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If you were to go into a motorcycle-parts department and ask
them for a feedback assembly they wouldn’t know what the hell you
were talking about. They don’t split it up that way. No two manu-
facturers ever split it up quite the same way and every mechanic
is familiar with the problem of the part you can’t buy because
you can’t find it because the manufacturer considers it part of
something else.

Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance

1 Introduction

In 2001, the United Kingdom Engineering and Physical Sciences Research
Council awarded the authors of this paper and Leonard Soicher a grant for
“A Web-based resource for design theory”. Planning how to put a catalogue
of designs on the web forced us to think about the questions which are posed
in the title of this paper.

To a mathematician, the definition of a design probably starts like this:
“A design consists of a set X of points, and a collection B of k-element
subsets of X called blocks, such that ...”. (See the book [1], for example.)
To a statistician, a design is a rule for allocating treatments to experimental
units in, for example, an agricultural field trial or a clinical trial. It is clear
that, even if the statistician’s definition is turned into mathematics, it looks



quite different from the mathematician’s definition, and is likely to be much
more general.

Further thought shows that an experimental design is in some ways closer
to the notion of a chamber system [33], a set carrying several partitions
related in certain specified ways. The elements are the experimental units;
they are partitioned according to the treatments allocated, and also according
to “nuisance factors” which the experimenter must allow for, such as fields
on different farms, or patients at different hospitals.

Many important chamber systems arise from geometries, so that the
chambers are identified with maximal flags in the geometry [8]. In a similar
way, a statistician’s block design is often the chamber system arising from
the mathematician’s design (so that the experimental units correspond to in-
cident point-block pairs, and the points to treatments, the blocks to nuisance
factors).

There is a further point to note. The mathematician’s conditions on a
block design are exemplified by the definition of a ¢-design, in which the
dots in the earlier definition say “every set of ¢ points of X is contained in
exactly A blocks”. A statistician calls a 2-design a “balanced incomplete-
block design”, and uses one if it exists, since such designs are best according
to various optimality criteria. If, however, the parameters forced on the
experimenter by the material available do not correspond to a 2-design, then
a weaker condition could be imposed, and there are various choices about
how to do this.

The purpose of this paper is to develop a classification scheme which
covers as many as possible of the designs used or studied on either side of the
divide. We could classify designs according to abstract concepts, according
to convenient ways of representing them, or according to what they will be
used for. We have tried to adopt a reasonable compromise between these
three. Of course, there will have to be many sideways pointers within the
classification.

2 Block designs

2.1 What is a block design?

In the Design Theory Resource Server project [12], we adopted the initial
compromise of dealing with block designs, while allowing the possibility of in-
cluding other types later: see [5]. Block designs are the main common ground
between mathematical and statistical approaches to designs; and many other
types of design, such as Latin squares, can be efficiently represented as block



designs.

At its origin in experimental design, a block design consists of a set of
plots partitioned into blocks, together with an allocation of treatments to
plots (that is, a function from the set of plots to the set of treatments). In
other words, it is a set carrying a partition and a function.

The most important thing about the treatment function F' is that it
gives rise to another partition of the set of plots, two plots « and (3 being
in the same part if F(a) = F(8). So the second view of a block design
is a set with two partitions. However, there is an asymmetry between the
two partitions: the values of F' (the names of the parts of the corresponding
partition) matter—they are the treatments—while the names of the blocks
do not.

A block design can be represented by its incidence graph, a bipartite
multigraph whose vertices are the parts of the two partitions, where the
multiplicity of the edge between the part A of the treatment partition and
the part B of the block partition is the number of plots lying in both A
and B. (Thus, there is no edge between A and B if no plot in block B gets
treatment A.) This construction preserves the symmetry between the two
partitions. However, it loses the individual plots, since two plots in the same
block receiving the same treatment are now indistinguishable. However, if
the design is binary (equivalently, if the multigraph is simple), the plots are
just the edges of the graph.

The final representation, as a multiset of multisets, is the one most com-
monly used by mathematicians (though the multisets are usually sets). It
restores the special role of the treatment partition. The ‘points’ of the de-
sign are the treatments (that is, the point set is one part of the bipartition
of the graph). Each ‘block’ is now the multiset of neighbours of a vertex B
in the other part of the bipartition; the multiplicity of a point is equal to
the multiplicity of the edge joining it to B. Since the same multiset may
occur more than once as a block, the blocks form a multiset of multisets in
general. If the design is binary, then the blocks form a multiset of sets; and
if in addition there are no ‘repeated blocks’, we have a set of sets.

The original definition of block design is a good starting point for the
discussion of randomization and isomorphism. The statistician does not give
the treatment function F directly to the experimenter. First (s)he random-
izes by choosing a random permutation g of the plots which preserves the
partition into blocks. The design given to the experimenter is g o F'. From
the experimenter’s point of view, it is the actual function (also called a plan
or layout) g o F' which is important: it specifies precisely that pig number
42 gets diet C and at some later date pig number 42 can be identified and
weighed. But from the statistician’s point of view, F' and g o F' are the same



design. That is, renaming the blocks, and renaming the plots within blocks,
do change the plan but do not change the design.

On the other hand, a design F' is isomorphic to a design F” if there is a
bijection ¢’ from the plots of the former to the plots of the latter which takes
one block partition to the other, and a bijection A’ from the former treatment
set to the latter, such that F oh’ = ¢’ o F’. Thus if h is a permutation of the
treatments of the first design then F' o h is isomorphic to F' but may not be
the same as F.

If we view a block design as a bipartite graph, the asymmetry is now very
clear. We are allowed to rename the vertices which represent blocks but we
are not allowed to rename the vertices which represent treatments.

The view as a multiset of multisets seems to be the most economical view
that captures the idea of sameness while allowing isomorphisms to be repre-
sented as bijections between relatively small sets (just the sets of treatments).

2.2 Classification of block designs

Our classification of block designs is outlined in Diagram B. Here v denotes
the number of points (treatments) and b the number of blocks. The first
division is into designs that are binary and those that are not. Although we
need to be aware of the theory for non-binary block designs, we probably do
not need to classify them, because usually they are made in a fairly obvious
way from binary designs, for example by adding a complete block to each
block, or by doubling up important treatments.

A binary block design is proper if each each block contains a fixed num-
ber k of points (or treatments), and is equireplicate if each point is contained
in a fixed number r of blocks. We have split binary designs according to
whether or not r and k are both constant: in the former case, combinatorial
and statistical properties tend to agree, while in the latter case they do not.
We need to be careful and generous with terminology here: what the statisti-
cian calls an equireplicate proper design a hypergraph theorist calls a regular
uniform hypergraph and a combinatorial design theorist calls a 1-design.

We have further split 1-designs into those that are balanced and those
that are not. Here balanced means a t-design for some ¢ with ¢ > 2. Recall
that, in a t-(v, k, A) design, there are v points and b blocks of size k, and
any set of ¢ points is contained in exactly A blocks. The widely-used name
‘t-design’ was introduced in print by Hughes [17], although he claims that it
was his colleague D. G. Higman who suggested ‘2-design’.

Within balanced designs, the distinctions between A = 1 (Steiner systems)
and A > 1 is important. For ¢ = 2, so is the distinction between square and
non-square designs. We follow Hughes and Piper [18] in calling a block design
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square if it has the same number of points as blocks. Square designs are also
referred to as “symmetric”, though no symmetry between points and blocks
is implied. Note that only trivial t-designs with ¢ > 2 can be square. A
square 2-design with A = 1 is a projective plane.

For the non-balanced case, the range of designs which have been studied
is much larger. Among these which have been studied are:

e Partially balanced designs, those for which there is an association scheme [4]
on the set of points such that the concurrence of a pair of points (the
number of blocks containing the two points) depends only on the asso-
ciate class containing them. This class includes many which are impor-
tant in finite geometry, such as generalized polygons, partial geometries,
and partial geometric designs. See [11, Chapters IV.21, IV.34], [7], and
many other references.

e Partial linear spaces, those for which any two points are incident with
at most one block. This class overlaps with the first in that it in-
cludes generalized polygons and partial geometries; it also contains
tactical configurations [11, Chapter IV.6] and SOMAs (simple orthog-
onal multi-arrays) [32], though the latter have more structure and are
better classified elsewhere. Also, partial linear spaces are more general
objects; there is no reason to assume that r» and k are constant for such
designs.

We have cross-classified the designs according to whether or not they have
one or other of these two features.

Finally, we come to the situation where r and £k are not assumed constant.
Here we can do little more than point to some interesting classes. Among
these are:

e Designs with some form of balance, such as pairwise balance [1, Section
1.4], variance balance [19, Chapter 2], or efficiency balance [19, Chapter
2], or designs which satisfy some variant of group-divisibility: see [4,
Section 1.1] and [1, Section 4.7].

e Designs in which some equality holding in ¢-designs is replaced by an
inequality, especially those which are extremal. Among these are pack-
ing and covering designs, those in which any ¢ points are contained in
at most (resp. at least) A blocks, which could be regarded as “approx-
imations” to ¢-designs: see [11, Chapters IV.8, IV.33] and [21]. More
generally, lotto designs [22] fit here.



In general, these structures are more often regarded as hypergraphs or set
systems than as designs.

The various ‘balance’ attributes which interest the pure mathematician
contrast with those of efficiency and optimality which interest a statistician.
For a binary, proper design with block size k, the information matriz is equal
to R—k~A, where A is the matrix of concurrences and R the diagonal matrix
of replications. Most optimality criteria are convex symmetric functions of
the eigenvalues of this matrix, excluding the zero eigenvalue on the all-1
vector. See [31] for details.

3 Towards a classification

3.1 More general designs

Our general classification starts in Diagram A. The first dichotomy has been
introduced in Section 2.1: between two or more sets with incidence relations
between them, and a single set with partitions or functions defined on it.

The distinction between partitions and functions is that the values of
the function matter. For example, a design for five varieties of sunflower is
probably equally good no matter what the varieties are, but for a design to
fit a polynomial model for response to quantity x of chemical then you need
to choose which quantities x to use; this choice is part of the design.

The ‘functions’ leaf of this tree leads to designs for continuous variables.
Although there is a considerable body of research on such designs (see [2, 30]),
we do not consider them any further in this paper.

The ‘partitions’ branch is split according to the number of partitions on
the set. A set with two partitions is essentially a block design, as discussed
in Section 2.1. Three or more partitions give many more possibilities, some
of which are touched on in Section 4 and Diagram C.

The ‘incidence’ branch in split into families of sets and multipartite
graphs. Each of these has one branch leading to block designs, as discussed
in Section 2.1. The other three are described below.

3.2 A note on diagrams

Diagrams are used to describe chamber systems and geometries [8], and in
this paper we will use diagrams to represent designs in both the incidence
and partition settings. However, we must make clear that the diagrams mean
quite different things.
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When we have a family of sets with an incidence relation between each
pair of sets, we represent the design by a diagram in which the nodes represent
the sets in the family, and the label on the edge joining two nodes represents
the type of design formed by the incidence structure made up of these two
sets only. Similarly, if a design is represented by a family of partitions of a set,
we represent it by a diagram in which the vertices correspond to partitions,
and the label on the edge joining two vertices represents the type of design
formed by just these two partitions. We call these diagrams global diagrams.

The diagrams representing a Buekenhout geometry or a chamber system
will be called local diagrams. Their definition is more subtle, and will be
described briefly when we describe these structures.

We will attempt to distinguish the two types of diagram by using solid
circles for nodes of global diagrams, and open circles for nodes of local dia-
grams.

3.3 Designs with several kinds of block

Branch D is like block designs except that there are two or more types of block
but all are sub(multi)sets of the same base set. Examples include affine and
projective geometry (blocks are lines, planes etc), rectangular lattice designs
for n(n — 1) treatments (the subsets are spokes and fans, see [6]), and the
sort of algebraic geometry where lines and conics (or more general algebraic
varieties) count as blocks. Group-divisible designs can be included here: the
subsets are blocks and groups. One could consider resolved block designs in
this branch, with one type of block for each replicate, but they probably are
more conveniently handled in the next branch.

Graph decompositions [11, Chapter IV.22] fit into this branch. A decom-
position of a complete graph into copies of a fixed graph G can be regarded
as a set (the set of edges of the complete graph) with two families of subsets:
the stars (these define the complete graph structure), and the copies of G.

3.4 Iterated block designs

Branch E is really iterated block designs. It includes (i) resolved block
designs, which are replicates consisting of blocks consisting of treatments;
(i) nested block designs, which are large blocks consisting of small blocks
consisting of treatments (for example, see [3, 24]); (iii) whist tournaments,
which are rounds consisting of tables consisting of pairs consisting of players
[1, Chapter 11]. It also includes so-called ‘large sets’ of block designs or of
Steiner triple systems [20].



3.5 Geometries

Branch F includes Buekenhout geometries. A geometry, or Buekenhout geom-
etry, consists of a set V' of objects called varieties, a symmetric and reflexive
incidence relation *x on V', and a surjective type function from V to a finite
set A of types, satisfying several axioms introduced below. A flag is a set
of varieties, any two of which are incident; it is called a transversal flag if it
contains exactly one variety of each type. We require:

(G1) Any maximal flag is transversal.
(G2) Any non-maximal flag is contained in at least two maximaml flags.

Axiom (G1) implies that two vertices of the same type which are incident
must be equal, and that the restriction of the type function to a flag is
injective. We can think of a geometry as a multipartite graph (with a loop
at each vertex), where the parts of the multipartition are labelled by types;
a maximal clique contains one vertex of each type.

Let F' be a flag. Its type is its image under the type function, and its
cotype is the complement of the type (in A). The residue of F' consists of
all varieties not in F' but incident with every member of F’; it is a geometry
(satisfying (G1) and (G2)) over the cotype of F. We call the cardinalities of
the type and cotype the rank and corank of F respectively.

A geometry is connected if the corresponding multipartite graph is con-
nected. A geometry is residually connected if the residue of any flag of corank
at least 2 is connected. It is usual to require this:

(G3) The geometry is residually connected.

Now, for all distinct types ¢ and j, let G;; be a class of rank 2 geometries
(whose elements are called points and blocks), with the property that Gj;
consists of the duals of the geometries in G;;. A diagram D consists of the
type set A with an assignment of classes of rank 2 geometries to each pair of
vertices subject to the above condition. Now a geometry is said to belong to
the diagram D if the residue of any flag of cotype {i, 7} belongs to G;;, when
varieties of types ¢ and j are identified with points and blocks respectively.

In this way, a diagram specifies local information about a geometry (the
structure of rank 2 residues). These diagrams are “local” in the sense outlined
earlier.

A diagram is a very concise way to exhibit axioms for a class of geometries.
We illustrate with just two examples. We represent the class of geometries
in which any point and block are incident by the absence of an edge between
corresponding types; a single unadorned edge denotes a projective plane; and
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an edge with label L denotes a linear space (with points represented by the
left-hand vertex).

1. A geometry with diagram

O O O O+ 0 O

is a projective space whose dimension is equal to the number of nodes.

2. A geometry with diagram

OLOLOLO-'~OLO

is the geometry of flats (closed subspaces) of a matroid with rank one
greater than the number of nodes. In particular, perfect matroid de-
signs [13] fit here.

We have seen that an incidence structure with two types of varieties can
often be represented efficiently by taking blocks to be subsets of the set of
points. This can sometimes be extended to geometries of higher rank. We
select one type, and call the varieties of this type “points”. The shadow of
a variety is now the set of points incident with it. In some cases (including
those in the above results, with points chosen to correspond to the left-hand
end of the diagram), two varieties are incident if and only if the shadow of one
is contained in the shadow of the other; so the geometry can be conveniently
represented as several families of subsets of the point set.

Among the important classes of Buekenhout geometries are projective,
affine and polar spaces [9].

Graph decompositions can also be treated here. A decomposition of a
complete graph into copies of the graph G is a geometry with three types of
varieties (vertices, edges and copies of G) with the obvious incidence relations
between them.

4 Designs with several factors

In Branch C each object consists of a set with three or more partitions on
it. These are known as ‘multi-factor designs’ because statisticians use the
word ‘factor’ for both partitions and functions. Hence it is possible for some
factors to be equal as partitions even though their names are different.
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4.1 The partition lattice

A partition is called uniform if all its parts have the same size. Partition P
nests partition ) if every part of () is contained in a part of P. Given
partitions P and @), their supremum is the finest partition that nests both
of them, and their infimum is the coarsest partition that is nested in both
of them. There are two trivial partitions: the universal partition U, with a
single part, and the equality partition E, whose parts are singletons.

For the purpose of this paper, we temporarily define a collection of parti-
tions on a single set to be supreme if the supremum of any two is either the
universal partition or included in the set, to be flat if the supremum of any
two inequivalent ones is the universal partition, and to be nested if it is not
flat but the supremum of any two partitions is the universal partition unless
one is nested in the other.

multifactor designs

supreme not supreme
Table 2 chamber systems
from Buekenhout not from Buekenhout
geometries geometries
go to F
Diagram C

Diagram C splits multifactor designs according to whether they are supreme
or not. The two types are discussed further in Sections 4.2 and 4.4.

Many designs are defined by pairwise relations on the partitions. Some
of these are shown diagrammatically in Table 1. Partition P is orthogonal
to partition () if their averaging matrices commute with each other; strictly
orthogonal if they are orthogonal and their supremum is U. (Some authors
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call these ‘geometrically orthogonal” and ‘orthogonal’ respectively.) Thus an
orthogonal array of strength two is simply a collection of uniform partitions
which are pairwise strictly orthogonal.

Other relations can be specified by properties of the block design defined
by P and () as in Section 2.1. Thus symmetric relations include orthog-
onality; strict orthogonality; having the incidence of a partial linear space
(what a statistician calls a {0, 1}-design); having the incidence of a square
balanced block design; and having the incidence of a generalized polygon.
Non-symmetric relations include nesting (which is a special case of orthogo-
nality) and non-square balanced block designs.

PO—‘—OQ P is orthogonal to @)
Pe—O——e@Q Pis strictly orthogonal to @)

Pe— 5@ P isasquare balanced block design with
respect to @)

re— 1l @@ Pisapartial linear space with respect to @

re—" @@ FPisa generalized n-gon with respect to @)

(a) symmetric relations

Pe—o@ P is balanced with respect to Q@ but @ is
not balanced with respect to P

pPe— @@ P is partially balanced with respect to Q
and we do not care about () with respect
to P

Pe— < @@ DI isnestedin () and not equivalent to @)

(b) non-symmetric relations

Table 1: Some relations between pairs of partitions
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4.2 Chamber systems

In his ground-breaking work on geometry, Tits originally took a geometric
approach like that later developed by Buekenhout, but switched later to an
approach based on partitions, which we now describe.

A chamber system consists of a set {2 of objects called chambers, and
a finite collection {m; : i € A} of non-trivial partitions of 2, having the
properties

(C1) the infimum of any two of the partitions 7; is the partition F into
singletons;

(C2) the supremum of all the partitions is the partition U with a single
part.

The second axiom is called chamber-connectedness.

The rank of the chamber system is |A|.

Any geometry (in the sense of Buekenhout) gives rise to a chamber system
as follows:

e the chambers are the maximal (transversal) flags;

e two maximal flags F' and F” are i-adjacent (that is, lie in the same part
of m;) if they contain the same varieties of each type j # i.

Chamber-connectedness of the chamber system implies connectedness of the
geometry, and is implied by residual connectedness; neither of these implica-
tions reverses.

Not every chamber system comes from a geometry in this way. In a
chamber system which does come from a (residually connected) geometry,
two maximal flags share a variety of type ¢ if and only if they are connected
by a path using only adjacencies of types different from ¢. So we can identify
varieties with connected components of this graph. Two varieties of different
types are incident if and only if the corresponding connected components
have non-empty intersection.

Now let L be a Latin square, € the set of its cells, and let m;, m and
73 be the partitions of €2 defined by ‘same row’, ‘same column’, and ‘same
symbol’ respectively. Then (€2, m, w2, m3) is a chamber system. The graph
formed by any two of these partitions is connected (it is a square grid), so it
is not possible to construct varieties as connected components.

A chamber system of rank 2, however, does arise from a geometry. So we
can say that a chamber system belongs to the diagram D if, for any two types ¢
and 7, every connected component of the graph formed by - and j-adjacency
belongs to the class G;; of rank 2 geometries (or chamber systems).
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Thus, a Latin square (as chamber system) belongs to the diagram con-
sisting of three pairwise non-adjacent vertices.

We refrain from developing further the fascinating theory of geometries
and chamber systems; see, for example, [26].

When a chamber system comes from a geometry, it is probably more
efficient to consider it as such. (See the comments on Buekenhout geometries
in the above discussion of Branch F.) For example, consider the 3-dimensional
projective geometry of order 2: as a set of sets it has 15 points; as a geometry
it has 65 varieties; and as a chamber system it has 315 chambers.

4.3 Some common statistical designs

In a factorial design, the set of treatments is cross-classified by two or more
factors, whose values specify the treatments uniquely. Classically, the treat-
ments are identified with the elements of an Abelian group in such a way
that the factors are the characters which canonically generate the dual group.
Then a confounded factorial block design with replication 1 is specified by
identifying the blocks with the cosets of a chosen subgroup: see [15].

In a fractional factorial design, not all of the potential treatments are
applied, so the design is a subset of the treatments. Partitions which are
equal on the chosen subset are said to be aliased. So-called regular fractions
are those in which partitions of interest are either aliased or orthogonal to
each other. An extreme case are the Plackett—Burman designs, in which the
partitions given by the original treatment factors are uniform and pairwise
strictly orthogonal, while any infima are ignored. Of course, these are the
same as orthogonal arrays of strength two.

A resolved block design with r replicates can be considered as a family of
r partitions of the set of treatments. When r = 2, this identifies the design
with a smaller square design, as was fruitfully exploited in [34]. When the
partitions are pairwise strictly orthogonal, the block design is affine resolved.

There are many experiments where the plots form a rectangle, either in
space, as in a field experiment, or abstractly, as in a clinical trial, where
the rows and columns are time-periods and patients respectively. Designs
for such experiments are generally called row-column designs. Typically, the
rows and columns are strictly orthogonal to each other, and treatments are
allocated to plots to satisfy some conditions. The classic example is a Latin
square, which is a special case of an orthogonal array of strength two. Some
others are given in Section 4.4. More complex still are experiments in blocks
where each block is a rectangle: these are called nested row-column designs.
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4.4 Supreme designs

Supreme multi-factor designs are also local in the sense that pairwise relations
between the partitions are required to hold only within each part of their
supremum. However, because we require suprema to be in the set of listed
partitions, we usually impose some conditions on these coarser partitions as
well as on the finer ones.

Flat Nested Other
orthogonal arrays of SOMAs; orthogonal arrays of
strength 2; strength > 3;

semi-Latin squares;

Howell designs;

split-plot designs;

pairwise | Plackett-Burman Room squares; | confounded
designs (possibly in factorial designs;
blocks);
relations | Youden squares; balanced regular fractional
tournament factorial designs;
designs
Youdenized square
non-balanced IBDs;
suffice double Youden
rectangles;
other designs in 2
rectangular replicates
Preece triples; nested block
designs: go to E;
pairwise | Freeman-Youden other nested
rectangles; row-column
designs;
relations | triple arrays; other fractional
factorial designs
do not other generally
balanced row-column
designs;
suffice designs in r

rectangular replicates
forr >3

Table 2: Cross-classification of supreme multi-factor designs with uniform
factors, showing some examples

Supreme multi-factor designs in which all partitions are uniform are cross-
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classified in Table 2. One classification is into flat, nested and other. The
second classification is by whether or not the structure can be defined by
pairwise relations between the partitions.

So long as each partition is orthogonal to all the others, or to all but one
of the others, the pairwise relations seem to be enough to define the design.
Table 3 gives some examples.

An (n x n)/k semi-Latin square [35] is an orthogonal array of strength
two with three partitions: one has n rows of size nk, one has n columns of
size nk, the third has nk letters of size n. A simple orthogonal multi-array
(SOMA) is a semi-Latin square with an extra condition. Now we need to
consider the infimum of the row partition and the column partition: call its
parts cells. For a SOMA, the incidence of letters in cells is that of a partial
linear space.

By Hall’s Marriage Theorem, the plots of any square block design for b
treatments replicated k times can be arranged as a b x k rectangle: the rows
are the blocks, and each treatment occurs once in each column. If the block
design is balanced, this row-column design is called a Youden square [28],
but any square block design can be ‘Youdenized’ in this way.

If the b treatments in a Youden square are Latin letters, it may be possible
to superimpose k Greek letters so that they are strictly orthogonal to rows
and to Latin letters and form a balanced non-binary block design with respect
to columns. This is a double Youden rectangle [28].

Just as a resolved block design can be considered as a set of r partitions of
the treatment set, a resolved design in two rectangular n x m replicates can
be considered as four partitions of the set of treatments: two with n parts
of size m, two with m parts of size n. If each is strictly orthogonal to the
two of the other kind, we have a useful generalization of a double Youden
rectangle.

Room squares and Howell designs are like SOMAs except that some of
the cells may be empty. In a Room square [1, Chapter 10], the incidence
of letters in cells is that of a balanced block design with block size two. In
a Howell design, it is that of a partial linear space with block size two. A
balanced tournament design [1, Chapter 10] has n rows, 2n — 1 columns and
all cells of size two. There are 2n letters. Letters are orthogonal to columns,
and form a balanced incomplete-block design with cells. The incidence of
letters in rows is a non-binary block design in which each row contains two
letters once, the others twice.

Multi-factor designs which are neither supreme nor nested but in which
every pair of partitions is orthogonal include split-plot designs, counfounded
factorial designs and regular fractional factorial designs.

Sometimes the pairwise relations are enough to define the design even
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columns

rows letters

Youden square

optimal square

non-binary

generalization of double
Youden rectangle

letters

rows

Room square

columns Irows

Latin letters

TOwWS

columns = Greek letters

non-binary

double Youden rectangle

letters

cells

rows - columns

SOMA: simple orthogonal
multi-array

letters

cells

columns

Howell design

Table 3: Some designs defined by pairwise relations on uniform partitions



without orthogonality. For example, partitions into n parts of size 2 are just
1-factors of the complete graph Ky,. If we insist that each pair of these
have the incidence of a generalized n-gon, then any collection of 2n — 1 such
partitions forms a perfect 1-factorizion of K,.

Otherwise,the pairwise conditions do not suffice. Statisticians need extra
conditions such as ‘general balance’ [25] or ‘adjusted orthogonality’ [14] or
‘overall balance’ [27]. These are too technical to define here, but can all be
expressed both in terms of incidence matrices and in terms of angles between
subspaces. Table 4 gives some examples. If all but one of the partitions form
a nested chain (as in nested block designs), it is probably more efficient to
use the representation from Branch E.

B B
with the extra condition with the extra condition
of overall balance of adjusted orthogonality
Preece triple triple array

with the extra condition
of overall balance

Freeman-Youden rectangle

Table 4: Some designs defined by uniform partitions where the pairwise
relations do not suffice

A Preece triple consists of three partitions with b parts of size k, each pair
of which have the incidence of a square balanced incomplete-block design.
The extra condition needed is ‘overall balance’. If a partitition with & parts
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of size b can be superimposed on a Preece triple, orthogonal to the three
original partitions, we obtain a Freeman-Youden rectangle [29]. A triple
array [23] is a row-column design in which both rows and columns form a
balanced incomplete-block design with respect to letters. The extra condition
needed here is ‘adjusted orthogonality’.

5 Some further considerations

There is some extra structure that seems to be possible throughout, so we
have not incorporated it in any one place. This might be structure within
each part of a partition: for example, a directed or undirected circuit in each
block (for the Oberwolfach problem or for one version of whist tournaments).
It might be extra structure on the set of parts of a partition: for example,
an association scheme on the treatments (for partially balanced designs in
general). It might be extra structure that can only conveniently be described
on the underlying set: for example, row and column neighbours in a square,
or an association scheme on the set of plots.

A classification of designs needs to concern itself with structures that are
not themselves designs. Most important, perhaps, are permutation groups,
which arise as subgroups of the automorphism groups of designs. There has
been considerable interest in, for example, block designs which are cyclic
(admitting a transitive cyclic group of automorphisms) or 1-rotational (ad-
mitting a cyclic group fixing a point and transitive on the remainder). A large
automorphism group enables the design to be presented more concisely: we
can give generators for the group and a set of base blocks (orbit representa-
tives for the blocks).

Partially balanced designs involve association schemes in a similar way.
There is no concise description of an association scheme (again, unless it has
a large automorphism group). The catalogue by Hanaki and Miyamoto [16]
describes an association scheme by a matrix whose (i, j) entry is k if the pair
{1, 7} lies in the kth associate class.

Each type of design may be used in one or more ways. The appropriate
concepts of ‘same’, of automorphism and of randomization will depend on
the use. (For example, think of the five uses of a Latin square given in the
Encyclopaedia of Design Theory [10].) Some authors regard different uses of
a Latin square as being different designs.
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