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Preface

The three subjects of the title (codes, matroids, and permutation groups) have
many interconnections. In particular, in each case, there is a polynomial which
captures a lot of information about the structure: we have the weight enumerator
of a code, the Tutte polynomial (or rank polynomial) of a matroid, and the cycle
index of a permutation group.

With any code is associated a matroid in a natural way. A celebrated theorem
of Curtis Greene asserts that the weight enumerator of the code is a specialisation
of the Tutte polynomial of the matroid. It is less well known that with any code
is associated a permutation group, and the weight enumerator of the code is the
same (up to normalisation) as the cycle index of the permutation group.

There is a class of permutation groups, the so-calledIBIS groups, which are
closely associated with matroids. More precisely, the IBIS groups are those for
which the irredundant bases (in the sense of computational group theory) are the
bases of a matroid. The permutation group associated with a code is an IBIS
group, and the matroid associated to the group differs only inessentially from the
matroid obtained directly from the code.

For some IBIS groups, the cycle index can be extracted from the Tutte poly-
nomial of the matroid but notvice versa; for others, the Tutte polynomial can be
obtained from the cycle index but notvice versa. This leads us to wonder whether
there is a more general polynomial for IBIS groups which “includes” both the
Tutte polynomial and the cycle index. Such a polynomial (theTutte cycle index)
is given in the last chapter of these notes (an expanded version of [5]).

Whether or not there is a more general concept extending both matroids and
arbitrary permutation groups, and giving rise to a polynomial extending both the
Tutte polynomial and the cycle index, I do not know; I cannot even speculate what
such a concept might be.

v



vi Contents

The other theme of these notes is codes overZ4, the integers mod 4, where
there have been some important recent developments. These codes fit naturally
into the framework of permutation groups, but not so easily into the matroid
framework. Carrie Rutherford has shown in her Ph.D. thesis [27] that we need
a pair of matroids to describe such a code, and even then the correspondence is
not exact; no natural matroid polynomial generalises the Lee weight enumerator.
Moreover, the permutation group is not an IBIS group.

The remainder of the notes is concerned with developing the basics of codes,
matroids and permutation groups, and their associated polynomials. For fur-
ther background, see MacWilliams and Sloane [22] for codes, Oxley [25] or
Welsh [30] for matroids, Cameron [4] or Dixon and Mortimer [13] for permu-
tation groups, and Harary and Palmer [18] for the use of the cycle index in com-
binatorial enumeration. Another book by Welsh [31] gives further insights on
polynomial aspects of codes and matroids. I refer to the Classification of Finite
Simple Groups, but detailed knowledge of this is not required; see Gorenstein [15]
for an overview.

These notes accompany a short course of lectures given at the Universitat Po-
litecnica de Catalunya in Barcelona in March 2002. I have included a few ex-
ercises at the end of each chapter. I am grateful to the course participants for
comments which have led to some improvements in the notes.

Peter J. Cameron
London, March 2002



CHAPTER 1

Codes

This chapter provides a very brief introduction to the theory of error-correcting
codes. The highlight is the theorem of MacWilliams, asserting that the weight
enumerator of a linear code determines that of its dual. The standard proof is
algebraic, but we will see a combinatorial proof in Chapter 4.

1.1 Encoding and decoding

We begin with an example.
Suppose that we are transmitting information, in the form of a long string of

binary digits, over a channel. There is a small probability, say 1 in 106, that a bit
error occurs, that is, the received bit is not the same as the transmitted bit; errors in
different bits are independent. In the course of sending, say, 1000 bits, the chance
of an error is 1− (1−10−6)103

, or about 1 in 1000, which may be unacceptably
high.

Suppose that instead we adopt the following scheme. Break the data into
blocks of four. Now for each 4-tuplea = (a1,a2,a3,a4), we encodeit by multi-
plying by the matrix

G =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .
(Arithmetic is performed in thebinary fieldGF(2) = Z2.) The first four bits of
c = aGare just the bits ofa; the purpose of the other three bits is error correction.

1



2 Chapter 1. Codes

We transmit the stringc.
Suppose that a 7-tupleb is received. We calculates= bH, where

H =



0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1


.

If s= 0, weassumethatb is the transmitted codeword. Otherwise,s is the base 2
representation of an integeri in the range 1, . . . ,7; we assumethat there was a
single bit error in positioni, that is, we complement theith entry ofb. Then we
read the first four bits ofb and assume that these were the bits transmitted.

We will see shortly that our assumptions are correct provided that at most one
error occurs to the bits ofb. So the probability that the assumptions are wrong
is 1− (1−10−6)7−7×10−6(1−10−6)6, which is about 2.1×10−11. Now we
have to send 250 blocks, so the error probability is about 1 in 190000000, much
smaller than before!

It remains to justify our claims. First, by listing all the 7-tuples of the formaG,
we find that each of them except 0 has at least three 1s. Moreover, since this setC
is just the row space ofG, it is closed under subtraction; so any two elements of
C differ in at least three positions.This means that, if at most one error occurs, the
resulting vectorb is either inC (if no error occurs) or can be uniquely expressed
in the formc+ ei , wherec∈C andei is the vector with 1 in positioni and zero
elsewhere. In the latter case,c was the sequence transmitted.

Now we can also check thatcH = 0 for all c ∈C. (For this, it is enough to
show thatGH = 0, since vectors inC have the formaG.) Then

(c+ei)H = eiH = ith row ofH,

andH has the property that itsith row is the base 2 representation ofi. So our
claims about the correctness of the decoding procedure (assuming at most one
error) are justified.

The price we pay for the much improved error correction capability of this
scheme is slower transmission rate: instead of 1000 bits, we have to send 1750
bits through the channel. We say that therateof the code is 4/7.

To summarise: we encode the information (in blocks of four bits) as elements
of the setC, and transmit these. The properties ofC permit error correction. We
call the setC acode, and its elementscodewords.

The codeC is an example of aHamming code. The decoding method we
described is calledsyndrome decoding.
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1.2 Weights and weight enumerator

Let F be a set called thealphabetandn a positive integer. Aword of lengthn
over F is simply ann-tuple of elements ofF ; sometimes we writea1a2 · · ·an

instead of(a1,a2, . . . ,an). In the most important case here,F is a field; in this
chapter, this is always assumed to be the case. Acodeis just a set of words, that
is, a subset ofFn. We always require a code to have at least two words, since
a code with one word would convey no information (since we would know for
certain what message was sent). The words in a code are calledcodewords.

The codeC is linear over the fieldF if it is a subspace ofFn. A linear code of
lengthn and dimensionk is referred to as an[n,k] code.

From an algebraic point of view, a linear[n,k] code is ak-dimensional sub-
space of ann-dimensional vector spacewith a fixed basis. It is this basis which
makes coding theory richer than the elementary theory of a subspace of a vector
space.

Let C be a[n,k] code. We can describeC by a generator matrix G, a k× n
matrixG whose rows form a basis forC, so that

C = {aG : a∈ Fk}.

We can also describeC by aparity check matrix H, a(n−k)×n matrix such that
C is the null space ofH>, that is,

C = {c∈ Fn : cH> = 0}.

(This is the transpose of the matrixH of the preceding section.) The generator
and parity check matrices for a given code are of course not unique.

Thedual code C⊥ of C is the set

C⊥ = {x∈ Fn : x ·c = 0 for all c∈C},

where· denotes the standard inner product onFn: that is,

a·b = a1b1 +a2b2 + · · ·+anbn.

Proposition 1.1 A generator matrix for C is a parity check matrix for C⊥, and
vice versa.

TheHamming distance d(a,b) between wordsa andb is the number of coor-
dinates where they differ:

d(a,b) = |{i : 1≤ i ≤ n,ai 6= bi}|.
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Let e be a positive integer. The codeC is e-error-correctingif, for any word
v, there isat most onecodewordc∈C for which d(v,c) ≤ e. Thus, ifC is used
for transmitting information, and up toeerrors occur during the transmission of a
codeword, then the correct codeword can be recovered uniquely.

The minimum distanceof C is the smallest distance between two different
codewords. By the Triangle Inequality, if the minimum distance is at least 2e+1,
thenC is e-error-correcting: for, ifd(v,c1) ≤ e andd(v,c2) ≤ e, thend(c1,c2) ≤
2e. Conversely, if the minimum distance is 2e or smaller, it is easy to find a word
lying at distanceeor smaller from two different codewords. So we have:

Proposition 1.2 A code is e-error-correcting if and only if its minimum distance
is at least2e+1.

Theweightwt(c) is the number of non-zero coordinates ofc, that is, wt(c) =
d(c,0), where 0 is the all-zero word. Theminimum weightof C is the smallest
weight of a non-zero codeword.

Proposition 1.3 If C is linear, then its minimum distance is equal to its minimum
weight.

Proof Since wt(c) = d(c,0), every weight is a distance. Conversely,d(c1,c2) =
wt(c1−c2); and, sinceC is linear,c1−c2 ∈C; so every distance is a weight.

Thus, the minimum weight is one of the most significant parameters of a linear
code. Indeed, if an[n,k] code has minimum weightd, we sometimes describe it
as an[n,k,d] code.

If F is finite, theweight enumerator WC(X,Y) of the codeC is the homoge-
neous polynomial

WC(X,Y) = ∑
c∈C

Xn−wt(c)Ywt(c) =
n

∑
i=0

AiX
n−iYi ,

whereAi is the number of words of weighti in C.
Two codesC,C′ of length n over F are monomial equivalentif C′ can be

obtained fromC by permuting the coordinates and multiplying coordinates by
non-zero scalars. This is the natural equivalence relation on linear codes, and pre-
serves dimension, weight enumerator, and most significant properties (including
minimum weight).

What can be said about generator matrices of the same, or equivalent, codes?
Elementary row operations on a matrix do not change its row space, and so leave
the code unaltered. Column permutations, and multiplying columns by non-zero
scalars, replace the code by an equivalent code. (The third type of elementary
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column operation, adding a multiple of one column to another, does not preserve
the structure of the code.) Thus equivalence classes of codes correspond to equiv-
alence classes of matrices under these operations (i.e. arbitrary row operations,
column permutations and scalar multiplications).

A simple example of a code is the binaryrepetition codeof lengthn, consisting
of the two words(0,0, . . . ,0) and(1,1, . . . ,1); its minimum weight is clearlyn.
Its dual is the binaryeven-weight codeconsisting of all words of even weight; its
minimum weight is 2.

The Hamming code of the previous section is a[7,4] binary linear code. If
a = 1100, thenaG= 1100110, a word of weight 4. Repeating for all 4-tuplesa,
we find that the code contains seven words of weight 3 and seven of weight 4, as
well as the all-0 and all-1 words (with weight 0 and 7 respectively). So the weight
enumerator is

X7 +7X4Y3 +7X3Y4 +Y7,

the minimum weight is 3, the minimum distance is also 3, and the code is 1-error-
correcting (which should come as no surprise given the decoding procedure for
it).

Further calculation shows that the dual codeC⊥ consists of the zero word and
the seven words of weight 4 inC; its weight enumerator isX7 + 7X3Y4, and its
minimum weight is 4.

No brief account of codes would be complete without mention of the cele-
brated binaryGolay code. This is a[24,12,8] code with weight enumerator

X24+759X16Y8 +2576X12Y12+759X8Y16+Y24.

This code isself-dual, that is, it is equal to its dual. Its automorphism group is the
Mathieu group M24.

1.3 MacWilliams’ Theorem

From the weight enumerator of a codeC, we can calculate the weight enumer-
ator of the dual codeC⊥, using the theorem of MacWilliams:

Theorem 1.4 Let C be an[n,k] code overGF(q). Then the weight enumerators
WC and WC⊥ of C and its dual are related by

WC⊥(X,Y) =
1
|C|

WC(X +(q−1)Y, X−Y).
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Proof We give here the classical proof, which is algebraic in nature. In Chapter 4,
we will see a different, combinatorial proof.

We let χ be any non-trivial character of the additive group of GF(q) (that is,
homomorphism from this group to the multiplicative group of complex numbers).
If q = p is prime, so that GF(q) = Zp, then we can takeχ(k) = e2πik/p. It is easily
verified that

∑
x∈GF(q)

χ(x) = 0.

Now let f (v) = Xn−wt(v)Ywt(v) for v∈ GF(q)n (a term in the sum for the weight
enumerator), and

g(u) = ∑
v∈GF(q)n

χ(u·v) f (v)

for u∈GF(q)n. Then we have

∑
u∈C

g(u) = ∑
v∈GF(q)n

f (v) ∑
u∈C

χ(u·v).

We evaluate this sum in two ways. First, note that the inner sum on the right
is equal to|C| if v∈C⊥, sinceχ(0) = 1; and, forv /∈C⊥, χ(u·v) takes each value
in GF(q) equally often, so the sum is zero. So the whole expression is|C| times
the sum of the termsf (v) overv∈C⊥, that is,

∑
v∈C

g(v) = |C|WC⊥(X,Y).

On the other hand, if we put

δ(x) =
{

0 if x = 0,
1 if x 6= 0,

for x∈GF(q), then, withu = (u1, . . . ,un), we have

g(u) = ∑
v1,...,vn∈GF(q)

n

∏
i=1

X1−δ(vi)Yδ(vi)χ(u1v1 + · · ·+unvn)

=
n

∏
i=1

∑
v∈GF(q)

X1−δ(v)Yδ(v)χ(uiv).

Now the inner sum here is equal toX +(q−1)Y if ui = 0, and toX−Y if ui 6= 0.
So

g(u) = (X +(q−1)Y)n−wt(u)(X−Y)wt(u),

and∑u∈C g(u) = WC((X +(q−1)Y, X−Y). So we are done.



1.3. MacWilliams’ Theorem 7

We saw that the weight enumerator of the Hamming code isX7 + 7X4Y3 +
7X3Y4 +Y7. So the weight enumerator of the dual code is

1
16

((X+Y)7+7(X+Y)4(X−Y)3+7(X+Y)3(X−Y)4+(X−Y)7 = X7+7X3Y4,

as we showed earlier.

Exercises

1.1. LetH be thed×2d−1 matrix whose columns are the base 2 representa-
tions of the integers 1, . . . ,2d−1. Show that the[2d−1,2d−d−1] binary code
with parity check matrixH is 1-error-correcting, and devise a syndrome decoding
method for it.

1.2. You are given 12 coins, one of which is known to be either lighter or heavier
than all the others; you are also given a beam balance. Devise a scheme of three
weighings which will identify the odd coin and determine if it is light or heavy; the
coins weighed at each step should not depend on the results of previous weighings.
What is the connection between this problem and error-correcting codes overZ3 =
{0,+1,−1}?

1.3. Thedirect sum C1⊕C2 of two codesC1 andC2 is obtained by concatenating
each word ofC1 with each word ofC2. Show that ifCi is a [ni ,ki ,di ] code for
i = 1,2, thenC1⊕C2 is a [n1 + n2,k1 + k2,min{d1,d2}] code. Show also that
WC1⊕C2(X,Y) = WC1(X,Y)WC2(X,Y). Show also how to construct

(a) a[n1 +n2,min{k1,k2},d1 +d2] code;

(b) a[n1n2,k2k2,d1d2] code.

Why is there no general construction of a[n1 +n2,k1 +k2,d1 +d2] code?

1.4. A code (not necessarily linear) is said to besystematicin a given set ofk
coordinate positions if everyk-tuple of symbols from the alphabet occurs in these
positions in exactly one codeword. (Such a code containsqk codewords, wherek
is the size of the alphabet.)

(a) Prove that a linear code is systematic in some set of coordinate positions.

(b) Prove that a code of lengthn which is systematic in every set ofk coordinate
positions has minimum distanced = n−k+1.

(A code with the property of (b) is called amaximum distance separablecode, or
MDS code.)
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1.5. Let A be the binary code spanned by the word 01101001 and all words
obtained by cyclic shifts of the first seven positions (fixing the last position). Show
thatA is a[8,4,4] code. (This is anextended Hamming code.)

Let X be obtained fromA by reversing the first seven positions (fixing the last
position). Show thatA∩X contains only the all-0 and all-1 words. Hence show
that

G = {(a+x,b+x,a+b+x) : a,b∈ A,x∈ X}

is a[24,12,8] code. (This is the(extended) Golay code.)

1.6. Anoctadin the Golay code is a set of eight coordinate positions supporting
a codeword of weight 8. For any codewordc ∈ G, let π(c) be the restriction of
c to the positions of an octad. Prove that{π(c) : c∈ G} is the even-weight code
E8 of length 8. Now, for any subsetX of E8, let π←(X) be the restriction to the
complement of the octad of the set{c∈C : π(c) ∈ X}. Show that

(a) π←({0}) is a[16,5,8] code;

(b) π←(E8) is a [16,11,4] code (each word occurring from two different code-
words differing at all positions of the octad);

(c) If X = {00000000,11000000,10100000,01100000}, thenπ←(X) is a[16,7,6]
code;

(d) If X = {00000000,11000000,10100000,10010000,10001000,10000100,
10000010,10000001}, thenπ←(X) is a nonlinear code consisting of 256
words of length 16 with minimum distance 6.

1.7. Prove that the Golay code, and the each of the codes constructed in (a),
(b) and (d) of the preceding exercise, is of maximum possible cardinality for a
binary code of its length and minimum distance. (Hint: Look up the Hamming
and Plotkin bounds. Part (d) is more difficult!)



CHAPTER 2

Codes over Z4

The largest binary linear code with length 16 and minimum weight 6 has dimen-
sion 7, and thus has 128 codewords. However, this is beaten by a non-linear code,
theNordstrom–Robinson code, which has minimum distance 6 and has 256 code-
words. (Both of these codes were constructed in Exercise 1.3.)

This codeC has an additional property: for any codewordc and integeri with
0≤ i ≤ n, the number of codewordsc′ satisfyingd(c,c′) = i depends only oni and
not on the chosen codewordc∈C. A code with this property is calleddistance-
invariant. Another way of stating this property is as follows: for allc ∈C, the
weight enumerator of the codeC− c (the codec translated by−c) is the same.
Any linear codeC is distance-invariant, but it is rare for a non-linear code to have
this property.

In the case of the Nordstrom–Robinson code, the weight enumerator is

X16+112X10Y6 +30X8Y8 +112X6Y10+Y16.

This has an even more remarkable property. If there were a linear codeC with this
weight enumerator, then the MacWilliams theorem would show thatWC⊥ = WC.
For this reason, the code is calledformally self-dual.

It turns out that the Nordstrom–Robinson code is the first member of two in-
finite families of non-linear codes, theKerdock codesandPreparata codes. The
nth codesKn andPn in each sequence have length 4n+1 and are distance-invariant,
and their weight enumerators are related by the transformation of MacWilliams’
Theorem. (They are said to beformal duals.)

For twenty years this observation defied explanation, until a paper by Ham-
mons, Kumar, Calderbank, Sloane and Solé [19] presented the answer to the puz-
zle. We now describe this briefly.

9



10 Chapter 2. Codes overZ4

2.1 The Gray map

The solution involves codes over the alphabetZ4, the integers mod 4. We re-
gard the four elements ofZ4 as being arranged around a circle, and define the dis-
tancedL between two of them as the number of steps apart they are: for example,
dL(1,3) = 2, butdL(0,3) = 1. Now we replace the Hamming distance between
two wordsa = (a1, . . . ,an) andb = (b1, . . . ,bn) of Zn

4 by theLee distance, defined
by

dL(a,b) =
n

∑
i=1

dL(ai ,bi).

Similarly theLee weightof a is wtL(a) = dL(a,0).
Now, if C is aZ4-linear code, that is, an additive subgroup ofZn

4, then theLee
weight enumeratorof C is given by

LWC(X,Y) = ∑
c∈C

X2n−wtL(c)YwtL(c).

(Note that the maximum possible Lee weight of a word of lengthn is 2n.)
It turns out that there is a version of MacWilliams’ Theorem connecting the

Lee weight enumerators of aZ4-linear codeC and its dualC⊥ (with respect to the
natural inner product).

The setZ4, with the Lee metricdL, is isometric to the setZ2
2 with the Hamming

metric, under theGray mapγ, defined by

γ(0) = 00, γ(1) = 01, γ(2) = 11 γ(3) = 10.
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(More generally, a Gray map on the integers mod 2n is a bijection toZn
2 such

that the images of consecutive integers lie at Hamming distance 1. Gray maps are
used in analog-to-digital conversion.)

Now we extend the definition of the Gray map to map fromZn
4 toZ2n

2 by

γ(a1, . . . ,an) = (γ(a1), . . . ,γ(an)).

It is easily seen thatγ is an isometry fromZn
4 (with the Lee metric) toZ2n

2 (with
the Hamming metric).
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The Gray map is non-linear, so the image of aZ4-linear codeC is usually a
non-linear binary code. But the isometry property shows thatγ(C) is necessarily
distance-invariant, and that its weight enumerator is equal to the Lee weight enu-
merator ofC. Thus, taking aZ4-linear code and its dual, and applying the Gray
map, we obtain a pair of formally self-dual non-linear binary codes.

Hammonset al. show that, if this procedure is applied to theZ4 analogue of
the extended Hamming codes and their duals, then the Preparata and Kerdock
codes are obtained. Thus, the mystery is explained. (There is a small historical
inaccuracy in this statement. They obtained, not the original Preparata codes, but
another family of codes with the same weight enumerators.)

There is a more general weight enumerator associated with aZ4-linear code
C. This is thesymmetrised weight enumeratorof C, defined as follows:

SWC(X,Y,Z) = ∑
c∈C

Xn0(c)Yn2(c)Zn13(c),

wheren0(c) is the number of coordinates ofC equal to zero;n2(c) the number
of coordinates equal to 1; andn13(c) the number of coordinates equal to 1 or 3.
Since these coordinates contribute respectively 0, 2, and 1 to the Lee weight, we
have

LWC(X,Y) = SWC(X2,Y2,XY).

2.2 Chains of binary codes

Another approach toZ4-linear codes is via a representation as pairs ofZ2-
linear codes. LetC be aZ4-linear code. We construct binary codesC1 andC2 as
follows. C1 is obtained just by reading the words ofC modulo 2; andC2 is obtained
by selecting the words ofC in which all coordinates are even, and replacing the
entries 0 and 2 mod 4 by 0 and 1 mod 2.

Theorem 2.1 The pair(C1,C2) of binary codes associated with aZ4-linear codes
C satisfies

(a) C1⊆C2;

(b) |C|= |C1| · |C2|;

(c) WC1(X,Y) = SWC(X,X,Y)/|C2| and WC2(X,Y) = SWC(X,Y,0).
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Proof (a) If v∈C, then doublingv gives a word with all coordinates even; the
corresponding word inC2 is obtained by readingv mod 2. SoC1⊆C2.

(b) C1 is the image ofC under the natural homomorphism fromZn
4 to Zn

2, and
C2 is naturally bijective with the kernel of this map; so|C|= |C1| · |C2|.

The proof of (c) is an exercise.

We call a pair(C1,C2) of binary linear codes withC1 ⊆C2 a chainof binary
codes.

Every chain of binary codes arises from aZ4-linear code in the manner of the
theorem. For suppose that binary codesC1 andC2 are given withC1⊆C2. Let

C = {v1 +2v2 : v1 ∈C1,v2 ∈C2},

where the elements 0 and 1 ofZ2 are identified with 0 and 1 inZ4 for this construc-
tion. Then the preceding construction applied toC recoversC1 andC2. So every
chain of codes(that is, every pair(C1,C2) with C1 ⊆C2) arises from aZ4-linear
code.

However, the correspondence fails to be bijective, and many important prop-
erties are lost. Fore example, the twoZ4-codes

{000,110,220,330} and {000,112,220,332}

give rise to the same pair of binary codes (withC1 = C2 = {000,110}) but have
different symmetrised weight enumerators (and so different Lee weight enumera-
tors).

The problem of describing allZ4-linear codes arising from a given chain has
not been solved. It resembles in some ways the “extension problem” in group
theory.

Exercises

2.1. Prove that the Nordstrom–Robinson code as defined in Exercise 1.3 is
distance-invariant and has the claimed weight enumerator.

2.2. Prove Theorem 2.1(c). Verify the conclusion directly for the two codes in the
example following the theorem. Construct the images of these two codes under
the Gray map.

2.3. Show that theZ4-linear code with generator matrix
1 3 1 2 1 0 0 0
1 0 3 1 2 1 0 0
1 0 0 3 1 2 1 0
1 0 0 0 3 1 2 1


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is equal to its dual and has Lee weight enumerator

X16+112X10Y6 +30X8Y8 +112X6Y10+Y16.

(This is the code whose Gray map image is the Nordstrom–Robinson code.)

2.4. Prove that, for anya,b∈ Z4, we have

γ(a+b) = γ(a)+ γ(b)+(γ(a)+ γ(−a))∗ (γ(b)+ γ(−b)),

where∗ denotes componentwise product:(a,b)∗ (c,d) = (ac,bd).
Hence prove that a (not necessarily linear) binary codeC is equivalent to the

Gray map image of a linearZ4 code if and only if there is a fixed-point-free
involutory permutationσ of the coordinates such that, for allu,v∈C, we have

u+v+(u+uσ)∗ (v+vσ) ∈C,

where∗ is the componentwise product of binary vectors of arbitrary length.
(Defineσ so that, ifu = γ(c), thenuσ = γ(−c); this permutation interchanges

the two coordinates corresponding to each coordinate of theZ4 code.)



14 Chapter 2. Codes overZ4



CHAPTER 3

Matroids

The notion of linear independence of a family of vectors in a vector space satisfies
two simple conditions (namely, a subfamily of a linearly independent family is lin-
early independent, and the well-knownexchange property), from which most of
its familiar properties hold: the existence and constant size of bases, the rank and
nullity theorem, etc. These properties crop up in various other situations. Indeed,
the exchange property is credited to Steinitz who observed it for the notion of al-
gebraic independence of elements in a field over an algebraically closed subfield.
This leads to the concept of the transcendence degree of a field extension. Fur-
thermore, subsets of the edge set of a graph which induce acyclic graphs (forests),
and subfamilies of families of sets possessing systems of distinct representatives,
also satisfy these conditions.

The underlying abstract structure was given the name “matroid” by Whitney
(a generalisation of “matrix”). Tutte observed that a two-variable generalisation
of the chromatic polynomial of a graph could also be extended to this setting;
this is theTutte polynomialof the matroid. In this chapter, we provide a brief
introduction to these concepts.

3.1 The basics

Let E be a set. Amatroid M on E is a pair(E,J ), whereJ is a non-empty
family of subsets ofE (calledindependent sets) with the properties

(a) if I ∈ J andJ⊆ I , thenJ ∈ J ;

15
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(b) (theexchange property) if I1, I2 ∈ J and|I1|< |I2|, then there existse∈ I2\ I1
such thatI1∪{e} ∈ J .

As noted earlier, matroids were introduced by Whitney to axiomatise the no-
tion of linear independence in a vector space. Indeed, ifE is a family of vectors in
a vector spaceV, andJ is the set of linearly independent subsets ofE, then(E,J )
is a matroid. Such a matroid is called avector matroid.

Note that we speak of a family rather than a set of vectors here, since the same
vector may occur more than once. (Any family containing a repeated vector is to
be regarded as linearly dependent.) If we think of the vectors as then columns
of a matrix, we can regard the setE of elements of the matroid as the index set
{1,2, . . . ,n} for the columns; then a subsetI of E is independent if and only if the
family of columns with indices inI is linearly independent.

More formally, arepresentationof a matroid(E,J ) over a fieldF is a map
χ from E to anF-vector space with the property that a subsetI of E belongs to
J if and only if χ(I) is linearly independent. Two representationsχ, χ′ of M are
equivalentif there is an invertible linear transformation ofV whose composition
with χ is χ′.

We will frequently meet the special case whereE consists of all the vectors
in an n-dimensional vector space over GF(q). This will be referred to as the
(complete) vector matroid, and denoted byV(n,q).

As referred to in the introduction, the following are also examples of matroids:

(a) LetE be a finite family of elements in a vector space, andJ the set ofaffine
independentsubfamilies. (A family(v j : j ∈ J) is affine independent if the
relation∑c jv j = 0, wherec j are scalars with∑c j = 0, implies thatc j = 0
for all j.) Then(E,J ) is a matroid. Such a matroid is calledaffine.

(b) LetK be an algebraically closed field containing an algebraically closed sub-
field F . Let E be a finite family of elements ofK, andJ the set of all
subfamilies ofE which are algebraically independent overF . Then(E,J )
is a matroid. Such a matroid is calledalgebraic.

(c) Let G = (V,E) be a finite graph (loops and multiple edges are allowed). Let
J be the set of all subsetsA of E for which the graph(V,A) is acyclic (that
is, a forest). Then(E,J ) is a matroid. Such a matroid is calledgraphic, and
is denoted byM(G).

(d) Let (Xe : e∈ E) be a family of sets. LetJ be the family of all subsetsI ⊆ E
for which the subfamily(Xe : e∈ I) possesses a transversal (that is, there is
a family(xe : e∈ I) of distinct elements such thatxe∈Xe for all e∈ I ). Then
(E,J ) is a matroid. Such a matroid is calledtransversal.



3.1. The basics 17

It follows from the second axiom that all maximal independent sets in a ma-
troid M have the same cardinalityk, called therank of M. These maximal inde-
pendent sets are called thebasesof M. It is possible to recognise when a family
B of subsets ofE consists of the bases of a matroid onE. This is the case if and
only if

(a) no element ofB properly contains another;

(b) if B1,B2∈B andy∈B2\B1, then there existsx∈B1\B2 such thatB1\{x}∪
{y} ∈ B. (This property is also referred to as theexchange property.)

We can extend the definition of rank to all subsets ofE: the rankρA of an
arbitrary subsetA of E is the cardinality of the largest independent set contained
in A. It is also possible to recognise when a functionρ from the power set of a
setE to the non-negative integers is the rank function of a matroid. (Again, the
exchange property shows that any two maximal independent subsets ofA have the
same cardinality.)

The set of all complements of bases ofM is the set of bases of another ma-
troid M∗ on E, called thedual of M. This is most easily proved by showing that
conditions (a) and (b) above for a familyB of sets imply the same condition for
the family of complements.

A flat in a matroidM = (E,J ) is a subsetF of E with the property thatρ(F ∪
{x}) = ρF +1 for all x∈ E \F . If ρF = k andA is an independent subset ofF of
cardinalityk, thenF = {x∈ E : ρ(A∪{x}) = ρA}. A flat whose rank is one less
than that ofE is called ahyperplane.

The flats of a matroid form a lattice (in which the meet operation is intersec-
tion), which is atomic and submodular; these properties of a lattice ensure that it
arises as the lattice of flats of a matroid.

There are many other equivalent ways of defining matroids: via circuits, cocir-
cuits, flats, hyperplanes, etc. We do not pursue this here but refer to the books [25]
and [30].

Let M = (E,J ) be a matroid of rankr, and letk be a non-negative integer
with k≤ r. The truncationof M to rankk is the matroid onE whose family of
independent sets is

Jk = {I ∈ J : |I | ≤ k}.
The flats of the truncation are all the flats of rank less thank of the original matroid
together with the whole setE.

We conclude with some simple examples of matroids. Thefree matroidon a
finite setE is the matroid in which every subset ofE is independent. If|E|= n, this
matroid is denoted byFn. Theuniform matroid Ur,n, with r ≤ n, is the truncation
of the free matroidFn to rank r; in other words, its independent sets are all the
subsets ofE of cardinality at mostr.



18 Chapter 3. Matroids

3.2 Deletion and contraction

The roots of matroid theory in graph theory explain much of the terminology
used. For example, the use of the letterE for the set of elements of a matroid
arises from its use as the edge set of a graph. In this section, we will meet loops,
deletion and contraction, all of which are more transparent for graphic matroids.

Let M = (E,J ) be a matroid. The elemente∈ E is called aloop if {e} /∈ J , or
equivalently, ifρ{e}= 0. In a graphic matroid,e is a loop if and only if it is a loop
of the underlying graph. Thus, an element is a loop if and only if it is contained
in no basis.

The elemente∈E is acoloopif it is a loop in the dual matroidM∗. Thus,e is a
coloop if and only if it is contained in every basis ofM; that is,ρ(A∪{e}) = ρA+1
whenevere /∈ A. In a graphic matroid,e is a coloop if and only if it is abridge, an
element whose removal increases by one the number of connected components.

Let e be an element which is not a coloop. Thedeletionof E is the matroid
M\e on the setE \ {e} in which a subsetA is independent if and only if it is
independent inM (and doesn’t containe). There is no compelling reason to forbid
the deletion of coloops, but it makes the theory tidier – see the next paragraph.
In a graphic matroid, deletion ofe corresponds to deletion of the edgee from the
graph.

Let e be an element which is not a loop. Thecontractionof e is the matroid
M/e on the setE \ {e} in which a setA is independent if and only ifA∪{e} is
independent inM. (Here it is clear that contracting a loop would make no sense, so
our earlier restriction will preserve duality.) In a graphic matroid, contraction ofe
corresponds to contraction of the edgee, that is, identifying the vertices forming
the two ends ofe.

Proposition 3.1 Let e be an element of the matroid M which is not a loop. Then
e is not a coloop of M∗, and

(M/e)∗ = M∗\e.

Deletion and contraction form the basic inductive method for studying ma-
troids, as we will see.

3.3 Rank polynomial and Tutte polynomial

Let M be a matroid on the setE, having rank functionρ. TheTutte polynomial
of M is most easily defined as follows:

T(M;x,y) = ∑
A⊆E

(x−1)ρE−ρA(y−1)|A|−ρA.
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For example, the Tutte polynomial of the uniform matroidUr,n is

T(Ur,n;x,y) =
r

∑
i=0

(
n
i

)
(x−1)r−i +

n

∑
i=r+1

(
n
i

)
(y−1)i−r ,

since a setA of cardinalityi ≤ r satisfiesρE−ρA = r− i and|A|−ρA = 0, while
a setA of cardinalityi ≥ r +1 satisfiesρE−ρA = 0 and|A|−ρA = i− r.

The appearance of the termsx−1 andy−1 in the polynomial is a historical
accident. Tutte defined his polynomial by a completely different method, depend-
ing on the choice of an ordering of the elements of the matroid, but giving a result
independent of the ordering. Meanwhile, therank polynomialof M was defined
as

R(M;x,y) = ∑
A⊆E

xρE−ρAy|A|−ρA.

Crapo [11] showed that in factT(M;x,y) = R(M;x−1,y−1).
A number of simple matroid invariants can be extracted from the Tutte poly-

nomial, as the next result shows. The proof is an exercise.

Proposition 3.2 Let M be a matroid on n elements.

(a) The number of bases of M is equal to T(M;1,1).

(b) The number of independent sets of M is equal to T(M;2,1).

(c) The number of spanning sets of M is equal to T(M;1,2).

(d) T(M;2,2) = 2n.

Calculation of the Tutte polynomial is possible by an inductive method using
deletion and contraction, as follows.

Theorem 3.3 (a) T( /0;x,y) = 1, where/0 is the empty matroid.

(b) If e is a loop, then T(M;x,y) = yT(M\e;x,y).

(c) If e is a coloop, then T(M;x,y) = xT(M/e;x,y).

(d) If e is neither a loop nor a coloop, then

T(M;x,y) = T(M\e;x,y)+T(M/e;x,y).
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Proof (a) is trivial. For the other parts, we note that each subsetA of M/eor M\e
corresponds to a pair of subsetsA andA∪{e} of M. let M′ = M\eandM′′ = M/e
(where appropriate), and useρM, ρM′ andρM′′ for the rank functions of the three
matroidsM, M′, M′′, andE′ = E′′ = E \{e}.

If e is a loop, then we have

ρME = ρM′E
′,

ρMA = ρMA∪{e}= ρM′A,

|A∪{e}|= |A|+1, |E|= |E′|+1.

Thus the two terms in the sum forT(M) are respectively 1 andy− 1 times the
term inT(M′) corresponding toA, and so (b) holds.

The other two parts are proved similarly.

As an illustration of the use of the inductive method, we consider thechromatic
polynomialof a graphG, the polynomialPG with the property thatPG(k) is equal
to the number of properk-colourings ofG.

Corollary 3.4 Let G= (V,E) be a graph. Then

PG(k) = (−1)ρ(G)kκ(G)T(M(G);1−k,0),

whereκ(G) is the number of connected components of G andρ(G) + κ(G) the
number of vertices.

Proof The matroidM(G) associated withG has rankρE = n−κ(G), wheren is
the number of vertices. Letk be any positive integer.

The chromatic polynomial satisfies the following recursion:

(a) If G hasn vertices and no edges, thenPG(k) = kn.

(b) If G contains a loop, thenPG(k) = 0.

(c) If e is an edge which is not a loop, then

PG(k) = PG\e(k)−PG/e(k),

whereG\e andG/e are the graphs obtained fromG by deleting and con-
tractinge, respectively.

Here (a) is clear since any vertex-colouring of the null graph is proper; and (b)
is trivial. For (c), we note that, ife has verticesv andw, the proper colouringsc
of G\ecan be divided into two classes:
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(a) those withc(v) 6= c(w), which yield proper colourings ofG;

(b) those withc(v) = c(w), which yield proper colourings ofG/e.

Now we show by induction on the number of edges that

PG(k) = (−1)ρ(G)kκ(G)T(M(G);1−k,0).

This is clear when there are no edges sinceρ(G) = 0, κ(G) = n andT(M(G)) = 1.
It is also clear if there is a loop, sinceT(M(G);x,0) = 0 in that case by part (b) of
Theorem 3.3. Ife is a coloop then deletion ofe increasesκ by 1 and decreasesρ
by 1; alsoPG\e(k) = kPG(k)/(k−1), since a fraction(k−1)/k of the colourings
of G\e will have the ends ofe of different colours. So the inductive step is a
consequence of part (c) of Theorem 3.3.

Finally, if e is neither a loop nor a coloop, use (c) above and (d) of Theo-
rem 3.3.

The Tutte polynomials of a matroid and its dual are very simply related:

Proposition 3.5

T(M∗;x,y) = T(M;y,x).

Proof Let A be a subset ofE and letE∗ = E andA∗ = E \A. If ρM andρM∗ are
the rank functions ofM andM∗ respectively, we have

|A∗|−ρM∗(A∗) = ρM(E)−ρM(A),
ρM∗(E∗)−ρM∗(A∗) = |A|−ρM(A).

So the term inT(M∗) arising fromA∗ is equal to the term inT(M) arising fromA
but withx andy interchanged.

3.4 Perfect matroid designs

A perfect matroid design, or PMD, is a matroid having the property that the
cardinality of a flat depends only on its rank. If the rank isr, and the cardinality of
an i-flat is ki for i = 0, . . . , r (with, of course,kr = n, the total number of elements
of the matroid), then we describe it as a PMD(k0,k1, . . . ,kr).

In a PMD(k0,k1, . . . ,kr), the number of loops isk0; deleting the loops gives a
PMD(0,k1−k0, . . . ,kr −k0). So usually nothing is lost by assuming thatk0 = 0.
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In a PMD(0,k1,k2, . . . ,kr), each element is one of a family ofk1 parallel el-
ements. Identifying these classes, we obtain a PMD(0,1,k2/k1, . . . ,kr/k1). So
again we often assume thatk1 = 1. This reduction is a bit more problematic, as
we will see when we consider group actions.

Other operations on PMDs which yield PMDs are deletion, contraction, and
truncation.

Not very many PMDs are known. The list below includes all PMDs with
k0 = 0 andk1 = 1 which are not proper truncations.

(a) The free matroid onn elements (the matroid in which every set is indepen-
dent) is a PMD(0,1, . . . ,n).

(b) The complete vector matroidV(n,q) is a PMD(1,q,q2, . . . ,qn). (The ele-
ments of this matroid are the vectors in GF(q)n, and independence is the
usual notion of linear independence.) If we delete the zero vector and shrink
each 1-dimensional subspace to a point, we obtain theprojective geometry
PG(n−1,q), which is a PMD(0,1,q+1, . . . ,(qn−1)/(q−1)).

(c) The affine geometry AG(n,q) is a PMD(0,1,q,q2, . . . ,qn). (The elements of
this matroid are the vectors in GF(q)n, but independence is now the notion
of affine independence defined earlier: vectorsv1, . . . ,vd are affine indepen-
dent if there is no linear dependence

c1v1 + · · ·+cdvd = 0

wherec1 + · · ·+cd = 0 and theci not all zero. (An equivalent condition for
d≥ 1 is that the vectorsv2−v1, . . . ,vd−v1 are linearly independent.)

(d) Let t,k,n be positive integers witht < k < n. A Steiner system S(t,k,n)
consists of a setX of n points, and a setB of subsets ofScalled blocks, such
that anyt points are contained in a unique block. From a Steiner system,
we obtain a matroid on the set of points as follows: every set of cardinality
at mostt is independent; and a set of cardinalityt + 1 is independent if and
only if it is not contained in a block. This is a PMD(0,1, . . . , t−1,k,n) in
which the hyperplanes are the blocks.

(e) The points and lines of an affine space AG(d,3) form a Steiner triple system
(that is, a Steiner systemS(2,3,n)) with the property that any three points
not contained in a block lie in a unique subsystem with 9 points (an affine
plane). Marshall Hall [17] discovered that there are other Steiner triple sys-
tems with this property. These are now calledHall triple systems. Such a
system gives rise to a PMD(0,1,3,9,n) of rank 4, where a 3-set is indepen-
dent if it is not a block, and a 4-set is independent if it is not contained in an
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affine plane. The number of points in a Hall triple system must be a power
of 3.

See Deza [12] for a survey of perfect matroid designs.
The following theorem is due to Mphako [24].

Theorem 3.6 Let M be aPMD(k0, . . . ,kr). Then the Tutte polynomial of M is
determined by the numbers k0, . . . ,kr .

Proof It is enough to determine the numbera(m, i) of subsets of the domain
which have cardinalitym and ranki for all m andi: for

T(M;x,y) =
r

∑
i=0

n

∑
m=i

a(m, i)(x−1)k−i(y−1)m−i ,

wheren = kr is the number of points.
Let s(i, j) be the number ofi-flats containing a givenj-flat for j ≤ i. Then

s(i, j) =
i−1

∏
h= j

n−kh

ki−kh
.

For let (x1, . . . ,x j) be a basis for aj-flat Fj . The number of ways of choosing
x j+1, . . . ,xi so that(x1, . . . ,xi) is independent is the numerator of the above ex-
pression. Then this set spans ani-flat Fi containingFj , and the number of ways of
extending(x1, . . . ,x j) to a basis forFi is the denominator.

Now we have

s(i,0)
(

ni

m

)
=

i

∑
j=0

a(m, j)s(i, j).

For the left-hand side counts the number of choices of ani-flat Fi and a subset
of Fi of cardinalitym. This subset has rankj for some j ≤ i, and spans aj-flat
contained inFi . So eachm-set of rankj contributess(i, j) to the count.

This is a triangular system of equations fora(m, j) with diagonal coefficients
s(i, i) = 1. We see that thea(m, j) are indeed determined byk0, . . . ,kr .

Exercises

3.1. Prove that algebraic matroids, graphic matroids, and transversal matroids do
indeed satisfy the matroid axioms.
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3.2. In this exercise, we prove that a graphic matroid is representable over any
field.

Let G = (V,E) be a graph, whereV = {v1, . . . ,vn} and E = {e1, . . . ,em}.
Choose arbitrarily an orientation of each edgeei (that is, the edgeei has an initial
and a terminal vertex, which may be the same). Now construct ann×m matrix
A = (ai j ) as follows:

ai j =

{+1 if ej is a non-loop with terminal vertexvi ;
−1 if ej is a non-loop with initial vertexvi ;

0 otherwise.

Prove that, given any cycle in the graph, the sum of the columns corresponding
to the edges in the cycle (with signs±1 chosen appropriately) is zero. Prove also
that if a set of edges contains no cycle, then there is a row containing a single
non-zero entry in the corresponding columns.

Hence show that, for any fieldF , a set of columns ofA is linearly indepen-
dent overF if and only if the corresponding set of edges ofG forms an acyclic
subgraph.

3.3. What are the bases, the flats, the hyperplanes, and the rank function of the
uniform matroidUr,n? What is the dual of this matroid?

3.4. Prove that the matroidU2,4 is not graphic.

3.5. Prove that every affine matroid can be represented as a vector matroid in a
space of dimension one greater than the one affording the affine representation.

3.6. LetM be a graphic matroid arising from a connected graphG = (V,E) on n
vertices. Prove that the rank function is given by

ρA = n−κ(A),

whereκ(A) is the number of connected components of the graph(V,A).

3.7. LetM(G) be a graphic matroid, where the graphG = (V,E) is connected.
Show that a setA ⊆ E is independent inM(G)∗ if the removal ofA does not
disconnectG.

3.8. Construct

(a) non-isomorphic graphsG1,G2 for which the graphic matroids are isomorphic;

(b) non-isomorphic graphic matroidsM(G1),M(G2) which have the same Tutte
polynomial.

3.9. As we mentioned in Chapter 1, the binaryGolay codeis a [24,12,8] code
containing 759 words of weight 8. Prove that the 759 subsets of cardinality 8
of {1, . . . ,24} which support codewords of weight 8 are the blocks of a Steiner
systemS(5,8,24).
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3.10. Show that the blocks of a Steiner systemS(t + 1,2t,n) are the supports of
words of minimum weight in a linear binary code if and only if the system has the
symmetric difference property: if B1 andB2 are blocks for which|B1∩B2| = t,
then their symmetric differenceB14B2 is a block.

Find examples witht = 2.
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CHAPTER 4

Matroids and codes

There is a very close correspondence between linear codes, on one hand, and ma-
troids (specifically, representations of matroids) on the other – the two types of
structure correspond exactly, up to the natural definition of equivalence in each
case. Among other things, this correspondence leads us to the theorem of Curtis
Greene, showing that the weight enumerator of a code is a specialisation of the
Tutte polynomial of the corresponding matroid. This then provides a combinato-
rial proof of MacWilliams’ Theorem on the weight enumerators of dual codes.

As we already noted, Carrie Rutherford represented aZ4-linear codeC by a
chain of binary codes. She went on to associate a three-variable analogue of the
Tutte polynomial to such a chain. This polynomial specialises to give various
properties ofC (though not its symmetrised weight enumerator). We describe this
in the last section of the chapter.

4.1 The correspondence

Let A be ak×n matrix over a fieldF , satisfying the condition that the rows of
A are linearly independent, so that the row space ofA has dimensionk.

There are two different structures that can be built fromA.
First, the row space ofA is an [n,k] code overF , that is, ak-dimensional

subspace ofFn. Now row operations onA simply change the basis for the code,
leaving the actual code completely unaltered. Column permutations, and multipli-
cations of columns by non-zero scalars, replace the code by a monomial equivalent
code.

Second, there is a matroidM on the setE = {1,2, . . . ,n}, in which a setI is

27
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independent if and only if the family of columns ofA whose indices belong toI is
linearly independent. (We cannot quite say that the elements ofE are the columns
and independence is linear independence, sinceE might have repeated columns.)
More precisely, the functionχ mappingi to theith column is a representation of
M overF . How do the elementary operations affect the matroid representation?

We see that row operations onA don’t changeM but replace the representation
χ by an equivalent representation. (Two representations are calledequivalentif
they differ by an invertible linear transformation of the embedding vector space.)
On the other hand, column permutations and scalar multiplications replaceM
by an isomorphic matroid; effectively, permutations re-label the elements, while
scalar multiplications have no effect at all.

So, if we call two matricesA and A′ CM-equivalentif A′ is obtained from
A by a row operation and a monomial transformation of the columns, we see
that CM-equivalence classes of matroids correspond bijectively to both monomial
equivalence classes of linear codes, and equivalence classes of representations of
matroids, under the natural notions of equivalence in each case.

Thus we expect information to transfer back and forth between code and ma-
troid.

It is possible to go directly from the vector matroid to the code, without the
intervening matrix, as follows.

Let v1, . . . ,vn be vectors spanning the vector spaceV. The corresponding code
is

{(v1 f , . . . ,vn f ) : f ∈V∗},

whereV∗ is the dual space ofV, andv f is the image ofv under f . THis is because
the function giving theith coordinate of a vector is an element of the dual space,
and these functions form a basis for the dual space.

I leave as an exercise the problem of finding a matrix-free construction of the
matroid from the code.

It is a simple exercise to show the following:

Proposition 4.1 If the matroid M corresponds to the code C, then the dual ma-
troid M∗ corresponds to the dual code C⊥.

Proof If the matrixA happens to be in the form[Ik B], whereIk is ak× k iden-
tity matrix andB is k×n− k, then both the dual code and the dual matroid are
represented by the matrix[−B> In−k].

4.2 Greene’s Theorem

The following theorem was proved by Greene [16].
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Theorem 4.2 Let C be a code over a field with q elements, and M the correspond-
ing vector matroid. Then

WC(x,y) = yn−dim(C)(x−y)dim(C)T

(
M;

x+(q−1)y
x−y

,
x
y

)
.

Note that, ifX = (x+(q−1)y)/(x−y) andY = x/y, then

(X−1)(Y−1) = q.

So the weight enumerator is an evaluation of the Tutte polynomial along a partic-
ular hyperbola in the “Tutte plane”.

Proof The proof is by induction. ForM, we have the “deletion-contraction rule”
of Theorem 3.3.

The analogues of deletion and contraction of a matroid are the operations of
puncturingandshorteninga code.

To puncture a code at theith position, we simply delete theith coordinate
from all codewords. To shorten it at theith position, we take the subcode consist-
ing of all codewords with zero in theith position, and then delete this position.
We denote byC′ andC′′ the codes obtained by puncturing and shorteningC in a
specified position. It is easy to see that puncturing and shortening correspond to
deletion and contraction of the corresponding element of the matroid.

A loop in theM corresponds to a coordinate where all codewords have the
entry 0. A coloop is a bit more complicated, but can be described as a coordinate
such that (after row operations) the first entry in that column of the generator
matrix is 1, while all other entries in that column or in the first row are 0.

If the elemente of the matroid corresponds to the distinguished coordinate,
we have the following recursive scheme for the weight enumerator:

(a) If C has length 0, thenWC(X,Y) = 1.

(b) If e is a loop, thenWC(X,Y) = XWC′(X,Y).

(c) If e is a coloop, thenWC(X,Y) = (X +(q−1)Y)WC′′(X,Y).

(d) If e is neither a loop or a coloop, then

WC(X,Y) = YWC′(X,Y)+(X−Y)WC′′(X,Y).
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Part (a) is obvious; part (b) holds because each word inC has one extra zero
than the corresponding word inC′. Part (c) holds because each wordw in C′′ gives
rise toq words inC (all possible entries occur in the added coordinate), of which
one has the same weight asw andq−1 have weight one greater.

Finally, suppose thate is neither a loop nor a coloop. LetW1 andW2 be the
sums of terms inWC corresponding to words with zero, resp. non-zero, entry in
positione. ThenWC = W1 +W2. We also haveWC′ = W1/X +W2/Y, andWC′′ =
W1/X. The assertion follows.

Now induction, together with Theorem 3.3, proves the theorem.

From Theorem 4.2 and Proposition 3.5, we can deduce MacWilliams’ The-
orem 1.4, which shows that the weight enumerator of the dual codeC⊥ can be
calculated from that ofC.

Theorem 4.3

WC⊥(x,y) =
1
|C|

WC(x+(q−1)y,x−y).

Proof SinceC⊥ has dimensionn−dim(C) and corresponds to the dual matroid
M∗, we have

WC⊥(X,Y) = Ydim(C)(X−Y)n−dim(C)T

(
M;

X
Y
,
X +(q−1)Y

X−Y

)
.

On the other hand, we have

1
|C|

WC(X +(q−1)Y,X−Y)

= q−dim(C)(X−Y)n−dim(C)(qY)dim(C)T

(
M;

qX
qY
,
X +(q−1)Y

X−Y

)
.

The two expressions are equal.

Note that this proof is entirely combinatorial, in contrast to the algebraic proof
given in Chapter 1.

4.3 Is there a Z4 version?

There does not seem to be any way to produce a matroid which captures a
Z4-linear code in the way that we have seen for linear codes over fields. How-
ever, we already saw that many features of aZ4-linear codeC are captured by a
pair (C1,C2) of binary codes. On this basis, Rutherford [27] considered certain
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pairs of matroids, and attached to such pairs a three-variable analogue of the Tutte
polynomial. This polynomial gives some features ofC as specialisations.

The following section is entirely based on her work.
Let M1 andM2 be two matroids on the same setE. We say that(M1,M2) is a

matroid pair, or thatM1 is aquotientof M2, if there is a matroidN on a setE∪X
such thatM1 = N/X andM2 = N\X. (Deleting or contracting a set of points just
means deleting or contracting the points one at a time.)

It can be shown that we may chooseN andX so that|X|= ρM2(E)−ρM1(E),
andX is independent andE is spanning inN. Note that every setA⊆ E which
is independent inM1 is also independent inM2. This condition however is not
sufficient for(M1,M2) to be a matroid pair: see Exercise 4.3.

It is true that

(a) of (M1,M2) is a matroid pair, then so is(M∗2,M
∗
1);

(b) for any matroidM onn elements,(M,Fn) and(F∗n ,M) are matroid pairs.

Let (C1,C2) be a chain of binary codes, andM1 andM2 the associated ma-
troids. Then(M1,M2) form a matroid pair. This is because we can find matricesA
andB such thatA and

(A
B

)
are generator matrices forC1 andC2 respectively; then

we can takeN to correspond to the code with generator matrix(
O A
I B

)
.

In this case, we call the pair(M1,M2) amatroid chainoverZ2.
Note that not every matroid pair is a matroid chain, even if the individual

matroids are representable: see Exercise 4.3. Note also that, if(M1,M2) is a
matroid chain overZ2, then so is(M∗2,M

∗
1).

Let M = (M1,M2) be a matroid pair. Rutherford defines thegeneralised rank
polynomial, which I shall call for brevity theRutherford polynomial, of the pair to
be

G(M ;v,x,y) = ∑
A⊆B⊆E

v|B|−|A|xρ1E−ρ1By|A|−ρ2A,

whereρ1 and ρ2 are the rank functions ofM1 andM2. (In fact, we could use
the analogue of the Tutte polynomial rather than the rank polynomial, by putting
v−1,x−1,y−1 in place ofv,x,y here, but the difference is inessential; I have
chosen to follow Rutherford.)

The Rutherford polynomial has a number of interesting specialisations:

Theorem 4.4 Let G(M ;v,x,y) be the Rutherford polynomial of a matroid pair
M = (M1,M2). Let R(Mi ;x,y) be the rank polynomial of Mi , for i = 1,2.
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(a) G(M ;v,x,1) = (1+v)ρ1ER(M1;
x

1+v
,1+v).

(b) G(M ;v,1,y) = (1+v)|E|−ρ2ER(M2;1+v,
y

1+v
).

(c) If M1 = M2 = M, then G(M ;0,x,y) = R(M;x,y).

(d) If M1 = F∗n and M2 = M, then G(M ;0,x,y) = R(M;1,y).

(e) If M2 = Fn and M1 = M, then G(M ;0,x,y) = R(M;x,1).

However, the fact that a chain of binary codes does not even determine the
symmetrised weight enumerator (or Lee weight enumerator) of the corresponding
Z4-linear code shows that we cannot obtain these weight enumerators from the
Rutherford polynomial by specialisation.

It seems likely that the Rutherford polynomial can be extended to chains of
arbitrary length of codes over arbitrary fields.

Exercises

4.1. Describe the matroids corresponding to the Hamming code of Chapter 1 and
its dual.

4.2. Show that the matroid associated to a linear code is uniform if and only if
the code is MDS. (See Exercise 1.3.)

4.3. Find an example of two matroidsM1 andM2 on a setE such that every
independent set inM1 is independent inM2 but (M1,M2) is not a matroid pair.

4.4. Find an example of two matroidsM1 andM2 on a setE such that bothM1

andM2 are representable overZ2 and(M1,M2) is a matroid pair but not a matroid
chain overZ2.

4.5. Let(M1,M2) be a matroid pair onE, and letρi be the rank function ofMi

for i = 1,2. Prove that

0≤ ρ2A−ρ1A≤ ρ2E−ρ1E

for any setA⊆ E.

4.6. Calculate the weight enumerator of the code associated with a representation
of U3,n over GF(q). Find examples withn = q+1.



CHAPTER 5

Permutation groups

In the second half of the notes, we introduce the last strand, permutation groups,
and braid it together with codes and matroids.

Traditionally, permutation groups arise as automorphism groups of algebraic
or combinatorial structures. The procedure here will be a bit different: the groups
will be built from the algebraic structure of codes, and matroids will arise from
the fixed point structure of permutation groups.

Before this, we give a brief account of permutation groups and their associated
cycle index polynomials.

The treatment here is somewhat brief, since full accounts are available else-
where. In addition to the classic treatments by Wielandt [32] and Passman [26],
there are more recent books by Cameron [4] and Dixon and Mortimer [13].

5.1 Orbits and stabiliser

The set of all permutations of a setΩ is called thesymmetric groupon Ω.
Usually we takeΩ to be the set{1, . . . ,n}, and denote the symmetric group bySn,
for some positive integern. The order ofSn is n!.

The convention of usingΩ for the permutation domain and lower-case Greek
letters for its elements was established by Wielandt in his book. We also use the
convention that permutations act on the right, so that the image ofα under the
permutationg is denoted byαg. Thus, the result of applying the permutationg
followed byh is writtengh, and we haveα(gh) = (αg)h.

As is well known, any permutation can be written as a product of disjoint
cycles: we call this thecycle decomposition. For example, the permutation of

33
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{1, . . . ,5} which maps 1 to 4, 2 to 5, 3 to 1, 4 to 3, and 5 to 2 has cycle decompo-
sition (1,4,3)(2,5). The cycle decomposition is unique up to writing the cycles
in a different order and starting them at different points: for example,

(1,4,3)(2,5) = (5,2)(3,1,4).

If we represent the permutationg as a function digraph, with edges(α,αg) for all
α ∈ Ω, the digraph has in-degree and out-degree 1 and so is a disjoint union of
cycles; this is precisely the cycle decomposition.

The generalisation to permutation groups is theorbit decomposition, which
we now discuss.

A permutation group Gon a setΩ is a subgroup of the symmetric group on
Ω; that is, it is a set of permutations closed under composition and inversion and
containing the identity permutation. Thedegreeof the permutation groupG is
|Ω|.

Let G be a permutation group onΩ. Define a relation∼G on Ω by the rule
that α ∼G β if there existsg ∈ G with αg = β. It is easy to see that∼G is an
equivalence relation; the reflexive, symmetric and transitive laws follow from the
identity, inverse, and composition properties ofG. The equivalence classes of∼G

are called theorbits of G,, andG is said to betransitiveif there is a single orbit,
intransitiveotherwise.

Note thatG is transitive if and only if, for allα,β ∈ Ω, there existsg ∈ G
which mapsα to β.

Thestabiliserof a pointα ∈Ω is the subgroup

Gα = {g∈G : αg = α}.

Now, if β is any point ofΩ, then the set

X(α,β) = {g∈G; : αg = β}

is either empty (ifα and β lie in different orbits) or a right coset ofGα. We
see that the number of right cosets is equal to the size of the orbit. This is the
Orbit-Stabiliser Theorem:

Theorem 5.1 Let ∆ be an orbit of the permutation group G, andα a point of∆.
Then

|Gα| · |∆|= |G|.

But this is more than a counting result. Suppose that the groupG acts as a
permutation group on two different setsΩ1 andΩ2. We say that the actions are
isomorphicif there is a bijectionθ : Ω1→Ω2 such that

(αθ)g = (αg)θ
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for all α ∈ Ω1 andg ∈ G. In other words, if we identifyΩ1 andΩ2 according
to the bijectionθ, then the permutations corresponding to any group element are
identical.

Now let H be a subgroup ofG. The coset space G: H is defined to be the
set of right cosets ofH in G. Now G acts as a permutation group onG : H by
the following rule: group elementg acts as the permutationHx 7→ Hxg. (This is
clearly well defined, independent of the choice of coset representativex.) Now
the refined version of the Orbit-Stabiliser Theorem states:

Theorem 5.2 Let ∆ be an orbit of the permutation group G, andα a point of∆.
Then the actions of G on∆ and on the coset space G: Gα are isomorphic.

The isomorphism is given byβθ = X(α,β) in the earlier notation. The proof
is an exercise.

It can also be shown that two coset spacesG : H andG : K provide isomorphic
actions ofG if and only if the subgroupsH andK are conjugate, that is,K =
g−1Hg for someg∈G.

Thus, to classify the transitive actions ofG up to isomorphism, we list a set of
representatives of the conjugacy classes of subgroups, and form the coset spaces.
To classify all permutation actions, we take arbitrary disjoint unions of the transi-
tive ones.

A permutation groupG is semiregularif the stabiliser of any point is the iden-
tity. It is regular if it is semiregular and transitive. By Theorem 5.2, any regular
action ofG is isomorphic to the action ofG on itself by right multiplication (with
Ω = G, whereg∈G induces the permutationx 7→ xg).

Let G be a permutation group onΩ. Suppose that the set∆ ⊆ Ω is invariant
underG (that is, fixed setwise – this happens if and only if∆ is a union of orbits
of G). ThenG∆ denotes the group of permutations of∆ induced by elements of
G. It is a homomorphic image ofG; the kernel of the homomorphism is the set of
permutations which fix every point in∆.

Now suppose that(∆i : i ∈ I) are the orbits ofG. For eachi, let Gi = G∆i . The
permutation groupsGi are called thetransitive constituentsof G.

ThenG is a subgroup of theCartesian product∏i∈I Gi of the subgroupsGi .
Since we are only concerned with finite permutation groups, the setI is finite, and
the Cartesian product is more usually referred to as thedirect product, and written

G1×·· ·×Gr ,

whereI = {1, . . . , r}. Note thatG may not be equal to the direct product! In this
sense, the orbit decomposition allows many questions about permutation groups
to be “reduced” to questions about transitive groups, but there is a difficulty go-
ing back: a permutation group is not uniquely determined by its transitive con-
stituents.
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Now let ∆ be any subset ofΩ. ThenG∆ denotes thesetwise stabiliserof
∆, the set of permutations which map the set∆ to itself; andG(∆) denotes the
pointwise stabiliserof ∆, the set of permutations which fix every point ofΩ, so
thatG(∆) =

⋂
α∈∆ Gα).

ThusG∆
∆ is the permutation group induced on∆ by its setwise stabiliser inG,

and is isomorphic toG∆/G(∆). This group will be important in the final chapter.
To avoid the double subscript, we denote it byG[∆].

We conclude this section with another piece of terminology. LetGi be a per-
mutation group onΩi for i = 1,2. We say thatG1 and G2 are isomorphic as
permutation groupsif there is a bijectionθ : Ω1→ Ω2 and a group isomorphism
φ : G1→G2 such that

(αg)θ = (αθ)(gφ)

for all α∈Ω1 andg∈G1. If two actions of the same group are isomorphic accord-
ing to the earlier definition, then the induced permutation groups are isomorphic
as permutation groups; but the converse is false, since we now permit an automor-
phism ofG.

For example, letG = C2×C2 be generated by elementsa andb. The actions
given by

a = (1,2), b = (3,4)

and
a = (1,2)(3,4), b = (3,4)

are not isomorphic, but their images are isomorphic (indeed, identical) as permu-
tation groups.

5.2 The Orbit-Counting Lemma

The Orbit-Counting Lemma (incorrectly called Burnside’s Lemma in much of
the literature of combinatorial enumeration) is a simple relationship between fixed
points and orbits of a permutation group, which will be crucial in what follows.

Let G be a permutation group onΩ. For g∈ G, let fix(g) denote the number
of points ofΩ fixed byg. Now the Orbit-Counting Lemma states:

Theorem 5.3 The number of orbits of a permutation group G is equal to the av-
erage number of fixed points of its elements: that is, the number of orbits is

1
|G| ∑g∈G

fix(g).
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Proof Construct a bipartite graph as follows. The vertex set isΩ∪G; there is an
edge fromα ∈Ω to g∈G if and only if g fixesα.

To prove the theorem, we count the edges of the graph in two different ways.
Clearly the vertexg lies on fix(g) edges, and so the number of edges is

∑
g∈G

fix(g).

On the other hand, the vertexα lies on|Gα| edges. By the Orbit-Stabiliser Theo-
rem 5.1, if∆ is the orbit containingα, then

|Gα| · |∆|= |G|,

so the number of edges containing a vertex in∆ is equal to|G|, and the total
number of edges is|G| times the number of orbits.

Equating these two numbers gives the result.

For example, the symmetric groupS4 contains one element with four fixed
points; six elements (the transpositions) with two fixed points; eight elements (the
3-cycles) with one fixed point; and nine elements (the 4-cycles and the double
transpositions) with no fixed points. So the number of orbits is

1
24

(1·4+6·2+8·1+9·0) = 1.

Corollary 5.4 If G is a transitive permutation group of degree n> 1, then G
contains an element with no fixed points.

Proof The average number of fixed points is one; the identity fixes more than
one point; so some element fixes fewer than one.

This result is due to Jordan. Despite its simplicity, it has a variety of applica-
tions in number theory and topology: a recent paper of Serre [28] describes some
of these.

In combinatorial enumeration, it is often the case that being able to count the
members of a set and being able to choose one at random are closely related. This
principle applies to the Orbit-Counting Lemma, as observed by Mark Jerrum [20].

Consider the following Markov chain, defined on the elements ofΩ. In one
step, we move from a pointα to a randomly chosen neighbour ofα in the bipartite
graph of Theorem 5.3 (that is, an elementg∈Gα), and then to a randomly chosen
neighbourβ of g (that is, a fixed point ofg).
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Since it is possible to move from any pointα to any pointβ in a single step
(via the identity ofG), the chain is irreducible and aperiodic; so there is a unique
limiting distribution, to which it converges from any initial distribution. This dis-
tribution is easily seen to have the property that the probability ofα is inversely
proportional to the size of the orbit containingα; in other words, the limiting
distribution is uniform on orbits.

It is important to know the mixing time of such a Markov chain, that is, how
rapidly it approaches its limit, and in particular to characterise the permutation
groups for which the chain is rapidly mixing. Very little is known about this!

5.3 Bases and strong generating sets

In practice, one needs a computer to investigate permutation groups. Even
groups of moderate degree can be very large, and finding interesting subgroups
by hand if we are given a set of permutations generating the group is a daunting
task. On the other hand, there are very efficient algorithms for computing with
permutation groups, and it is possible to study groups with degrees in the tens of
thousands without too much trouble.

In this section, we take the first steps in computational permutation group
theory. We are given a setS of permutations which generate a subgroupG of
Sn, and we want to be able to do such things as find the order ofG, choose a
random element ofG (from the uniform distribution), or test an element ofSn for
membership inG.

The first thing we can do is to find the orbits ofG. For consider the directed
graph onΩ with edges(α,αs) for all α ∈ Ω ands∈ S. The orbits are precisely
the connected components of this graph. Moreover, for each point in the orbit of
α, we can find awitness, an element ofG (in the form of a word in the generators
S) mappingα to β. These witnesses form a setX of coset representatives forGα
in G.

Next, a lemma of Schreier shows that, if generators of a group and coset rep-
resentatives for a subgroup are known, then generators for the subgroup can be
computed.

Now we apply this procedure recursively until the group is trivial. At this
point, what we have found is the following:

(a) abasefor G; that is, a sequence(α1, . . . ,αr) of points ofΩ whose pointwise
stabiliser is the identity;

(b) for i = 1, . . . , r, a setXi of coset representatives forGi−1 in Gi , whereGi is
the pointwise stabiliser of(α1, . . . ,αi).

Now this information enables us to settle the above questions. We begin with
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the membership test. Suppose that a permutationg∈Sn is given. IfG is the trivial
group, we can decide immediately whetherg∈G. Suppose not. We computeα1g.
If this is not in theG-orbit of α1, theng /∈ G, and we are done. Otherwise, there
is a uniquex1 ∈ X1 such thatα1g = α1x1. Now gx−1

1 fixesα1, and we apply the
test recursively to decide whethergx−1

1 ∈ G1; for we haveg ∈ G if and only if
gx−1

1 ∈G1 in this case.
If the test succeeds, then we will eventually find that

gx−1
1 · · ·x

−1
r = 1,

that is,g = xr · · ·x1, with xi ∈ Xi for i = 1, . . . , r. This expression is unique, so

|G|= |Xr | · · · |X1|,

and we have found the order ofG. This can also be seen by noting that|Xi | =
|Gi−1 : Gi |, and of course

|G|= |G0 : G1| · · · |Gr−1 : Gr |,

sinceG0 = G andGr = 1.
The equation

G = Xr · · ·X1

shows that the union of the setsX1, . . . ,Xr generatesG; similarly, for anyi, the set
Xi+1∪·· ·∪Xr generatesGi . The setX = X1∪·· ·∪Xr is called astrong generating
setfor G.

The unique representation also shows that if we choose elements uniformly
and independently at random fromXr , . . . ,X1 and multiply them, we obtain a uni-
form random element ofG.

We will have more to say about bases later, so we pursue the subject a little
further here. First, we note another property of bases relevant to computational
group theory. Any elementg∈G is determined uniquely by the image of a baseB
underg; for, if Bg= Bh, thenBgh−1 = 1, so thatgh−1 = 1 (by definition of a base),
andg = h. Thus, it is of interest to find the smallest possible base. Unfortunately,
Kenneth Blaha [1] showed that this problem is NP-complete in general; but there
are some things we can say.

When we are choosing a base, there is clearly no point in choosing a pointαi

which is fixed by the stabiliser of its predecessors. So we call a baseirredundant
if no base point is fixed by the stabiliser of its predecessors. Usually we consider
only irredundant bases.

Unlike vector spaces, permutation groups can have bases of different cardinal-
ities. Consider, for example, the groupCn

2, acting withn+1 orbits as follows: for



40 Chapter 5. Permutation groups

eachi ≤ n, an orbitOi of size 2 on which all generators except theith act trivially;
and an orbitO0 of length 2n on which the group acts regularly. Chooseαi ∈ Oi

for eachi. Then, for 1≤ i ≤ n, there is an irredundant base of sizei of the form
(α1, . . . ,αi−1,α0).

On the other hand, there are some restrictions:

Proposition 5.5 The number r of elements in an irredundant base for a permuta-
tion group G of degree n satisfies

log|G|/ logn≤ r ≤ log|G|/ log2.

Proof We have
|G|= |G0 : G1| · · · |Gr−1 : Gr |.

Each index|Gi−1 : Gi | is at least 2 (since the base is irredundant) and at mostn
(since it is the length of an orbit ofGi−1). So

2r ≤ |G| ≤ nr ,

and we are done.

Our earlier example shows that in general no substantial improvement can be
made.

5.4 Primitivity and multiple transitivity

Some transitive groups can be further “reduced”.
Let G be a transitive permutation group onΩ. A G-congruenceis an equiv-

alence relation onΩ which is preserved byG. Its equivalence classes form a
partition of Ω whose parts are permuted among themselves byG. The set of
equivalence classes is called asystem of imprimitivity, and the classes areblocks
of imprimitivity.

A congruence (or the associated system or blocks of imprimitivity) is called
trivial if either it is the relation of equality, or it is the “universal” relationΩ×
Ω. Every group preserves the trivial congruences. If there is a non-trivialG-
congruence, thenG is said to beimprimitive; otherwise it isprimitive.

Note that we have defined these terms only for transitive permutation groups
(see Exercise 5.5). Thus, all the equivalence classes of aG-congruence have the
same size. In particular, any transitive permutation group of prime degree is prim-
itive.

If G is imprimitive, letSbe a system of imprimitivity, andB one of its blocks.
FromG, we construct two smaller permutation groups:
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(a)K = GS, the group of permutations ofS induced byG;

(b) H = GB
B = G[B], the group of permutations ofB induced by its setwise sta-

biliser inG.

Each of these groups is transitive, and it can be shown thatG is isomorphic to a
subgroup of thewreath product HWrK. Continuing this reduction ifH or K is
imprimitive, we end up with a sequence of primitive groups called theprimitive
componentsof G.

The next result gives some basic properties of primitive groups.

Proposition 5.6 (a) A transitive permutation group G is primitive if and only if
Gα is a maximal subgroup of G.

(b) Let N be a non-trivial normal subgroup of the transitive group G. Then
the orbits of N form a system of imprimitivity for G. In particular, if G is
primitive, then any non-trivial normal subgroup of G is transitive.

Let t be a positive integer, at most|Ω|. The permutation groupG on Ω is said
to bet-transitiveif we can map anyt-tuple of distinct elements ofΩ to any other
sucht-tuple by some element ofG. We say thatG is multiply transitiveif it is
t-transitive for somet > 1.

The problem of determining the multiply transitive permutation groups goes
back to the origins of group theory in the nineteenth century: Galois knew of the
existence of 2-transitive groups PSL(2, p), and Mathieu constructed 5-transitive
groupsM12 and M24. The condition oft-transitivity becomes stronger ast in-
creases. The symmetric groupSn is n-transitive, and the alternating groupAn is
(n−2)-transitive.

However, a definitive result had to wait for the Classification of Finite Sim-
ple Groups (CFSG), as we will see in the next section. Using this classification,
all multiply transitive groups have been determined. In particular, the only 5-
transitive groups apart from symmetric and alternating groups are the two Mathieu
groups mentioned above.

5.5 Modern permutation group theory

The title of this section is taken from a talk by Michael Aschbacher to the
London Mathematical Society in 2001. Aschbacher’s theme was that many ques-
tions about finite permutation groups can be reduced to questions about almost
simple groups (where a group is said to bealmost simpleif it is an extension of a
non-abelian simple group by a subgroup of its outer automorphism group). Now
the finite simple groups have been classified (though a complete proof has not yet
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been published, so the proof of this claim is not open to scrutiny), and detailed
properties of the known simple groups have been worked out, so such questions
can often be settled.

The Classification of Finite Simple Groups, which we abbreviate to CFSG, is
an enormously complicated theorem; the first complete published proof will cover
many thousands of pages. So for several reasons it is prudent to label clearly a
result proved using CFSG. See Gorenstein [15] for an introduction to the finite
simple groups and to the proof of CFSG.

The reduction works as follows. We have seen a reduction from arbitrary
permutation groups to transitive ones, and from transitive groups to primitive ones.
Now let G be a primitive permutation group onΩ. We say thatG is non-basicif
there is an identification ofΩ with Fn for some setF and some positive integern,
such that the following is true:

each element ofG has the form

(a1, . . . ,an) 7→ (a1hg1, . . . ,anhgn),

whereh is a permutation of{1, . . . ,n}, andg1, . . . ,gn are permutations
of F .

In other words,G preserves a non-trivial “power structure” onΩ. We say thatG
is basicif it is not non-basic.

This definition is similar in structure to that of transitive and primitive groups:
a permutation group is transitive if it preserves no non-trivial subset ofΩ, and a
transitive group is primitive if it preserves no non-trivial partition.

Now part of the O’Nan–Scott Theorem is the following assertion:

Theorem 5.7 A basic primitive permutation group is affine, diagonal, or almost
simple.

Here a permutation group isaffineif (up to re-labelling the setΩ) it is a sub-
group of the group

{v 7→ vA+c : A∈GL(V),c∈V}

of permutations of the finite vector spaceV and contains all the translationsv 7→
v+ c. A diagonalgroup has a normal subgroupTn, whereT is a non-abelian
simple group andn≥ 2, acting on the set of right cosets of thediagonal subgroup

D = {(t, t, . . . , t) : t ∈ T}.

Almost simple groups were defined earlier.
Now we consider what kind of information about the finite simple groups is

needed to understand basic permutation groups.
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(a) If G is affine, thenG is the semi-direct product of the translation group ofV by
an irreducible subgroupH of GL(V). A similar reduction theorem, due to
Aschbacher, for irreducible linear groups shows that we can further reduce
to the case where the centreZ(H) of H consists of scalar transformations
andH/Z(H) is almost simple. Typically we now require properties about
the irreducible projective representations of almost simple groups.

(b) If G is diagonal, then its properties can usually be derived from routine prop-
erties of simple groups.

(c) In the case whereG is almost simple, we need to know about primitive permu-
tation actions (equivalently, maximal subgroups) of almost simple groups.

Many results about primitive permutation groups have been proved by this
method. We restrict ourselves to two applications. The first application is the
classification of the 2-transitive groups. In this case, a very simple form of the
O’Nan–Scott theorem (proved originally by Burnside) shows that a 2-transitive
group is either affine or almost simple. We refer to Cameron [4] and Dixon and
Mortimer [13] for the list of 2-transitive groups and for further details of the argu-
ment.

The second, more recent result is a composite theorem about almost simple
primitive groups. The first part is due to Cameron and Kantor [8], the second to
Liebeck and Shalev [21].

Theorem 5.8 (CFSG) There are absolute constants c1,c2 with the following prop-
erties. Let G be an almost simple primitive permutation group of degree n. Sup-
pose that G is not one of the following:

(i) a symmetric or alternating group Sm or Am, acting on the set of k-element
subsets of{1, . . . ,m} (with n=

(m
k

)
);

(ii) a symmetric or alternating group Sm or Am, acting on the set of partitions of
{1, . . . ,m} into l parts of size k, where kl= m;

(iii) a classical group, acting on an orbit of subspaces of its natural module.

Then

(a) |G| ≤ nc1;

(b) G has a base of size at most c2.
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This theorem is in many ways typical of applications of CFSG to permutation
group theory: a group is either “known” (in some more-or-less precise sense) or
“small”.

We saw that the size of an irredundant base for a permutation groupG of
degreen lies between log|G|/ logn and log|G|/ log2. For primitive groups, Laci
Pyber has conjectured that the lower bound is approximately correct; more specif-
ically, the minimal base size is at mostclog|G|/ logn, for some constantc. Part
(b) of the above theorem is a result in the direction of this conjecture.

Exercises

5.1. Show that the number of ways of writing the cycle decomposition of a
permutationg∈ Sn is equal to the order of the centraliser ofg in Sn (the subgroup
of elements commuting withg). Find a formula for this number.

5.2. The Orbit-counting Lemma asserts that the expected value of the number
of fixed points of a random element of the permutation groupG is equal to the
number of orbits ofG. What is the variance of this number?

5.3. LetG be a transitive permutation group onΩ. Let B be a non-empty subset
of Ω with the property that, for allg∈G, eitherBg= B or B∩Bg= /0. Prove that
B is a block of imprimitivity.

5.4. Suppose that|Ω| > 2, and letG be a permutation group onΩ which pre-
serves no non-trivial equivalence relation. Prove thatG is transitive (and hence
primitive).

5.5. Prove Proposition 5.6. Is it true that every block of imprimitivity for a
transitive groupG is an orbit of a normal subgroup ofG?

5.6. Find a base and strong generating set for the permutation group on the set
{1,2,3,4,5} generated bys = (1,2)(4,5) and t = (2,3)(4,5). Hence find the
order of this group, and determine whether it contains(1,2,3)(4,5).

5.7. Prove that the permutation groupG, of degree at least 2, is 2-transitive if and
only if

1
|G| ∑g∈G

fix(g)2 = 2.

Generalise.

5.8. Find all systems of imprimitivity forG = S4 acting on the setΩ of ordered
pairs of distinct elements of{1,2,3,4}. Hence show that the primitive compo-
nents of a transitive group are not uniquely determined.
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5.9. A permutation groupG is sharply t-transitiveif, given any two orderedt-
tuples of distinct elements ofΩ, there is auniqueelement ofG carrying the first
pair to the second.

Prove that, in a sharply 2-transitive groupG, the identity and the fixed-point-
free permutations form a normal subgroupN. Show further thatN is elementary
abelian, and deduce that the degree ofG is a prime power. Deduce that, ift ≥ 2,
then the degree of a sharplyt-transitive group is of the formpr + t−2 for some
prime powerpr .

Construct a sharply 2-transitive group of degreepr for any prime powerpr .

5.10. Prove the following strengthening of Jordan’s Theorem (Corollary 5.4), due
to Cameron and Cohen [6]:

Let G be a transitive permutation group of degreen> 1. Then at least
a proportion 1/n of the elements ofG are fixed-point-free. Equality
holds if and only ifG is sharply 2-transitive.

5.11. Prove that the permutations(1,2)(3,4)(5,6)(7,8)(9,10)(11,12) and
(1,2,3)(4,5,7)(8,9,11) generate a sharply 5-transitive group of degree 12. (This
is theMathieu group M12.)
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CHAPTER 6

Cycle index

The cycle index is a polynomial associated with a permutation group. Unlike the
polynomials we considered earlier for codes and matroid, it has many variables
(possibly as many as the degree of the permutation group). To clarify the process
of substituting into a multivariate polynomialF in indeterminatess1, . . . ,sn, we
use the notation

F(si ← ti)

for the result of substituting the termti for si for i = 1, . . . ,n.
The cycle index is basic in the theory of combinatorial enumeration pioneered

by Redfield and Ṕolya. We refer to Harary and Palmer [18] for a more detailed
account.

6.1 Definition

Let G be a permutation group on a setΩ, where|Ω| = n. For each element
g∈ G, we can decompose the permutationg into a product of disjoint cycles; let
ci(g) be the number ofi-cycles occurring in this decomposition. Now thecycle
indexof G is the polynomialZ(G) in indeterminatess1, . . . ,sn given by

Z(G) =
1
|G| ∑g∈G

sc1(g)
1 · · ·scn(g)

n .

This can be regarded as a multivariate probability generating function for the cycle
structure of a random element ofG (chosen from the uniform distribution). In
particular,

PG(x) = Z(G)(s1← x,si ← 1 for i > 1)

47
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is the probability generating function for the number of fixed points of a random
element ofG, so that substitutingx← 0 gives the proportion of derangements
in G. In other words,

PG(x) =
1
|G| ∑g∈G

xc1(g).

The numberc1(g) is the number of fixed points ofg, which we called fix(g)
in Chapter 5; the functiong 7→ c1(g) is thepermutation characterof G.

Let us work two examples. First, letG be the symmetric group of degree 4.
Each partition of 4 is the cycle type of some element ofG, and it is not hard to
count the number of elements corresponding to each partition:

Partition 4 31 22 211 1111
Number 6 8 3 6 1

So

Z(G) =
1
24

(6s4 +8s1s3 +3s2
2 +6s2s2

1 +s4
1).

Now let us take the same groupS4 acting on the set of 2-element subsets
of {1,2,3,4}. We simply need to find for each shape of permutation the cycle
structure on the set of pairs; we obtain the following:

On points 4 31 22 211 1111
On pairs 42 33 2211 2211 111111

So

Z(G) =
1
24

(6s2s4 +8s2
3 +9s2

1s2
2 +s6

1).

6.2 The cycle index theorem

The cycle index is an important tool in combinatorial enumeration. Typically,
we have a collection of “figures” decorating some set (e.g. colours of the faces of
a regular polyhedron), and we are interested in counting the number of configura-
tions up to some notion of symmetry (given by a group of automorphisms of the
set). More formally, letA be a set of “figures”, each of which has a non-negative
integer “weight”. The number of figures may be infinite, but we assume that there
are only finitely many figures of any given weight. Thefigure-counting seriesof
A is the formal power series

A(t) = ∑
n≥0

ant
n,

wherean is the number of figures of weightn; that is, it is just the generating
function for figures by weight.
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Now let Ω be a finite set. A functionf : Ω→ A has aweightgiven by

wt( f ) = ∑
α∈Ω

wt( f (α)).

If G is a permutation group onΩ, then there is a natural action ofG on the set of
functions, given by the rule

f g(α) = f (αg−1).

(The inverse is required to make this a good definition of an action.) Clearly
this action preserves the weight of a function. Thefunction-counting seriesis the
formal power series

B(t) = ∑
n≥0

bnt
n,

wherebn is the number ofG-orbits on the set of functions of weightn. Now the
Cycle Index Theoremstates:

Theorem 6.1 With the above notation,

B(t) = Z(G;si ← A(t i)).

Proof Here is a sketch of the proof: fill in the details as an exercise.
The generating function for all functions, disregarding the group action, is

A(t)n, since the coefficient oftm in A(t)n is equal to the sum ofai1 · · ·ain over all
expressionsi1 + · · ·+ in = m. Note thatA(t)n = sn

1(s1← A(t)), andsn
1 is the cycle

index of the trivial group.

For any permutationg, let z(g) = sc1(g)
1 · · ·scn(g)

n . A function is fixed by the
permutationg if and only if it is constant on each cycle in the cycle decomposition
of g. The weight of such a function is the sum of the products of cycle length and
weight of the figure at a point of the cycle. Hence the generating function for the
number of functions fixed byg is

A(t)c1(g) · · ·A(tn)cn(g) = z(g;si ← A(t i)).

Now the result follows from the Orbit-Counting Lemma (Theorem 5.3) and
the definition of cycle index, on averaging overG.

Here is a typical application of the theorem. How many graphs are there on 4
vertices with any given number (from 0 to 6) of edges, up to isomorphism? We
takeΩ to be the set of all 2-elements of the vertex set{1,2,3,4}. To each element
{i, j} of Ω we attach either an edge or a non-edge. Taking edges to have weight 1
and non-edges to have weight 0, the weight of the function is just the total number
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of edges in the corresponding graph. Moreover, two graphs are isomorphic if
and only if there is a permutation of{1,2,3,4} carrying the first function to the
second. So, taking the figure-counting series to beA(t) = 1+ t, and the group
S4 acting on 2-sets (whose cycle index we calculated in the previous section), we
find the generating function for graphs on four vertices (enumerated by edges) to
be

1
24

(6(1+ t2)(1+ t4)+8(1+ t3)2 +9(1+ t)2(1+ t2)2 +(1+ t)6)

= 1+ t +2t2 +3t3 +2t4 + t5 + t6.

6.3 Some other counting results

Let G be a permutation group on a setΩ. Many counting problems related
to G, other than those described in the Cycle Index Theorem, can be solved by
specialisations of the cycle index. Here are some examples.

(a) LetFn be the number of orbits ofG acting on the set of alln-tuples of distinct
elements ofΩ. We consider theexponential generating function

FG(t) = ∑
n≥0

Fntn

n!

for the sequence(Fn). Now we have

FG(t) = Z(G)(s1← x+1,si ← 1 for i > 1).

(b) If instead we want the total numberF∗n of orbits ofG onn-tuples (with repeats
allowed), then it can be calculated as

F∗n =
n

∑
k=1

S(n,k)Fk,

whereS(n,k) is theStirling number of the second kind, the number of par-
titions of ann-element set intok parts.

(c) Let fn be the number of orbits ofG acting on the set of alln-element subsets
of Ω. Then theordinary generating function

fG(t) = ∑
n≥0

fnt
n

is given by the specialisation

fG(t) = Z(G)(si ← t i +1).
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(d) TheParker vectorof G is the vector(p1, p2, . . .), wherepk is the number of
orbits ofG on the set ofk-cycles occurring in the cycle decompositions of its
elements (andG acts on thesek-cycles by conjugation). The Parker vector
was introduced by Parker in the context of computational Galois theory, and
was studied by Gewurz [14]. It is given by

pk = k[(∂/∂sk)Z(G)](si ← 1).

Many of these sequences play an important role in combinatorial enumeration.
See [3] for more details about (a)–(c).

6.4 The Shift Theorem

Let G be a permutation group onΩ. For any subset∆ of Ω, we definedG[∆]
to be the group of permutations of∆ induced by elements ofG fixing ∆ pointwise.
Thus,G[∆] is the quotient of the setwise stabiliser of∆ by its pointwise stabiliser.

We let P Ω/G denote the set ofG-orbits on the power set ofΩ; by abuse of
notation, this will also be used for a set of orbit representatives.

Now the following result (theShift Theorem) holds:

Theorem 6.2 For any finite permutation group G onΩ,

∑
∆∈P Ω/G

Z(G[∆]) = Z(G;si ← si +1).

Proof Rather than a proof of this theorem (which is just elementary but compli-
cated double counting), I will try to explain why it has to hold. (This explana-
tion would be a proof if we knew that the cycle index is the unique polynomial
for which the Cycle Index Theorem holds.) Suppose that we have a setA∗ of
figures containing one distinguished figure∗ of weight zero. LetA∗(t) be its
figure-counting series, andA(t) the figure-counting series ofA = A∗ \{∗}. Then
A(t) = A∗(t)−1, and so the function-counting series is

B(t) = Z(G;si ← A(t i)+1).

Now this can be calculated in another way. Any functionf is determined by
giving the set∆ = {α ∈Ω : f (α) 6= ∗} and then the functionf ′ : ∆→ A given by
its restriction to∆. Two functions lie in the same orbit ofG if and only if

(a) the sets∆ lie in the same orbit ofG; and
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(b) assuming that we have translated by an element ofG to make these two sets
equal, the functionsf ′ lie in the same orbit ofG[∆].

So the function-counting series is given by

B(t) = ∑
∆∈P Ω/G

Z(G[∆],si ← A(t i)).

So the two polynomials in the theorem yield the same result for every substitution
si ← A(t i), for any figure-counting seriesA(t).

This theorem may not seem to have very much use as it stands. One use to
which it was put in [3] was to extend the definition of cycle index to certain infi-
nite permutation groups, namely, those which areoligomorphic. (A permutation
group is said to be oligomorphic if the numberfn of orbits onn-element subsets
is finite for all natural numbersn.) The point is that the cycle index of an infinite
permutation group cannot be defined directly, since permutations may have in-
finitely many cycles of some length; but the right-hand side of the Shift Theorem
is well-defined for any oligomorphic group, if we interpretP Ω/G to be a set of
representatives for the orbits onfinitesets.

Our interest in the theorem is a bit different. A corollary of it is the follow-
ing result, first observed by Bostonet al. [2]. Recall thatPG(x) is the probability
generating function for fixed points of random elements ofG, while FG(t) is the
exponential generating function for the number of orbits ofG on n-tuples of dis-
tinct elements.

Corollary 6.3 For any finite permutation group G, we have

FG(t) = PG(t +1).

Proof We know that

PG(x) = Z(G;s1← x,si ← 1 for i > 1).

Also, a set∆ of cardinalityn can be labelled inn! different ways; these fall into
n!/|G(∆)| orbits underG. So we have

FG(t) = ∑
n≥0

∑
∆∈P Ω/G,|∆|=n

n!
|G(∆)|

tn

n!

= ∑
∆∈P Ω/G

Z(G(∆),s1← t,si ← 0 for i > 1)

= Z(G;s1← t +1,si ← 1 for i > 1),
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the last equality coming from the Shift Theorem. So the result holds.
However, the original proof by Bostonet al. [2] is more direct. Letc1(g)

denote the number of fixed points of the elementg. Then the number of ordered
j-tuples of distinct elements it fixes is

c1(g)(c1(g)−1) · · ·(c1(g)− j +1).

By the Orbit-Counting Lemma,

Fj =
1
|G| ∑g∈G

c1(g)(c1(g)−1) · · ·(c1(g)− j +1).

Multiplying by t j/ j! and reversing the order of summation,

FG(t) =
1
|G| ∑g∈G

n

∑
j=0

(
c1(g)

j

)
t j

=
1
|G| ∑g∈G

(t +1)c1(g)

= PG(t +1),

sincePG(x) = ∑g∈Gxc1(g)/|G|.

Exercises

6.1. Letg be a permutation ofΩ, and suppose that the order ofg is m. Show that

fix(gk) = ∑
l |k

lsl (g)

for all k dividing m, and deduce that

sk(g) =
1
k ∑

l |k
µ(k/l)fix(gl )

for all k dividing m, whereµ is the Möbius function.

6.2. LetG be a permutation group on two setsΩ1 andΩ1. Let fix1(g) and fix2(g)
denote the numbers of fixed points ofG in Ω1 andΩ2 respectively. Suppose that
fix1(g) = fix2(g) for all g∈G. Prove that the cycle indices of the two permutation
groupsGΩ1 andGΩ2 are equal. (Hint: use the preceding exercise.)

6.3. LetG be the group of rotations of a cube.

(a) Prove thatG is isomorphic to the symmetric groupS4.
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(b) Compute the cycle index ofG, acting on the set of faces of the cube.

(c) Is this action ofG isomorphic to the action ofS4 on the set of 2-element
subsets of{1, . . . ,4}?

6.4. Find the generating function for colourings of the faces of the cube red and
blue, enumerated by the number of red faces.

6.5. Use the Cycle Index Theorem to enumerate

(a) graphs on four vertices having at most one loop at each vertex but no multiple
edges, by number of edges;

(b) graphs on four vertices having at most two edges between each pair of distinct
vertices but no loops, by number of edges.

6.6. Verify the Shift Theorem for the permutation groupS4 (in its natural action
on four points).

6.7. Use the Corollary to the Shift Theorem to calulcate the functionPG(x),
whereG is the symmetric groupSn. Deduce that the probability that a random
permutation has no fixed points tends to 1/e asn→ ∞.

6.8. Prove that

∑
n≥0

Z(Sn) = exp

(
∞

∑
i=1

si

i

)
.
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Codes and permutation groups

This chapter describes the link between codes and permutation groups. From any
linear code, we construct a permutation group, whose cycle index is essentially the
weight enumerator of the code. If we start instead with aZ4-linear code, the cycle
index of the group is the symmetrised weight enumerator of the code. Essentially,
we “inflate” each coordinate of the code into a copy of the alphabet.

We begin with a technical result concerning a similar operation of “inflating”
a matroid, which will be relevant in Chapter 8.

7.1 Inflating a matroid

How does the Tutte polynomial of a matroid change if a single element is re-
placed byq parallel elements? This can be described explicitly in terms of the
Tutte polynomials of the deletion and contraction with respect to that element.
However, we need to know what happens ifeveryelement of the matroid is re-
placed by a set ofq parallel elements, and here the answer is much simpler.

To be more precise, we define theq-fold inflation of a matroidM on the setE
to be the matroid on the setE×Q, whereQ is aq-element set, whose independent
sets are as follows: for each independent setA⊆ E, and each functionf : A→
Q, the set{(a, f (a)) : a ∈ A} of E×Q is independent; and these are the only
independent sets.

55
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Proposition 7.1 If Mq is a q-fold inflation of M, then

T(Mq;x,y) =
(

yq−1
y−1

)ρ(E)

T

(
M;

xy−x−y+yq

yq−1
,yq
)
.

Proof To each subsetA⊆ E, there are 2q−1 subsets ofE×Q whose projection
ontoE is A. For any such subset, the rank (inMq) is equal to the rank ofA in Q.
The contribution to the Tutte polynomial from such sets is given by

(x−1)ρE−ρA(y−1)|A|−ρA
|A|

∏
i=1

(
q

∑
j=1

(
q
j

)
(y−1) j−1

)
= (x−1)ρE−ρA(y−1)|A|−ρA(yq−1)|A|

= (x−1)ρE−ρA
(

yq−1
y−1

)ρA

(yq−1)|A|−ρA

=
(

yq−1
y−1

)ρ(E)((x−1)(y−1)
yq−1

)ρE−ρA

(yq−1)|A|−ρA.

Summing overA⊆ E, we obtain

T(Mq;x,y) =
(

yq−1
y−1

)ρE

∑
A⊆E

(
(x−1)(y−1)

yq−1

)ρE−ρA

(yq−1)|A|−ρA

=
(

yq−1
y−1

)ρE

T

(
M;

(x−1)(y−1)
yq−1

+1,yq
)
.

7.2 The connection

Let C be a linear[n,k] code over GF(q). We construct fromC a permutation
group whose cycle index is (more-or-less) the weight enumerator ofC.

The group we construct is the additive group ofC. We let it act on the set
{1, . . . ,n}×GF(q) (a set of cardinalitynq) in the following way: the codeword
(a1, . . . ,an) acts as the permutation

(i,x) 7→ (i,x+ai)

of the set{1, . . . ,n}×GF(q). The groupG(C) is an elementary abelian group of
orderqk.

Proposition 7.2
1
|C|

WC(X,Y) = Z(G;s1← X1/q,sp←Yp/q), where q is a power

of the prime number p.
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Proof Consider the group elementw = (a1, . . . ,an). If ai 6= 0, then theq points
of the form(i,x) for x ∈ GF(q) are all fixed by this element; ifi 6= 0, they are
permuted inq/p cycles of lengthp, each of the form

(i,x) 7→ (i,x+a1) 7→ (i,x+2ai) 7→ · · · 7→ (i,x+ pai) = (i,x),

the last equation holding because GF(q) has characteristicp. So this element

contributessq(n−wt(w))
1 s(q/p)wt(w)

p to the sum in the formula for the cycle index,
andXn−wt(w)Ywt(w) to the weight enumerator ofC. The result follows.

7.3 More generally . . .

The construction of a permutation group from a code does not require the code
to be linear, only for it to form an additive group. So the procedure works much
more generally. What is the coding-theoretic equivalent of the cycle index of the
group?

Proposition 7.3 Let C be an additiveZ4-code, with symmetrised weight enumer-
ator SC. Then

1
|C|

SC(X,Y,Z) = Z(G;s1← X1/4,s2←Y1/2,s4← Z).

Proof The proof is almost identical to that of Proposition 7.2. The permutation
corresponding to the codewordw = (a1, . . . ,an) acts on the set{(i,x) : x∈ Z4} as
four fixed points ifai = 0; as two 2-cycles ifai = 2; or as one 4-cycle ifai = 1 or
ai = 3.

More generally, letC be any subgroup of the direct productA1×A2×·· ·×An,
whereA1, . . . ,An are groups of orderq. ThenC acts on the set

⋃n
i=1Ai (disjoint

union) in the obvious way. The cycle index of the corresponding permutation
group is a kind of generalised symmetrised weight enumerator ofC, a multivariate
polynomial which counts the number of codewords whose projection ontoAi has
ordermi , wherem1, . . . ,mn are divisors ofq. I will not pursue this further.

Exercises

7.1. Calculate the Tutte polynomial of aq-fold expansion of the free matroidFr

and of its dual, and show that both of these matroids are graphic.

Remark The dual of the above matroid was used recently by Alan Sokal [29]
to show that the zeros of chromatic polynomials of planar graphs are dense in the
complex plane outside the circle with centre and radius 1.
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7.2. True or false? A permutation group with cycle index involving onlys1 and
s2 arises asG(C) for some linear code over a field of characteristic 2.

7.3. LetG be an abelian permutation group, havingn orbits each of lengthq.
Show thatG i associated with a code of lengthn over alphabetsA1, . . . ,An, each
of which is an abelian group of orderq.

7.4. Let(vi : i ∈ I) be vectors spanning a vector spaceV overF = GF(q). Ver-
ify the following description of the group of the code associated with the vector
matroid defined by these vectors:

• the domain isΩ = I ×F ;

• the group isV∗;

• the action is given by
f : (i,a) = (i,a+vi f )

for i ∈ I , a∈ F and f ∈V∗.



CHAPTER 8

IBIS groups

In this chapter, we consider a special class of permutation groups introduced by
Cameron and Fon-Der-Flaass [7], which have a very close connection with ma-
troids, in the sense that the bases for the permutation group form the bases of
a matroid. These include the groups we associated with linear codes, for which
the weight enumerator of the code is essentially the same as the cycle index of
the group. They also include thebase-transitive groups, for which the associated
matroids are perfect matroid designs. We conclude by proposing a more general
polynomial which includes both Tutte polynomial and cycle index.

This is surely not the end of the story. For an arbitrary permutation group,
the irredundant bases do not constitute a matroid. Perhaps there is some more
general structure, for which the analogue of the Tutte polynomial of a matroid can
be defined.

This chapter is my reason for preparing these notes. The original version is in
the paper [5].

8.1 Matroids and IBIS families

The basic idea which connects matroids to permutation groups works in much
greater generality.

Let I be an index set, and let(Xi : i ∈ I) be a family of subsets of a setA. For
anyJ⊆ I , let

XJ =
⋂
j∈J

Xj .

By convention, we putX/0 = A.

59



60 Chapter 8. IBIS groups

The subsetJ of I is called abaseif XJ = XI . Moreover, ifJ is ordered, say
J = ( j1, . . . , jk), then we say thatJ is irredundantif, for eachm with 1≤ k, we
have

Xjm 6⊇ X{ j1,..., jm−1},

or, in other words,X{ j1,..., jm} ⊂ X{ j1,..., jm−1}. Note that any ordered base can be
made irredundant by dropping those indices for which this condition fails.

Theorem 8.1 The following conditions on a family(Xi : i ∈ I) of sets are equiva-
lent:

(a) All irredundant bases have the same number of elements.

(b) The irredundant bases are preserved by re-ordering.

(c) The irredundant bases are the bases of a matroid on I.

Proof Suppose that condition (a) holds, and letJ be an (ordered) irredundant
base andJ′ be obtained by re-orderingJ. ClearlyJ′ is a base, so we can obtain an
irredundant base by possibly dropping some elements. But, if any elements are
dropped, then the resulting base would be smaller thanJ. So (b) holds.

Next, suppose that (b) holds. We have to verify the matroid base axioms, that
is, no base contains another, and the exchange axiom holds. The first condition
is clear: if J ⊂ K, we can orderK so that the elements ofJ come first; then the
irredundance ofK is contradicted.

Let J andK be irredundant bases, and suppose thatj ∈ J\K. OrderJ∪K \{ j}
so that the elements ofJ\{ j} come first. This is a base, and so we can obtain an
irredundant base by dropping some elements ofK. We have to show that only
one element ofK remains; so suppose not, and letk be the first element ofK to
appear. Then the ordered sequence consisting of the elements ofJ\ { j}, thenk,
then j is an irredundant base, but if the last two elements are swapped, it is no
longer irredundant, contradicting (b).

Finally, (c) trivially implies (a).

A family of sets satisfying the conditions of this theorem is called anIBIS fam-
ily. (This term is an acronym for “Irredundant Bases of Invariant Size”, reflecting
condition (a).)

Every matroid can be represented by an IBIS family. For letM be a matroid
on E, and letA be the family of hyperplanes ofM. Fore∈ E, let Xe be the set of
hyperplanes containinge. It is now a simple exercise to prove that(Xe : e∈ E) is
an IBIS family, whose associated matroid isM. This is a bit surprising: we think
of the exchange axiom as an essential part of the definition of a matroid; but here
we see that it follows from the constancy of base size.
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8.2 IBIS groups

Let G be a permutation group onΩ, We say thatG is an IBIS permutation
group, or IBIS groupfor short, if the family(Gα : α ∈Ω) of point stabilisers is an
IBIS family of subsets ofG.

Remark The family of point stabilisers in a permutation group is closed under
conjugation. Conversely, if(Gi : i ∈ I) is any IBIS family of subgroups of the
groupG which is closed under conjugation, thenGI is a normal subgroup ofG
andG/GI is isomorphic to an IBIS permutation group. I do not know anything
about IBIS families of subgroups which are not closed under conjugation.

In the case whenG is a permutation group onΩ and(Gα : α∈Ω) is the family
of point stabilisers, we see thatGI is just the pointwise stabiliser ofI , for I ⊆ Ω.
Hence the notions of a base and an irredundant base for the family coincide with
those we met in Chapter 5: abaseis a sequence of points whose stabiliser is the
identity, and it isirredundantif no point in the sequence is fixed by the stabiliser
of its predecessors.

So we can say more succinctly: the permutation groupG on Ω is an IBIS
group if its irredundant bases all have the same cardinality. The irredundant bases
of such a groupG are the bases of a matroid on the setΩ, and clearlyG acts as
a group of automorphisms of this matroid. We define therank of an IBIS group
to be the common cardinality of its irredundant bases (that is, the rank of the
associated matroid).

We now give some examples of IBIS groups. First we note that adding or re-
moving global fixed points of a permutation group doesn’t change the IBIS prop-
erty or the rank; so, where necessary, we assume that there are none. (A global
fixed point of an IBIS group is a loop of the associated matroid.)

Any non-identity semiregular permutation group (one in which the stabiliser
of any point is the identity) is an IBIS group of rank 1, and conversely (apart
from global fixed points). Also, the stabiliser of a point in an IBIS group is an
IBIS group, with rank one less than that of the original. (This is the analogue of
deletion for IBIS groups. There is no natural analogue of contraction.)

Let t be a non-negative integer, and letG be at-transitive permutation group in
which the stabiliser of anyt +1 points is the identity (but the stabiliser oft points
is not the identity. Such groups have had a lot of attention in the literature, though
there appears to be no general name for them. I will call themt-Frobenius groups:
this extends the terminologyFrobenius groupsfor permutation groups satisfying
this condition witht = 1. (A 0-Frobenius group is just a semiregular permutation
group.)

Any t-Frobenius group is an IBIS group, and the associated matroid is the
uniform matroidUt+1,n. The converse is also true:
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Theorem 8.2 Let G be an IBIS group of rank t+ 1, whose associated matroid is
the uniform matroid Ut+1,n. Then G is a t-Frobenius group.

Proof We have to show that such a group ist-transitive. The proof is by induction
on t. Whent = 0, there is nothing to show; we start the induction with the case
t = 1. An exercise in Wielandt’s book [32] shows that, ifG is a permutation group
in which all 2-point stabilisers are trivial, then eitherG is semiregular, orG has
one orbit on which it acts s a Frobenius group, and the action on all other orbits
is regular. In our case, there cannot be any regular orbits, since these would give
bases of cardinality 1. SoG is a Frobenius group.

Now suppose that the result holds fort − 1, and letG be an IBIS group of
rank t + 1 with associated matroidUt+1,n. Then the point stabiliserGα acts on
the remaining points as an IBIS group with matroidUt,n−1. By induction,Gα is
(t−1)-transitive; soG is t-transitive, as required.

For Frobenius groups, we have good information about the structure, based on
Frobenius’ Theorem:

Theorem 8.3 Let G be a Frobenius group. Then the identity and the fixed-point-
free elements form a subgroup N of G, which is regular and normal in G.

The subgroupN is called theFrobenius kernelof G. It follows thatG is the
semidirect product ofN and a point stabiliserGα (which is called aFrobenius
complement). Moreover, Thompson proved that the Frobenius kernel is nilpo-
tent, and Zassenhaus proved that the structure of a Frobenius complement is very
restricted: in particular, it has at most one non-abelian composition factor (this
being isomorphic to the smallest non-abelian simple groupA5). See Passman [26]
for an account of this work (which preceded CFSG).

A 2-Frobenius group is usually called aZassenhaus group. These groups were
completely determined by Zasenhaus, Feit, Ito, and Suzuki (also before CFSG);
such a group either is soluble or has minimal normal subgroup isomorphic to
PSL(2,q) or Sz(q) for some prime powerq. (TheSuzuki groupsSz(q) were dis-
covered by Suzuki in the course of this determination.) An account of this is
also found in Passman [26]. From this, it is possible to determine thet-Frobenius
groups for all larger values oft.

Hence we can conclude that all IBIS groups whose associated matroid isUr,n

for r > 2 are known. However, the situation is very different for matroids which
are inflations of uniform matroids (see Exercise 8.7 and the following remark);
so the standard procedure in matroid theory of collapsing parallel elements to a
single element cannot be applied here.
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Let V be a vector space of dimensionn over the field GF(q). The general
linear group GL(n,q) acts onV as an IBIS group; the associated matroid is the
complete vector matroidV(n,q). To see this, we observe first that the pointwise
stabiliser of any set of vectors fixes pointwise the subspace they span; and then,
given any proper subspace, there is a non-identity linear transformation fixing this
subspace pointwise.

Any subgroup of GL(n,q) with this last property is an IBIS group with the
same associated matroid. One example is thesymplectic group, the group of
linear transformations preserving a non-degenerate alternating bilinear formB on
V. For any hyperplane has the forma⊥ = {v∈V : B(a,v) = 0} for some non-zero
vectora; this hyperplane is fixed pointwise by thesymplectic transvection

x 7→ x+B(x,a)a.

The group we associated with a linear code in the last chapter is an IBIS group.
We discuss this in the next section.

The 5-transitive Mathieu groupM24 is an IBIS group of rank 7. The associated
matroid is not the familiar one whose hyperplanes are the blocks of the associated
Steiner triple systemS(5,8,24) defined in Exercise 3.4 (this matroid has rank 6),
nor is it the matroid associated with the extended Golay code mentioned in Chap-
ter 1 (this matroid has rank 12).

8.3 Groups from codes

Let G(C) be the permutation group that we associated earlier to a[n,k] code
C over GF(q). Recall thatG(C) is the additive group ofC, and acts on the set
{1, . . . ,n}×GF(q) by the rule

(a1, . . . ,an) : (i,x) 7→ (i,x+ai).

This group is an IBIS group of rankk. For a set{(i1,x1), . . . ,(ik,xk)} is a base for
G(C) if and only if the only codeword with zeros in positionsi1, . . . , ik is the zero
word; this is equivalent to saying that the columns of a generator matrix ofC with
indicesi1, . . . , ik are linearly independent; so any irredundant base forG(C) has
rankk.

Now the matroid associated withC has the property that a set{i1, . . . , i l} is
independent if and only if the corresponding columns of a generator matrix for
C are linearly independent. Thus the matroid associated withG(C) is theq-fold
inflation of the matroidM(C) of the codeC.

Proposition 7.1 shows that we can pass betweenT(M(C)) and T(M(C)q).
Greene’s theorem shows that these polynomials determine the weight enumerator
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of C, and hence the cycle index ofG. But the weight enumerator ofC does not
determine the Tutte polynomial ofM(C), since we can have codes with the same
weight enumerator but different Tutte polynomials.

So in this case, the Tutte polynomial carries more information than the cycle
index. Sometimes, however, it is the other way around, as we will see.

8.4 Flat actions

The action of an IBIS group on its associated matroid has the following very
strong property:

(∗) The pointwise stabiliser of any set of points fixes pointwise the flat spanned
by the set.

For let B be a subset ofA minimal with respect to having the same pointwise
stabiliser. A pointα not fixed by the stabiliser ofB can be adjoined toB, and the
result extended to an irredundant base; soα is independent ofB.

An action of a group on a matroid will be calledflat if condition (∗) holds.
Any permutation group has a flat action on the free matroid; and any linear

group (that is, any subgroup of GL(n,q)) has a flat action on the vector matroid
V(n,q).

If a group has a flat action on a perfect matroid design, then an analogue of
the Shift Theorem holds: there is a linear relation between the numbers of orbits
of the group on independent tuples of points and the probabilities that a random
group element has a flat of given rank as its fixed point set. We prove this by
showing that a linear relation holds between numbers of orbits on independent
tuples and numbers of orbits on arbitrary tuples; then we can invoke the original
Shift Theorem corollary.

Theorem 8.4 Let M be aPMD(k0, . . . ,kr), with kr = n. Then there are numbers
b(m, i), for 0 ≤ m≤ n and 0 ≤ i ≤ r, depending only on k0, . . . ,kr , such that
the following is true: If a group G has a flat action on M and has xi orbits on
independent i-tuples and ym orbits on m-tuples of distinct elements, then

ym =
r

∑
i=0

b(m, i)xi

for m= 0, . . . ,n.

Proof By the Orbit-Counting Lemma, it suffices to show that such a linear re-
lation holds between the number of linearly independenti-tuples fixed by an ar-
bitrary elementg∈G and the total number ofm-tuples of distinct elements fixed
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by g. Since the fixed points ofG form a flat, it suffices to establish such a relation
between the numbers of tuples in any flat ofM.

So let F be ans-flat containingxi independenti-tuples andym m-tuples of
distinct elements. Then

xi =
i−1

∏
j=0

(ks−k j) = Xi(ks),

ym =
m−1

∏
t=0

(ks− t) = Ym(ks),

whereXi andYi are polynomials of degreei, independent ofs. It follows immedi-
ately that the theorem holds form≤ r, with (b(m, i)) the transition matrix between
the two sequences of polynomials.

For m> r, let Fm(x) be the unique monic polynomial of degreem having
rootsk0, . . . ,kr and no term inxl for r + 1≤ l ≤ m− 1. UsingFm, we can ex-
presskm

i (and henceYm(ki)) as a linear combination of 1,ki , . . . ,kr
i (and hence of

X0(ki), . . . ,Xr(ki)). This concludes the proof.

Remark It is also interesting to consider the numberszm of orbits ofG on arbi-
trarym-tuples. As we mentioned in Section 6.3, for any permutation groupG, we
have

zm =
m

∑
k=1

S(m,k)yk,

where the numbersS(m,k) are the Stirling numbers of the second kind (so that
S(m,k) is the number of partitions of anm-set withk parts). Hence, by the standard
inversion for the Stirling numbers, we have

ym =
m

∑
k=1

s(m,k)zk,

where the numberss(m,k) are the (signed) Stirling numbers of the first kind (so
that (−1)m−ks(m,k) is the number of permutations of anm-set havingk cycles).
Thus we can easily move back and forth between these two sequences.

In the case of the free matroid, every set is independent, and soxi = yi , and the
matrix (b(m, i)) is the identity.

For the complete vector matroidV(n,q), we have

zm =
m

∑
i=0

[m
i

]
q
xi ,

where the numbers
[m

i

]
q are theGaussian coefficients, so that

[m
i

]
q is the number

of i-flats inV(m,q). Hence the matrix(b(m, i)) is the composite of the matrices
of Gaussian coefficients and Stirling numbers.
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All this can be found in Cameron and Taylor [10].

Remark The exponential generating function fory0, . . . ,yn is PG(x+ 1), by the
corollary to the Shift Theorem. So the numbersx0, . . . ,xr determinePG(x).

Now the number of fixed points of an element ofG is equal to the cardinality
of a flat, that is, in the set{k1, . . . ,kr}; so the other coefficients ofPG(x) are all
zero. If the coefficient ofxki in PG(x) is pi , then we have a linear map connecting
the sequences(p0, . . . , pr) and(x0, . . . ,xr).

In the case of the free matroid, this map is given by Corollary 6.3: we have
xi/i! = ∑i

j=0

( i
j

)
p j . In the case of the complete vector matroid, it is theq-analogue

of this, involving the Gaussian coefficients. In each case there is a standard method
to invert the matrix. (See Cameron and Majid [9] for a connection between inver-
sion of theq-analogue and affine braided groups.)

I do not know a convenient formula for this matrix or its inverse in the case of
a general PMD.

8.5 Base-transitive groups

If G is a permutation group which permutes its ordered (irredundant) bases
transitively, then clearly all the irredundant bases have the same size, and soG is
an IBIS group. Moreover, sinceG also permutes the ordered independent sets of
sizei transitively for alli, the associated matroid is a perfect matroid design.

Such groups have been given the somewhat unfortunate name of “geomet-
ric groups”. Here I will simply call thembase-transitive permutation groups,
or base-transitive groupsfor short. The base-transitive groups of rank greater
than 1 were determined by Maund [23], using CFSG; those of sufficiently large
rank by Zil’ber [33] by geometric methods not requiring the Classification. Base-
transitive groups of rank 1 are just regular permutation groups (possibly with some
global fixed points).

Theorem 8.5 For a base-transitive group G, the p.g.f. PG(x) and the Tutte poly-
nomial of the associated matroid determine each other, and each is determined by
knowledge of the numbers of fixed points of elements of G.

Proof A permutation groupG is base-transitive if and only if the stabiliser of
any sequence of points acts transitively on the points that it doesn’t fix (if any).
Thus the fixed points of every element form a flat. Also, by Corollary 5.4, every
flat is the fixed point set of some element. So the numbers of fixed points of the
elements ofG determine the cardinalities of flats, and hence the Tutte polynomial
of the matroid, by Theorem 3.6.
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Theorem 8.4 shows that the numbersk0, . . . ,kr of fixed points of elements in
a base-transitive group determine the functionPG(x), since the numbersx0, . . . ,xr

are all equal to 1.
To obtainPG(x) directly from the Tutte polynomial, we show the following:

PG(x+1) =
n

∑
m=0

(
r

∑
i=0

a(m, i)
R(i)

)
xm,

wheren = kr is the number of points, andR(i) is the number of independenti-
tuples in the matroid; as in Theorem 3.6,a(m, i) is the number ofm-sets of ranki.

To prove this, we note that eachm-set can be ordered inm! different ways. If
the rank of them-set isi, the resulting sequence has stabiliser of order∏r−1

j=i (n−
k j), and so lies in an orbit of size∏i−1

j=0(n−k j) = R(i). Thus, the number of orbits
on such tuples isa(m, i)m!/R(i). We obtain the total number of orbits onm-tuples
by summing overi, and so we find that the exponential generating function is
the right-hand side of the displayed equation. But this e.g.f. isPG(x+ 1), by the
corollary to the Shift Theorem.

Even for a regular permutation group, knowledge of the fixed point numbers
does not determine the cycle index; the latter also contains information about the
number of group elements of each given order. A regular permutation group is
base-transitive. So we see that the cycle index contains more information than the
Tutte polynomial in this case.

8.6 Some examples

Unfortunately, the cycle index does not in general tell us whether a permu-
tation group is base-transitive. The simplest counterexample consists of the two
permutation groups of degree 6,

G1 = 〈(1,2)(3,4),(1,3)(2,4)〉, G2 = 〈(1,2)(3,4),(1,2)(5,6)〉.

The first is base-transitive; the second is an IBIS group of rank 2 (indeed, it is
the group arising from the binary even-weight code of length 3), but not base-
transitive. A simple modification of this example shows that the cycle index does
not determine whether the IBIS property holds.

Suppose we are given the cycle index of one of these groups, namelyZ(G) =
1
4(s6

1 +3s2
1s2

2), or simply the p.g.f. for fixed points, namelyPG(x) = 1
4(x6 +3x2).

(a) If we are told that the group is base-transitive, then we know that its matroid
is a PMD(2,6), and so we can compute that its Tutte polynomial isy2(y3 +
y2 +y+x).
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(b) If we are told that the group arises from a linear codeC, then we can de-
duce thatWC(X,Y) = X3 + 3XY2. In general the Tutte polynomial is not
computable from the weight enumerator, but in this case the code must be
the even-weight code and so the Tutte polynomial of the code matroid is
x2 + x+ y. Now Proposition 7.1 shows that the Tutte polynomial of the
group matroid isy4 +2y3 +3y2 +y+3xy+x2 +x.

This matroid on 6 elements in case (b) arises from two different base-transitive
groups of order 24, each isomorphic to the symmetric groupS4. These were both
considered in Chapter 6; one is the action ofS4 on the set of 2-element subsets of
{1, . . . ,4}, and the other is the action of the rotation group of the cube on the set
of faces. Using any of several methods we’ve seen, it follows that, for any such
groupG, we havePG(x) = 1

24(x6 +9x2 +14). However, the stabiliser of a point is
the Klein group of order 4 in the first case and is the cyclic group in the other, so
the two groups have different cycle index. (See Exercise 6.4.)

8.7 The Tutte cycle index

As we have seen, for some IBIS groups the Tutte polynomial can be obtained
from the cycle index but notvice versa, while for others it is the opposite way
round. Is there a polynomial from which both the Tutte polynomial and the cycle
index can be obtained? In this section we construct such a polynomial.

Following the definition of the Tutte polynomial, we try for a sum, over sub-
sets, of “local” terms. First, some terminology and observations. LetG be a
permutation group onΩ. For any subset∆ of Ω, G∆ andG(∆) are the setwise and
pointwise stabilisers of∆, andG[∆] the permutation group induced on∆ by its
setwise stabiliser (so thatG[∆] ∼= G∆/G(∆)). Let b(G) denote the minimum size
of a base forG. (This is the rank of the associated matroid ifG is an IBIS group.)

Now we have

(a) ∑
∆∈P Ω/G

Z(G[∆]) = Z(G;si ← si +1 for i = 1, . . . ,n),

whereP Ω/G denotes a set of orbit representatives forG on the power set
of Ω. This is Theorem 6.2, the Shift Theorem.

(b) If G is an IBIS group, then the fixed point set ofG(∆) is the flat spanned by∆;
soG(∆) is an IBIS group, andρ(∆) = b(G)−b(G(∆)). In fact,G(∆) is also
an IBIS group, but its base size may be smaller thanρ(∆).

Now we define theTutte cycle indexof G to be the polynomial inu,v,s1, . . . ,sn

given by

ZT(G) =
1
|G| ∑

∆⊆Ω
u|G∆| vb(G(∆)) Z(G[∆]).
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One obvious flaw in this definition is that the factorsu|G∆| and vb(G(∆)) are not
really “local”. Nevertheless, we have the properties we are looking for:

Theorem 8.6 Let G be an IBIS permutation group, with associated matroid M.

(a)

(
∂

∂u
ZT(G)

)
(u← 1,v← 1) = Z(G;si ← si +1 for i = 1, . . . ,n).

(b) |G|ZT(G;u← 1,si ← t i for i = 1, . . . ,n) = tb(G)T(M;x← v/t +1,y← t +1).

Proof (a) TheG-orbit of the subset∆ has cardinality|G|/|G∆|. Dividing by this
number has the same effect as choosing one representative set from each orbit.
Now apply point (a) before the Theorem.

(b) Point (b) before the Proposition shows thatρ(∆) = b(G)− b(G(∆)); in
particular,ρ(Ω) = b(G). Also, substitutingt i for si in Z(H) givestn, wheren is
the degree of the permutation groupH. So the left-hand side is

∑
∆⊆Ω

vρ(Ω)−ρ(∆) t |∆|.

The rest is just manipulation.

Exercises

8.1. LetM be a matroid onE, andA the set of hyperplanes ofH. Fore∈E, let Xe

be the set of hyperplanes containinge. Prove that(Xe : e∈ E) is an IBIS family
whose associated matroid isM.

8.2. Show that any family of subgroups, all of indexp, in an elementary abelian
p-group is an IBIS family. Describe the associated matroid by means of the dual
group.

8.3. LetG be an IBIS group of permutations ofΩ.

(a) Let∆ be an orbit ofG. Prove that both the permutation group induced on∆
and the kernel of the action ofG on ∆ are IBIS groups.

(b) Prove that the stabiliser of a point is an IBIS group.

(c) Prove that the group induced on a flat by its setwise stabiliser is an IBIS
group.

8.4. LetGi be an IBIS group of permutations ofΩi , for i ∈ I . Prove that the direct
product of the groupsGi , acting on the disjoint union of the setsΩi , is an IBIS
group.



70 Chapter 8. IBIS groups

8.5. Letp be a prime. LetG be an elementary abelianp-group, and(Hi : i ∈ I)
a family of subgroups ofG. If each subgroupHi has indexp in G, prove that
(Hi : i ∈ I) is an IBIS family. Show that this may not be true if not all the subgroups
have indexp.

8.6. Prove that, ifG is a permutation group in which all two-point stabilisers are
trivial, then eitherG is semiregular, orG acts as a Frobenius group on one of its
orbits and regularly on all the others. (Hint: Use Frobenius’ Theorem.)

8.7. Prove thatM24 is an IBIS group of rank 7.

8.8. Calculate the Tutte cycle indices for the groupS4, in each of its transitive
actions as an IBIS group on 6 points. Hence calculate the Tutte polynomial and
cycle index in each case.

8.9. Say that a base for a permutation groupG is strongly irredundantif the
removal of any point results in a sequence which is no longer a base. Show that a
base is strongly irredundant if and only if any ordering of it is irredundant. Give an
example of a permutation group which has strongly irredundant bases of different
sizes.

8.10. Show that a sharplyt-transitive group (other than the symmetric groupSt

of degreet) is a base-transitive group associated with a uniform matroidUt,n, and
conversely. Why is the free matroidFn = Un,n not associated with the symmetric
groupSn?

8.11. LetG be a base-transitive group associated with aq-fold inflation of the
free matroidFn (with q> 1. Show thatG is the wreath product of a regular group
H of orderq with Sn.

8.12. Show that a groupG, acting on the coset spaceG : H, is a Frobenius group
if and only if H ∩Hg = 1 for all g /∈ H.

A subgroupH of G is called aTI-subgroupif H ∩Hg = 1 for all g /∈ NG(H),
whereNG(H) = {g∈ G : Hg = H} is thenormaliserof H in G. Show that, ifH
is a non-normal TI-subgroup ofG, thenG acting onG : H is an IBIS group, for
which the associated matroid is an inflation of a uniform matroid of rank 2.

Remark TI-subgroups are very common: for example, any subgroup of prime
order is a TI-subgroup. This shows that the procedure of identifying parallel ele-
ments can have dramatic effects in the case of an IBIS group.
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