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Abstract

We introduce the notion of an unrefinable decomposition of a 1-design with

at most two block intersection numbers, which is a certain decomposition of

the 1-designs collection of blocks into other 1-designs. We discover an infinite

family of 1-designs with at most two block intersection numbers that each have

a unique unrefinable decomposition, and we give a polynomial-time algorithm

to compute an unrefinable decomposition for each such design from the family.

Combinatorial designs from this family include: finite projective planes of order

n; SOMAs, and more generally, partial linear spaces of order (s, t) on (s + 1)2

points; as well as affine designs, and more generally, strongly resolvable designs

with no repeated blocks.
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1 Introduction

Let X be a finite non-empty set of v elements, called points, and let B be a finite

non-empty multiset of k-subsets of X, called blocks. Also, we let t ≥ 0 and λ ≥ 1 be

integers. Then the ordered pair D = (X,B) is called a t-design, or more specifically

a t-(v, k, λ) design, if every t-subset of X is contained in exactly λ blocks.

For all i = 0, 1, . . . , t − 1, we denote by λi the number of blocks of the t-design D

that contain a given set of i points. It follows that λi is independent of the choice of

the i points and λi

(
k−i
t−i

)
= λ

(
v−i
t−i

)
. In particular, b = λ0 is the number of blocks, and

λ1 = r is the number of blocks that contain each point of X. For 0 ≤ x < k, x is

called a block intersection number of D if there exists distinct blocks B, B′ ∈ B such

that |B∩B′| = x. If D has repeated blocks then we define k to be a block intersection

number of D.

Let x1 6= x2 be non-negative integers. A TID(v, k; r, {x1, x2}), or more simply a

two-intersecting design, is a 1-(v, k, r) design whose block intersection numbers are

contained within the set {x1, x2}. If a two-intersecting design has no repeated blocks

then it is said to be simple.

A quasi-symmetric design is a 2-design with two block intersection numbers. So we

can regard two-intersecting designs as a generalisation of quasi-symmetric designs.

We refer the reader to [9] for further information regarding quasi-symmetric designs.

We can easily see that a regular graph of degree r on v vertices is the same thing as

a simple TID(v, 2; r, {0, 1}), and more generally, a partial linear space of order (s, t)

on v points is essentially the same thing as a simple TID(v, s− 1; t− 1, {0, 1}).

Two two-intersecting designs (X,B) and (X ′,B′) are said to be isomorphic if there is

a bijection from X to X ′ that induces a bijection from B to B′.

We are interested in the unrefinable decompositions of a two-intersecting design,

which we go on to define.
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Let D = (X,B) be a TID(v, k; r, {x1, x2}), where r ≥ 1.

A decomposition of D is a partition {B1, . . . ,Bm} of the multiset B of blocks into m

parts say, such that each (X,Bi) is a TID(v, k; ri, {x1, x2}), for some ri ≥ 1. We then

call (r1, . . . , rm) a type of D.

It is clear that {B} is one decomposition. If this is the only decomposition then the

two-intersecting design D is said to be indecomposable; otherwise, we say that D is

decomposable.

An unrefinable decomposition of the TID(v, k; r, {x1, x2}) D is a decomposition

{B1, . . . ,Bm} of D, such that each (X,Bi) is indecomposable. Where each (X,Bi)

is a TID(v, k; ri, {x1, x2}), we call (r1, . . . , rm) an unrefinable decomposition type (or

ud-type) of D.

We now discuss an example of the unrefinable decompositions of a two-intersecting

design.

A strongly resolvable design is a 2-design whose blocks can be partitioned into c

equivalence classes each of m blocks, such that

(i) every point occurs in a constant number µ blocks in each class, and

(ii) there are constants q1 and q2, such that any two blocks belonging to the same

class intersect each other in q1 points, whereas any two blocks belonging to

different classes intersect each other in q2 points.

S. S. Shrikhande and D. Raghavaro [10] have shown that a 2-(v, k, λ) design satisfying

(i) also satisfies (ii) if, and only if, b = v + c− 1 (where b is the number of blocks and

c is the number of equivalence classes of the design). So such a design can easily be

shown to be a TID(v, k; r, {q1, q2}) which has a type of (µ, µ, . . . , µ) (c times), where

r = bk/v, q1 = (µ− 1)k/(m− 1) and q2 = µk/m = k2/v.

An affine design is a strongly resolvable design such that every point occurs in exactly

one block from each class. An example of an affine design is an affine plane of
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order n, which is a 2-(n2, n, 1) design. It is clear that such a design is a simple

TID(n2, n; n + 1, {0, 1}).

A finite projective plane of order n is a 2-(n2 + n + 1, n + 1, 1) design, and thus

can easily be shown to be a simple TID(n2 + n + 1, n + 1; n + 1, {x, 1}), where the

non-negative integer x 6= 1.

It is known that a finite projective plane of order n exists if, and only if, an affine

plane of order n exists. Also, it is known that a finite projective plane of order n

exists, when n is a prime power. However, the existence of one when n is not a prime

power is a still a major unsolved problem.

In this paper, we show that every simple TID(v, k; r, {x1, x2}) is indecomposable,

when x2 < k2/v, x1 < x2 and r ≥ 1, and has a unique unrefinable decomposition,

when x2 = k2/v, x1 < x2 and r ≥ 1. For this latter case, we give a polynomial-time

algorithm to compute an unrefinable decomposition of such a two-intersecting design.

Our results show that every finite projective plane of order n is indecomposable, in

particular, such designs have a unique unrefinable decomposition. Also, our results

show that every strongly resolvable design with no repeated blocks has a unique un-

refinable decomposition, and show that every partial linear space of order (s, t) on

(s + 1)2 points has a unique unrefinable decomposition. Note that these results on

the finite projective plane and on strongly resolvable designs were previously known.

Uniqueness of unrefinable decomposition of strongly resolvable designs and indecom-

posability of finite projective planes follows from more general results of Y. J. Ionin

and Shrikhande (see [6, Proposition 2.5] and [7, Theorem 5.1.15]).

The results in this paper are shown by studying graphs on two-intersecting designs,

and we define these graphs in Section 4. In Section 6, we discuss our results and the

methods used to obtain them.

The motivation for studying the unrefinable decompositions of two-intersecting de-

signs comes from SOMAs and from Steiner triple systems. We discuss SOMAs in the
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following section, and Steiner triple systems in Section 3.

2 SOMAs

Closely related to partial linear spaces of order (s, t) are SOMAs, which we now

formally define.

Let r ≥ 0 and k ≥ 2 be integers. A SOMA, or more specifically a SOMA(r, k), is

an k × k array A each of whose entries is a r-subset of a rk-set Ω (the symbol-set),

such that every symbol of Ω occurs exactly once in each row and exactly once in each

column of A, and every 2-subset of Ω is contained in at most one entry of A.

A SOMA(r, k) can be constructed by the superposition of r mutually orthogonal Latin

squares (MOLS) of order k with pairwise disjoint symbol-sets. Note that not every

SOMA(r, k) can be constructed in this way.

We remark that the name SOMA was introduced by N. C. K. Phillips and W. D.

Wallis, in [8], as an acronym for simple orthogonal multi-array.

We now show the connection between SOMA(r, k)s and partial linear spaces of order

(s, t).

Let A be a SOMA(r, k) with symbol-set Ω, where r ≥ 1. We denote by [k] and by

A(i, j) the set {1, 2, . . . , k} and the (i, j)-entry of the SOMA A respectively.

For each symbol α ∈ Ω, we let Bα be a subset of [k]× [k] (Cartesian product) given

by the rule that (i, j) ∈ Bα if and only if α ∈ A(i, j). We then let BA = {Bα : α ∈ Ω}.

It is not difficult to show that the ordered pair DA = ([k] × [k],BA) is a simple

TID(k2, k; r, {0, 1}), or equivalently a partial linear space of order (k − 1, r − 1) on

(k + 1)2 points.

We use the terms decomposition, type, indecomposable, decomposable, unrefinable

decomposition and ud-type for the SOMA A to mean the corresponding term for the

two-intersecting design DA.
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It is easy to see that the SOMA(r, k) A can be constructed by the superposition of r

MOLS of order k exactly when the SOMA(r, k) A has a type of (1, 1, . . . , 1).

Our interest in SOMAs comes from the fact that a SOMA(r, k) can be constructed

when the existence of r MOLS of order k is impossible or unknown. BCC Problem

13.21 ([13] and [4]) asks for constructions of SOMA(k, n)s with precisely this property.

It is known that two MOLS of order 6 do not exist. In contrast, Phillips and Wal-

lis [8] have constructed SOMA(3,6)s of ud-types (1,2) and (3), and shown that no

SOMA(4,6) exists. Note that no SOMA(5,6) exists as its existence would imply the

existence of a finite projective plane of order 6, which of course does not exist.

Soicher [11] has given constructions of indecomposable SOMA(4,14)s, which each

satisfy BCC Problem 13.21. It is known that there exists three MOLS of order 14,

but not known whether there exists four such MOLS. We briefly discuss some recent

developments in BCC Problem 13.21 for SOMA(r, 10)s.

Many examples of two MOLS of order 10 are known to exist, but the existence of three

such MOLS is an unsolved problem. Soicher [11] has constructed SOMA(3,10)s of

ud-types (1,2) and (3). Soicher, in [12], then went on to construct an indecomposable

SOMA(4,10). For the benefit of the reader, we show this SOMA(4,10) in Figure 1.

Soicher, in [11], gave partial results on when a SOMA(r, k) has a unique unrefin-

able decomposition. In Problem 2 of [11], Soicher then asked whether there exists

a SOMA(r, k), with r ≥ 1, which has more than one unrefinable decomposition.

We have first answered this question in the negative, in [2], where we have given a

polynomial-time algorithm to compute an unrefinable decomposition of a SOMA(r, k).

In Section 5 of this paper, not only do we generalise our answer to Soicher’s problem,

but we also generalise our algorithm to compute an unrefinable decomposition of a

SOMA(r, k).

For further general information on SOMAs, we direct the interested reader to web

resources on SOMAs in [12], and in [1].
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Figure 1: An indecomposable SOMA(4,10)
1 2 3 21 4 5 6 7 9 26 10 28 11 12 14 15 16 32 17 18

19 20 22 23 24 37 8 25 27 39 29 40 13 30 31 38 33 34 35 36

17 30 14 18 9 21 11 16 1 6 12 19 4 23 2 3 5 7 8 15

31 32 26 33 25 28 35 37 10 24 22 39 36 40 13 34 29 38 20 27

10 11 8 29 7 15 12 23 13 17 1 4 2 21 16 25 3 9 5 6

36 38 30 34 22 32 24 28 20 37 14 35 33 39 27 40 18 31 19 26

9 12 4 13 6 31 5 10 2 23 3 8 7 14 18 28 17 19 1 11

15 29 27 38 34 36 21 30 25 35 26 37 16 20 32 39 24 40 22 33

8 33 2 5 3 16 1 27 4 11 18 20 6 9 7 10 15 23 13 14

35 40 12 36 19 38 29 31 28 34 24 25 22 37 17 26 30 39 21 32

5 25 6 20 2 11 9 17 14 19 13 16 15 24 1 12 4 8 3 7

34 39 32 40 18 27 33 38 29 36 23 31 26 35 21 37 10 22 28 30

4 6 11 24 1 26 13 15 8 12 7 27 3 17 5 20 2 14 9 10

16 21 31 39 30 40 18 19 32 38 33 36 25 29 22 35 28 37 23 34

7 18 1 16 13 29 14 22 3 5 2 6 10 19 8 9 11 20 4 12

23 37 17 28 35 39 34 40 15 33 30 38 27 32 24 36 21 26 25 31

13 22 10 15 8 14 3 20 7 21 5 9 1 18 4 19 6 12 2 16

26 28 25 37 17 23 36 39 31 40 11 32 34 38 30 33 27 35 24 29

3 14 7 9 10 12 2 4 16 18 15 17 5 8 6 11 1 13 37 38

24 27 19 35 20 33 26 32 22 30 21 34 28 31 23 29 25 36 39 40

3 Steiner triple systems

A Steiner triple system of order v, or a STS(v), is a 2-(v, 3, 1) block design. It

is not difficult to show that such a 2-design is a simple TID(v, 3; r, {0, 1}), where

r = (v − 1)/2.

C. J. Colbourn and A. Rosa, in [5], used the following terms to describe the decompos-

ability of a STS(v): an indecomposable and a decomposable STS(v) are also known

as non-separable and separable STS(v) respectively; a decomposition of an STS(v)

that gives a type of (r1, . . . , rm) is called an (r1, . . . , rm)-separation of an STS(v);

and an unrefinable decomposition of an STS(v) that gives a ud-type of (r1, . . . , rm)

is called an (r1, . . . , rm)-atomic separation of an STS(v). In [5], Colbourn and Rosa

discuss the unrefinable decompositions of an STS(v), when v ≤ 15. We remark here

the number of non-isomorphic STS(v)s of order v = 1, 3, 7, 9, 13, 15, . . . are known to

be 1,1,1,1,2,80,. . . . In [5], Colbourn and Rosa mention the following:

• an STS(v) is trivially indecomposable, for every v ∈ {1, 3, 7};

• the STS(9) has a resolution into parallel classes, and it only has a ud-type of
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(1,1,1,1); and

• both STS(13)s only have a ud-type (3,3).

Colbourn and Rosa, in [5], then used computational results to show that a STS(15)

may have more than one ud-type.

4 Graphs on two-intersecting designs

This section is a preliminary section to the following section, where we show the main

results of this paper.

Let x1 6= x2 be non-negative integers. We let D = (X,B) be an ordered pair consisting

of a finite non-empty set X of points and a finite non-empty multiset B of blocks,

where each block is a subset of X, such that all the blocks of D have constant size,

and the block intersection numbers of D are contained within the set {x1, x2}.

For all i = 1, 2, we define ΓD
i to be the graph formed by taking as vertices the

blocks of D, and joining two vertices of ΓD
i by an edge whenever the corresponding

blocks intersect in exactly xi points. Similarly, we define ΓD
1,2 to be the graph formed

by taking as vertices the blocks of D, and joining two vertices of ΓD
1,2 by an edge

whenever the corresponding blocks intersect in x1 or x2 points.

If D is a quasi-symmetric design with block block intersection numbers x1 and x2,

where x1 < x2, then the graph ΓD
1 is also known as the block graph of D. Assuming

that the block graph of a quasi-symmetric design is connected, it is known that this

graph is strongly regular (see [9, Theorem 3.8]).

Let B ∈ B be a block. For all i = 1, 2, we let ΓD
i (B) be the set of blocks adjacent to

the block B in the graph ΓD
i , and we let γD

i (B) be the cardinality of the set ΓD
i (B).
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5 The structure of simple two-intersecting designs

Let D = (X,B) be a simple TID(v, k; r, {x1, x2}) with r ≥ 1. Again, we let b be the

number of blocks of D.

Lemma 5.1. The graph ΓD
1 is regular of degree

r(k2 − vx2)

k(x1 − x2)
+

(x2 − k)

(x1 − x2)
.

Proof. We let B ∈ B be a block. Since the two-intersecting design D is simple, we

have that

γD
1 (B) + γD

2 (B) = b− 1. (1)

We count all blocks other than the block B (with multiplicity) that intersect this

block B in a point, and so it follows that

γD
1 (B)x1 + γD

2 (B)x2 = (r − 1)k.

Consequently by Equation 1, we have that

γD
1 (B)(x1 − x2) + (b− 1)x2 = (r − 1)k. (2)

Counting the point-block incidence pairs of D gives that bk = vr, and so b = vr/k.

By Equation 2, it follows that

γD
1 (B)(x1 − x2)k + (vr − k)x2 = (r − 1)k2.

Hence

γD
1 (B) =

r(k2 − vx2)

k(x1 − x2)
+

(x2 − k)

(x1 − x2)
.

The result now follows.

In this lemma, if x2 = k2/v then x1 < x2, since x2 ≤ k, x1 6= x2 and as the graph ΓD
1

is regular of non-negative degree. Also in this lemma, if x2 > k2/v then x1 < x2, since
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the inequalities x2 > k2/v and x1 > x2 would imply that the graph ΓD
1 is regular of

negative degree.

This lemma directly gives the following corollary.

Corollary 5.2. Let D′ = (X,B′) be a simple TID(v, k; r′, {x1, x2}), for some r′ ≥ 1,

where B′ ⊆ B. In addition, suppose that x2 = k2/v. Then, the sets ΓD
1 (B) and ΓD′

1 (B)

are equal, for every block B ∈ B′.

We now come to the following theorem.

Theorem 5.3. Let x1 6= x2 be non-negative integers. We let D = (X,B) be an

ordered pair that consists of a v-set X of points and a non-empty set B of blocks,

where each block is a k-subset of X, such that any two distinct blocks intersect in

precisely x1 or x2 points, and x2 = k2/v. Then D is a TID(v, k; r, {x1, x2}) (for some

r ≥ 1) if, and only if, the graph ΓD
1 is regular of degree x2−k

x1−x2
.

Proof. For convenience, we let

c =
x2 − k

x1 − x2

. (3)

Suppose that D is a simple TID(v, k; r, {x1, x2}), for some r ≥ 1. Then by Lemma 5.1,

we have that the graph ΓD
1 is regular of degree c.

On the other hand, suppose that the ordered pair D is such that the graph ΓD
1 is

regular of degree c.

For each point p ∈ X, we let rp be the number of blocks that contain the point p.

Note that rp may be zero, for some point p ∈ X.

By counting the point-block incidence pairs of D, it follows that∑
p∈X

rp = bk, (4)

where we recall that b is the cardinality of the set B of blocks.

10



We have that any two distinct blocks of the ordered pair D intersect in exactly x1 or

x2 points. So each point p ∈ X corresponds to exactly
(

rp

2

)
edges of the graph ΓD

1,2.

Our supposition is that the graph ΓD
1 is regular of degree c on b vertices, and hence

the graph ΓD
2 is regular of degree b− 1− c. Consequently by counting the number of

points given by the graph ΓD
1,2 (with multiplicity), we have that∑

p∈X

(
rp

2

)
=

bcx1

2
+

b(b− 1− c)x2

2
.

Into this equation, we substitute Equations 3 and 4, and the equation that x2 = k2/v.

We expand and simplify the resulting equation, and so we can show that∑
p∈X

rp
2 =

b2k2

v
. (5)

By Equations 4 and 5, we can easily observe that∑
p∈X

(
rp −

bk

v

)2

= 0.

Thus rp = bk/v, for every point p ∈ X.

Hence, the ordered pair D is a TID(v, k; r, {x1, x2}), where r = bk/v ≥ 1.

The result now follows.

This theorem leads to the following main result.

Theorem 5.4. Let D = (X,B) be a simple TID(v, k; r, {x1, x2}) with r ≥ 1, such

that x2 = k2/v (and so x1 < x2). We let {B1, . . . ,Bm} be a partition of the set B of

blocks into m parts say, such that each part Bi is the set of vertices for a connected

component of the graph ΓD
1 . Then {B1, . . . ,Bm} is a unique unrefinable decomposition

of D.

Proof. Lemma 5.1 shows that the graph ΓD
1 is regular of degree x2−k

x1−x2
. Thus by

Theorem 5.3, we have that each Di = (X,Bi) is a TID(v, k; ri, {x1, x2}), for some

ri ≥ 1. Hence {B1, . . . ,Bm} is a decomposition of D.
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Let D′ = (X,B′) be a simple TID(v, k; r′, {x1, x2}), for some r′ ≥ 1, such that B′ ⊆ B.

Since {B1, . . . ,Bm} is a partition of the set B of blocks, there exists a part Bj say,

which is not disjoint from the set B′.

Consider the graphs ΓD
1 and ΓD′

1 . Corollary 5.2 shows that the sets ΓD′
1 (B) and ΓD

1 (B)

are equal, for every block B ∈ B′. Thus, if a block B ∈ B′∩Bj then ΓD
1 (B) ⊆ B′∩Bj.

Therefore by induction on the length of paths in the graph ΓD
1 , we can show that Bj

is a subset of B′. Hence, if the sets B′ and Bj of blocks are not disjoint, for some

j = 1, . . . ,m, then Bj ⊆ B′.

By the arguments above, it follows that each TID(v, k; ri, {x1, x2}) Di = (X,Bi)

is indecomposable. Furthermore, it follows that if the TID(v, k; r′, {x1, x2}) D′ is

indecomposable then B′ = Bj, for some j = 1, . . . ,m.

Hence {B1, . . . ,Bm} is a unique unrefinable decomposition of D as required.

This theorem clearly answers a problem of Soicher’s on the unrefinable decompositions

of SOMAs ([11, Problem 2]) in the negative. Also, this theorem shows directly that

every strongly resolvable design with no repeated blocks has a unique unrefinable

decomposition, and shows that every partial linear space of order (s, t) on (s + 1)2

points has a unique unrefinable decomposition.

Note that this theorem gives a polynomial-time algorithm for determining a unre-

finable decomposition of the TID(v, k; r, {x1, x2}) D, since we are computing all the

connected components of the graph ΓD
1 .

We come to another main result of this paper.

Theorem 5.5. Every simple TID(v, k; r, {x1, x2}) is indecomposable, when

x2 < k2/v, x1 < x2 and r ≥ 1.

Proof. Let D = (X,B) be a simple TID(v, k; r, {x1, x2}) with r ≥ 1, where x2 < k2/v

and x1 < x2.
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For a proof by contradiction, suppose that {B1,B2} is a decomposition of D. Then, we

have that D1 = (X,B1) is a TID(v, k; r1, {x1, x2}), for some r1 such that r > r1 ≥ 1.

Consider the graphs ΓD
1 and ΓD1

1 . Since B1 ⊆ B, it follows that

0 ≤ γD1
1 (B) ≤ γD

1 (B), (6)

for each block B ∈ B1.

By Lemma 5.1, we have that

γD1
1 (B) =

r1(k
2 − vx2)

k(x1 − x2)
+

x2 − k

x1 − x2

(7)

and

γD
1 (B) =

r(k2 − vx2)

k(x1 − x2)
+

x2 − k

x1 − x2

, (8)

for each block B ∈ B1.

It is clear that our supposition gives that

k2 − vx2

x1 − x2

< 0 and
x2 − k

x1 − x2

≥ 0,

as k ≥ x2. We recall that r > r1 ≥ 1. Consequently by Equations 7 and 8, we have

that

γD1
1 (B) > γD

1 (B),

for every block B ∈ B1, which clearly contradicts Equation 6.

Thus {B} is a unique decomposition of D. Hence D is indecomposable.

The result now follows.

Note here that this theorem shows that every finite projective plane of order n is

indecomposable, in particular, such designs have a unique unrefinable decomposition.

Again, we let D be a simple TID(v, k; r, {x1, x2}) with r ≥ 1. A trivial sufficient

condition for D to have a unique unrefinable decomposition is that r = 1. In contrast,

the following corollary shows a non-trivial sufficient condition for D to have a unique

unrefinable decomposition, and this corollary follows directly from Theorems 5.3 and

5.4.
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Corollary 5.6. Every simple TID(v, k; r, {x1, x2}) has a unique unrefinable decom-

position, when x2 ≤ k2/v, x1 < x2 and r ≥ 1.

We conclude this section with the following theorem.

Theorem 5.7. Let D = (X,B) be a simple TID(v, k; r, {x1, x2}) with r ≥ 1, such

that x2 > k2/v (and so x1 < x2). Then the graph ΓD
1 is connected.

Proof. First, we consider the degree of each vertex of the graph ΓD
1 .

Lemma 5.1 shows that the graph ΓD
1 is regular of degree c, where

c =
r(k2 − vx2)

k(x1 − x2)
+

x2 − k

x1 − x2

.

Into this equation, we substitute the equation r = bk/v, where b is the cardinality of

the set B of blocks. Therefore

c =
b(k2 − vx2)

v(x1 − x2)
+

x2 − k

x1 − x2

(9)

We let D′ = (X,B′) be an ordered pair, where B′ is the set of vertices for a connected

component of the graph ΓD
1 . Let b′ be the cardinality of the set B′. So each block

contained within B′ is a k-subset of X, and any two distinct blocks of B′ intersect in

precisely x1 or x2 points.

For each point p ∈ X, we let rp be the number of blocks of D′ that each contain the

point p. Note that each integer rp may be zero.

By counting the point-block incidence pairs of D′, we have that∑
p∈X

rp = b′k. (10)

We count the number of points given by the graph ΓD′
1,2 (with multiplicity). Thus

∑
p∈X

(
rp

2

)
=

b′cx1

2
+

b′(b′ − 1− c)x2

2
.
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Therefore by Equation 9, we can show that∑
p∈X

rp
2 −

∑
p∈X

rp = b′
(

b(k2 − vx2)

v
+ (b′x2 − k)

)
.

Consequently by Equation 10, it follows that∑
p∈X

rp
2 =

b′(k2 − vx2)b

v
+ b′2x2. (11)

Finally, we use this equation together with the following easily observed inequality

that ∑
p∈X

(
rp −

b′k

v

)2

≥ 0 (12)

to deduce that the graph ΓD′
1 is connected.

We expand and simplify Equation 12. Consequently as X is a v-set of points, and by

Equation 10, we can show that ∑
p∈X

rp
2 − b′2k2

v
≥ 0.

Into this inequality, we substitute Equation 11. We factorise the resulting equation,

and thus

b′(b′ − b)

(
x2 −

k2

v

)
≥ 0. (13)

It is clear that b′ > 0, b′−b ≤ 0 and
(
x2 − k2

v

)
> 0, since b ≥ b′ ≥ 1 and as x2 > k2/v.

Therefore by equation 13, we have that

b′(b′ − b)

(
x2 −

k2

v

)
= 0,

which gives that b′ − b = 0. So the sets B′ and B of blocks are equal.

Hence, the graph ΓD
1 is connected as required.
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6 Outcomes and discussion

In the previous section, we have shown that every simple TID(v, k; r, {x1, x2}) is

indecomposable, when x2 < k2/v, x1 < x2 and r ≥ 1, and has a unique decomposition,

when x2 = k2/v, x1 < x2 and r ≥ 1. So every simple TID(v, k; r, {x1, x2}) has a

unique unrefinable decomposition, when x2 ≤ k2/v, x1 < x2 and r ≥ 1.

We now discuss the unrefinable decompositions of simple TID(v, k; r, {x1, x2})s, with

r ≥ 1, where x2 > k2/v (and so x1 < x2).

We can easily see that a regular graph of degree r on v vertices is essentially the same

thing as a simple TID(v, 2; r, {0, 1}). So the complete graph K5 on 5 vertices and the

3-prism, which is shown in Figure 2, are a TID(5,2;4,{0,1}) and a TID(6,2;3,{0,1})

respectively.

Figure 2: The 3-prism
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It is easy to see that each unrefinable decomposition of K5 consists of two edge-

disjoint 5-cycles. Note that although the graph K5 has more than one unrefinable

decomposition it has a unique ud-type of (2,2).

Two unrefinable decompositions of the 3-prism are shown in Figure 3. A ud-type of

(1,2) and of (1,1,1) of the 3-prism arises from the unrefinable decompositions shown

in Figure 3(a) and Figure 3(b) respectively.

In the previous section, we have shown that every simple TID(v, k; r, {x1, x2}) has

a unique unrefinable decomposition, when x2 ≤ k2/v, x1 < x2 and r ≥ 1. We
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(a) ud-type (1,2)
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(b) ud-type (1,1,1)

Figure 3: Two unrefinable decompositions of the 3-prism

now let D be a simple TID(v, k; r, {x1, x2}) with r ≥ 1, where x2 > k2/v (and so

x1 < x2). The examples discussed above give that D may have more than one

unrefinable decomposition, in which case, these unrefinable decomposition may give

different ud-types. Consequently, we come to the following problem:

Problem 1. Again, we let D be a simple TID(v, k; r, {x1, x2}) with r ≥ 1, where

x2 > k2/v (and so x1 < x2). What are the sufficient conditions for D to have a

unique unrefinable decomposition? More generally, what are the sufficient conditions

for D to have a unique ud-type?

Many solutions to this problem are known for regular graphs: For example, a regular

graph on v vertices that is a cycle has a unique unrefinable decomposition, and a

regular bipartite graph has a unique ud-type. On the subject of two-intersecting

designs which have a unique ud-type, Colbourn and Rosa [5] mention that both

STS(13)s only have a ud-type of (3,3).

We end this section by discussing the techniques used in the previous section to

compute an unrefinable decomposition of a two-intersecting design.

Let D = (X,B) be a simple TID(v, k; r, {x1, x2}) with r ≥ 1. Theorem 5.4 gives

a method for determining an unrefinable decomposition of D, when x2 = k2/v and

x1 < x2. In contrast, Theorem 5.7 shows that this same method always gives the

decomposition {B} of D, when x2 > k2/v and x1 < x2. We recall that the proof

of Theorem 5.5 uses the degree of each vertex of the graph ΓD
1 to deduce that D is

indecomposable, when x2 < k2/v and x1 < x2. It is an easy exercise to show that
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this method does not give an unrefinable decomposition of D, when x2 > k2/v and

x1 < x2. In conclusion, we are unable to use the techniques developed in this paper

to compute an unrefinable decomposition of D, when x2 > k2/v and x1 < x2. This

leads naturally to the following problem:

Problem 2. Is there an efficient method to compute an unrefinable decomposition of

a simple TID(v, k; r, {x1, x2}) with r ≥ 1, when x2 > k2/v (and so x1 < x2)?
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