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RESOLVABLE DESIGNS WITH LARGE BLOCKS

By J. P. Morgan∗ and Brian H. Reck†‡

Virginia Tech and University of Pittsburgh

Resolvable designs with two blocks per replicate are studied from an

optimality perspective. Because in practice the number of replicates is typ-

ically less than the number of treatments, arguments can be based on the

dual of the information matrix, and consequently in terms of block concur-

rences. Equalizing block concurrences for given block sizes is often, but not

always, the best strategy. Sufficient conditions are established for various

strong optimalities, and a detailed study of E-optimality offered, includ-

ing a characterization of the E-optimal class. Optimal designs are found to

correspond to balanced arrays and an affine-like generalization.

Dedicated to the memory of I. M. Chakravarti

1. Introduction. Block designs arise in comparative experimentation as a

fundamental device for improving efficiency when working with heterogeneous ex-

perimental units. The blocks are simply a partition of the units into b (say) sets

exhibiting homogeneity within sets. Given the blocks, of sizes k1, k2, . . . , kb, a block

design is an assignment of v treatments to the
∑b

j=1 kj units. Optimality theory

for block designs attempts to determine which of the many possible assignments is

in some sense best.

In some applications there are restrictions on the collection of possible assign-

ments. A block design is resolvable if the blocks can be partitioned into replicates,

defined as sets of blocks with the property that each treatment is assigned to one
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2 J. P. MORGAN AND B. H. RECK

unit in each set. The practical impact of, and motivation for, resolvability is to gain

orthogonality between treatments and nuisance factors of concern. For instance,

resolvability in sequential experimentation, with replicates corresponding to time

periods, is used to mitigate time effects. Resolvability can likewise be useful in

multi-site experiments, and in experiments with multiple individuals handling ex-

perimental runs. Notably, the United Kingdom has for some time required the use

of resolvable designs in agricultural field trials (see Patterson and Silvey, 1980).

The combinatorial study of resolvability in block designs goes back at least as

far as the well-known Kirkman’s (1850) schoolgirl problem. The notion entered the

statistical lexicon with Yates’ work on square lattice designs (1936, 1940), though

the term “resolvable design” was introduced by Bose (1942). Yates’ lattice designs

were extended to rectangular lattices by Harshbarger (1946, 1949); also see Bailey

and Speed (1986). Williams (1975) and Patterson and Williams (1976) introduced

a large family of resolvable designs they termed α-designs. Williams et al (1976)

derived resolvable designs with two replicates from BIBDs. Bailey, Monod, and Mor-

gan (1995) proved strong optimality for the affine resolvable designs introduced by

Bose (1942). Resolvable BIBDs (balanced incomplete block designs) have received

significant attention in both the combinatorial and statistical literature; for a sum-

mary see Morgan (1996), who surveys the major classes of resolvable designs with

many references.

With α-designs Patterson and Williams (1976) provided a flexible method for

obtaining reasonably efficient resolvable designs for a wide range of values v, k,

and r. They also adapted their method to obtain resolvable designs with two dif-

ferent block sizes k and k − 1, a first attempt at addressing the obvious restriction

that resolvability with equal block sizes can be achieved only for v a multiple of

k. John, Russell, Williams, and Whitaker (1999), in revisiting that idea, concluded

that the α-technique for two block sizes could produce relatively inefficient designs

for small v, and recommended an interchange algorithm for construction of designs

with better efficiency. John et al (1999) also discussed the practical need for resolv-

able designs with unequal block sizes; for example, about half of 245 experiments
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RESOLVABLE DESIGNS 3

examined by Patterson and Hunter (1983) had unequal block sizes. Also see Pat-

terson and Silvey (1980).

To the authors’ knowledge, the literature contains no systematic work on deter-

mining optimal resolvable block designs when block sizes need not be equal. This

paper will undertake such work, for the special case of two blocks per replicate.

Only with two blocks in each replicate must a block be large in the sense of con-

taining at least half of the treatments. And with two blocks per replicate, the block

sizes must be unequal for any odd v (though this work is not restricted to odd v).

Let D(v, r; k1, k2) denote the class of all resolvable block designs with r replicates

of v treatments, each replicate consisting of two blocks of sizes k1 and k2, k1+k2 = v.

Of special interest is k1 = k, k2 = k− 1 for odd v = 2k− 1, but here no restrictions

are placed on the two block sizes for the general theory. Let k1 denote the larger

block size, k1 ≥ k2, and so with no loss of generality take v
2 ≤ k1 ≤ v − 2. In the

most common applications of resolvable designs the number of treatments is large

relative to the number of replicates; here r ≤ v− 1 is required, allowing optimality

problems to be more easily attacked through the dual of the information matrix.

This defines the framework for the remainder of the paper: determine the best

design d ∈ D(v, r; k1, k2). An example of a resolvable design in D(9, 5; 5, 4) is shown

in table 1 with the blocks written as columns. Later this design will be proven

optimal with respect to many useful criteria.

Table 1

A Resolvable Design In D(9, 5; 5, 4)

1 6 1 2 1 4 1 3 1 2

2 7 4 3 2 5 2 4 3 5

3 8 5 6 3 6 5 6 4 6

4 9 7 8 7 8 8 7 7 9

5 9 9 9 8

For any resolvable design d ∈ D, ignoring the replicate grouping leaves an un-

derlying simple block design for v treatments in 2r blocks. If the roles of blocks

and treatments are reversed in this underlying design, another simple block design

with 2r treatments in v blocks of size r is produced, called the dual design.
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4 J. P. MORGAN AND B. H. RECK

Section 2 provides optimality background and establishes equivalences with the

dual problem. Section 3 finds conditions for global optimality of designs having

equality of block concurrences; for those who wish to jump ahead, the main results

there are Theorems 4-7. Section 4 characterizes the E-optimal designs (Theorem 14)

and finds the Schur-best of the E-optimal designs (Theorem 15). The main results

are applied to special cases with k1 − k2 ≤ 2 in section 5, and designs for these

cases are constructed in section 6. Concluding comments appear in section 7.

2. Model, information, and optimality criteria. Let yhjl denote the yield

from the lth experimental unit in block j of replicate h. Thus the triples (h, j, l)

identify the experimental units, and the design d corresponds to a map d[h, j, l]

from the units to the set of treatments. The standard linear model for the yields

incorporates a mean effect µ, replicate effects ρh, block effects βhj , treatment effects

τd[h,j,l], and mean zero, uncorrelated, equivariable random error terms ehjl:

yhjl = µ+ ρh + βhj + τd[h,j,l] + ehjl

h = 1, . . . , r; j = 1, 2; l = 1, . . . , kj . This model may be written in matrix terms as

y = µ1 + (Ir ⊗ 1v)ρ+ Lβ +Xdτ + e

where with the yhjl lexicographically ordered in the vr × 1 yield vector y, the

block incidence matrix is Lvr×2r = Ir ⊗
(

1k1
0k1

0k2
1k2

)

, and the design matrix is

the vr×v incidence matrix Xd, for which row (h, j, l) has a 1 in column i if and only

if d[h, j, l] = i (that is, unit (h, j, l) receives treatment i), and all other entries are

zero. Replicate effects, block effects, treatment effects, and error vectors are ρr×1,

β2r×1, τv×1, and evr×1, respectively. Choice of design is equivalently choice of Xd.

Linear models theory says that the information matrix Cd for estimation of the

treatment effects τ is

Cd = X ′
d[I − L(L′L)−1L′]Xd = rI −NdD

−1
s N ′

d(1)

where Ds = L′L = Diag(k1, k2, k1, k2, . . . , k1, k2) is the diagonal matrix of block

sizes. The v × 2r matrix Nd is the treament/block incidence matrix. The general
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RESOLVABLE DESIGNS 5

off-diagonal element (NdN
′
d)i,i′ of NdN

′
d is the number of blocks to which both

treatments i and i′ are assigned, called a treatment concurrence count. Notice that

the replicate incidence matrix (Ir ⊗ 1v) plays no role in (1); the same form of

information matrix is obtained for any simple block design. It follows immediately

that the information matrix for the corresponding dual design is

Cdual = Ds −
1

r
N ′

dNd.(2)

The off-diagonal elements of N ′
dNd are block concurrence counts.

All treatment contrasts are estimable with design d if and only if Cd has rank

v − 1. Any such d is said to be connected ; only connected designs are considered

here. Most (but not all) commonly employed optimality criteria, including those to

be used here, are functions of the v − 1 nonzero eigenvalues of Cd. These will be

ordered and labelled zd1 ≤ zd2 ≤ · · · ≤ zd,v−1.

Much of the optimality work below focuses on minimizing functions of the form

ψf (zd) =

v−1
∑

i=1

f(zdi)(3)

where f is convex and zd is the vector of nonzero eigenvalues. If f in (3) is Schur-

convex (Schur-convex functions include the convex functions, see Bhatia, 1997,

section II.3), then (3) is said to be a Schur-criterion. Design d1 is Schur-better

than design d2 (d2 is Schur-inferior to d1) if ψf (zd1
) ≤ ψf (zd2

) for all Schur-

convex f with strict inequality for at least one such f . A design optimal with

respect to all (i.e., minimizing all) Schur-convex criteria is said to be Schur-optimal.

If f in (3) satisfies (i) f is continuously differentiable on (0,maxd∈Dtr(Cd)) with

f ′ < 0, f ′′ > 0, and f ′′′ < 0, and (ii) limx→0 f(x) = ∞, then (3) is a type-1 criterion

(see Cheng, 1978). A design optimal with respect to all type-1 criteria is said to be

type-1-optimal. One popular criterion belonging to both families just defined is the

A-criterion specified by f(x) = 1
x . A criterion not of the form (3) (though it can be

written as a limit of such criteria) is

ψE(zd) =
1

zd1
(4)
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6 J. P. MORGAN AND B. H. RECK

called the E-criterion. An E-optimal design minimizes (4), or equivalently, maxi-

mizes zd1. For a broader discussion of optimality criteria and their statistical mean-

ings, see Shah and Sinha (1989).

For the current endeavor it is advantageous to approach the zdi, and conse-

quently (3) and (4), through Cdual . How this is done is shown in lemma 1 just below.

Let φdhh′ be the block concurrence for (that is, the number of treatments common

to) the blocks of size k1 in replicates h and h′. For h 6= h′, let φ∗dhh′ = φdhh′ − k2
1

k1+k2

and define the (symmetric) optimality matrix Md by

Md =































k1k2

v φ∗d12 φ∗d13 · · · φ∗d1r

k1k2

v φ∗d23 · · · φ∗d2r

k1k2

v · · · φ∗d3r

. . .
...

k1k2

v































(5)

with eigenvalues ed1 ≥ ed2 ≥ · · · ≥ edr.

Lemma 1 For any d ∈ D(v, r; k1, k2), the eigenvalues of Cd are 0, max{0, v−r−1}

copies of r, and (r− ved1

k1k2
, r− ved2

k1k2
, . . . , r− vedr

k1k2
). Consequently, a ψf -optimal design

minimizing (3) will equivalently minimize
∑r

h=1 f(r − vedh

k1k2
), and an E-optimal

design minimizing (4) will equivalently minimize ed1.

Lemma 1 is proven in appendix A.1. So long as r ≤ v − 1 (as earlier required in

section 1), Cd had v − r− 1 eigenvalues fixed at r. Working with the dual through

Md not only makes this evident, but allows these structurally fixed eigenvalues to

be easily set aside.

With the optimality problem recast in terms of Md and its eigenvalues, a crucial

concept for proofs of Schur-optimality is now defined.

Definition Let {xi}n
i=1 and {yi}n

i=1 be nonincreasing sequences of real numbers

such that
∑n

i=1 xi =
∑n

i=1 yi. If

l
∑

i=1

xi ≤
l
∑

i=1

yi, for all 1 ≤ l ≤ n,
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RESOLVABLE DESIGNS 7

or, equivalently,
n−l+1
∑

i=n

xi ≥
n−l+1
∑

i=n

yi, for all 1 ≤ l ≤ n

then {yi}n
i=1 is said to majorize {xi}n

i=1.

The importance of majorization is evident in this result (see, e.g., Bhatia, 1997,

page 40):

Theorem 2 Let {xi}n
i=1 and {yi}n

i=1 be nonincreasing sequences of real numbers

such that
∑n

i=1 xi =
∑n

i=1 yi. Then
∑n

i=1 f(xi) ≤
∑n

i=1 f(yi) for all real-valued

convex functions f if and only if {yi}n
i=1 majorizes {xi}n

i=1.

If the sequences {xi}n
i=1 and {yi}n

i=1 are written as the elements of vectors x and

y, then y majorizes x is written as y ≻ x or x ≺ y.

Let ed and ed∗ be the vectors of eigenvalues for the optimality matrices for designs

d and d∗, respectively. Lemma 3 lists simple majorization facts (Bhatia, 1997, page

30) used in subsequent sections. For majorization comparisons, the third of these

allows work directly with the edh rather than the r − vedh

k1k2
(see lemma 1). Thus

if ed ≻ ed∗ , and the two vectors are not identical, then d∗ is Schur-better than d.

Design d∗ is Schur-optimal if ed ≻ ed∗ for every d ∈ D.

Lemma 3 For real numbers {xi}n
i=1 and {yi}n

i=1 with
∑n

i=1 xi =
∑n

i=1 yi,

(i) if x1 ≥ x2 = x3 = · · · = xn and y1 ≥ x1, then {yi}n
i=1 majorizes {xi}n

i=1.

(ii) if x1 = x2 = · · · = xn−1 ≥ xn and xn ≥ yn, then {yi}n
i=1 majorizes {xi}n

i=1.

(iii) if {yi}n
i=1 majorizes {xi}n

i=1 then {a− yi

b }n
i=1 majorizes {a− xi

b }n
i=1 for any

real a, b.

3. Equal Concurrence Designs and Global Optimality. Among simple

block designs the BIBDs are Schur-optimal, a result which follows from equality

of treatment concurrences inducing complete symmetry of the information matrix.

The analogous notion for duals is equality of block concurrences, which this section

explores for utility with resolvable designs. A resolvable design d ∈ D(v, r; k1, k2)

having block concurrence counts φd12 = φd13 = φd23 = · · · = φd,r−1,r = θ for some

k1 − k2 ≤ θ ≤ k1 is called an equal concurrence design with common concurrence θ,
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8 J. P. MORGAN AND B. H. RECK

or ECD(θ). The subsections below will explore, in turn, (i) ECDs with equality of

eigenvalues in the optimality matrix, (ii) other ECDs which can be proven Schur-

optimal, and (iii) Schur-domination of designs with unequal block concurrences by

one or more ECDs.

3.1. Schur-optimality via equality of eigenvalues. For an ECD(θ) the optimality

matrix (5) is

Md =

[

p

v
− (θ − k2

1

v
)

]

I + (θ − k2
1

v
)J(6)

where I is the r × r identity matrix, J is the r × r matrix of ones, and p = k1k2

is the product of the block sizes. Like a BIBD information matrix, it is completely

symmetric, but unlike that matrix, Md for an ECD(θ) is nonsingular and thus can

have two distinct, relevant eigenvalues, rather than just one.

Theorem 4 Suppose D(v, r; k1, k2) is a resolvable design setting for which (k1 +

k2) | k2
1, and define

θ∗ =
k2
1

k1 + k2
=
k2
1

v
.(7)

Then ECD(θ∗)s in D are Schur-optimal whenever they exist.

Proof Given the conditions on D, the inequalities k1 − k2 ≤ k2
1

k1+k2
≤ k1 imply

that θ = θ∗ is an admissible value for the common block concurrence of an ECD(θ).

For θ = θ∗, Md in (6) is p
v I. Since the eigenvalues of Md are all identical, they are

majorized by the eigenvalues of every competing design.

Corollary 3.4 of Bailey, Monod, and Morgan (1995) established that affine-

resolvable designs are Schur-optimal. Theorem 4 generalizes that result when there

are two blocks per replicate. Here the optimality condition is that all pairs of blocks

of size k1 have the same concurrence (7). When k1 = k2 and 2 | k1, ECD(θ∗)s are

affine-resolvable designs. It is obvious that (6) has two distinct eigenvalues for any

θ 6= θ∗.

Example Consider the setting D(9, 4; 6, 3). Since (k1 + k2) | k2
1 , then θ∗ = 4, and

if an ECD(4) exists it is Schur-optimal. In fact, an ECD(4) does exist and is shown

in table 2.
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RESOLVABLE DESIGNS 9

Table 2

A Schur-optimal ECD(4) in D(9, 4; 6, 3)

1 7 1 5 1 3 3 1

2 8 2 6 2 4 4 2

3 9 3 9 5 9 5 9

4 4 6 6

5 7 7 7

6 8 8 8

The settings for which k2
1 is a multiple of k1+k2 are relatively sparse (a situation

much like that of BIBDs relative to all simple block design settings). For the 1225

pairs 2 ≤ k2 < k1 ≤ 51, only 23 meet the divisibility requirement implied by (7).

Theorem 4 is thus only a start, albeit an important one.

3.2. Global optimality of other ECDs. Good designs are expected to have eigen-

value structures “close” to that of ECD(θ∗)s, suggesting this question: Is some equal

concurrence design Schur-optimal when (k1 +k2) |/ k2
1? To investigate this question,

define the block concurrence parameter θ̄ by

θ̄ = int

(

k2
1

k1 + k2

)

(8)

and write

γ =
k2
1

k1 + k2
− θ̄.(9)

Then 0 ≤ γ < 1 and a necessary condition for existence of ECD(θ∗) is γ = 0.

Consequently, γ is called the block discordancy coefficient ; it measures the departure

of the block sizes from that required for equality of all eigenvalues. The parameter γ

will play a pivotal role in the remainder of this paper, as will the concurrence

discrepancies defined next.

Define the block concurrence discrepancy matrix ∆d = (δdhh′), where

δdhh′ =











φdhh′ − θ̄ if h 6= h′

0 if h = h′.

For h 6= h′, the off-diagonal elements δdhh′ will be referred to as block concur-

rence discrepancies. Rewritten in terms of block discrepancies and the discordancy
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10 J. P. MORGAN AND B. H. RECK

coefficient, the general optimality matrix (5) becomes

Md =
p

v
I − γ(J − I) + ∆d.(10)

For ECD(θ∗), γ = 0, ∆d = 0, and Md = p
v I. If γ 6= 0, (10) shows that the form

of optimal design may depend both on the magnitude of γ and the values of the

discrepancies. Matrix (10) is completely symmetric for, and only for, ECDs, in

which case ∆d is an integer multiple of J − I.

The ECDs which are combinatorially closest to ECD(θ∗) are those with either

θ = θ̄ or θ = θ̄+ 1. Not surprisingly, these are strong competitors in the optimality

race. ECD(θ̄)s have φdhh′ = θ̄ for each 1 ≤ h 6= h′ ≤ r and so ∆d = 0 and the

eigenvalues of Md are

ξ1(γ) =
p

v
+ γ and ξ2(γ) =

p

v
− (r − 1)γ(11)

with frequencies r−1 and 1, respectively. The two eigenvalues satisfy ξ1(γ) ≥ ξ2(γ).

If φdhh′ = θ̄ + 1 for every h 6= h′ then ECD(θ̄ + 1)s have ∆d = (J − I) and the

eigenvalues of Md are

ξ1(γ − 1) =
p

v
− (1 − γ) and ξ2(γ − 1) =

p

v
+ (r − 1)(1 − γ)(12)

with frequencies r − 1 and 1, respectively, and ξ2(γ − 1) ≥ ξ1(γ − 1).

Theorem 5 For 0 ≤ γ ≤ 1
2 , ECD(θ̄)s are type-1-optimal and E-optimal.

Proof The eigenvalues of the information matrix for any design d ∈ D(v, r; k1, k2)

are 0 < zd1 ≤ zd2 ≤ · · · ≤ zdr and v − r − 1 copies of r, and
∑r

i=1 zdi = r(r − 1) is

constant for all designs in D. For an ECD(θ̄), call it d̄, the zd̄i, following from (11),

have the form zd̄1 = zd̄2 = . . . = zd̄,v−2 ≤ zd̄,v−1. Theorem 2.3 of Cheng (1978) thus

gives the result if it can also be shown that d̄ minimizes
∑v−1

i=1 z
2
di over D.

For d ∈ D(v, r; k1, k2) with optimality matrix (Md)hh′ = (δdhh′ −γ) having trace

tr Md = pr
v ,

tr C2
d =

v−1
∑

i=1

z2
di = (v − r − 1)r2 +

r
∑

h=1

(

r − vedh

p

)2

= (v − 1)r2 − 2vr

p
tr Md +

v2

p2
tr M2

d
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RESOLVABLE DESIGNS 11

= (v − 3)r2 + r +
2v2

p2

∑∑

h<h′

(δdhh′ − γ)2,

so that tr C2
d is minimized by designs that minimize

∑∑

h<h′(δdhh′ − γ)2. Since

δdhh′ is integral, the unique minimum of tr C2
d on 0 ≤ γ < 1

2 is at δdhh′ ≡ 0,

achieved only by ECD(θ̄). For γ = 1
2 , any values δdhh′ ∈ {0, 1} minimize tr C2

d .

Now define the F-criterion as the value of the largest eigenvalue of Cd that is

not constrained by the setting to equal r, that is,

ψF (Cd) = zdr = r − vedr

p
.

Minimizing ψF (Cd) over D is equivalent to maximizing edr. This criterion can be

important in establishing Schur-optimality, as shown next.

Theorem 6 An ECD(θ̄)is Schur-better than a competitor with a different set of

eigenvalues if and only if it is F-equivalent or better than that competitor. Conse-

quently, ECD(θ̄)s are Schur-optimal if and only if they are F-optimal.

Proof Follows from (11) and lemma 3(i).

A result of similar flavor holds for ECD(θ̄+1)s using the E-criterion. As pointed

out by Kunert (1985, page 385), designs with eigenvalues zdi in the form of lemma

3(ii) are Schur-best whenever they are E-optimal. For the current problem this is

stated as

Theorem 7 An ECD(θ̄ + 1)is Schur-better than a competitor with a different set

of eigenvalues if and only if it is E-equivalent or better than that competitor. Con-

sequently, ECD(θ̄ + 1)s are Schur-optimal if and only if they are E-optimal.

In establishing necessary and sufficient conditions for Schur-optimality for their

respective ECDs in terms of a single eigenvalue, Theorems 6 and 7 provide simple

tests for comparing these designs to any other design. An immediate consequence

is that an ECD(θ) with θ 6∈ {θ̄, θ̄ + 1} is Schur-inferior to at least one of these

two competitors. Thus among ECDs, only these two competitors remain. They are

compared to one another in the following corollary.
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12 J. P. MORGAN AND B. H. RECK

Corollary 8 ECD(θ̄)s are Schur-better than ECD(θ̄ + 1)s if and only if γ ≤ 1
r ,

and ECD(θ̄ + 1)s are Schur-better than ECD(θ̄)s if and only if γ ≥ r−1
r .

Proof Simply use (11) and (12) in applying Theorems 6 and 7.

Though design nonexistence can play a role, corollary 8 says one does not expect

to find a Schur-optimal design for 1
r ≤ γ ≤ r−1

r (Theorem 5 makes for an inter-

esting juxtaposition). Schur-domination can nonetheless be used to eliminate many

competitors, as shown next.

3.3. Schur-inferiority of designs lacking equality of block concurrences. Given

the results of the preceding subsection, the remaining question from a global opti-

mality perspective is if (and when) designs outside of the ECD class can be prefer-

able. This question can be effectively pursued by application of Theorems 6 and 7

once workable bounds for the largest and smallest eigenvalues ed1 and edr of the

optimality matrix are in place.

Lemma 9 Let d ∈ D(v, r; k1, k2) have concurrence discrepancy matrix ∆d = (δdhh′)

and optimality matrix Md. Then

(i) δd12 ≤ 0 ⇒ ed1 ≥ p
v + γ − δd12 and edr ≤ p

v − γ + δd12.

(ii) δd12 > 0 ⇒ ed1 ≥ p
v − γ + δd12 and edr ≤ p

v + γ − δd12.

Proof The leading 2×2 minor of Md, which is Md11 = ( p
v +γ−δd12)I−(γ−δd12)J ,

has eigenvalues p
v + γ − δd12 and p

v − γ + δd12. A Sturmian Separation Theorem

(Rao, 1973, page 64) provides the bounds.

Say design d is an almost equal concurrence design, or AECD, if φdhh′ ∈ {θ̄, θ̄+1}

for all h 6= h′, and both values are attained. If any φdhh′ is not in {θ̄, θ̄+ 1}, then d

is an unequal concurrence design, or UCD. In terms of discrepancies, AECDs have

all δdhh′ ∈ {0, 1} while UCDs have some δdhh′ ≤ −1 or ≥ 2. As will be seen in

section 4 and depending on γ, AECDs can be optimal in at least some senses,

necessarily ruling out global optimality of ECDs for some γ. The next few results

will show that ECDs often dominate UCDs.
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RESOLVABLE DESIGNS 13

Corollary 10 Suppose d ∈ D(v, b; k1, k2) is a UCD with δdhh′ ≤ −α for some

1 ≤ h 6= h′ ≤ r and some integer α ≥ 1. Then

(i) ECD(θ̄)s are Schur-better than d if γ ≤ α
r−2 ,

(ii) ECD(θ̄ + 1)s are Schur better than d if γ ≥ r−α−1
r .

Proof For the UCD d as described in the corollary, take δd12 ≤ −α. Then from

lemma 9, ed1 ≥ p
v + γ − α, and p

v − γ + α ≥ edr. By Theorem 6, an ECD(θ̄) is

Schur-better than d if ξ2(γ) ≥ p
v − γ + α ≥ edr ⇐⇒ γ ≤ α

r−2 . By Theorem 7, an

ECD(θ̄+1) is Schur-better than d if ed1 ≥ p
v +γ−α ≥ ξ2(γ−1) ⇐⇒ γ ≥ r−α−1

r .

Corollary 11 When r ≤ 4, all UCDs with some δdhh′ ≤ −1 are Schur-inferior

to an ECD, and when r = 5 or 6, UCDs with some δdhh′ ≤ −2 are Schur-inferior

to an ECD.

The next two corollaries are similarly shown.

Corollary 12 Suppose d ∈ D(v, b; k1, k2) is a UCD with δdhh′ ≥ α for some

1 ≤ h 6= h′ ≤ r and some integer α ≥ 2. Then

(i) ECD(θ̄)s are Schur-better than d if γ ≤ α
r ,

(ii) ECD(θ̄ + 1)s are Schur better than d if γ ≥ r−α−1
r−2 .

Corollary 13 When r ≤ 4, all UCDs with some δdhh′ ≥ 2 are Schur-inferior to

an ECD, and when r = 5 or 6, UCDs with some δdhh′ ≥ 3 are Schur-inferior to an

ECD.

Corollaries 11 and 13 say that optimal (with respect to any convex criterion)

designs in settings D(v, r; k1, k2) with r ≤ 4 must be an ECD(θ̄), an ECD(θ̄+1), or

an AECD. Optimal designs in settings with r = 5 or 6 must have block concurrence

discrepancies δdhh′ ∈ {−1, 0, 1, 2} for all 1 ≤ h 6= h′ ≤ r. It is unlikely that such

global statements can be much improved. The importance of these results lies in

the prevalence of small r in the application of resolvable designs.
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14 J. P. MORGAN AND B. H. RECK

4. E-optimality. Sufficient conditions, which are necessary given existence,

will be developed for E-optimality of designs in D(v, r; k1, k2). The main results,

Theorems 14 and 15, will be stated after first defining a subclass where E-optimal

designs will be found.

Corollary 16 below will remove the UCDs from E-contention, so that only ECD(θ̄)s,

ECD(θ̄+1)s, and AECDs need be considered. These designs have all δdhh′ ∈ {0, 1},

and so have ∆d which is the adjacency matrix of a simple, undirected graph on

r vertices. Any of these designs for which ∆d − J is (with suitable ordering of

replicates) of the form












−Jt1

−Jt2

. . .

−Jtn













(13)

for positive integers n and t1 ≤ t2 ≤ . . . ≤ tn (
∑n

i=1 ti = r) is said to be group-

affine. For group-affine designs, concurrences φdhh′ are constant (= θ̄) within groups

of sizes t1, . . . , tn, and are constant (= θ̄+1) between groups. A group-affine design

is said to be uniform if, for given n, the range of group sizes ti is at most one. For

any group-affine design with number of groups n ≤ nγ = int( 1
1−γ ), let t(d) denote

the vector of its group sizes ti arranged in increasing order and with nγ elements,

padding with zeros as necessary. For example, if r = 7, γ = 7
9 and d has ti values

1, 3 and 3, then nγ = 4 and t(d) = (0, 1, 3, 3). Now the main results can be stated.

By “E-Schur-optimal” is meant “Schur-optimal within the class of all E-optimal

designs.”

Theorem 14 Any group-affine design is E-optimal if n ≤ nγ and γ ≤ r−1
r . If any

such design exists, then all such designs form the class DE of all E-optimal designs.

ECD(θ̄ + 1)s are Schur-optimal for γ ≥ r−1
r .

Theorem 15 For d1, d2 ∈ DE, if t(d1) ≺ t(d2) then d1 is Schur-better than d2.

Design d∗ ∈ DE is E-Schur-optimal if it is uniform with n = nγ .

Theorem 14 characterizes the class of E-optimal block concurrence structures for

D(v, r; k1, k2). Though not much discussed in the literature, the class of E-optimal
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designs in a given simple block design setting often contains a variety of designs

with different information matrices (see, e.g., Morgan 2005 and Morgan and Uddin

1992). Theorem 14 reveals the same situation for resolvable designs settings. This

allows other design criteria to be brought to bear. One should choose the best of

the E-optimal designs, and this is the accomplishment of Theorem 15. In a very

strong sense, E-Schur-optimal designs are the best of the E-optimal designs.

The proofs of Theorems 14 and 15 depend on a series of technical results that are

developed over the remainder of this section. So as not to overly disrupt the flow of

the main line of proof, the longer of the “sub-proofs” are delayed until appendix A.

The first task is to rule out UCDs.

Corollary 16 For all r ≥ 2 and 0 ≤ γ < 1, ECD(θ̄)s are E-better than UCDs.

Proof The maximum eigenvalue of the optimality matrix for an ECD(θ̄) is ξ1(γ) =

p
v +γ. For the UCD d suppose δd12 ≤ −α for some integer α ≥ 1. Then by lemma 9,

ed1 ≥ p
v + γ − δd12 > ξ1(γ), and ECD(θ̄)s are E-better than d. If δd12 ≥ α for some

integer α ≥ 2, then another application of the lemma gives ed1 ≥ p
v−γ+δd12 > ξ1(γ)

and again ECD(θ̄)s are E-better than d.

Completing the proof of Theorem 14 is a matter of minimizing ed1 over all d for

which every δdhh′ ∈ {0, 1}. Before the details, here is a sketch of what will be done.

First, a lower bound for ed1 is found in terms of the largest eigenvalue of a specific

projection P∆dP of the discrepancy matrix. This bound implies that ECD(θ̄)s are

E-superior to all designs for which P∆dP matrix has a positive eigenvalue. The

next step is thus to find a necessary and sufficient condition on ∆d so that P∆dP is

nonpositive definite; this condition turns out to be exactly the definition of group-

affine design. Finally, the general form of Md for group-affine designs is examined

in detail to determine which of these competitors are E-optimal, producing the

conditions of Theorem 14.

Lemma 17 For d ∈ D(v, r; k1, k2) and with P = (I − 1
rJ), let ud1 and udr be the

maximum and minimum eigenvalues of P∆dP . Then

(i) if ud1 > 0 then ed1 ≥ p
v + γ + ud1, and
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16 J. P. MORGAN AND B. H. RECK

(ii) edr ≤ p
v + γ + udr.

The proof for lemma 17 is in appendix A.2. Lemma 17 combined with Theorems 6

and 7 immediately gives this corollary:

Corollary 18 For d ∈ D(v, r; k1, k2) and with P = (I − 1
rJ), let ud1 and udr be

the maximum and minimum eigenvalues of P∆dP .

(i) If γ < −udr

r then ECD(θ̄)s are Schur-better than d.

(ii) If ud1 > 0 and γ >
(

r−ud1−1
r

)

then ECD(θ̄ + 1)s are Schur-better than d.

(iii) If ud1 > 0 then ECD(θ̄)s are E-better, but not necessarily Schur-better,

than d.

Parts (i) and (ii) of corollary 18 provide alternative routes (compare corollaries 10

and 12) for establishing Schur-domination of ECDs. Part (iii) is the key part for the

proof of Theorem 14. If d is not to be eliminated by ECD(θ̄), then P∆dP cannot

have a positive eigenvalue, that is, must be nonpositive definite. Recall that the

current E-competitors are all d for which ∆d is the adjacency matrix of a simple,

undirected graph.

Lemma 19 Let A be the adjacency matrix for a simple undirected graph of r ver-

tices. PAP is nonpositive definite if and only if A − J may be written (possi-

bly after vertex permutation) in the form (13) for some positive integers n and

t1 ≤ t2 ≤ . . . ≤ tn with
∑n

i=1 ti = r.

Combining lemma 19 with corollaries 16 and 18(iii), it has now been shown that

existence of an ECD(θ̄) implies that an E-optimal design is a group-affine design.

Group-affine designs include the ECD(θ̄)s (put n = 1, ∆d = 0) and the ECD(θ̄+1)s

(put n = r, ∆d = J − I) at the extremes for n. The proof for lemma 19 is in

appendix A.3.

It remains to determine which of the group-affine designs are actually E-best,

requiring knowledge of ed1 for this class. For any group-affine design, write Md =
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RESOLVABLE DESIGNS 17

( p
v + γ)I + ∆d − γJ where for given t1 ≤ . . . ≤ tn,

∆d−γJ = (−1)















γJt1,t1 (γ − 1)Jt1,t2 · · · (γ − 1)Jt1,tn

(γ − 1)Jt2,t1 γJt2,t2 · · · (γ − 1)Jt2,tn

...
...

. . .
...

(γ − 1)Jtn,t1 (γ − 1)Jtn,t2 · · · γJtn,tn















≡ (−1)Hd.(14)

An E-optimal design will maximize the minimum eigenvalue of Hd. Clearly Hd has
∑n

i=1(ti − 1) = r − n eigenvalues of zero (corresponding to eigenvectors which are

orthogonal contrasts within groups of sizes t1, . . . , tn). So all of these designs have

Hd with at least one eigenvalue of zero, except ECD(θ̄+1), for which the eigenvalues

of Hd are 1 (frequency r− 1) and 1+ r(γ− 1). ECD(θ̄+1) is therefore E-optimal if

1+r(γ−1) ≥ 0, that is, if γ ≥ r−1
r (in which case it is Schur-optimal; see Theorem 7).

Otherwise, all designs for which Hd is nonnegative definite are E-optimal. Needed

now are the eigenvalues of Hd other than zero. Let Dt be the diagonal matrix with

diagonal elements (t1, . . . , tn). Lemma 20 is proven in appendix A.4.

Lemma 20 The eigenvalues of Hd specified by (14) are 0 (with frequency r − n)

and the eigenvalues of D
1/2
t ED

1/2
t , where E = In − (1 − γ)Jn.

Consequently, Hd is nonnegative definite if and only if D
1/2
t ED

1/2
t is nonnegative

definite. This is so if and only if E is nonnegative definite, that is, if and only if

1−γ ≤ 1
n . Thus for any γ ≤ r−1

r , the E-optimal designs are all group-affine designs

for which the number of groups n is no larger than 1
1−γ , that is, for which n ≤ nγ .

This completes the proof of Theorem 14.

To prove Theorem 15, recall the definition of t(d) given just prior to Theorem 14,

and note that now only d ∈ DE is considered. It is shown in appendix A.4 that the

eigenvalues of Hd, aside from r−nγ zeros, are the eigenvalues of E1/2DtE
1/2. Thus

the problem is to show that t(d1) ≺ t(d2) implies the eigenvalues of E1/2Dt(d1)
E1/2

are majorized by those of E1/2Dt(d2)
E1/2.

Now t(d1) ≺ t(d2) is equivalent to t(d1) = St(d2) where S is a doubly stochas-

tic matrix; S =
∑m

i=1 aiQi for permutation matrices Qi and positive numbers ai
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18 J. P. MORGAN AND B. H. RECK

summing to 1 (Bhatia, 1997, pages 33 and 37). Thus

E1/2Dt(d1)
E1/2 = E1/2DSt(d2)

E1/2 = E1/2[
∑

i

aiQiDt(d2)
Qi]E

1/2

=
∑

i

aiQi[E
1/2Dt(d2)

E1/2]Qi

the last step because E1/2 = (I− 1
nJ)+

√

1
n − (1 − γ)J commutes with any permu-

tation matrix. This shows that E1/2Dt(d1)
E1/2 is a symmetrization of E1/2Dt(d2)

E1/2

and thus the eigenvalues of the first matrix are majorized by those of the second

(this follows from Bhatia, page 69). Since t(d∗) ≺ t(d) for every d ∈ DE , d∗ is

E-Schur-optimal and Theorem 15 is proven.

5. Special Cases: (k1 −k2) ≤ 2. In this section the three important special

cases of k1 and k2 being equal or nearly so, k2 ∈ {k1, k1−1, k1−2}, are investigated

in light of the results in sections 3 and 4. Writing k2 = k1 −m, then (k1 − k2) ≤ 2

says that m = 0, 1, or 2, and for any m

k2
1

k1 + k2
=

k2
1

2k1 −m
=
k1

2
+
m

4
+

m2

4(2k1 −m)
.(15)

Recall that θ̄ is the integer part of (15). The values for γ =
k2
1

k1+k2
− θ̄ in the

corollaries below are easily found using (15).

Corollary 21 For k1 = k2,

(i) if 2 | k1 then γ = 0, (k1 + k2) | k2
1, and ECD(θ∗)s are Schur-optimal.

(ii) if 2 |/ k1 then γ = 1
2 and ECD(θ̄)s are E-Schur and type-1-optimal.

When k1 = k2 and 2 | k1, Schur-optimality also follows from Bailey, Monod, and

Morgan (corollary 3.4, 1995). For 2 |/ k1, the result is from Theorems 5 and 15.

Corollary 22 For k1 − k2 = 1,

(i) if 2 | k1, then γ = v+1
4v , and ECD(θ̄)s are E-Schur and type-1-optimal.

(ii) if 2 |/ k1, then γ = 3v+1
4v and uniform group-affine designs with four groups

are E-Schur-optimal if r ≥ 5. For r ≤ 4, ECD(θ̄ + 1)s are Schur-optimal.
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As an example, the design in Table 1 is E-Schur-optimal for 9 treatments in 5

replicates with block sizes 4 and 5. The design consisiting of the first four replicates

is Schur-optimal.

Corollary 23 For k1 − k2 = 2,

(i) if 2 | k1 then γ = v+2
2v , and uniform group-affine designs are E-Schur-optimal

if the number of groups is 3 for v = 6; and 2 for v ≥ 10. For r = 2, ECD(θ̄+1)s

are Schur-optimal.

(ii) if 2 |/ k1, then γ = 1
v , and ECD(θ̄)s are Schur-optimal.

The Schur-optimality in part (ii) of corollary 23 is from Theorem 6 and lemma 9.

6. ECDs, balanced arrays, and design construction. Balanced arrays

were introduced by Chakravarti (1956, 1961) as a useful device for fractional fac-

torial designs, and have since been investigated by a plethora of authors including of

late Kuriki (1993), Fuji-Hara and Miyamoto (2000), Sinha et al (2002), and Ghosh

and Teschmacher (2002). Here only strength two arrays on two symbols will be

needed. A balanced array of strength 2, BA(N,m, 2), on the symbols 0 and 1, is a

N ×m array with the property that for any selection of two columns, the N pairs

formed by the rows are (0, 0), (0, 1), (1, 0), and (1, 1) with frequencies µ0, µ1, µ1,

and µ2, respectively. Two-symbol orthogonal arrays of strength two are the special

case µ0 = µ1 = µ2. When the number of 0’s in each column is specified (as is the

case below), the µi’s are all determined by θ = µ0 and the array will be denoted

BA(N,m, 2; θ).

Bailey, Monod, and Morgan (1995) demonstrate the combinatorial equivalence

between affine resolvable designs and orthogonal arrays. Their method can be used

to express any resolvable design as a combinatorial array, as follows. Given a resolv-

able design for v treatments in r replicates, each consisting of s blocks, label the

blocks within a replicate 0, . . . , s − 1. Construct a v × r array by identifying rows

of the array with treatments of the resolvable design, and columns with replicates:

symbol j ∈ {0, 1, . . . , s− 1} is placed in row i, column h if and only if treatment i

is in block j of replicate h. Evidently,
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20 J. P. MORGAN AND B. H. RECK

Theorem 24 Each ECD(θ) in D(v, r; k1, k2) is equivalent to a BA(v, r, 2; θ).

A group affine design with n groups of sizes t1, . . . , tn is a juxtaposition (BA1,BA2,

. . .,BAn) of balanced arrays BAi=BA(v, ti, 2; θ) so that any two columns from dif-

ferent BAi’s form a BA(v, 2, 2; θ + 1). Call such a juxtaposition a grouped balanced

array, denoted by GBA(v, (t1, . . . , tn), 2; θ). Constructions for the designs in corol-

laries 21-23 of section 5 are now listed. These are stated in terms of Hadamard

matrices: orthogonal matrices for which every element is 1 or −1. The Hadamard

conjecture says that a Hadamard matrix exists for every order a multiple of four.

Existence is know for all such orders up to 428, and for infinitely many other values

(see Craigen, 1996). A Hadamard matrix is said to be standardized if the first row

and column are all ones; this can always be done.

Theorem 25 If k1 = k2 is even, then a Schur-optimal ECD(θ∗) corresponds to an

OA(v, r, 2; v
2 ). Existence of a Hadamard matrix of order v implies existence of the

OA for every r ≤ v − 1.

Theorem 26 If k1 = k2 is odd, then a type-1-optimal ECD(θ̄) corresponds to a

BA(v, r, 2; v−2
4 ). Existence of a Hadamard matrix of order v + 2 implies existence

of the BA for every r ≤ v
2 .

Proof The value of θ̄ is int( (v/2)2

v ) = v−2
4 . Given the standardized Hadamard

matrix, permute columns (except the first) so that the second row has 1 in the

first v+2
2 columns. Now delete the first two rows and the first v+2

2 columns, then

replace −1 by 0 throughout. Clearly the result is BA(v, v
2 , 2; v−2

4 ).

Theorem 27 If k1 = k2 + 1 is even, then a type-1-optimal ECD(θ̄) corresponds to

a BA(v, r, 2; v+1
4 ). Existence of a Hadamard matrix of order v+1 implies existence

of the BA for every r ≤ v.

Proof The value of θ̄ is int( ((v+1)/2)2

v ) = v+1
4 . Given the standardized Hadamard

matrix, delete the first row and column, then replace −1 by 0 throughout. The

result is BA(v, v, 2; v+1
4 ).

imsart-aos ver. 2006/03/07 file: T0166post.tex date: 5 June 2006



RESOLVABLE DESIGNS 21

Theorem 28 If k1 = k2 + 1 is odd, then a type-1-optimal ECD(θ̄ + 1) with r ≤ 4

corresponds to a BA(v, r, 2; v+3
4 ), which always exists. For r ≥ 5 and v ≥ 9, an

E-Schur-optimal group affine design corresponds to a GBA(v, (t1, t2, t3, t4), 2; v−1
4 )

with t4 − t1 ≤ 1. Existence of a Hadamard matrix of order v + 3 with a 4 × r

submatrix of the form

















1t1 1t2 1t3 −1t4

1t1 1t2 −1t3 1t4

1t1 −1t2 1t3 1t4

−1t1 1t2 1t3 1t4

















implies existence of the GBA.

Proof The value of θ̄ is int( ((v+1)/2)2

v ) = v−1
4 . For r ≤ 4 take OA(v − 1, r, 2) on

{0, 1} and add one row of 0’s to get BA(v, r, 2; v+3
4 ). Given the assumed Hadamard

matrix, delete v + 3 − r columns not containing the submatrix, then delete the

submatrix and add a row of 1’s. Replacing −1 by 0 throughout gives the GBA.

The maximum r admitted for given v by the Hadamard construction in Theorem 28

depends on the particular Hadamard matrix chosen. All nonisomorphic Hadamard

matrices are known up through order 28, and for these, a complete search has

produced (v, r) = (9, 5), (13, 5), (17, 9), (21, 9), (25, 13); the first four of these appear

in appendix B. A search of a few known Hadamard matrices (compiled by N. J. A.

Sloane at www.research.att.com/∼njas/hadamard/ ) of orders up to 48 has further

produced (v, r) = (29, 13), (33, 16), (37, 18), (41, 24), (45, 19). Clearly there is room

for more work here.

Theorem 29 If k1 = k2 + 2 is even, for v ≥ 10, an E-Schur-optimal group

affine design corresponds to a GBA(v, (t1, t2), 2; v+2
4 ) with t2 − t1 ≤ 1. Existence

of a Hadamard matrix of order v + 2 implies existence of the GBA for every

t1 + t2 = r ≤ v
2 + 1.

Proof The value of θ̄ is int( ((v+2)/2)2

v ) = v+2
4 . Given the standardized Hadamard

matrix of order v + 2 = 4h, permute columns (except the first) so that the first
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three rows are










1h 1h 1h 1h

1h −1h 1h −1h

1h −1h −1h 1h











Now delete the first 2h columns, delete the first three rows, then add one row of −1’s,

and finally replace −1 by 0 throughout. The result is GBA(v, (v+2
4 , v+2

4 ), 2; v+2
4 )

with two juxtaposed BA(v, v+2
4 , 2; v+2

4 ) being the first h and last h columns. For

smaller r, delete int(h− r
2 ) columns from the first component BA, and int(h− r+1

2 )

from the second.

Theorem 30 If k1 = k2 + 2 is odd, a Schur-optimal ECD(θ̄) corresponds to a

BA(v, r, 2; v+4
4 ). Existence of a Hadamard matrix of order v implies existence of

the BA for every r ≤ v − 1.

Proof The value of θ̄ is int( ((v+2)/2)2

v ) = v+4
4 . Given the standardized Hadamard

matrix, delete the first row and column, add a row of −1’s, then replace −1 by 0

throughout. The result is BA(v, v − 1, 2; v+4
4 ).

7. Comments. By exploiting properties of the dual, optimality theory for

resolvable designs with two blocks per replicate has been developed. Section 3 es-

tablishes conditions for Schur-optimality of equal concurrence designs depending

on the block discordancy coefficient γ. For γ where Schur-optimality is not estab-

lished, the class of competitors has been significantly narrowed via Schur-ordering

for small r. Section 4 characterizes the class of all E-optimal designs whenever any

grouped affine design exists, and further determines the Schur-best of the E-optimal

designs. Sections 5 and 6 apply these results for the important cases k1 − k2 ≤ 2,

including explicit design constructions employing an equivalence with balanced ar-

rays. It is evident from the constructions that many other designs, eliminated by

the Schur-domination argument in Theorem 15, do exist.

For large (r ≥ v) replication, the problem can be quite different, and optimality

work would proceed based on treatment, rather than block, concurrences. Here is

a simple construction for that case: given a BIBD for v treatments in b blocks of
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size k, there is a Schur-optimal resolvable design in D(v, b; k, v − k) formed by the

blocks of the BIBD and their complements. While it is possible that these designs

are equivalent to balanced arrays (when the starting BIBD is symmetric), it is also

true that the resulting φdhh′ can be widely dispersed, for they are determined by

the block concurrence counts for the underlying BIBD.

The optimality route is clear for r ≤ v − 1 and γ ≤ 1
2 , but for larger γ there are

still unanswered questions. For instance, A- and E-optimality need not coincide, and

the problem of determining an A-best design remains open. For r ≤ 4 the authors

have solved the A-optimality problem in its entirety, including construction, and

for larger r have done this for the special cases of k1 − k2 ≤ 2. These and related

results will be reported elsewhere.

ACKNOWLEDGEMENT

This research is partially based on work in Reck’s doctoral dissertation (Reck,

2002), for which Morgan was director. Morgan completed his Ph.D. under the

direction of I. M. Chakravarti. In dedicating this paper to the memory of Professor

Chakravarti, we humbly acknowledge the ongoing impact of his work on our own,

and on that of the statistical and mathematical communities at large. Our thanks

to the referees for comments leading to decided improvement of the presentation.

APPENDIX A: PROOFS

A.1. Proof of lemma 1. Let D
1/2
s be the diagonal matrix of square roots

of block sizes, and write Bd = NdD
−1/2
s . Multiplying Cd by 1

r , and right and left

multiplying Cdual by D
−1/2
s , equations (1) and (2) become

1

r
Cd = I − 1

r
NdD

−1
s N ′

d = I − 1

r
BdB

′
d = C∗

d(16)

and

D−1/2
s Cdual D

−1/2
s = I − 1

r
D−1/2

s N ′
dNdD

−1/2
s = I − 1

r
B′

dBd = C∗
dual .(17)
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Since (1) and (16) differ only by a constant, and since the nonzero eigenvalues of

BdB
′
d and B′

dBd are identical, the eigenvalues of Cd can be found from those of

C∗
dual in (17), which depends on block concurrences and block sizes.

Continuing, write C∗
dual = I − 1

rAd for Ad = B′
dBd = D

−1/2
s N ′

dNdD
−1/2
s . Re-

gardless of the design d, AdD
1/2
s 1 = rD

1/2
s 1; r is an eigenvalue of Ad corresponding

to the zero eigenvalue common to Cdual and Cd. One term of the spectral decom-

position of Ad is then

r(D
1/2
s 1)(D

1/2
s 1)′

(D
1/2
s 1)′(D

1/2
s 1)

=
1

(k1 + k2)

[

J ⊗
(

k1

√
k1k2√

k1k2 k2

)]

(18)

where J is a r×r matrix of 1s. Subtract (18) from Ad and name the result A∗
d. Then

a bit of manipulation, employing the fact that all four block concurrence counts for

blocks in replicate h with blocks in replicate h′ are determined by φdhh′ , gives

A∗
d =

1

k1k2
Md ⊗

(

k2 −
√
k1k2

−
√
k1k2 k1

)

.(19)

Since the eigenvalues of the 2 × 2 matrix in (19) are 0 and k1 + k2, the b = 2r

eigenvalues of A∗
d are r copies of 0 and v

k1k2
times the r eigenvalues of Md. The

eigenvalues for Cd as stated in the lemma are now immediate.

A.2. Proof of lemma 17. The lower bound on ed1 follows from

ed1 = max
x′x=1

x′Mdx = max
x′x=1

x′[(
p

v
+ γ)I − γJ + ∆d]x

≥ max
x′x=1

x′1=0

x′[(
p

v
+ γ)I − γJ + ∆d]x =

p

v
+ γ + max

x′x=1

x′1=0

x′∆dx

=
p

v
+ γ + max

x′x=1

x′1=0

x′P∆dPx =
p

v
+ γ + max

x′x=1
x′P∆dPx =

p

v
+ γ + ud1.

The penultimate equality holds since ud1 > 0 and 1 is an eigenvector of P∆dP with

eigenvalue 0. Likewise

edr = min
x′x=1

x′Mdx = min
x′x=1

x′[(
p

v
+ γ)I − γJ + ∆d]x

≤ p

v
+ γ + min

x′x=1

x′1=0

x′P ′∆dPx =
p

v
+ γ + udr.

The last equality holds provided udr < 0, for similar reasons to above. If udr > 0,

the bound still holds, since edr ≤ tr(Md)
r = p

v ≤ p
v + γ + udr.
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A.3. Proof of lemma 19. Suppose A−J is of the suggested form. Write t(i)

for t1 + t2 + . . .+ ti and t(0) = 0. Then PAP = P (A− J)P , implying that

max eig(PAP ) = max
x′x=1

x′P (A−J)Px = max
y=P x

x′x=1

y′(A−J)y = max
y=P x

x′x=1

−
t
∑

i=1

(

t(i)
∑

j=t(i−1)+1

yj)
2

which is clearly nonpositive.

Now subscripting by the dimension, suppose PrArPr is nonpositive definite

(npd). Exhaustive enumeration shows that Ar − Jr must have the form (13) for

r = 3, 4, 5. Assuming nonpositivity implies that the form must hold for a given r,

it will be shown that the same implication holds for r + 1. Denoting the upper

left-hand r × r submatrix of Ar+1 by Ar (which itself is an adjacency matrix), it

is claimed that Pr1
Ar+1Pr+1 is npd ⇒ PrArPr is npd. If not, there exists x such

that x′PrArPrx > 0. Write y′ = (x′Pr, 0). Then y′1 = 0 ⇒ y′Pr+1Ar+1Pr+1y =

y′Ar+1y = x′Arx > 0, a contradiction.

Since PrArPr is npd, the induction hypothesis says that

Ar+1 − Jr+1 =

















−Jt1

−Jt2

. . .

−Jtn

a

a′ −1

















for some vector ar×1 of 0’s and -1’s. Indeed, by the induction hypothesis, every s×s

principal minor of Ar+1 − Jr+1 must have the form (13), so a may be partitioned

as a′ = (a′1, a
′
2, . . . , a

′
n) where ai is either −1ti

or 0ti
. If n = 1, the proof is done. If

n = 2 and a2 = −1t2 , then

Ar+1 − Jr+1 =







−Jt1 0 a1

0 −Jt2 −1t2

a′1 −1′t2 −1






.

If also a1 = −1t1 , thenAr+1−Jr+1 contains a principal minorM3 = (−1)





1 0 1
0 1 1
1 1 1





which is not of the form (13), contradicting the fact that the result holds for r = 3.

Thus at most one of a1, a2 is nonzero. It follows immediately that for n > 2 the

same statement holds for any pair ai, ai′ . Permuting rows and columns as needed,
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it can be assumed that ai = 0ti
for i < n and consequently Ar+1 − Jr+1 has the

form (13).

A.4. Eigenvalue equations for Hd and proof of lemma 20. Any vector of

the form (c′1, c
′
2, . . . c

′
n), where ci ∈ ℜti is either a contrast vector or the zero vector,

is an eigenvector of Hd with eigenvalue 0. Consequently all other eigenvectors are

of the form e′ = (x11
′
t1 , x21

′
t2 , . . . , xn1′tn

) for some scalars x1, . . . , xn. The first

equation in the system Hde = λe is γt1x1 − (1− γ)t2x2 − · · · − (1− γ)tnxn = λx1;

the other equations may be written similarly to see that Hde = λe are equivalent

to [Dt − (1 − γ)1nt
′]x = λx where t = (t1, . . . , tn)′ and x = (x1, . . . , xn)′. Thus the

remaining eigenvalues of Hd are the right eigenvalues of Dt− (1−γ)1nt
′. Now Dt is

positive definite and E is nonnegative definite for γ ≥ n−1
n , so both have symmetric

square root matrices and Dt is invertible. Thus

|Dt − (1 − γ)1nt
′ − λI| = 0 ⇐⇒ |Dt − (1 − γ)1nt

′ − λI||D−1
t | = 0

⇐⇒ |E − λD−1
t | = 0

⇐⇒ |D1/2
t ED

1/2
t − λI| = 0 (proving lemma 20)

⇐⇒ |E1/2DtE
1/2 − λI| = 0 (needed in Theorem 15)

the last step because GG′ and G′G have the same eigenvalues for any square G. Now

in the proof of Theorem 15 some elements of t are allowed to be zero (without loss of

generality, t1 = · · · = tz = 0 for integer z ≥ 1), and then Dt is not invertible. In this

case there are z additional zero eigenvalues plus a reduced system of n−z equations

in tz+1, . . . , tn. It is easy to see that |D1/2
t ED

1/2
t − λI| = |0z,z − λIz||D̃1/2

t ẼD̃
1/2
t |

where Ẽ and D̃t are the lower right submatrices of E and Dt of order n− z. Thus

the n eigenvalues sought are still those of D
1/2
t ED

1/2
t and thus of E1/2DtE

1/2.
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APPENDIX B: UNIFORM GBAS WITH FOUR GROUPS

GBA(9, (1, 1, 1, 2), 2; 2) GBA(13, (1, 1, 1, 2), 2; 3) GBA(17, (2, 2, 2, 3), 2; 4) GBA(21, (2, 2, 2, 3), 2; 5)

1 1 1 1 1
0 0 0 0 0
0 1 0 0 1
0 1 0 1 0
0 0 1 1 0
1 0 0 1 0
0 0 1 0 1
1 1 1 0 0
1 0 0 0 1

1 1 1 1 1
1 1 1 1 1
0 1 1 0 0
0 0 0 1 0
1 0 0 1 0
0 0 0 0 1
1 0 0 0 1
0 0 1 1 0
1 0 1 0 0
0 0 1 0 1
0 1 0 1 0
0 1 0 0 1
1 1 0 0 0

1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0 0
1 0 0 0 1 1 0 0 1
1 0 1 1 1 0 0 1 0
0 1 0 0 1 0 1 1 0
0 1 0 1 1 1 1 0 0
1 0 0 0 0 1 1 1 0
1 1 1 0 0 1 0 0 1
1 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 1
0 1 1 0 0 1 0 1 0
1 1 0 1 0 0 0 1 0
0 1 0 1 1 0 0 0 1
0 0 1 0 1 0 0 1 1
0 1 1 0 0 0 1 0 1

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1 0
1 0 1 0 1 0 1 0 0
0 1 1 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0
0 0 1 0 1 0 0 1 0
1 0 0 0 0 0 0 1 1
0 1 0 1 0 1 0 1 0
0 1 0 0 0 0 1 0 1
1 0 0 1 0 1 0 0 1
0 1 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0 1
0 1 0 0 1 1 0 1 0
0 1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1 0
1 0 1 1 0 0 0 1 0
1 0 0 0 1 1 1 0 0
0 0 0 1 1 0 1 0 1
1 1 0 1 1 0 0 0 0
0 0 0 1 1 0 0 1 1
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