formal power series

A= 3 an”
n>

wherea, is the number of figures of weight, that is, it is just the generating
function for figures by weight.
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Now letQ be a finite set. A functiorf : Q — A has aweightgiven by

wi(f) = 3 wt(f(a))

aeQ

If Gis a permutation group of, then there is a natural action Gfon the set of
functions, given by the rule

f9(a) = f(ag™?).

(The inverse is required to make this a good definition of an action.) Clearly
this action preserves the weight of a function. Timection-counting seriess the

formal power series
B(t) = Zobnt“,
n=

whereb, is the number of>-orbits on the set of functions of weight Now the
Cycle Index Theorerstates:

Theorem 6.1 With the above notation,
B(t) = Z(G;s — A(t)).

Proof Here is a sketch of the proof: fill in the details as an exercise.

The generating function for all functions, disregarding the group action, is
A(t)", since the coefficient af” in A(t)" is equal to the sum ddj, - - - &, over all
expressions$; + - - - +in = m. Note thatA(t)" = s(s1 — A(t)), ands] is the cycle
index of the trivial group.

For any permutatio, let z(g) = s@...s19 A function is fixed by the
permutatiorg if and only if it is constant on each cycle in the cycle decomposition
of g. The weight of such a function is the sum of the products of cycle length and
weight of the figure at a point of the cycle. Hence the generating function for the
number of functions fixed by is

A AN = z(g;s — At))).

Now the result follows from the Orbit-Counting Lemma (Theorem 5.3) and
the definition of cycle index, on averaging o¥&r

Here is a typical application of the theorem. How many graphs are there on 4
vertices with any given number (from O to 6) of edges, up to isomorphism? We
takeQ to be the set of all 2-elements of the vertex&k®, 3,4}. To each element
{i, j} of Q we attach either an edge or a non-edge. Taking edges to have weight 1
and non-edges to have weight 0, the weight of the function is just the total number
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of edges in the corresponding graph. Moreover, two graphs are isomorphic if
and only if there is a permutation ¢f.,2,3,4} carrying the first function to the
second. So, taking the figure-counting series tAktlg¢ = 1+t, and the group

$; acting on 2-sets (whose cycle index we calculated in the previous section), we
find the generating function for graphs on four vertices (enumerated by edges) to
be

%ﬂq1+¥x1+ﬁ)+8a+¢%?+w1+0%1+ﬁf+41+0%

= 1+t+2%24+ 33 2% +t5 15

6.3 Some other counting results

Let G be a permutation group on a €2t Many counting problems related
to G, other than those described in the Cycle Index Theorem, can be solved by
specialisations of the cycle index. Here are some examples.

(a) LetF, be the number of orbits @ acting on the set of afi-tuples of distinct
elements of). We consider thexponential generating function
Fot"
Fe(t) = > ——
ngo n!
for the sequencér,). Now we have
Fe(t) =Z(G)(s1 < x+ 1,5 < 1 fori > 1).

(b) If instead we want the total numbiéf of orbits of G onn-tuples (with repeats
allowed), then it can be calculated as

n
Fo = > SnKF,
K=1
whereS(n,k) is the Stirling number of the second kinthe number of par-

titions of ann-element set int& parts.

(c) Let f, be the number of orbits @ acting on the set of ali-element subsets
of Q. Then theordinary generating function

fG (t) - fnt n

is given by the specialisation

fo(t) = Z(G)(5 —t' +1).
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(d) TheParker vectorof G is the vecton(ps, p,...), wherepy is the number of
orbits of G on the set ok-cycles occurring in the cycle decompositions of its
elements (ané acts on thesk-cycles by conjugation). The Parker vector
was introduced by Parker in the context of computational Galois theory, and
was studied by Gewurz [14]. Itis given by

Pk = k[(0/05)Z(G)](s —1).

Many of these sequences play an important role in combinatorial enumeration.
See [3] for more details about (a)—(c).

6.4 The Shift Theorem

Let G be a permutation group di. For any subseh of Q, we definedG[A|
to be the group of permutations &finduced by elements @ fixing A pointwise.
Thus,G[4] is the quotient of the setwise stabiliserdby its pointwise stabiliser.

We let PQ/G denote the set oB-orbits on the power set d®; by abuse of
notation, this will also be used for a set of orbit representatives.

Now the following result (thé&hift Theoremholds:

Theorem 6.2 For any finite permutation group G dQ,

Z(GA)) =Z(G;s —s +1).
NePQ/G

Proof Rather than a proof of this theorem (which is just elementary but compli-
cated double counting), | will try to explain why it has to hold. (This explana-
tion would be a proof if we knew that the cycle index is the unique polynomial
for which the Cycle Index Theorem holds.) Suppose that we have A*sef
figures containing one distinguished figureof weight zero. LetA*(t) be its
figure-counting series, ant) the figure-counting series &= A*\ {x}. Then

A(t) = A*(t) — 1, and so the function-counting series is

B(t) = Z(G;s — A(t) +1).

Now this can be calculated in another way. Any functiois determined by
giving the setA = {a € Q : f(a) # x} and then the functior’ : A — A given by
its restriction taA. Two functions lie in the same orbit @ if and only if

(a) the setd\ lie in the same orbit o6; and
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(b) assuming that we have translated by an eleme@t tof make these two sets
equal, the function$’ lie in the same orbit oG[A].

So the function-counting series is given by

Bt)= 5 Z(G[a],s —A(t)).
AePQ/G

So the two polynomials in the theorem yield the same result for every substitution
s «— A(t"), for any figure-counting serie(t).

This theorem may not seem to have very much use as it stands. One use to
which it was put in [3] was to extend the definition of cycle index to certain infi-
nite permutation groups, namely, those which @igomorphic (A permutation
group is said to be oligomorphic if the numbfrof orbits onn-element subsets
is finite for all natural numbers.) The point is that the cycle index of an infinite
permutation group cannot be defined directly, since permutations may have in-
finitely many cycles of some length; but the right-hand side of the Shift Theorem
is well-defined for any oligomorphic group, if we interprBf /G to be a set of
representatives for the orbits @inite sets.

Our interest in the theorem is a bit different. A corollary of it is the follow-
ing result, first observed by Bostat al. [2]. Recall thatPs(x) is the probability
generating function for fixed points of random element&opfvhile Fg(t) is the
exponential generating function for the number of orbit§&ajn n-tuples of dis-
tinct elements.

Corollary 6.3 For any finite permutation group G, we have

Fe(t) = Pa(t+1).

Proof We know that
Ps(X) =Z(G;s1 + X,§ « 1fori > 1).

Also, a setA of cardinalityn can be labelled im! different ways; these fall into
n!/|G(A)| orbits undelG. So we have

n!

tn
Fe(t) = Z) ; p~
Eonera’B, aj—n CB) N

— z Z(G(A),s1 +t,5 < 0fori>1)
AePQ/G
= Z(G;sp—t+1s < 1fori>1),




6.4. The Shift Theorem 53

the last equality coming from the Shift Theorem. So the result holds.

However, the original proof by Bostoet al. [2] is more direct. Letcy(Q)
denote the number of fixed points of the elemgnThen the number of ordered
j-tuples of distinct elements it fixes is

ci(9)(c(g) —1)---(ca(@) —j+1).
By the Orbit-Counting Lemma,

1 )
Fj = €] gécl(g)(cl(g) —1)---(c(@) - j+1).

Multiplying by t! / j! and reversing the order of summation,

Folt) = %g;ji(clgg>>tj
= &ggc(thl)Cl(g)

= PG(t—I—l),

sincePg (X) = ¥ gea X9 /|G.

Exercises

6.1. Letgbe a permutation aR, and suppose that the ordergis m. Show that

fix(g¥) = Zla (9)
11k

for all k dividing m, and deduce that

=

=Y pk/1)fix(g
Tk Tk

for all k dividing m, wherep is the Mobius function.

6.2. LetG be a permutation group on two s€gs andQj. Let fix;(g) and fix(g)
denote the numbers of fixed points@fin Q1 andQ- respectively. Suppose that
fix1(g) = fix2(g) for all g € G. Prove that the cycle indices of the two permutation
groupsG®: andG®2 are equal. (Hint: use the preceding exercise.)

6.3. LetG be the group of rotations of a cube.

(a) Prove thaG is isomorphic to the symmetric groa.
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(b) Compute the cycle index @, acting on the set of faces of the cube.

(c) Is this action ofG isomorphic to the action 0%, on the set of 2-element
subsets of 1,...,4}?

6.4. Find the generating function for colourings of the faces of the cube red and
blue, enumerated by the number of red faces.

6.5. Use the Cycle Index Theorem to enumerate

(a) graphs on four vertices having at most one loop at each vertex but no multiple
edges, by number of edges;

(b) graphs on four vertices having at most two edges between each pair of distinct
vertices but no loops, by number of edges.

6.6. Verify the Shift Theorem for the permutation gragp(in its natural action
on four points).

6.7. Use the Corollary to the Shift Theorem to calulcate the fundggfx),
whereG is the symmetric grouf®,. Deduce that the probability that a random
permutation has no fixed points tends f@sn — co.

6.8. Prove that
S
Z(S) = ex — .
n;o ( ) p(izl I)



CHAPTER /

Codes and permutation groups

This chapter describes the link between codes and permutation groups. From any
linear code, we construct a permutation group, whose cycle index is essentially the
weight enumerator of the code. If we start instead witydinear code, the cycle
index of the group is the symmetrised weight enumerator of the code. Essentially,
we “inflate” each coordinate of the code into a copy of the alphabet.

We begin with a technical result concerning a similar operation of “inflating”
a matroid, which will be relevant in Chapter 8.

7.1 Inflating a matroid

How does the Tutte polynomial of a matroid change if a single element is re-
placed byq parallel elements? This can be described explicitly in terms of the
Tutte polynomials of the deletion and contraction with respect to that element.
However, we need to know what happengveryelement of the matroid is re-
placed by a set df parallel elements, and here the answer is much simpler.

To be more precise, we define thdold inflation of a matroidM on the seE
to be the matroid on the sEtx Q, whereQ is ag-element set, whose independent
sets are as follows: for each independentAset E, and each functiorf : A —
Q, the set{(a, f(a)) : a € A} of E x Q is independent; and these are the only
independent sets.

55
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Proposition 7.1 If Mq is a g-fold inflation of M, then

Proof To each subsek C E, there are 2— 1 subsets oE x Q whose projection
ontoE is A. For any such subset, the rank [ify) is equal to the rank oA in Q.
The contribution to the Tutte polynomial from such sets is given by

(x—1)PEPA(y — 1)IAI=PA ﬁ (i (T) (y— 1)1'1)
i= =1

= (x—1)PEPAy— 1>|AI—PA(yq _ 1)|A|

- <x—1>pE“’A(yyq%ll)pAwq—l)'A'—pA

= <%>9(E) (%)pEpA(yq—lﬂNPA.

Summing oveA C E, we obtain

Ty = (D2)7 5 (SR g g

yyq_—ll = <xiq 15(1—1>
- <ﬁ) T(M;yq——lerl’yq)'

7.2 The connection

Let C be a linearn, k| code over GFq). We construct fronC a permutation
group whose cycle index is (more-or-less) the weight enumerator of

The group we construct is the additive groupf We let it act on the set
{1,...,n} x GF(q) (a set of cardinalityng) in the following way: the codeword
(a1,...,an) acts as the permutation

(i,X) — (i,x+ &)

of the set{1,...,n} x GF(q). The groupG(C) is an elementary abelian group of
ordergX.

Proposition 7.2 %\A&(X,Y) =Z(G;s1 Xl/q,sp —YP/%), where q is a power

of the prime number p.
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Proof Consider the group elemewt= (ay,...,a,). If & # 0, then theg points
of the form (i, x) for x € GF(q) are all fixed by this element; if+# 0, they are
permuted irng/ p cycles of lengthp, each of the form

(i,X) — (i,x+a1) — (i,x+2a) — --- — (i,x+ pa) = (i,X),

the last equation holding because (@Fhas characteristip. So this element
contributess! ") S/PIWW 4 the sum in the formula for the cycle index,
andX"WWyWW) tg the weight enumerator . The result follows.

7.3 More generally ...

The construction of a permutation group from a code does not require the code
to be linear, only for it to form an additive group. So the procedure works much
more generally. What is the coding-theoretic equivalent of the cycle index of the
group?

Proposition 7.3 Let C be an additiv&4-code, with symmetrised weight enumer-
ator &. Then

1

g EX.Y.2)=2(Gist X4 5 o YY2 54 2).

Proof The proof is almost identical to that of Proposition 7.2. The permutation
corresponding to the codewon= (ay, ...,an) acts on the sefi(i,x) : x € Z4} as
four fixed points ifg; = 0; as two 2-cycles i = 2; or as one 4-cycle & = 1 or

g = 3.

More generally, le€ be any subgroup of the direct prodégtx Ay x - - - X Ay,
whereAy, ..., A, are groups of ordeg. ThenC acts on the sdt)i’_ ; A (disjoint
union) in the obvious way. The cycle index of the corresponding permutation
group is a kind of generalised symmetrised weight enumeratoramultivariate
polynomial which counts the number of codewords whose projectionAritas
orderm;, wheremy, ..., m, are divisors ofy. | will not pursue this further.

Exercises

7.1. Calculate the Tutte polynomial ofggfold expansion of the free matrokg
and of its dual, and show that both of these matroids are graphic.

Remark The dual of the above matroid was used recently by Alan Sokal [29]
to show that the zeros of chromatic polynomials of planar graphs are dense in the
complex plane outside the circle with centre and radius 1.
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7.2. True or false? A permutation group with cycle index involving ailand
s, arises a$5(C) for some linear code over a field of characteristic 2.

7.3. LetG be an abelian permutation group, havim@rbits each of lengthy.
Show thatG i associated with a code of lengthover alphabeté\,...,A,, each
of which is an abelian group of ordqr

7.4. Let(v :i€l) be vectors spanning a vector spateverF = GF(q). Ver-
ify the following description of the group of the code associated with the vector
matroid defined by these vectors:

e the domain i =1 x F;
e the group isv*;

¢ the action is given by
f:(i,a) = (i,a+vf)

foriel,acF andf e V*.



CHAPTER 8

IBIS groups

In this chapter, we consider a special class of permutation groups introduced by
Cameron and Fon-Der-Flaass [7], which have a very close connection with ma-
troids, in the sense that the bases for the permutation group form the bases of
a matroid. These include the groups we associated with linear codes, for which
the weight enumerator of the code is essentially the same as the cycle index of
the group. They also include thmase-transitive groupgor which the associated
matroids are perfect matroid designs. We conclude by proposing a more general
polynomial which includes both Tutte polynomial and cycle index.

This is surely not the end of the story. For an arbitrary permutation group,
the irredundant bases do not constitute a matroid. Perhaps there is some more
general structure, for which the analogue of the Tutte polynomial of a matroid can
be defined.

This chapter is my reason for preparing these notes. The original version is in
the paper [5].

8.1 Matroids and IBIS families

The basic idea which connects matroids to permutation groups works in much
greater generality.
Let| be an index set, and I€X; : i € |) be a family of subsets of a sat For
anyJ C I, let
X3 =[)Xj.
jed
By convention, we pukp = A.

59
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The subsef] of | is called abaseif X; = X,. Moreover, ifJ is ordered, say
J=(j1,-.., jk), then we say thal is irredundantif, for eachm with 1 <k, we
have

ij 2 X{jlv"wjmfl}’

or, in other wordsXj, i1 C X{jy,...im1}- Note that any ordered base can be
made irredundant by dropping those indices for which this condition fails.

Theorem 8.1 The following conditions on a familyX; : i € 1) of sets are equiva-
lent:

(a) All irredundant bases have the same number of elements.
(b) The irredundant bases are preserved by re-ordering.

(c) The irredundant bases are the bases of a matroid on I.

Proof Suppose that condition (a) holds, and Jebe an (ordered) irredundant
base and’ be obtained by re-orderingy ClearlyJ’ is a base, so we can obtain an
irredundant base by possibly dropping some elements. But, if any elements are
dropped, then the resulting base would be smaller #h&o (b) holds.

Next, suppose that (b) holds. We have to verify the matroid base axioms, that
IS, no base contains another, and the exchange axiom holds. The first condition
is clear: ifJ C K, we can ordeK so that the elements dfcome first; then the
irredundance oK is contradicted.

LetJ andK be irredundant bases, and suppose flai \ K. OrderJUK\ {j}
so that the elements df\ { j} come first. This is a base, and so we can obtain an
irredundant base by dropping some element& of\WWe have to show that only
one element oK remains; so suppose not, and kdbe the first element df to
appear. Then the ordered sequence consisting of the elemehts of, thenk,
then j is an irredundant base, but if the last two elements are swapped, it is no
longer irredundant, contradicting (b).

Finally, (c) trivially implies (a).

A family of sets satisfying the conditions of this theorem is calletBd8 fam-
ily. (This term is an acronym for “Irredundant Bases of Invariant Size”, reflecting
condition (a).)

Every matroid can be represented by an IBIS family. FoMebe a matroid
on E, and letA be the family of hyperplanes &fi. Fore € E, let X¢ be the set of
hyperplanes containing It is now a simple exercise to prove tHa:: e E) is
an IBIS family, whose associated matroidMs This is a bit surprising: we think
of the exchange axiom as an essential part of the definition of a matroid; but here
we see that it follows from the constancy of base size.
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8.2 IBIS groups

Let G be a permutation group o2, We say thaiG is anIBIS permutation
group, or IBIS groupfor short, if the family(Gq : a € Q) of point stabilisers is an
IBIS family of subsets o6.

Remark The family of point stabilisers in a permutation group is closed under
conjugation. Conversely, ifG; : i € 1) is any IBIS family of subgroups of the
group G which is closed under conjugation, th&n is a normal subgroup db
andG/G; is isomorphic to an IBIS permutation group. | do not know anything
about IBIS families of subgroups which are not closed under conjugation.

In the case whe is a permutation group d2 and(Ggq : a € Q) is the family
of point stabilisers, we see th& is just the pointwise stabiliser of for | C Q.
Hence the notions of a base and an irredundant base for the family coincide with
those we met in Chapter 5:bmseis a sequence of points whose stabiliser is the
identity, and it isirredundantif no point in the sequence is fixed by the stabiliser
of its predecessors.

So we can say more succinctly: the permutation gr@upn Q is anIBIS
groupif its irredundant bases all have the same cardinality. The irredundant bases
of such a grougs are the bases of a matroid on the Sgtand clearlyG acts as
a group of automorphisms of this matroid. We definerdgk of an IBIS group
to be the common cardinality of its irredundant bases (that is, the rank of the
associated matroid).

We now give some examples of IBIS groups. First we note that adding or re-
moving global fixed points of a permutation group doesn’t change the IBIS prop-
erty or the rank; so, where necessary, we assume that there are none. (A global
fixed point of an IBIS group is a loop of the associated matroid.)

Any non-identity semiregular permutation group (one in which the stabiliser
of any point is the identity) is an IBIS group of rank 1, and conversely (apart
from global fixed points). Also, the stabiliser of a point in an IBIS group is an
IBIS group, with rank one less than that of the original. (This is the analogue of
deletion for IBIS groups. There is no natural analogue of contraction.)

Lett be a non-negative integer, and@be at-transitive permutation group in
which the stabiliser of ani+ 1 points is the identity (but the stabilisertoboints
is not the identity. Such groups have had a lot of attention in the literature, though
there appears to be no general name for them. I will call th€mbenius groups
this extends the terminolodyrobenius groupgor permutation groups satisfying
this condition witht = 1. (A O-Frobenius group is just a semiregular permutation
group.)

Any t-Frobenius group is an IBIS group, and the associated matroid is the
uniform matroidUt 1 n. The converse is also true:



62 Chapter 8. IBIS groups

Theorem 8.2 Let G be an IBIS group of rank#t 1, whose associated matroid is
the uniform matroid .1 ,. Then G is a t-Frobenius group.

Proof We have to show that such a group-tsansitive. The proof is by induction
ont. Whent = 0, there is nothing to show; we start the induction with the case
t = 1. An exercise in Wielandt's book [32] shows thatGifs a permutation group
in which all 2-point stabilisers are trivial, then eith@ris semiregular, oG has
one orbit on which it acts s a Frobenius group, and the action on all other orbits
is regular. In our case, there cannot be any regular orbits, since these would give
bases of cardinality 1. S8 is a Frobenius group.

Now suppose that the result holds for 1, and letG be an IBIS group of
rankt + 1 with associated matroidi; 1. Then the point stabiliseBy acts on
the remaining points as an IBIS group with matrbigh—;. By induction,Gq is
(t — 1)-transitive; sdG is t-transitive, as required.

For Frobenius groups, we have good information about the structure, based on
Frobenius’ Theorem

Theorem 8.3 Let G be a Frobenius group. Then the identity and the fixed-point-
free elements form a subgroup N of G, which is regular and normal in G.

The subgroupN is called theFrobenius kernebf G. It follows thatG is the
semidirect product oN and a point stabiliseGy (which is called aFrobenius
complement Moreover, Thompson proved that the Frobenius kernel is nilpo-
tent, and Zassenhaus proved that the structure of a Frobenius complement is very
restricted: in particular, it has at most one non-abelian composition factor (this
being isomorphic to the smallest non-abelian simple gra)pSee Passman [26]
for an account of this work (which preceded CFSG).

A 2-Frobenius group is usually calleZassenhaus grou@ hese groups were
completely determined by Zasenhaus, Feit, Ito, and Suzuki (also before CFSG);
such a group either is soluble or has minimal normal subgroup isomorphic to
PSL(2,q) or SZq) for some prime poweq. (The Suzuki group$z(q) were dis-
covered by Suzuki in the course of this determination.) An account of this is
also found in Passman [26]. From this, it is possible to determinefnebenius
groups for all larger values of

Hence we can conclude that all IBIS groups whose associated mattdyd is
for r > 2 are known. However, the situation is very different for matroids which
are inflations of uniform matroids (see Exercise 8.7 and the following remark);
so the standard procedure in matroid theory of collapsing parallel elements to a
single element cannot be applied here.
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Let V be a vector space of dimensionover the field GFq). The general
linear group Gl(n,q) acts onV as an IBIS group; the associated matroid is the
complete vector matroitl (n,q). To see this, we observe first that the pointwise
stabiliser of any set of vectors fixes pointwise the subspace they span; and then,
given any proper subspace, there is a non-identity linear transformation fixing this
subspace pointwise.

Any subgroup of Gln,q) with this last property is an IBIS group with the
same associated matroid. One example issyraplectic group the group of
linear transformations preserving a non-degenerate alternating bilineaBform
V. For any hyperplane has the foam = {vc V : B(a,v) = 0} for some non-zero
vectora; this hyperplane is fixed pointwise by teBgmplectic transvection

X— X+ B(x,a)a.

The group we associated with a linear code in the last chapter is an IBIS group.
We discuss this in the next section.

The 5-transitive Mathieu grouo4 is an IBIS group of rank 7. The associated
matroid is not the familiar one whose hyperplanes are the blocks of the associated
Steiner triple syster§(5, 8, 24) defined in Exercise 3.4 (this matroid has rank 6),
nor is it the matroid associated with the extended Golay code mentioned in Chap-
ter 1 (this matroid has rank 12).

8.3 Groups from codes

Let G(C) be the permutation group that we associated earlier[tokh code
C over GKq). Recall thatG(C) is the additive group o€, and acts on the set
{1,...,n} x GK(q) by the rule

(A1, an) & (I,X) — (I,X+&).

This group is an IBIS group of rark For a sef (i1,X1), ..., (ik, %)} is a base for
G(C) if and only if the only codeword with zeros in positions. . ., ik is the zero
word; this is equivalent to saying that the columns of a generator mat@xoth

indicesiy,...,ix are linearly independent; so any irredundant basesi@) has
rankk.
Now the matroid associated with has the property that a sét,...,i} is

independent if and only if the corresponding columns of a generator matrix for
C are linearly independent. Thus the matroid associated @&(@) is theg-fold
inflation of the matroidV (C) of the codeC.

Proposition 7.1 shows that we can pass betwe@(C)) and T(M(C)q).
Greene’s theorem shows that these polynomials determine the weight enumerator
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of C, and hence the cycle index &. But the weight enumerator & does not
determine the Tutte polynomial &(C), since we can have codes with the same
weight enumerator but different Tutte polynomials.

So in this case, the Tutte polynomial carries more information than the cycle
index. Sometimes, however, it is the other way around, as we will see.

8.4 Flat actions

The action of an IBIS group on its associated matroid has the following very
strong property:

(x) The pointwise stabiliser of any set of points fixes pointwise the flat spanned
by the set.

For let B be a subset oA minimal with respect to having the same pointwise
stabiliser. A pointo not fixed by the stabiliser d can be adjoined t8, and the
result extended to an irredundant baseqss independent oB.

An action of a group on a matroid will be callédt if condition (x) holds.

Any permutation group has a flat action on the free matroid; and any linear
group (that is, any subgroup of G, q)) has a flat action on the vector matroid
V(n,q).

If a group has a flat action on a perfect matroid design, then an analogue of
the Shift Theorem holds: there is a linear relation between the numbers of orbits
of the group on independent tuples of points and the probabilities that a random
group element has a flat of given rank as its fixed point set. We prove this by
showing that a linear relation holds between numbers of orbits on independent
tuples and numbers of orbits on arbitrary tuples; then we can invoke the original
Shift Theorem corollary.

Theorem 8.4 Let M be aPMD(ko, ...,k ), with k = n. Then there are numbers
b(m,i), for 0O<m<nand0 <i <r, depending only ong...,k, such that
the following is true: If a group G has a flat action on M and harbits on
independent i-tuples anghyorbits on m-tuples of distinct elements, then

Ym = i;b(m,i)xi

form=0,...,n.

Proof By the Orbit-Counting Lemma, it suffices to show that such a linear re-
lation holds between the number of linearly independeéuaples fixed by an ar-
bitrary elemeng € G and the total number oftrtuples of distinct elements fixed
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by g. Since the fixed points &b form a flat, it suffices to establish such a relation
between the numbers of tuples in any flatvbf
So letF be ansflat containingx; independent-tuples andy,, mtuples of
distinct elements. Then
i-1

i = ks—k' =X ks,
X J]:L( i) = Xi(ks)

m-1

m = ks —1) = Ym(ks),
Y IE!)( t) = Ym(ks)

whereX; andY; are polynomials of degraeindependent o$. It follows immedi-
ately that the theorem holds for<r, with (b(m;i)) the transition matrix between
the two sequences of polynomials.

Form > r, let Fn(x) be the unique monic polynomial of degreehaving
rootsko, ...,k and no term ik forr+1<I|<m-1. UsingFm, we can ex-
pressk™ (and hencém(ki)) as a linear combination of. &;,..., kI (and hence of
Xo(ki), ..., X (ki)). This concludes the proof.

Remark It is also interesting to consider the numbgagsof orbits of G on arbi-
trary mtuples. As we mentioned in Section 6.3, for any permutation g@upe
have

m
Im = Z S(m7 k)ykv
k=1

where the number§(m,k) are the Stirling numbers of the second kind (so that
S(m, k) is the number of partitions of an-set withk parts). Hence, by the standard
inversion for the Stirling numbers, we have

m

Ym = Z s(m, k)z,
K=1

where the numbersim, k) are the (signed) Stirling numbers of the first kind (so
that (—1)™ ks(m, k) is the number of permutations of amset havingk cycles).
Thus we can easily move back and forth between these two sequences.

In the case of the free matroid, every set is independent, and-sg, and the
matrix (b(m,i)) is the identity.

For the complete vector matroid{n,q), we have

w3 [T

where the number@’?]q are theGaussian coefficientso that[ '] q is the number

of i-flats inV(m,q). Hence the matriXb(m,i)) is the composite of the matrices
of Gaussian coefficients and Stirling numbers.
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All this can be found in Cameron and Taylor [10].

Remark The exponential generating function fay,...,yn is Pg(X+ 1), by the
corollary to the Shift Theorem. So the numbggs. .., x, determineP(X).

Now the number of fixed points of an element®fs equal to the cardinality
of a flat, that is, in the seftky, ...,k }; so the other coefficients ¢ (x) are all
zero. If the coefficient ok in Pg(x) is pj, then we have a linear map connecting
the sequence9y, ..., pr) and(xo, ..., X% ).

In the case of the free matroid, this map is given by Corollary 6.3: we have
X /il = Zij:o (J') p;. In the case of the complete vector matroid, it isgrenalogue
of this, involving the Gaussian coefficients. In each case there is a standard method
to invert the matrix. (See Cameron and Majid [9] for a connection between inver-
sion of theg-analogue and affine braided groups.)

| do not know a convenient formula for this matrix or its inverse in the case of
a general PMD.

8.5 Base-transitive groups

If Gis a permutation group which permutes its ordered (irredundant) bases
transitively, then clearly all the irredundant bases have the same size, &id so
an IBIS group. Moreover, sindd also permutes the ordered independent sets of
sizei transitively for alli, the associated matroid is a perfect matroid design.

Such groups have been given the somewhat unfortunate name of “geomet-
ric groups”. Here | will simply call thenbase-transitive permutation groups
or base-transitive groupfor short. The base-transitive groups of rank greater
than 1 were determined by Maund [23], using CFSG; those of sufficiently large
rank by Zil'ber [33] by geometric methods not requiring the Classification. Base-
transitive groups of rank 1 are just regular permutation groups (possibly with some
global fixed points).

Theorem 8.5 For a base-transitive group G, the p.g.fg(X) and the Tutte poly-
nomial of the associated matroid determine each other, and each is determined by
knowledge of the numbers of fixed points of elements of G.

Proof A permutation groupG is base-transitive if and only if the stabiliser of
any sequence of points acts transitively on the points that it doesn’t fix (if any).
Thus the fixed points of every element form a flat. Also, by Corollary 5.4, every
flat is the fixed point set of some element. So the numbers of fixed points of the
elements of5 determine the cardinalities of flats, and hence the Tutte polynomial
of the matroid, by Theorem 3.6.
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Theorem 8.4 shows that the numbgsgs. . .,k of fixed points of elements in
a base-transitive group determine the funcfei(x), since the numbers, ..., x
are all equal to 1.

To obtainPg(x) directly from the Tutte polynomial, we show the following:

Po(x+1) = io (Z agz’;)) XM,

wheren = k; is the number of points, an(i) is the number of independent
tuples in the matroid; as in Theorem 3a6m, i) is the number ofm-sets of rank.

To prove this, we note that eadfkset can be ordered m! different ways. If
the rank of them-set isi, the resulting sequence has stabiliser of oqqfelil(n —
kj), and so lies in an orbit of siqq‘j;%(n— ki) =R(i). Thus, the number of orbits
on such tuplesia(m,i)m! /R(i). We obtain the total number of orbits amtuples
by summing ovel, and so we find that the exponential generating function is
the right-hand side of the displayed equation. But this e.gRs{x+ 1), by the
corollary to the Shift Theorem.

Even for a regular permutation group, knowledge of the fixed point numbers
does not determine the cycle index; the latter also contains information about the
number of group elements of each given order. A regular permutation group is
base-transitive. So we see that the cycle index contains more information than the
Tutte polynomial in this case.

8.6 Some examples

Unfortunately, the cycle index does not in general tell us whether a permu-
tation group is base-transitive. The simplest counterexample consists of the two
permutation groups of degree 6,

Gy = <(17 2)(37 4)7 (17 3) (27 4)>7 Gy = <(17 2) (37 4)7 (17 2) (57 6)>

The first is base-transitive; the second is an IBIS group of rank 2 (indeed, it is
the group arising from the binary even-weight code of length 3), but not base-
transitive. A simple modification of this example shows that the cycle index does
not determine whether the IBIS property holds.

Suppose we are given the cycle index of one of these groups, nZt@)y=
7(§+35252), or simply the p.g.f. for fixed points, nameB (x) = (x® + 3x2).

(a) If we are told that the group is base-transitive, then we know that its matroid
is a PMD(2,6), and so we can compute that its Tutte polynomigfis® +
Y2 +Y+X).
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(b) If we are told that the group arises from a linear c@je¢hen we can de-
duce that\(X,Y) = X3+ 3XY2. In general the Tutte polynomial is not
computable from the weight enumerator, but in this case the code must be
the even-weight code and so the Tutte polynomial of the code matroid is
x?+x+y. Now Proposition 7.1 shows that the Tutte polynomial of the
group matroid ig/* + 2y® -+ 3y? + y+ 3xy+ X2 + X.

This matroid on 6 elements in case (b) arises from two different base-transitive
groups of order 24, each isomorphic to the symmetric g hese were both
considered in Chapter 6; one is the actiorspbn the set of 2-element subsets of
{1,...,4}, and the other is the action of the rotation group of the cube on the set
of faces. Using any of several methods we've seen, it follows that, for any such
groupG, we havePs(x) = 2iél(x6 +9x2 4 14). However, the stabiliser of a point is
the Klein group of order 4 in the first case and is the cyclic group in the other, so
the two groups have different cycle index. (See Exercise 6.4.)

8.7 The Tutte cycle index

As we have seen, for some IBIS groups the Tutte polynomial can be obtained
from the cycle index but notice versa while for others it is the opposite way
round. Is there a polynomial from which both the Tutte polynomial and the cycle
index can be obtained? In this section we construct such a polynomial.

Following the definition of the Tutte polynomial, we try for a sum, over sub-
sets, of “local” terms. First, some terminology and observations. G.ée a
permutation group of. For any subseh of Q, Gy andG,) are the setwise and
pointwise stabilisers of\, andG[A] the permutation group induced dnby its
setwise stabiliser (so th&[A] = Gp/G(,)). Letb(G) denote the minimum size
of a base foG. (This is the rank of the associated matroiifs an IBIS group.)

Now we have

€) Z Z(GlA]) =Z(G;s «+—s+1fori=1,...,n),
AePQ/G
wherePQ /G denotes a set of orbit representatives@on the power set
of Q. This is Theorem 6.2, the Shift Theorem.

(b) If Gis an IBIS group, then the fixed point set®fy) is the flat spanned kY
S0Gy) is an IBIS group, ang(A) = b(G) —b(G(a)). In fact, G, is also
an IBIS group, but its base size may be smaller th@y).

Now we define thdutte cycle indewf G to be the polynomial i, v, sy, ..., S,

given by
ZT(G) 1 S uChPCw) Z(Gla)).

Gl 4
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One obvious flaw in this definition is that the factar§s! andv(€@) are not
really “local”’. Nevertheless, we have the properties we are looking for:

Theorem 8.6 Let G be an IBIS permutation group, with associated matroid M.
(@) (%ZT(G)) (U—1v—1)=Z(G;s«—s+1lfori=1,...,n).

(0)|G|ZT(Gu—1,5 —t fori=1,....n) =tPOT(M;x — v/t + 1,y — t+1).

Proof (a) TheG-orbit of the subseh has cardinalityG|/|Ga|. Dividing by this
number has the same effect as choosing one representative set from each orbit.
Now apply point (a) before the Theorem.
(b) Point (b) before the Proposition shows tipg) = b(G) — b(G(y)); in

particular,p(Q) = b(G). Also, substituting' for s in Z(H) givest", wheren is
the degree of the permutation grodp So the left-hand side is

z W(Q)—p(d) ¢1A]

ACQ

The rest is just manipulation.

Exercises

8.1. LetM be a matroid oric, andA the set of hyperplanes &f. Foree€ E, let X
be the set of hyperplanes containiagProve that Xe : e € E) is an IBIS family
whose associated matroidé

8.2. Show that any family of subgroups, all of indgxin an elementary abelian
p-group is an IBIS family. Describe the associated matroid by means of the dual
group.

8.3. LetG be an IBIS group of permutations ©f.

(a) LetA be an orbit ofG. Prove that both the permutation group induced\on
and the kernel of the action & on A are IBIS groups.

(b) Prove that the stabiliser of a point is an IBIS group.

(c) Prove that the group induced on a flat by its setwise stabiliser is an IBIS
group.
8.4. LetG; be an IBIS group of permutations 6f, fori € |. Prove that the direct
product of the groups;, acting on the disjoint union of the sex, is an IBIS
group.
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8.5. Letp be a prime. Let be an elementary abeligrgroup, andH; :i € 1)

a family of subgroups o6. If each subgroupd; has indexp in G, prove that

(Hi :iel)isan IBIS family. Show that this may not be true if not all the subgroups
have indexp.

8.6. Prove that, if5 is a permutation group in which all two-point stabilisers are
trivial, then eitherG is semiregular, o6 acts as a Frobenius group on one of its
orbits and regularly on all the others. (Hint: Use Frobenius’ Theorem.)

8.7. Prove thaMy, is an IBIS group of rank 7.

8.8. Calculate the Tutte cycle indices for the gré&pin each of its transitive
actions as an IBIS group on 6 points. Hence calculate the Tutte polynomial and
cycle index in each case.

8.9. Say that a base for a permutation grd@aps strongly irredundantf the
removal of any point results in a sequence which is no longer a base. Show that a
base is strongly irredundant if and only if any ordering of it is irredundant. Give an
example of a permutation group which has strongly irredundant bases of different
sizes.

8.10. Show that a sharptytransitive group (other than the symmetric grdup
of degred) is a base-transitive group associated with a uniform matdpid and
conversely. Why is the free matrokg} = U, , not associated with the symmetric
group$,?

8.11. LetG be a base-transitive group associated witipfald inflation of the
free matroidm, (with g > 1. Show thatG is the wreath product of a regular group
H of orderqwith S,.

8.12. Show that a grou@, acting on the coset spaGe: H, is a Frobenius group
ifand only ifHNH9=1forallg ¢ H.

A subgroupH of G is called aTl-subgroupif HNH9 =1 for allg ¢ Ng(H),
whereNg(H) = {g € G: H9=H} is thenormaliserof H in G. Show that, ifH
is a non-normal Tl-subgroup @, thenG acting onG : H is an IBIS group, for
which the associated matroid is an inflation of a uniform matroid of rank 2.

Remark TI-subgroups are very common: for example, any subgroup of prime
order is a Tl-subgroup. This shows that the procedure of identifying parallel ele-
ments can have dramatic effects in the case of an IBIS group.
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