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Abstract

Strongly regular graphs form an important class of graphs which lie
somewhere between the highly structured and the apparently random.
This chapter gives an introduction to these graphs with pointers to
more detailed surveys of particular topics.

1 An example

Consider the Petersen graph:



Of course, this graph has far too many remarkable properties for even a
brief survey here. (It is the subject of a book [17].) We focus on a few of its
properties: it has ten vertices, valency 3, diameter 2, and girth 5. Of course
these properties are not all independent. Simple counting arguments show
that a trivalent graph with diameter 2 has at most ten vertices, with equality
if and only it has girth 5; and, dually, a trivalent graph with girth 5 has at
least ten vertices, with equality if and only it has diameter 2.

The conditions “diameter 2 and girth 5” can be rewritten thus: two
adjacent vertices have no common neighbours; two non-adjacent vertices have
exactly one common neighbour. Replacing the particular numbers 10, 3, 0,
1 here by general parameters, we come to the definition of a strongly regular
graph:

Definition A strongly reqular graph with parameters (n, k, A\, p) (for short,
a srg(n, k, A\, 1)) is a graph on n vertices which is regular with valency k and
has the following properties:

e any two adjacent vertices have exactly A common neighbours;

e any two nonadjacent vertices have exactly ;1 common neighbours.

So the Petersen graph is a srg(10,3,0,1).

The complete and null graphs are vacuously strongly regular, the param-
eters p and \ respectively being undefined for them. Often these trivial cases
are excluded.

The four parameters are not independent. Choose a vertex v; counting in
two ways the ordered pairs (z,y) of adjacent vertices such that x is adjacent
to v but y is not, we obtain the following result.

Proposition 1.1 The parameters (n, k, A\, i) of a strongly reqular graph sat-
isfy the equation
E(k—A—=1)=(n—k—1)u.

Later in this chapter we will see that the parameters also satisfy various
algebraic conditions and inequalities. A complete characterisation of the
parameter sets of strongly regular graphs is not known.

This section concludes with two basic facts about strongly regular graphs.

Proposition 1.2 (a) The complement of a strongly regular graph is also
strongly reqular.



(b) A strongly regular graph is disconnected if and only if it is isomorphic to
mK, (the disjoint union of m copies of K,.) for some positive integers
m and r; this occurs if and only if p = 0.

(c) A connected strongly regular graph has diameter 2.

2 A hierarchy of regularity conditions

We can put the definition of a strongly regular graph into a more general
context as follows. For a non-negative integer t, let C'(¢) be the following
graph property:

Let S; and Sy be sets of at most ¢ vertices. If the induced sub-
graphs on S; and Sy are isomorphic, then the number of vertices
joined to every vertex in S; is equal to the number joined to every
vertex in Ss.

A graph satisfying C(t) is sometimes called t-tuple regular. If G is such a
graph, its parameters are the numbers A(S), where A\(S) denotes the number
of common neighbours of a set of vertices inducing a subgraph isomorphic
to .S, while S runs over all isomorphism types of graphs on at most ¢ vertices.

The conditions C(t) obviously become stronger as ¢ increases. C(0) is
vacuous, and A(0) is just the number of vertices of the graph G. A graph
satisfies C'(1) if and only if it is regular; A(vertex) is the valency. A graph
satisfies C'(2) if and only if it is strongly regular; A(edge) and A(nonedge) are
the parameters called A and p in the last section.

In fact the hierarchy is finite [7]:

Theorem 2.1 A graph which satisfies C(5) also satisfies C(t) for all non-
negative integers t. The only such graphs are nK, and its complement for all
n,r > 1, the 5-cycle Cs, and the 3 x 3 square lattice L(K33).

There are only two known examples (up to complementation) of graphs
satisfying C'(4) but not C(5), the Schlifli graph on 27 vertices and the
McLaughlin graph on 275 vertices. Infinitely many additional graphs sat-
isfying C'(3) are known; all of them except for L(kK,,,) for n > 4 and finitely
many others are associated with geometric objects such as quadrics in pro-
jective spaces and extremal generalised quadrangles.



On the other hand, there is no shortage of graphs satisfying C'(0) or
C(1). The number of graphs on n vertices is asymptotic to 2""~1/2/n!,
while the number of graphs of valency k is asymptotically c;n™*~2/2/n! for
2 < k = o(y/n). (Estimates exist also for k& ~ cn. See Wormald [32].)
For both graphs and regular graphs, there are well-developed theories of
random objects, including the assertion that almost all have no non-trivial
automorphisms (explaining the n! in the denominators of the asymptotic
formulae).

Strongly regular graphs stand on the cusp between the random and the
highly structured. For example, there is (up to isomorphism) a unique
srg(36, 10,4, 2); but a computation by McKay and Spence [20] showed that
the number of srg(36,15,6,6)s is 32548. The pattern continues: there is
a unique srg(m?,2(m — 1),m — 2,2), but more than exponentially many
srg(m?,3(m — 1), m, 6)s, as we will see.

This suggests that no general asymptotic results are possible, and that,
depending on the parameters, strongly regular graphs can behave in either a
highly structured or an apparently random manner.

Another role of strongly regular graphs is as test cases for graph isomor-
phism testing algorithms. The global uniformity ensured by the definition
makes it harder to find a canonical labelling, while the superexponential
number of graphs means that they cannot be processed as exceptions.

The Paley graphs and other strongly regular (and similar) graphs have
been used as models of “pseudo-random graphs” (see Thomason [28]).

Recently, Fon-Der-Flaass [14] has observed that an old construction of
Wallis [29] gives rise to more than exponentially many strongly regular graphs
with various parameter sets to be discussed below. He also used these graphs
to establish the following result about universality of strongly regular graphs:

Theorem 2.2 Any graph on n vertices is an induced subgraph of a strongly
reqular graph on at most 4n? vertices. This is within a constant factor of best
possible.

It is not known whether such a universality result holds for graphs satis-
tying C'(3).



3 Parameter conditions

The parameters of strongly regular graphs satisfy a number of restrictions.
Some of the more important are described here.

Theorem 3.1 Suppose that G is a strongly reqular graph with parameters
v, k, A\, . Then the numbers

f’g:l<v_1i (v—1)(n—\) — 2k )

V=22 + 4k — p)
are non-negative integers.

Proof Let A be the adjacency matrix of G. The fact that G is strongly
regular shows that

A2 = kI + M+ u(J — I — A),

where J is the all-1 matrix. The all-1 vector j is an eigenvector of A with
eigenvalue 1. Any other eigenvector of A is orthogonal to j, so the corre-
sponding eigenvalue satifies the quadratic equation

2> =k+ M x+ p(—1 - z).

From this we can calculate the two eigenvalues 7, s and (using the fact that
the trace of A is zero) their multiplicities f, ¢, finding the given expressions.

On the basis of this theorem, we can classify strongly regular graphs into
two types:

e Type I or conference graphs have (v —1)(u— ) —2k = 0. This implies
that A = u—1, k = 2u, and n = 4pu+1. (These are precisely the strongly
regular graphs which have the same parameters as their complements.)
It is known that they exist only if v is the sum of two squares.

o Type II graphs: for these graphs, (1 —\)?+4(k — u) is a perfect square,
say d?, where d divides (v—1)(u— ) — 2k and the quotient is congruent
to v — 1 mod 2.



Examples of conference graphs include the Paley graphs P(q): the vertex
set of P(q) is the finite field GF(q), where ¢ is a prime power congruent to 1
mod 4, and u and v are adjacent if and only if © — v is a non-zero square in
GF(q) (Paley [23]).

The “non-principal” eigenvalues r and s of a Type II strongly regular
graph are integers with opposite signs. The parameters may be conveniently
expressed in terms of the eigenvalues as follows:

A=k+r+s+rs, nw==k+rs.

Of the other conditions satisfied by the parameters of a strongly regular
graph, the most important is the Krein condition, first proved by Scott [24]
using a result of Krein [18] from harmonic analysis. It states that

(r+1)(k+7r+2rs) < (k+7)(s+ 1)

and a similar inequality with r and s reversed. The first bound is attained
by a graph if and only if the second is attained by its complement. As we
will see, the two inequalities are associated with the geometry of the two
non-trivial eigenspaces of the adjacency matrix.

Some parameter sets satisfy all known necessary conditions. We mention
a few of these here.

Pseudo-Latin square PL,.(n), with 1 < r < n: these have v = n?

k=r(n—1),\=17r>=3r+m, p=r(r—1). The significance of the name
will appear in the next section.

Negative Latin square NL,(n), obtained by replacing r and n by their
negatives in the formulae just given. (Since this gives A = r? + 3r — n, we
must have n > r(r+3); equality holds if and only if the Krein bound is met.)

Smith graphs whose somewhat involved parameters will not be given here
(see [9], p. 111). These parameters always attain the Krein bound.

These parameters arise in the theorem of Cameron et al. [8]:
Theorem 3.2 Let G be a graph satisfying C(3). Then either G is the pen-

tagon, or its parameters are of pseudo-Latin square, negative Latin square,
or Smith type.



4 Geometric graphs

The notion of a partial geometry was introduced by Bose [3] as a tool for
studying strongly regular graphs. Subsequently, partial geometries have been
studied in their own right, and the concept has been extended in various ways,
not all related to strongly regular graphs. This section focuses only on the
connections.

A partial geometry with parameters (s, ¢, ), or pg(s,t, a), is an incidence
structure of points and lines satisfying the following axioms:

e any line contains s + 1 points, and any point lies on ¢ + 1 lines;

e two lines meet in at most one point (or equivalently, two points lie on
at most one line);

e if the point p is not on the line L, there are precisely « incident pairs
(g, M), where ¢ is a point of L and M a line through p.

Note that Bose used slightly different parameters: he put R, K, T' for what
are here called s+ 1, t+ 1, .

The dual of a pg(s,t,«) is obtained by interchanging the names “point”
and “line” for the two types of object and dualising the incidence relation.
It is also a partial geometry with parameters (¢, s, «).

The point graph of a partial geometry is the graph whose vertices are
the points of the geometry, adjacency being defined by collinearity. The line
graph is the point graph of the dual geometry; that is, its vertices are the
lines, and adjacency is given by concurrence.

Proposition 4.1 The point graph of a pg(s,t,«) is an srg(n,s(t + 1),s —
1+tla—1),(t+1)a), where n = (s + 1)(st + a)/a.

The proof of this result is straightforward. Motivated by this, we say
that a strongly regular graph G is geometric if it is the point graph of a
partial geometry, and that G is pseudo-geometric if its parameters have the
form given in Proposition 4.1 for some positive integers s, t, a. Sometimes we
append the triple (s, t, ) to the term “geometric” or “pseudo-geometric”.

Not every pseudo-geometric graph is geometric. Indeed, a pseudo-geo-
metric (s,t,«) graph is geometric if and only if there is a collection L of
(s + 1)-cliques with the property that every edge lies in just one clique of
L. If some edge lies in no (s 4 1)-clique, the graph is clearly not geometric;
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but if there are “too many” cliques, it is often not clear whether a suitable
collection can be selected.
The major result of Bose can now be stated:

Theorem 4.2 Suppose that s,t,« are positive integers satisfying
s> L(t+2)(t—1+a(t* +1)).

Then any pseudo-geometric (s,t,a) graph is geometric. Indeed, every edge
of such a graph lies in a unique (s + 1)-clique.

In order to see the power of this theorem, we look at partial geometries
a little more closely. We divide them into six types.

Linear spaces, the case a = s+1. A point not on a line L is collinear with
every point of L. It follows that any two points lie on a (necessarily unique)
line. Such structures are also known as 2-designs, pairwise balanced designs,
or Steiner systems. The point graph of a linear space is just a complete graph
and so of no interest.

We note in passing the asymptotic existence theorem of Richard Wil-
son [30]. A necessary condition for a linear space with n points having s + 1
points on each line is that s divides n — 1 and s 4 1 divides n(n — 1). In
terms of s and ¢, this is the single condition that s+ 1 divides (¢ 4+ 1). Wil-
son showed the existence of a function f(s) such that, if ¢ > f(s) and the
necessary condition is satisfied, then a linear space exists.

Dual linear spaces, the case a =1t + 1. The geometries are the duals of
those in the preceding case, but the graphs (the line graphs of linear spaces)
are much more interesting.

We examine two special cases. A linear space with two points on each line
is just a complete graph K, and its line graph (the point graph of the dual)
is just the usual line graph L(K,). We have s = 1, a = 2, and t = n — 2; the
inequality in Bose’s Theorem reduces to n > 8. Hence:

Corollary 4.3 The graph L(K,) is strongly reqular, and for n > 8 it is the
unique strongly reqular graph with its parameters.

The conclusion actually holds for all n # 8. For n = 8, Chang [10]
showed that there are exactly four strongly regular graphs with parameters
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(28,12,6,4). Note that L(K,) is called the triangular graph T'(n) in the
literature on strongly regular graphs.

A linear space with three points on each line is a Steiner triple system, or
STS. The fact that an STS with n points exists for all n congruent to 1 or
3 mod 6 goes back to Kirkman in 1847. More recently, Wilson [30] showed
that the number v(n) of Steiner triple systems on an admissible number n of
points satisfies

v(n) > exp(n®logn/6 — cn?).

Moreover, a STS of order n > 15 can be recovered uniquely from its line
graph. Hence there are superexponentally many srg(n, 3s,s + 3,9), for n =
(s +1)(2s+3)/3 and s congruent to 0 or 2 mod 3.

Transversal designs, the case s = «. In this case, it can be shown that
there is a partition of the points into subsets traditionally called “groups”
(though there is no connection with the algebraic notion): each line is a
transversal for the family of groups, and any two points in different groups
lie on a line. Thus, the point graph is complete multipartite, the partite sets
being the groups.

Dual transversal designs, the case t = a.
For t = 2, the graph is the line graph of the complete bipartite graph
K, ,. Bose’s theorem gives us the following result:

Corollary 4.4 The graph L(K,,) is strongly reqular, and for n > 4 it is
the unique strongly reqular graph with its parameters.

Again this holds for all n # 4. Shrikhande showed that there are just two
strongly regular graphs with parameters (16,6,2,2), namely L,4 and one
other now called the Shrikhande graph (defined below). In the literature on
strongly regular graphs, L(K,,) is referred to as the square lattice graph
Ly(n).

If t > 2, for reasons which will become clear, we use new parameters n
and r, where n = s+ 1 and » =t 4+ 1. The “groups” dualise to become
a partition of the lines into “parallel classes”, each parallel class forming a
partition of the points. There are k lines in each parallel class, with n points
on each, so the number of points is n?2. The geometry is called a net of
order n and degree 7.



Select two parallel classes {Vi,...,V,,} and {Hy, ..., H,}. Now the points
can be represented as a n X n grid, where the lines V; run vertically and the
H; horizontally, and the unique point on V; and H; can be labelled p;;.

Now let {Ly,..., L,} be another parallel class of lines. Construct a n xn
array A, with (¢,7) entry [ if p;; € L;. It is clear that A is a Latin square
of order n. By reversing the construction, any Latin square of order n gives
rise to a net of order n and degree 3. Since the number of Latin squares of
order k is asymptotic to exp(n?logn — 2n?), we obtain superexponentially
many strongly regular graphs with these parameters.

There are just two non-isomorphic Latin squares of order 4, namely the
Cayley tables of the Klein group and the cyclic group of order 4. They
give rise to two non-isomorphic strongly regular graphs with parameters
(16,9,4,6), whose complements are Ls(4) and the Shrikhande graph.

If » > 3, we have r — 2 additional parallel classes, giving rise to r — 2
Latin squares. It is also easily checked that these Latin squares are mutually
orthogonal, in the sense that given any two squares A and A’, then for any
given entries [, ', there is a unique cell (7, 7) in which A and A’ have entries
[ and [’ respectively. Conversely, a set of » — 2 mutually orthogonal Latin
squares (or MOLS, as they are called) of order n gives a net of order n and
degree r, and hence a strongly regular graph.

For this reason, the point graph of a net of order n and degree r is
called a Latin square graph, denoted L,(n). A pseudo-geometric graph with
the parameters of L,.(n) is the same as what was defined as a pseudo-Latin
square graph PL,(n) earlier — hence the name.

If n is a prime power, then there exists a set of MOLS of order n of the
maximum possible size, namely n — 1. (The corresponding net is an affine
plane of order n. Choosing all subsets of r — 2 of these squares, where r ~ cn
for 0 < ¢ < 1, we obtain again many strongly regular graphs with the same
parameters (but only a fractional exponential number, in this case).

Generalised quadrangles, the case a = 1. In this case the geometry
is trivially recoverable from its point graph, since an edge lies in a unique
maximal clique. There are “classical” GQs, related to classical groups (sym-
plectic, unitary and orthogonal groups) much as projective planes are related
to the projective groups PGL(3, ¢), and some non-classical examples, includ-
ing some with non-classical parameters. Van Maldegham [21] surveys these
geometries.
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Fon-Der-Flaass [14] pointed out that some of Wallis” graphs [29], and
some variants of them, have pseudo-geometric parameters corresponding to
GQswiths=¢q+1,t=q—1,orwiths=t=g¢,orwiths=q—1,t=q+1,
for prime powers ¢q. So there are superexponentially many graphs for these
parameter sets.

The rest, with 1 < a < min{s,?}. Some examples are known but there is
much less theory.

We conclude this section with a reference to the work of Neumaier [22],
which improves Bose’s classical results. From Neumaier’s work, we quote two
of his most notable results:

Theorem 4.5 A strongly regular graph having parameters (v,k, A\, u) and
eigenvalues k,r, s with s < —1, which satisfies

r>gs(s+1)(p+1)—1
15 the point graph of a dual linear space or dual transversal design.

The inequality reduces to Bose’s in the pseudo-geometric case, but Neu-
maier’s result applies without this assumption.

Theorem 4.6 For any negative integer m, there is a finite list L(m) of
strongly regular graphs with the property that, if G is any connected strongly
reqular graph whose adjacency matriz has eigenvalue m, then G is a complete
multipartite graph with block size —m, or the point graph of a dual linear space
or dual transversal design with t +1 = —m, or a member of the list L(m).

For m = —1 the result is trivial, and for m = —2 it was proved by
Seidel [25]: the list £(—2) contains only the Petersen, Clebsch, Schlafli,
Shrikhande and three Chang graphs. However, all but twelve of the 32548
graphs with parameters (36, 15,6, 6) mentioned earlier belong to £(—3); that
is, only twelve come from Latin squares.

5 Eigenvalues and their geometry

Let G be a strongly regular graph with vertex set V. = {vy,...,v,} and
adjacency matrix A. As we have seen, A has just three distinct eigenvalues
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k,r, s, with multiplicities 1, f, g respectively (so that 1 + f 4+ g = n); the
eigenvector associated to the eigenvalue k is the all-1 vector. Thus, A =
kEy+rFE, + sEs, where Ey, E7, F5 are the orthogonal projections of R™ onto
the three eigenspaces Vg, V1, V5 of A.

We fix attention on one of the non-trivial eigenspaces, say V4, and consider
the projections of the vertices (the basis vectors of R™) onto V. Thus, let x; =
v;E1 for e = 1,...,n. The basic property of these vectors is the following:

Proposition 5.1 There are real numbers «, 3, (expressible in terms of the
parameters of G) such that the inner products of the vectors x; are given by

«, Zf Uy = Uy,
<$zax]> = 57 vai ~ Ujy
v, if vi # v and v; % vj.

Moreover, if G is connected and not complete multipartite, then x; # x; for
1#£ 7.

In particular, if G is connected and not complete multipartite (as we
will assume without comment for the rest of this section), then the vectors
T1,...,T, lie on a sphere of radius y/a in RY, and the angular distances be-
tween them take one of two possible values arccos 3/« (for adjacent vertices)
and arccosy/a (for non-adjacent vertices). It is more convenient to re-scale
the vectors by 1/4/a so that they lie on the unit sphere.

Delsarte et al. [11] proved:

Theorem 5.2 The cardinality n of a two-distance set on the unit sphere in
R/ satisfies
2
n < (f;_ ) — 1.

This result can be translated into an inequality on the parameters of a
strongly regular graph (which is connected and not complete multipartite).
This is the so-called absolute bound. The same authors also gave a special
bound depending on the values of «, 3, (that is, on the actual distances
realised by the set); it does not apply for all values of the parameters, but it
is sometimes more powerful than the absolute bound.

A set X = {x1,...,2,} of vectors lying on the unit sphere Q = §/~!
in Euclidean space R/ is called a spherical t-design if, for any polynomial
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function F' of degree at most ¢, we have

1< 1
ﬁ;F(mi)ZVOI(Q)[)F(w)dx'

In other words, the finite set “approximates the sphere up to degree t”. For
small £, there is a mechanical interpretation. Place unit masses at the points
of X. Then X is a spherical 1-design if and only if the centre of mass is at
the origin, and is a spherical 2-design if, in addition, the inertia ellipsoid is
a sphere (that is, the moments of inertia are all equal and the products of
inertia are zero).

Theorem 5.3 Let G be a connected strongly reqular graph which is not com-
plete multipartite, and let X be the projection of the vertex set of G onto a
non-trivial eigenspace, re-scaled to lie on the unit sphere. Then

(a) X is a spherical 2-design;

(b) X is a spherical 3-design if and only if the Krein bound corresponding
to this eigenspace is attained (and this implies that G satisfies C'(3));

(¢c) X is a spherical 4-design if and only if the absolute bound is attained
(and this implies that G satisfies C'(4));

(d) X is never a spherical 5-design.

We saw that the parameters of graph satisfying C'(3) (apart from the
pentagon () are either of Latin or negative Latin square type or of Smith
type. Such a graph gives a spherical 3-design if and only if it attains the
Krein bound). All Smith graphs, and the pentagon, attain this bound, but
no graphs of Latin square type do. For negative Latin square type NL,(n), a
3-design arises if and only if n = r(r + 3). Only two such graphs are known,
the Clebsch graph on 16 vertices (r = 1) and the Higman—Sims graph on 100
vertices (r = 2).

We obtain a spherical 4-design in the smaller eigenspace if and only if
the graph G is C5 or a so-called “extremal Smith graph”. Two examples of
extremal Smith graphs are known, the Schlafli graph on 27 vertices and the
McLaughlin graph on 275 vertices.

Information on the geometry of eigenspaces for more general classes of
graphs is given in Chapter ?7?; see also Godsil [15].
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6 Rank 3 graphs

Looking again at the picture of the Petersen graph with which we began, we
see that it has fivefold symmetry, and indeed has the symmetry of a regular
pentagon (the dihedral group of order 10). In fact, there is more symmetry,
not visible in the diagram. The graph has a well-known representation as
the complement of the line graph of Kj; that is, the vertices can be labelled
with the 2-element subsets of {1,...,5}, in such a way that two vertices are
adjacent if and only if their labels are disjoint. Now the symmetric group S5,
in its induced action on the vertex labels, acts as a group of automorphisms
of the graph. It is not hard to show that S5 is the full automorphism group.
Moreover, S5 acts transitively on the set of adjacent pairs of vertices and on
the set of non-adjacent pairs of vertices.

A graph G is called a rank 3 graph if it admits a group G of automorphisms
with the property that G acts transitively on the set of vertices, on the set
of ordered pairs of adjacent vertices, and on the set of ordered pairs of non-
adjacent vertices. The term comes from permutation group theory, where
the rank of a transitive permutation group G on €2 is the number of orbits of
G on the set of ordered pairs of elements of €2. In the case of a rank 3 graph,
with = VG, the three orbits are {(v,v) : v € VG}, {(v,w) : v ~ w}, and

{(v,w) : v # w,v % w}.
Proposition 6.1 (a) A rank 3 graph is strongly regular.

(b) Let G be a permutation group which is transitive, has rank 3, and has
even order. Then there is a rank 3 graph G admitting G as a group of
automorphisms.

Proof (a) The number of neighbours of a vertex (or common neighbours of
a pair of vertices) is clearly the same as the number of (common) neighbours
of any image under an automorphism. The result follows.

(b) The group G has just two orbits on ordered pairs of distinct elements
of 2, say O; and Oy. Now, for any orbit O, the set O* = {(w,v) : (v,w) € O}
is also an orbit. So either O] = O, or OF = O,. However, since G has even
order, it contains an element g of order 2. This element interchanges two
points v,w of Q. If (v,w) € O;, then OFf = O;. So the first alternative
holds. Now take the graph G to have vertex set {2, with v ~ w whenever
(v,w) € Op. Our argument shows that the graph is undirected; clearly it
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admits G as a rank 3 group of automorphisms. This is a special case of the
general construction of G-invariant graphs in Chapter ?7.

Note that the orbits O; and Os give rise by this construction to comple-
mentary strongly regular graphs.

A major result in permutation group theory, which relies heavily on the
(Classification of Finite Simple Groups, is the determination of all the rank 3
permutation groups. We outline the argument. Let G be a rank 3 permuta-
tion group on ).

We call G imprimitive if it preserves a non-trivial equivalence relation,
and primitive otherwise. Now, if G is imprimitive, let = be the equivalence
relation preserved by G; then the sets

{(v,w) : v =w,v #w} and {(v,w) : v £ w}

are G-invariant, so must be the two G-orbits on pairs of distinct points.
The corresponding graphs are the disjoint union of complete graphs and the
complete multipartite graph. So we may assume that G is primitive.

The basic analysis of such a group is done by considering the socle of G,
the product of its minimal normal subgroups. It follows from the O’Nan—

Scott Theorem that one of three possibilities must occur for the socle N of G
(see Chapter ?7):

(a) NV is elementary abelian and acts regularly;
(b) NV is a non-abelian simple group;
(c) N is the direct product of two isomorphic non-abelian simple groups.

In case (a), because its action is regular, A/ can be identified with the set
of points permuted, and is the additive group of a vector space V over the
field GF(p), for some prime p. The subgroup H fixing the origin is a group
of linear transformations of V', with two orbits X; and X5. In our case, the
orbits satisfy X; = —X; and Xy = — X5, and the complementary graphs G
and G5 have vertex set V' and satisfy v ~ w in G; if and only if v —w € X.

So the classification in this case is reduced to finding groups of matrices
over GF(p) having just two orbits (each closed under negation) on non-zero
vectors. Examples include:
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e The multiplicative group of the non-zero squares in GF(q), where ¢ = 1
(mod 4). The orbits are the sets of squares and non-squares in GF(q),
and the graphs (which happen to be isomorphic) are the Paley graph

P(q).

e The orthogonal group preserving a non-degenerate quadratic form over
GF(2); the orbits are the sets of non-zero vectors v satisfying Q(v) = «,
for a = 0,1. Such forms can be defined on spaces of even dimension,
and there are just two inequivalent forms. For example, in dimension 4,
the quadratic forms

2 2
129 + 2374 and 1T + 75 + 314 + T4

give the graphs Ly(4) (and its complement) and the Clebsch graph (and
its complement) respectively. In general, these graphs occur among
Thomason’s pseudo-random graphs [28]. They are of pseudo or nega-
tive Latin square type, and satisfy C(3).

The complete list of linear groups with two orbits on non-zero vectors
was determined by Liebeck [19].

In case (b), where the socle N of G is non-abelian simple, the Classifica-
tion of Finite Simple Groups shows that it must be an alternating group, a
group of Lie type, or one of the twenty-six sporadic groups. Moreover, the
O’Nan-Scott Theorem gives the extra information that G lies between N
and its automorphism group (where N is embedded in Aut(N') as the group
of inner automorphisms). (A group G lying between a simple group and its
automorphism group is said to be almost simple.)

The combined efforts of a number of mathematicians including Bannai,
Kantor, Liebler, Liebeck, and Saxl, have determined all rank 3 actions of
almost simple groups. Examples include:

e The symmetric group S, (for n > 5), acting on the set of 2-element
subsets of {1,...,n}; this gives the triangular graph T'(n) and its com-
plement.

e The projective group PGL(n,q) (for n > 4) has a rank 3 action on the
set of lines of the projective space: the orbits are the sets of intersecting
pairs and skew pairs of lines.
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e A classical group (one preserving a polarity of a projective space) acts
on the set of self-polar points of the projective space (these form the
polar space associated with the polarity; the action has rank 3 except
in a few low-dimensional cases where it is doubly transitive. For a few
cases involving small fields, the action on the non-self-polar points also
has rank 3.

e There are various “sporadic” examples as well, such as PSU(3,5?)
on the vertices of the Hoffman—Singleton graph, or the Higman—Sims
group on the vertices of the Higman—Sims graph.

Several of the sporadic simple groups were first constructed as groups
of automorphisms of strongly regular graphs. These were the Hall-Janko,
Higman—Sims, McLaughlin, Suzuki, Fischer and Rudvalis groups.

In case (c) of the O’Nan—Scott Theorem, the socle N of G is the direct
product of two isomorphic simple groups. The analysis leading to this case
actually shows that the rank 3 graphs which arise are the lattice graphs Ls(n)
and their complements.

7 Related classes of graphs

There are many generalisations or variants of strongly regular graphs. In
this section we introduce a few of these: distance-regular graphs, association
schemes, walk-regular graphs, edge-regular graphs, Deza graphs, and strong
graphs.

A connected graph G of diameter d is distance-regular if there are con-
stants ¢;, a;, b; for 0 < 7 < d such that, if u and v are vertices at distance 1,
then the number of vertices w such that w ~ v and w is at distance i—1,7,7+1
from u is ¢;, a;, b; respectively. The numbers ¢;, a;, b; are the parameters of
the graph. Note that cg, ayg and b, are zero.

A distance-regular graph is regular; its valency is by = k. We have ¢; +
a; + b; = k for all 7, and ¢4 = 1. Thus there are 2d — 3 “independent”
parameters. A distance-regular graph of diameter 2 is the same thing as a
connected strongly regular graph; we have A = a; and p = cs.

A connected graph G is distance-transitive if there is a group G of auto-
morphisms of G such that, for any two pairs (u,v1) and (us,vs) of vertices
satisfying d(uy,v1) = d(us, vs), there is an automorphism g € G which maps
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u1 to ug and vy to ve. It is clear that any distance-transitive graph is distance-
regular, and that a distance-transitive graph of diameter 2 is the same thing
as a connected rank 3 graph.

The determination of all distance-transitive graphs is not yet complete.
This class of graphs is discussed further in Chapter ??7. Further informa-
tion about distance-regular and distance-transitive graphs is contained in
the book by Brouwer, Cohen and Neumaier [6].

There are many distance-regular graphs which are not distance-transitive.
Such graphs become less common as the diameter increases. However, as
shown by Egawa [12], there exist distance-regular graphs of arbitrarily large
diameter which are not distance-transitive.

The adjacency matrix of a regular connected graph of diameter d has at
lest d+ 1 distinct eigenvalues (one of which is the valency). Distance-regular
graphs attain this bound. As we have seen, a regular connected graph has
three eigenvalues if and only if it is strongly regular. However, for d > 3,
there are regular connected graphs of diameter d with d eigenvalues which
are not distance-regular. The first examples were constructed by Bridges
and Mena [4]; but the study of this interesting class of graphs has not yet
progressed much beyond the collection of examples.

Looking more closely at distance-regular graphs, it can be shown that
there are constants p,’fj for 0 <14, 7,k < d with the property that, given vertices
w and v with d(u,v) = k, the number of vertices w such that d(u,w) = ¢ and
d(w,v) = j is precisely pf] Now we can generalise this as follows.

Suppose that the ordered pairs of points of a set ) are partitioned into
s+ 1 classes Cy, ..., Cy with the following properties:

e The diagonal {(v,v) : v € Q} is a single class Cp;
e Each class C; is symmetric (that is, if (u,v) € C; then (v,u) € C);

e Given i,j,k € {1,...,s} and (u,v) € C;, the number of w such that
(u,w) € V; and (w,v) € Cy depends only on ¢, j,k and not on (u, v).

Such a structure is called an association scheme. Thus, a distance-regular
graph gives rise to an association scheme.

More about association schemes can be found in Bannai and Ito [2], God-
sil [15] and Bailey [1]. A still more general concept is a coherent configuration,
where the relations are not required to be symmetric.

Association schemes were originally used in experimental design by Bose
and his school. Suppose that an experiment is being performed on a number
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of experimental units which are divided into b blocks of size k (for example,
k fields on each of b farms, or k patients in each of b hospitals). We want
to apply a number v of different treatments in such a way that no treatment
occurs more than once in the same block. It is clearly a good idea to arrange
that any two treatments occur together in a block the same number of times,
if possible. (Such a design is called balanced.) However, Fisher showed that,
if & < v, this is not possible unless v < b. To test more treatments,we
must relax the condition of balance. Bose observed that the best approach
is to have an association scheme on the set of treatments, and to arrange
that the number of times two treatments u and v occur together in a block
depends only on which associate class C; contains (u,v). Such a design is
called partially balanced. See [1] for more information.

Indeed, this is a case where the applications came first, and the gener-
alisation preceded the special case. Partially balanced designs were defined
by Bose and Nair in 1939. During the 1950s, association schemes became of
interest in their own right, but not until Bose’s 1963 paper [3] was the term
“strongly regular graph” introduced.

A graph G is walk-regqular if, for every non-negative integer ¢ and vertex v,
the number of closed walks of length ¢ starting at v depends only on 7, not
on v. Equivalently, a graph is walk-regular if the characteristic polynomials
of all its vertex-deleted subgraphs are the same. The class of walk-regular
graphs includes both the vertex-transitive graphs and the distance-regular
graphs, and of course is contained in the class of regular graphs. See God-
sil [15] for more about these graphs.

A strongly regular graph is defined by three conditions:
(a) any vertex has k neighbours;
(b) any two adjacent vertices have A common neighbours;
(c) any two non-adjacent vertices have p common neighbours.

We can weaken the definition by requiring only two of the three conditions to
hold. A graph satisfying (a) and (b) is called edge-regular; a graph satisfying
(b) and (c) is a Deza graph [13]. The class of graphs satisfying (a) and (c)
has not been studied except in special cases.

More systematically, recall that a graph is t-tuple regular (that is, satisfies
C(t)) if the number of common neighbours of a set S of at most ¢ vertices
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depends only on the isomorphism type of the induced subgraph on S. Let us
say that a graph satisfies R(t) if this condition holds for sets S with |S| = t.
Thus, a Deza graph satisfies R(2) but not necessarily R(1). As far as I know,
no systematic study of the possible sets of integers ¢ for which R(¢) can hold
in a graph has been made.

A variant of Deza graphs was earlier introduced by Seidel, who defined
a strong graph to be one having the property that, for any two vertices u
and v, the number of vertices joined to just one of the two depends only on
whether or not u and v are joined. Using a modified adjacency matrix B
with 0 on the diagonal, —1 for adjacency and +1 for non-adjacency, we find
that

(B =piI)(B = p2I) = (n— 1+ pip2)J

for some py, po. It follows that, if n — 1+ p1ps # 0, the graph is regular (and
so strongly regular). In the remaining case, when n— 1+ p1py = 0, the graph
need not be regular; such special strong graphs are closely connected with
regular two-grahs (see below).

The operation ox of switching a graph G with respect to a set X of
vertices is defined as follows: edges between X and its complement are
“switched” to non-edges, and non-edges to edges; adjacencies within X or
outside X remain unaltered. Switching with respect to all subsets generates
an equivalence relation on the class of all graphs on a fixed vertex set V. It
is easy to see that, if 7 is the set of 3-subsets of V' which contain an odd
number of edges of (G, then 7 is unaltered by switching. Moreover, a set T
of triples arises from a graph in this way if and only if any 4-set contains an
even number of members of 7. Such a set is called a two-graph. Thus, there
is a bijection between the set of two-graphs on V' and the set of switching
equivalence classes on V.

Switching a graph G has the effect of pre- and post-multiplying the
(0, —1,41) adjacency matrix of G (defined above) by a diagonal matrix with
entries +£1. The matrix equation

(B—=pil)(B—p2l) =0

satisfied by special strong graphs is unaffected by this, so if a graph satis-
fies this equation, so do all graphs in its switching class. In this case the
corresponding two-graph is called regular. Regular two-graphs are also char-
acterised by the property that any two vertices in V' lie in a constant number
of triples in 7.
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There are many connections between regular two-graphs, strongly reg-
ular graphs, sets of equiangular lines in Euclidean space, doubly transitive
permutation groups, antipodal distance-regular graphs of diameter 3, and
several other topics. We refer to Seidel’s surveys [26, 27].
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