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Abstract

A SOMA(k,n) is an n x n array A each of whose entries is a k-subset of a kn-
set 2 of symbols, such that every symbol of € occurs exactly once in each row
and exactly once in each column of A, and every 2-subset of ) is contained in at
most one entry of A. A SOMA(k,n) is called Trojan if it can be constructed by
the superposition of k£ mutually orthogonal Latin squares of order n with pairwise
disjoint symbol-sets. Note that not every SOMA(k,n) is Trojan, and if k > n then
there exists no SOMA(k,n). Trivially, every SOMA(0, n) and every SOMA(1,n) is
Trojan. R. A. Bailey proved that every SOMA(n — 1,n) is Trojan. Bailey, Cameron
and Soicher then asked whether a SOMA(n — 2, n) must be Trojan, which is posed
in B. C. C. Problem 16.19 in Discrete Math. vol. 197/198. In this paper, we prove
that this is indeed the case. We remark that there are non-Trojan SOMA (n — 3, n)s,
at least when n = 5,6,7. While the result of Bailey shows that the existence of
a SOMA(n — 1,n) is equivalent to the existence of an affine plane of order n, our
result together with known results show that if n > 5 then the existence of a
SOMA (n — 2,n) is equivalent to the existence of an affine plane of order n.
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1 Introduction

Throughout this paper, we let £ > 0 and n > 2 be integers.

Definition 1 A SOMA, or more specifically a SOMA(k,n), is an nxn array
A each of whose entries is a k-subset of a kn-set ) (the symbol-set), such that
every symbol of ) occurs exactly once in each row and exactly once in each
column of A, and every 2-subset of (1 is contained in at most one entry of A.

A SOMA (k,n) can be constructed by the superposition of k£ mutually orthog-
onal Latin squares (MOLS) of order n with pairwise disjoint symbol-sets. If a
SOMA(k,n) can be constructed in such a way then it is said to be Trojan. So
the notion of a SOMA(k, n) can be regarded as a generalisation of the notion

of Kk MOLS of order n.

We remark here that the name SOMA was introduced by N. C. K. Phillips
and W. D. Wallis, in [12], as an acronym for simple orthogonal multi-array.
It is a simple exercise to show that £ < n — 1 is a necessary condition for the
existence of a SOMA(k,n). Note that this exercise is similar to showing the
same necessary condition for the existence of £ MOLS of order n. We illustrate
a known Trojan SOMA(2,3) and a known non-Trojan SOMA(2,5) in Figures 1
and 2 respectively.

Fig. 1. A Trojan SOMA(2,3)
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A motivation for the study of SOMAs is that a SOMA(k,n) can exist when
the existence of & MOLS of order n is impossible or unknown. We remark
here that B. C. C. Problem 13.21 (in [7] and in [17]) asks for constructions of
SOMA (k,n)s with precisely this property.

Fig. 2. A known non-Trojan SOMA (2,5)
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If n is a prime-power then there exists n—1 MOLS of order n, but the existence
of n — 1 MOLS not of prime-power order is still a major unsolved problem.



The first non-prime-power value of n is 6. Tarry [16] was the first to show that
there do not exist two MOLS of order 6. However, in [12], Phillips and Wallis
have constructed many examples of SOMA(3,6)s. A non-Trojan SOMA(3, 6)
due to E. F. Bricknell [6] is shown in Figure 3. Furthermore, in [12], Phillips
and Wallis have shown that no SOMA(4,6) exists. Note that no SOMA(5,6)
exists because a result of R. A. Bailey (in [4]) implies that the existence of
such a SOMA is equivalent to the existence of five MOLS of order 6, which of
course does not exist.

Fig. 3. A known non-Trojan SOMA(3,6)
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The next non-prime-power after 6 is 10. It is known that very many exam-
ples of two MOLS of order 10 exist, but the existence of three such MOLS
is an unsolved problem. On the other hand, Soicher [14] has constructed a
non-Trojan SOMA(3,10). Later, in [15], Soicher has constructed a non-Trojan
SOMA (4,10).

It is known that there exists three MOLS of order 14, but not whether there
exists four such MOLS. However, Soicher [14] has constructed a non-Trojan
SOMA(4,14).

One reason for our interest in SOMAs is B. C. C. Problem 13.21, which is
discussed above. Another reason for our interest is because of the behaviour of
the structure of a SOMA(k, n), when k is near the end points of 0 < k < n—1.

Trivially, when k& = 0, every SOMA(0,n) is Trojan. When k& = 1, we can see
that a SOMA(1,n) is basically the same thing as a Latin square of order n.



Hence, every SOMA(1,n) is Trojan. R. A. Bailey [4] has proved that every
SOMA(n —1,n) is Trojan. So the existence of a SOMA(n — 1,n) is equivalent
to the existence of n — 1 MOLS of order n, and hence to the existence of an
affine plane of order n.

Computational analysis of some examples suggested that a SOMA (n —2,n) is
Trojan. This led Bailey, Cameron and Soicher to pose B. C. C. Problem 16.21
(in [7] and in [18]), which asks whether a SOMA(n — 2, n) must be Trojan. In
this paper, we answer this question by showing the following theorem:

Theorem 2 FEvery SOMA(n — 2,n) is Trojan.

By this theorem, the existence of a SOMA(n — 2,n) is equivalent to the exis-
tence of n —2 MOLS of order n. Shrikhande [13] has shown that n —3 MOLS
of order n can be extended in a unique way to n — 1 MOLS of order n, when
n > 5. An immediate consequence of this result and of Theorem 2 is the
following corollary:

Corollary 3 The existence of a SOMA(n—2,n) is equivalent to the existence
of an affine plane of order n, when n > 5.

While every SOMA (k,n) is Trojan, for k = 0,1,n — 1,n — 2, it is interesting
to note that each SOMA(2,n) and each SOMA(n — 3,n) is not necessarily
Trojan.

For the case where k = 2, in [1, Corollary 4.6.2.], we have shown that a non-
Trojan SOMA(2, n) exists if and only if n > 5. We remark that this result is
based on joint work with M. A. Ollis.

For the case where k = n — 3, we recall that a known non-Trojan SOMA(2,5)
and a known non-Trojan SOMA(3,6) are shown in Figures 2 and Figure 3
respectively. In [1] and in [3], the author has given a construction for a non-
Trojan SOMA(4,7). For the benefit of the reader, we display this non-Trojan
SOMA (4,7) in Figure 4.

Fig. 4. A known non-Trojan SOMA (4,7)

1258 3111417 | 20 21 23 26 91015 24 418 25 27 6121322 | 716 19 28

20 22 25 28 1479 21216 18 5111321 810 14 23 3192426 | 61517 27
4131519 | 21222427 13610 217 23 28 71112 20 891625 | 51418 26
671424 213 25 26 817 19 22 116 20 27 35928 | 11151823 | 4101221

91718 21 5616 23 4112428 | 121419 25 115 22 26 271027 381320
3122327 | 1018 19 20 571525 46826 | 1316 17 24 114 21 28 291122
10 11 16 26 81215 28 913 14 27 3718 22 261921 451720 | 1232425

We recollect that the existence of n — 1 MOLS of order n is equivalent
the existence of an affine plane of order n, which in turn is equivalent to the

to



existence of a finite projective plane of order n. By a result of Tarry [16], there
do not exist a finite projective plane of order 6. It is known that there do not
exist finite projective planes of order 10 and of order 14 (see [14, Problems 1
and 4] for further details). Bailey [4] has shown that a SOMA(n — 1,n) exists
exactly when a finite projective plane of order n exists. So there does not
exist a SOMA(n —1,n), when n = 6, 10, 14. Similarly, by Corollary 3 together
with the arguments above, there exists no SOMA(4,6), no SOMA(8,10) and
no SOMA(12,14).

In the next section, we reformulate the main result of this paper (Theorem 2)
in terms of partial linear spaces with certain properties. This alternative view-
point will allow us to prove Theorem 2 in Section 4.

2 Partial Linear Spaces

A partial linear space S = (P, L) consists of a set P of points together with
a set L of lines, where each line is a subset of P (of cardinality greater than
or equal to 2), such that every 2-subset of P is contained in at most one line
(and so every pair of distinct lines intersect in at most one point).

Definition 4 Let v > 2, n > 2 (as usual) and r > 0 be integers. A
PLS(v,n,r) is a partial linear space whose set of points is a v-set, where each
line is a n-set, and every point is contained in exactly r lines.

We remember here that an affine plane of order n is a PLS(n?* n,n+1), and a
finite projective plane of order n is a PLS(n?*+n+1,n+1,n+1). Throughout
this paper, we denote by [n] the set {1,2,...,n}.

Example 5 Let §; = ([9],{m1,ms,...,mg}) be an ordered pair, where the
elements

mi = {1,2,3}, ms = {1,4,5), ms = {1,6,7},
my = {27478}7 ms = {27679}7 me = {3757 7}7
mr = {3,8,9), ms = {4,7,9}, my = {5,6,8).

Then, it is an easy exercise to check that Sy is a PLS(9,3,3).

Two partial linear spaces (P, L) and (P’, L) are said to be isomorphic if there
is a bijection from P to P’ that induces a bijection from L to L.

Let & = (P, L) be a partial linear space, where each point is contained in at
least two lines. Then, each point p € P is uniquely determined by the set of
lines that each contain the point p. For each point p € P, we let

L(p)={le L:pel}. Wethen let P, = {L(p) : p € P}. We can easily see



that the ordered pair S* = (L, P;) is a partial linear space, and we call §* the
dual of S. Note that (§*)* (i.e. the dual of the dual of S) is isomorphic to S.
It is a simple exercise to show that if S is a PLS(v,n,r), where r > 2, then
its dual §* is a PLS(vr/n,r,n).

Example 6 We recall that a PLS(9,3,3) & is given in Example 5. Then,
its dual (81)* = ({ml, ma,...,mo}, {L(1),L(2),... ,£(9)}) is a PLS(9,3,3),

where the lines of the dual are as follows:

L(1) = {mi,ma,ms}, L(2)
L(4) = {mg,mq,ms}, L(5)
L(7) = {m3,mg, ms}, L(8)

{mi,ma,ms},  L(3) ={
z,mﬁ,mg}, £(6) = {
L£(9) =A{

m
m4,m7,mg}, (9)

my, Mg, Mz},
= { ms, Ms, mg},

={ ms, My, Mg}

Let A be a SOMA(k,n) with symbol-set €2, where £k > 1. We set A(i, j)
to be the (i, 7)-entry of the SOMA A. For every symbol a € €, we let [,
be a subset of the set [n| x [n] (Cartesian product) given by the rule that
(i,7) € l, if and only if « € A(i,7). We then let L4 = {l, : @ € Q}. We
also let R™ = {R™ RM ... R™Y and c™ = {C™, M, ... . CM} be two
n-sets of lines, such that each line Rl(") ={(,j) : 7 =1,2,...,n} and each
line CJ(") = {(i,7) : i = 1,2,...,n}. So each line R € R(™ and each line
C'J(»n) € C™ corresponds to the i-th row and the j-th column of the SOMA (k, n)

A respectively. By the definition of the SOMA (k,n) A, we can easily show that
the ordered pair Sy = ([n] x [n], L4 URM UC™) is a PLS(n?, n, k + 2).

Example 7 We recollect that Figure 1 illustrates a Trojan SOMA(2,3), which
we call B say. Thus Sp = ([3] x [3], L UR® UC®) is a PLS(9,3,4), where
Lp = {li,la,... I}, R® = {RP R RV and ¢® = {¢P P Py,
such that the lines

= {(1> 1)7 (27 2)7 (37 3)}7 ly = {(17 2)7 (27 3)7 (37 1>}a
ls = {(1,3),(2,1),(3,2)}, l={(1,1),(2,3),(3,2)},
ls = {(1> 2)7 (27 1)? (37 3)}7 le = {(17 3)7 (27 2)7 (37 1)}a
Ry ={(1,1),(1,2), (1,3)}, Ry ={(2,1),(2,2),(2,3)},
R ={(3,1),(3,2),(3,3)}, Ci¥ ={(1,1),(2,1),(3,1)},
) ={(1,2),(2,2),(2,3)}, C5 = {(1,3),(2,3),(3,3)}.

Note here that Sg is an affine plane of order 3.

We now let A be a SOMA(k,n) with symbol-set Q, where & > 1. Also, we
let T = {v1,v9,...,0,} and & = {Py, Py,...,P,} be two n-set of symbols,
such that the sets of symbols 2, T and ® are pairwise disjoint. Since A is a



SOMA (k,n), it follows that the ordered pair

(QUTUQ),{A(i,j)U{Ui,@j}:1§z’,j§n}>

is a PLS(kn + 2n, k + 2,n). Furthermore, it is not difficult to show that this
PLS(kn +2n, k+2,n) is isomorphic to the dual (S4)* of the PLS(n? n, k +2)
Sa.

Definition 8 Let S = (P, L) be a PLS(v,n,r), wherer > 1. A decomposition
of § is a partition {Lq,..., Ly} of the set L of lines into m parts say, such
that each ordered pair (P, L;) is a PLS(v,n,r;), for some r; > 1. We then call

(ri,...,Tm) a type of S.

It is clear that {L£} is one decomposition of S. If this is the only decomposition
then we say that S is indecomposable; otherwise S is said to be decomposable.

Definition 9 An unrefinable decomposition of the PLS(v,n,r) & = (P, L)
is a decomposition {L1,..., Ly} of S, such that each (P, L;) is indecompos-
able. Where each (P, L;) is a PLS(v,n,r;), we call (r1,...,r,) an unrefinable
decomposition type (or a ud-type) of S.

Example 10 (Example 5 revisited) An unrefinable decomposition of the
PLS(9,3,3) S is

{{mlam8am9}7{m27m37m4am5am67m7}}7 (1)
which gives a ud-type of (1,2).

Example 11 (Example 6 revisited) An unrefinable decomposition of the
PLS(9,3,3) (S1)* (i.e. the dual of the PLS(9,3,3) S1 given in Example 5) is

{{L£(1), £(2), £(5), £(7), £(8), L(9)},{L(3), L(4), L(6)} }, (2)
which gives a ud-type of (2,1).

We recall that an affine plane of order n has a unique resolution into parallel
classes. It is easy to see that such a resolution is an unrefinable decomposition
of the affine plane of order n, which gives a type of (1,1,...,1) (sequence of
length n + 1). We highlight this point in the following example:

Example 12 (Example 7 revisited) An unrefinable decomposition of the
PLS(9,3.4) Sg is

{1,102, 15}, {l, 15, 16}, R®, P}, (3)
So Sp clearly has a ud-type of (1,1,1,1).



Theorem 2 is the main result of this paper. The following proposition can be
used to reformulate this result in terms of the types of a PLS(v,n,r).

Proposition 13 Every SOMA(n — 2,n) is Trojan if, and only if, every
PLS(n% n,n) of type (1,1,n — 2) must have a ud-type of (1,1,...,1).

PROOF. Let A be SOMA(k,n) with symbol-set €2, where k£ > 1. Then, we
can construct a PLS(n? n,k + 2) Sa = ([n] x [n], L4 UR™ uCW). Tt is
not difficult to see that {R™,C™ L4} is a decomposition of Sy, and so Sy
has a type of (1,1,k). Thus, the existence of a SOMA(k,n) (with £ > 1)
implies the existence of a PLS(n? n,k + 2) of type (1,1,%). The converse to
this result holds, but it is less straightforward to show. We refer the reader to
[1, Proposition 1.5.3.] for further details on constructing a SOMA(k,n) from
a PLS(n?,n,k + 2) of type (1,1,k). So the existence of a SOMA(k,n) (with
k > 1) is equivalent to the existence of a PLS(n? n, k + 2) of type (1,1, k).

It is a simple exercise to show that a SOMA(k,n) A is Trojan exactly when
the PLS(n?,n, k+2) Sy has a decomposition {R™,C™ L, ..., Ly} into k+2
parts, where each ordered pair ([n] x [n], £;) is a PLS(n? n, 1). Obviously, such
a decomposition is an unrefinable decomposition of S4.

In [1], and more generally in [2], we have shown that every PLS(n? n,r) has
a unique unrefinable decomposition. Thus, by the arguments above, show-
ing that every SOMA(n — 2,n) is Trojan is equivalent to showing that every
PLS(n?,n,n) of type (1,1,n — 2) must have a ud-type of (1,1,...,1) as re-
quired. O

3 Preliminaries

Given a simple graph I' = (V| E), we denote by T its complement graph. Let
S = (P, L) be a partial linear space.

Two points are said to be collinear if they are both contained within some
line of §. The collinearity graph of S is the graph with vertex-set P, where
{p,p'} is an edge if and only if p and p’ are distinct collinear points in S.

We denote by Ag the graph with vertex-set £, where {/,{'} is an edge if and
only if [ and [" are disjoint lines of S. Now, we let § = (P, L) be a partial
linear space where every point is contained in at least two lines. Then, its dual
S* is a partial linear space. Consequently, we can easily show that the graph
Ag of § is isomorphic to the complement graph of the collinearity graph of
the dual §* of S. Properties of the graph Ag of a PLS(v,n,r) S are stated in



Lemma 14 and in Theorem 15 without proof. These results are shown in [1],
and shown in more generality in [2].

Lemma 14 Let S = (P, L) be a PLS(v,n,r), where r > 1. Then, the graph
As is regqular of degree n — 1+ (v —n?)/n.

Theorem 15 Let S = (P, L) be a PLS(n? n,r), where r > 1. We let
{L1,..., Ly} be a partition of the set L of lines into m parts say, such that
each part L; is the set of vertices of some connected component of the graph
As. Then {Ly,..., Ly} is the unique unrefinable decomposition of S.

It is clear that Theorem 15 shows that an affine plane of order n has a unique
unrefinable decomposition; however, this result for affine planes was previously
known. Uniqueness of unrefinable decomposition of affine planes of order n
follows from more general results of Y. J. Ionin and M. S. Shrikhande (see |10,
Proposition 2.5] and [11, Theorem 5.1.15]).

Example 16 (Example 5 revisited) The graph As, of the PLS(9,3,3) S;
is displayed in Figure 5. We can see that this graph is reqular of degree 2, which
is given by Lemma 14. As is shown by Theorem 15, the connected components
of this graph correspond to the elements of the unrefinable decomposition of
Sy in Equation 1.

Fig. 5. A graph of the PLS(9,3,3) S; in Example 5

S
N/ LS

Example 17 (Example 6 revisited) We illustrate the graph As,)« of the
dual (81)* of Sy in Figure 6. It is clear that the connected components of this
graph correspond to the elements of the unrefinable decomposition of (S1)* in
Equation 2.

Example 18 (Example 7 revisited) The graph As, of the PLS(9,3,4) Sp
1s shown in Figure 7. We can see that the connected components of this graph
correspond to the elements of the unrefinable decomposition of Sg in Equa-
tion 3.

The following proposition collects known results on the eigenvalues of a regular
graph (i.e. the eigenvalues of the adjacency matrix of the regular graph). We
remark that this proposition is shown in graduate texts on algebraic graph



Fig. 6. A graph of the dual (S1)* of S; in Example 6

Fig. 7. A graph of the PLS(9,3,4) Sp in Example 7
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theory, in [5] and in [9].
Proposition 19 Let I' be a regular graph of degree r. Then

(1) r is an eigenvalue of T';
(2) the number of connected components of I' is the multiplicity of r;
(3) [N <r, for every eigenvalue X of T'.

The following theorem shows how to obtain the eigenvalues of the complement
of a regular graph from the original regular graph. It is shown in [8] and in

[9]-

Theorem 20 Let T’ be a reqular graph of degree r on v vertices. IfI' has eigen-
values r, Xo, ..., A\, then its complement ' has eigenvalues n —r — 1,—1 — Ag,
., —1 =X, (with the same respective eigenvectors).

Note here that if r > A, > -+ > A, (with m < v) are the distinct eigenvalues
of the graph I" then the eigenvalues of the graph I are distinct unless n—1—r
coincides with —J;, — 1.

Let S = (P, L) be a PLS(v,n,r), where r > 2. Let b = vr/n. Then, the dual
S* = (L, P) of Sis a PLS(b,r,n). We denote by I, the ¢ x ¢ identity matrix.
We let N be the point-line incidence matrix of S. In addition, we let A and C
be the adjacency matrices of the graphs Ag- and Ag respectively. Then, the
following relations hold:

10



NN”=A + 1, (4)
N'N=C + nl,. (5)

It clearly follows that an eigenvalue A of the matrix A corresponds to an
eigenvalue A + r — n of the matrix C.

Henceforth, we let S = (P, £) be a PLS(n* n,n). So its dual 8* = (£, P¢) is
a PLS(n% n,n).

Proposition 21 The graphs As- and As have the same number of connected
components.

PROOF. 1t is clear that the graphs Ag- and Ag each have n? vertices. By
Lemma 14, both graphs Ag- and Ags are regular of degree n — 1. Thus, both
graphs Ag- and Ag are regular of degree n? — n.

Since S is a PLS(n?,n,n), the matrix N of S is square. Consequently, as the
matrices NN” and N”N have the same non-zero eigenvalues (with the same
multiplicities), the graphs Ag- and Ag have the same eigenvalues (with the
same multiplicities). Thus, by Theorem 20, the graphs Ag. and Ag have the
same eigenvalues (with the same multiplicities). Hence, by Proposition 19,
the graphs Ag+« and Ag have the same number of connected components as
required. O

Computational analysis of some examples of PLS(n? n,n)s give that each
PLS(4,2,2), each PLS(9,3,3) and each PLS(16,4,4) is isomorphic to its dual,
but each PLS(25,5,5) is not necessarily isomorphic to its dual. Moreover, this
analysis gives that each PLS(25,5,5) does not necessarily have the same ud-
type as its dual.

4 Proof of Theorem 2

We recollect that S = (P, L) is a PLS(n?,n,n), and its dual $* = (L, P;)
is a PLS(n?,n,n). For points p,q € P, we let p ~ ¢ if and only if the lines
L(p) and L(q) of the dual §* of S are disjoint. Thus p ~ ¢ exactly when p
and ¢ are distinct non-collinear points in §. We denote by I's the graph with
vertex-set P, where {p,q} is an edge if and only if p ~ ¢. Thus {p, ¢} is an
edge of the graph I's if and only if {£(p), L(q)} is an edge of the graph Ag-.
So the graphs I's and Ag+ are isomorphic.

Lemma 22 Let [,I' € L be disjoint lines of S. Then, for each point p € I,
there exists some point q € I such that p ~ q.

11



PROOF. Let p € | be a point. For a proof by contradiction, suppose that
p = q for every point g € I'. Tt clearly follows that {p, ¢} is a subset of some
line of S, where p # ¢, for every point ¢q € ['.

The definition of S gives that the line [’ of S has cardinality n, and the exis-
tence of exactly n lines of S (including the line ) that each contain the point
p € P. Consequently, as S is a partial linear space, we have a contradiction
that the lines [ and I’ of S are not disjoint. Hence, for each point p € [, there
exists some point g € I’ such that p ~ ¢ as required. O

Example 23 (Examples 5 and 6 revisited) We recall that Figure 6 dis-
plays the graph As,)- of the dual (S1)* of Si. Consider the disjoint lines
me = {1,4,5} and ms = {2,6,9} of S1. It is easy to see that (1,9), (4,6),
(5,2) are ordered pairs (p,q), where the points p € mo and ¢ € ms are such

that the lines L(p) and L(q) of the dual (S1)* of Sy are adjacent in the graph
A(Sl)* .

Proposition 24 Let M be a subset of the set L of lines of S, such that M
s a partition of the set P of points. We let | € M be a line. Then, for each
point p € P\ I, there exists a unique point q € | such that p ~ q.

PROOF. Let p € P\ be a point. Since the set M of lines partitions the set
P of points, there exists a unique line I’ € M that contains the point p. Thus,
by Lemma 22, there exists some point g € [ such that p ~ ¢. So for each point
p € P\ [, there exists some point ¢ € [ such that p ~ gq.

We recall that the dual S* of S is a PLS(n?, n, n). Consequently, by Lemma 14,
the graph Ag« is regular of degree n — 1. Thus, as the graphs Ag- and I's
are isomorphic, the graph I's is regular of degree n — 1. Obviously, the line
[ € M and the set P\ [ have cardinalities n and n* — n respectively. Using
the arguments above together with the Pigeonhole Principle, we can show the
required result. O

Example 25 (Examples 5 and 6 revisited) We recall that Equation 1 is
an unrefinable decomposition of Sy that gives a ud-type of (1,2), and Fig-
ure 6 illustrates the graph Ay« of the dual (S1)* of Si. We can see that
{m1,mg,mg} is a subset of the set of lines of S that partitions the set [9] of
points. From this subset of lines, we fix a line my = {1,2,3}. It is not diffi-
cult to see that (4,3), (5,2), (6,3), (7,2), (8,1), (9,1) are ordered pairs (p,q),
where the point p € {4,5,...,9}, and where q is the unique point ¢ € my such
that the lines L(p) and L(q) of the dual (S1)* of Si are adjacent in the graph
A(Sl)*-

Corollary 26 Let {R,C, L'} be a decomposition of S, such that the elements
R and C each partition the set P of points. Then:
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(1) Each point p € P corresponds a unique matching of n — 1 edges of the
graph Us that partitions the set R /A C (symmetric difference), where the
lines R € R and C € C are such that the point p € RN C.

(2) Each edge {p,p'} of the graph T's is a subset of exactly two elements of
the set {RAC:ReR,C €C}.

PROOF.

Part 1:

We have that R and C are subsets of the set L of lines of S that each partition
the set P of points. Since S is a partial linear space, any two distinct lines of
S intersect in at most one point. So each point p € P corresponds to the set
R A C, where the lines R € R and C' € C are such that the point p € RN C.

Fix a point p € P. Let the set R A C' correspond to the point p as described
above. Consider another point ¢ € R A C. By Proposition 24, there exists a
unique point ¢ € RAC such that ¢ ~ ¢'. Thus, there exists a unique matching
of n — 1 edges of the graph I's that partitions the set R A C'. Hence, the result
as stated in Part 1 follows as required.

Part 2:

Let p,p’ € P be points such that p ~ p’ (and so these points are distinct). We
recall that the subsets R and C of the set £ lines of § each partition the set P
of points, and any two lines of § intersect in at most one point. So there exists
unique lines Ry, Ry, C1, Cy, where Ry, Ry € R and C4,Cs € C, such that the
points p € Ry NCy and p’ € Ry NCy. Therefore, there exists two unique points
q,q € P such that the points ¢ € R{NCs and ¢ € Ry NCYy. It now follows that
the sets Ry ACy and Ry ACh are the only elements of {RAC : Re R,C € C}
that contain the set {p, p'}. Hence, each edge {p, p'} of the graph I's is a subset
of exactly two elements of the set {RAC : R € R,C € C} as required. O

Proof of Theorem 2 By Proposition 13, we can prove this theorem by
showing that every PLS(n? n,n) of type (1,1,n — 2) must have a ud-type of
(1,1,...,1).

Again, we let S = (P, L) be a PLS(n? n,n) of type (1,1,n — 2). So its dual
S* = (L, P;) is a PLS(n?,n,n). We let {R,C, L'} be a decomposition of S
which gives a type of (1,1,n — 2), such that the elements R and C each
partition the set P of points. Consequently, by Theorem 15, the graph Ag is
disconnected. By Proposition 21, and as the graphs Ag- and I's are isomorphic,
the graph I's is disconnected.

Let P C P be the set of vertices for a connected component of the graph I's,
and we let IV be the graph given by this connected component. In addition,
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we let P, = {L(p) : p € P'}. So P} is the set of vertices for some connected
component of the graph Ags, which corresponds in an obvious way to the set
P

Recall that 8* = (£, P;) is a PLS(n?,n,n). By Theorem 15, the ordered pair
(L, P}) is a PLS(n? n,r’) for some v’ > 1. Thus |P' N1| = 1/, for every line [
of S. Note here that the sets P’ and P} each have cardinality r'n.

For a proof by contradiction, suppose that the integer ' > 2. We now count
in two different ways the number of edges of the graph I".

Since §* is a PLS(n? n,n), Lemma 14 gives that the graph Ag- is regular of
degree n — 1. Consequently, the graph I's is regular of degree n — 1 because
the graphs Ag« and I's are isomorphic. Thus, the graph I'" has r'n(n — 1)/2
edges.

On the other hand, Corollary 26 implies that each point p € P’ corresponds
to a unique matching of ' — 1 edges of the graph I that partitions the set
(RA C)N P, where the lines R € R and C € C of S are such that the point
p € RNC. Also, by Corollary 26, each edge {p,p'} of the graph I'" is a subset
of exactly two elements of the set {(RAC)NP' : Re€ R,C € C}. Thus, the
graph I has 7'n(r’ — 1)/2 edges.

It now follows that
rn(r'—=1)  r'n(n—1)

2 2 ’
which implies that "n(n — ') = 0. Thus " = n, since " > 2 and n > 2.
Hence, the graph I's is connected. So our supposition that the integer ' > 2
implies that the graph I's is connected, which clearly contradicts our earlier
deduction that the graph I's is disconnected.

By the arguments above, the graph I's must be n copies of the complete graph
K, on n vertices. So the graph Ag- is n copies of the graph K,,, because the
graphs Ag+ and ['s are isomorphic. Consequently, by Proposition 21, the graph
As must be n copies of the graph K,,. Thus, by Theorem 15, the PLS(n?,n,n)
S is of ud-type (1, 1,...,1). Hence, we have shown that every PLS(n? n,n) of
type (1,1,n — 2) must have a ud-type of (1,1,...,1) as required. O

5 Further work on non-Trojan SOMAs

Let N(n) be the largest value of k for which there exists a Trojan SOMA (k, n)
(or equivalently & MOLS of order n). We let M (n) be the largest value of k for
which there exists a non-Trojan SOMA(k, n). Note here that Soicher [14] has
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shown that n > 5 is a necessary condition for the existence of a non-Trojan
SOMA (k,n).

An easy upper bound for N(n) is that N(n) < n — 1, for all n. We recall
that equality holds, when n is a prime-power. A known lower bound is that
N(n) > 2, for all n > 3 such that n # 6.

R. A. Bailey [4] has shown that M(n) < n — 2, for all n > 5. Theorem 2
improves this bound slightly by showing that M(n) < n — 3, for all n > 5.
The non-Trojan SOMA(n — 3,n)s displayed in Figures 2, 3 and 4 give that
equality holds, at least when n = 5,6,7. So our result gives the best possible
linear upper bound for M (n). A known lower bound is that M (n) > 2, for all
n > 5. This result is shown by the author in [1, Corollary 4.6.3.], and is based
on joint with M. A. Ollis.

A great deal of research has gone into studying values and bounds for N(n).
However, relatively little research has gone into investigating similar notions
for M(n). In [1], we consider such values and bounds.

All the values of N(n) are known, when n < 9. Phillips and Wallis, in [12],
have shown that M (6) = 3. Later, Soicher [15] has shown that M (5) = 2 and
M(6) = 3, by constructing many examples of SOMA(k,n)s with n < 6. In

come to the following problem:
Problem 27 What are the values of M(8) and of M(9)?

Soicher has shown that M (10) > 4 and shown that AM(14) > 4, in [14] and
in [15] respectively. We have already mentioned (at the end of Section 1)
that there exists no SOMA(8,10), no SOMA(9, 10), no SOMA(12,14) and no
SOMA(13,14). Thus 4 < M(10) < 7 and 4 < M(14) < 11. Consequently, we
ask the following problem:

Problem 28 Is it possible to improve the upper bound of M(n) < n — 3, for
alln > 5%
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