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Abstract
Balanced incomplete-block designs (BIBDs) with repeated blocks

are studied and constructed. We continue work initiated by van Lint
and Ryser in 1972 and pursued by van Lint in 1973. We concentrate
on constructing (v, b, r, k, λ)-BIBDs with repeated blocks, especially
those with gcd(b, r, λ) = 1 and r ≤ 20. We obtain new bounds for
the multiplicity of a block in terms of the parameters of a BIBD,
and improvements to these bounds for a resolvable BIBD. This allows
us to answer a question of van Lint about the sufficiency of certain
conditions for the existence of a BIBD with repeated blocks.
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1 Introduction

A balanced incomplete-block design (BIBD) with parameters (v, b, r, k, λ)
may or may not have repeated blocks. We believe that the first published
BIBDs with repeated blocks were those in series β1 and series β2 of Bose [3],
but that paper was overlooked for some decades. To our knowledge, there has
not been much study of necessary or sufficient conditions for the existence of
a BIBD with repeated blocks and given parameters, nor on bounds for the
multiplicity of a block in such a BIBD. For a (v, b, r, k, λ)-BIBD with m the
maximum multiplicity of a block, Mann [23] proved in 1969 that m ≤ b/v.
In 1972, van Lint and Ryser [20] proved that in addition, if m = b/v, then m
divides gcd(b, r, λ). They also gave constructions for BIBDs with repeated
blocks, usually with gcd(b, r, λ) > 1. In 1973, van Lint [19] considered tuples
(v, b, r, k, λ) of positive integers satisfying 2 ≤ k ≤ v/2, λ(v − 1) = r(k − 1),
vr = bk, λ > 1, gcd(b, r, λ) = 1 and b > 2v, and asked whether for each
such tuple (v, b, r, k, λ) there exists a BIBD with repeated blocks. He showed
that this is indeed the case when k ≤ 4, except possibly when (v, k, λ) =
(45, 4, 3) (for which we give an example with repeated blocks in section 4.1).
Additionally in [19], van Lint tabulated all tuples (v, b, r, k, λ) satisfying his
conditions with v ≤ 22, and for many of these tuples constructed BIBDs with
repeated blocks. In 1986, Rosa and Hoffman [31] completely determined, for
each v for which there exists a (v, b, r, 3, 2)-BIBD, the set of numbers n for
which there is such a BIBD with exactly n repeated blocks (see also [30]).

Recently, the present authors made an extensive catalogue of BIBDs with
repeated blocks, with gcd(b, r, λ) = 1 and r ≤ 20. Many new BIBDs were
found, and all gaps in van Lint’s table when r ≤ 20 have now been filled
with examples of BIBDs with repeated blocks. In this paper, we give some
constructions for BIBDs with repeated blocks and we present a summary of
results from our catalogue.

We also prove that if D is a (v, b, r, k, λ)-BIBD and m is the multiplicity
of a block of D, then, for every integer y,

m(k − y)(k − y − 1) ≤ (y + 1)yb− 2ykr + k(k − 1)λ,

and if D is resolvable then

m ((y + 1)yv/k − 2yk + k(k − 1)) ≤ (y + 1)yb− 2ykr + k(k − 1)λ.

This allows us to answer van Lint’s question in the negative: for example,
applying the first bound with y = 1 shows that there is no BIBD with
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repeated blocks and parameters (35, 85, 17, 7, 3) (although there does exist
a BIBD with these parameters [8, p.17]). At present, (31, 93, 15, 5, 2) is the
only parameter tuple in our catalogue for which the existence of a BIBD with
repeated blocks is unsettled.

2 Definitions

We now define the key concepts used in this paper.
A block design is an ordered pair (V,B), such that V is a finite non-empty

set, whose elements are called points, and B is a finite non-empty multiset
of nonempty subsets of V called blocks. It is important to note that B is
a multiset, and we treat B as a list of the blocks, where repeats count, but
order does not matter. The multiplicity of a block in B is the number of
times it occurs in this list. (We remark, however, that as the blocks are
sets, statisticians would call our block designs binary block designs (see [5]).)
If each block has multiplicity 1 then we say the block design is simple [8];
otherwise we say that it has repeated blocks or is non-simple. A block design
with repeated blocks has multiplicity pattern aibj · · · if it has exactly a blocks
with multiplicity i, exactly b blocks with multiplicity j, etc., and all other
blocks have multiplicity 1. A resolution of a block design is a partition of its
block multiset into submultisets called parallel classes, each of which forms
a partition of the point-set.

Two block designs D1 = (V1,B1) and D2 = (V2,B2) are isomorphic if
there is a bijection φ : V1 → V2 such that φ transforms B1 into B2 (i.e. when
φ is applied to each element of each block in the list B1, we obtain the list
B2 in some order). An automorphism of a block design D is an isomorphism
from D to D. Thus, an automorphism of D is a permutation of the points
of D which sends each block of D with multiplicity m to a block of D also
with multiplicity m. The set of all automorphisms of D forms a group, the
automorphism group Aut(D) of D. A block design D is cyclic if it has an
automorphism which permutes all the points in a single cycle, and D is 1-
rotational if it has an automorphism which fixes one point and permutes all
the other points in a single cycle.

For t a non-negative integer and K a set of positive integers, a t-wise
balanced design, or t-(v, K, λ) design, is a block design (V,B), with v = |V | ≥
t, such that each block has size in K and each t-subset of V is contained in
a constant number λ > 0 of blocks. If D is a t-(v, K, λ) design in which all
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blocks have constant size k, then D is a t-design, or a t-(v, k, λ) design.
The t-(v, k, λ) designs with t = 2 and k < v are of great importance to

both statisticians and combinatorialists and are called balanced incomplete-
block designs or BIBDs. In a 2-(v, k, λ) design, each point is in exactly
r := λ(v − 1)/(k − 1) blocks, and there are exactly b := vr/k blocks (count-
ing repeats). It is customary (when k < v) to say that such a design has
parameters (v, b, r, k, λ), or is a (v, b, r, k, λ)-BIBD.

3 Bounding the multiplicity of a block

A celebrated theorem states that there exist simple non-trivial t-designs for
all t ≥ 0 [34]. (Here, non-trivial means that the block (multi)set does not
consist of all k-subsets of the point-set). However, there has not been much
study of necessary or sufficient conditions for the existence of a t-design with
repeated blocks and given parameters, or bounds on the multiplicity of a
block in such a design.

For a (v, b, r, k, λ)-BIBD with m the maximum multiplicity of a block,
Mann [23] proves that m ≤ b/v, and van Lint and Ryser [20] prove that
in addition, if m = b/v, then m divides gcd(b, r, λ). In particular, if a
(v, b, r, k, λ)-BIBD has repeated blocks, then b ≥ 2v and if b = 2v then
gcd(b, r, λ) is even.

In [19], van Lint considers primitive repetition designs or PRDs, which
are (v, b, r, k, λ)-BIBDs with repeated blocks and gcd(b, r, λ) = 1. Without
loss of generality, we may assume that a PRD has k ≤ v/2. This is because
there is no PRD with k = v− 1, and a BIBD with v/2 < k < v− 1 is a PRD
if and only if its complement design is. Thus, the following conditions hold
on the parameters of a PRD:

2 ≤ k ≤ v/2, gcd(b, r, λ) = 1, λ(v − 1) = r(k − 1), vr = bk, λ > 1, b > 2v.
(1)

After listing the tuples (v, b, r, k, λ) of positive integers satisfying (1) (as
observed in [19] one need consider only 3 ≤ k ≤ v/2 − 1), with v ≤ 22,
van Lint constructs PRDs for many of these parameter tuples. He then
remarks that “A question which naturally comes up is whether for every set
of allowable parameters, i.e. those satisfying [(1)], there is a PRD”. We now
show that the answer to this question is no for infinitely many parameter
tuples. We start by proving a general result.
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Theorem 3.1 Let D = (V,B) be a block design with b blocks, let B ⊆ V ,
and let k = |B| ≥ 2. Suppose that B is contained in m blocks B1, . . . , Bm,
and that there are (at least) d further blocks Bm+1, . . . , Bm+d disjoint from
B. Further suppose that each element of B is contained in exactly r blocks
and that every 2-subset of B is contained in exactly λ blocks. Then, for every
integer y,

m(k − y)(k − y − 1) ≤ (y + 1)y(b− d)− 2ykr + k(k − 1)λ, (2)

with equality holding if and only if each block other than B1, . . . , Bm+d inter-
sects B in exactly y or y + 1 points.

Proof. Let xi denote the number of blocks other than B1, . . . , Bm+d which
intersect B in exactly i points (i = 0, . . . , k). We have∑

xi = b−m− d,∑
ixi = k(r −m),∑

i(i− 1)xi = k(k − 1)(λ−m),

from which we see that, for every integer y,∑
(i−y)(i−y−1)xi = k(k−1)(λ−m)−2yk(r−m)+(y+1)y(b−m−d). (3)

Since the left-hand side of (3) is non-negative, we obtain (2). The inequality
(2) is exact if and only if the left-hand side of (3) is zero, which holds if and
only if all xi are zero, except possibly xy or xy+1.

Corollary 3.2 Let D be a (v, b, r, k, λ)-BIBD, and let m be the multiplicity
of a block B of D. Then, for every integer y,

m(k − y)(k − y − 1) ≤ (y + 1)yb− 2ykr + k(k − 1)λ, (4)

with equality holding if and only if each block other than a copy of B intersects
B in exactly y or y + 1 points.

Proof. Apply Theorem 3.1 with d = 0.
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Corollary 3.3 Let D be a resolvable (v, b, r, k, λ)-BIBD, and let m be the
multiplicity of a block B of D. Then, for every integer y,

m ((y + 1)yv/k − 2yk + k(k − 1)) ≤ (y + 1)yb− 2ykr + k(k − 1)λ, (5)

with equality holding if and only if each block, other than a block in a parallel
class with a copy of B, intersects B in exactly y or y + 1 points.

Proof. Apply Theorem 3.1 with Bm+1, . . . , Bm+d being the blocks in par-
allel classes containing copies of B, other than the copies of B, so that
d = m(v/k − 1).

Now, let n be a positive integer, and let

Un = ((3n + 1)(2n + 1), (6n + 5)(2n + 1), 6n + 5, 3n + 1, 3).

Then, if (v, b, r, k, λ) = Un, the conditions (1) are satisfied. However, apply-
ing (4) with y = 1 to these parameters gives

m ≤ 15n− 1

9n− 3
,

and so, if n > 1, there are no non-simple BIBDs with parameters Un.
We observe that there do exist non-simple BIBDs with parameters U1 =
(12, 33, 11, 4, 3) (see section 6.2.3), but applying (5) with y = 1 shows that
there are no resolvable non-simple BIBDs with these parameters. (This was
also deduced in [24].)

3.1 Remarks

We originally stated and proved Theorem 3.1 for the (very useful) special
case of y = 1. Peter J. Cameron then generalized our result to the given
Theorem 3.1. We thank him for allowing us to include this improvement. As
remarked by Cameron, values of y greater than 1 may also be useful. For
example, for (v, b, r, k, λ) = (40, 130, 39, 12, 11), the inequality (4) with y = 1
gives m ≤ 7, with y = 2 gives m ≤ 4, and with y = 3 gives m ≤ 2 (whereas
the Mann, van Lint and Ryser bound gives m ≤ 3). For (v, b, r, k, λ) =
(24, 69, 23, 8, 7), the inequality (5) with y = 2 shows that there is no resolvable
non-simple BIBD with these parameters.
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4 Constructions for t-designs with

repeated blocks

McSorley and Soicher [22] give a straightforward construction (the ∗-con-
struction) which produces a t-design from a t-wise balanced design. Their
method is based on the systematic substitution of each block of size ki in the
t-wise balanced design by an appropriate multiple of the trivial t-(ki, k,

(
ki−t
k−t

)
)

design. More precisely, the input to the ∗-construction consists of positive
integers t and k, and a t-(v, {k1, k2, . . . , ks}, λ) design D = (V,B), with all
block-sizes ki occurring in D, and 1 ≤ t ≤ k ≤ k1 < k2 < · · · < ks. The
output is a t-(v, k, nλ) design, D∗ = D∗(t, k), where

n = lcm

((
ki − t

k − t

)
: 1 ≤ i ≤ s

)
.

The point set of D∗ is that of D, and the block multiset of D∗ consists of, for
each i = 1, . . . , s and each block B ∈ B of size ki (including repeats), exactly
n/

(
ki−t
k−t

)
copies of every k-subset of B. It is shown in [22] that Aut(D) ⊆

Aut(D∗), and that if λ = 1 and t < k, then Aut(D) = Aut(D∗).
We make some observations:

• if t < k then the output t-(v, k, nλ) design D∗ will have repeated blocks
unless both s = 1 (i.e. the input D is a t-design) and no two blocks of
D agree in k or more points;

• n ≥
(

ks−t
k−t

)
, and in particular, if t < k < ks, then n ≥ ks − t;

• if k = k1 then the maximum multiplicity of a block of D∗ is at least n;

• if t ≥ 2 and k = k1 < v, then D∗ has at least nv blocks (by the Mann
inequality).

Fortunately, t-wise balanced designs appear to exist in profusion. Many
can be made by the removal of points (and possibly blocks) from a t-design,
or by the judicious addition of points (and possibly blocks) to a t-design. We
shall see both of these methods in action below, and in section 6.

Construction 4.1 We recall the #-construction of [22]. Let T = (X,B)
be a t-(v, k, λ) design with 1 ≤ t < k < v, and let x ∈ X. Let D be

7



the block design with point-set X \ {x} and whose block-list is obtained by
taking B and removing x from every block containing it. Then D is a t-
(v− 1, {k− 1, k}, λ) design with both block-sizes occurring, and D∗(t, k− 1)
is a t-(v− 1, k− 1, (k− t)λ) design, having repeated blocks if t < k− 1. This
t-design is denoted by T#(t, x), or simply T#(x) if t = 2.

For example, let T be a (19, 19, 9, 9, 4)-BIBD. There are just six such
designs (up to isomorphism), all available online [11]. Then, for each point
x of T , T#(x) is a (18, 153, 68, 8, 28)-BIBD, having multiplicity pattern 97.

Construction 4.2 We describe a construction we call the +-construction.
Let T = (X,B) be a t-(v, k, λ) design with 1 ≤ t ≤ k < v, such that there
is a submultiset B′ of B with (X,B′) a (t − 1)-(v, k, λ) design (for example,
if T is a 2-(v, k, 1) design then B′ must be a parallel class). Now let ∞ be
a new point, let Y = X ∪ {∞}, and let C be the block-list obtained by
taking B and inserting ∞ into every block in B′. Then D := (Y, C) is a
t-(v + 1, {k, k + 1}, λ) design with both block-sizes occurring, and D∗(t, k) is
a t-(v + 1, k, (k + 1− t)λ) design, having repeated blocks if t < k. We denote
this design by T+(t,B′), or simply T+(B′) if t = 2.

4.1 Solving the last remaining case for k = 4

van Lint [19] reports that v = 45 is the last remaining case for k = 4 where
it is unknown whether there exists a BIBD with repeated blocks whose pa-
rameters satisfy (1). Such a BIBD would have parameters (45, 495, 44, 4, 3),
and we construct such a BIBD with repeated blocks, making use of the ∗-
construction, as follows. Start with a resolvable (40, 130, 13, 4, 1)-BIBD (at
least two such exist [4]), choosing five parallel classes P1, . . . , P5 in a resolu-
tion, and adding five new points ∞1, . . . ,∞5 to the point set, with ∞i also
being added to each of the ten blocks in Pi (i = 1, . . . , 5). Then add in the
block (∞1, . . . ,∞5). The result is a 2-(45, {4, 5}, 1) design D, and D∗(2, 4)
is the required (45, 495, 44, 4, 3)-BIBD, having multiplicity pattern 803.

5 More constructions for BIBDs with

repeated blocks and k = 4

We now give some constructions that we have found useful for writing down
non-simple BIBDs with k = 4 and r ≤ 20. These BIBDs are obtained from
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certain cyclic “starter” designs, and in practice, for modest values of r, we
have found that initial blocks for starter designs of the required types can be
written down by inspection, although we are not making claims about their
existence in general.

The non-simple BIBDs constructed in this section can be obtained by
cyclic generation modulo x from given initial blocks, where x = v − 1 or
v − 4. In some instances, an initial block generates only y blocks where
y = x/s for some s > 1. Then only a partial cycle (PC) of generated blocks
is needed, which we denote by appending the suffix PCy to the initial block.

As is often the custom, we write blocks in round brackets rather than set
brackets, and write Bi for a block B repeated i times.

5.1 Non-simple 2-(v, 4, 2) designs, v ≡ 7 (mod 12)

Construction 5.1 for v > 7.
Write v = 6i + 1, and denote the points by 0, 1, . . . , v − 2,∞. Write S =
{0, 1, . . . , (v − 3)/2} \ {(v − 1)/3}. Obtain a set of distinct initial blocks Bj

(j = 1, 2, . . . , i − 1), each containing 4 distinct points from 0, 1, . . . , v − 2,
whose differences modulo v− 1 include each element of S exactly twice save
that, for some x, the differences x and (v − 1)/2 − x each occur just once.
Then the following is a 1-rotational 2-(v, 4, 2) design with the multiplicity
pattern ((v − 1)/3)2:

B1, B2, . . . , Bi−1

(0 x (v − 1)/2 x + (v − 1)/2)PC[(v−1)/2]

(0 (v − 1)/3 2(v − 1)/3 ∞ )2
PC[(v−1)/3]

 mod (v − 1)

For example, we obtain the following designs:
2-(19, 4, 2) with i = 3, x = 2:

(0 1 3 8) (0 1 4 14) (0 2 9 11)PC9 (0 6 12 ∞)2
PC6 mod 18

2-(31, 4, 2) with i = 5, x = 4:
(0 1 4 9) (0 1 7 9) (0 2 13 16) (0 6 13 18)
(0 4 15 19)PC15 (0 10 20 ∞)2

PC10

}
mod 30

5.2 Non-simple 2-(v, 4, 3) designs, v ≡ 12 or 20 (mod 24)

Construction 5.2 for v > 12.
Write v = 8i + 4 and denote the points by 0, 1, . . . , v − 5,∞1,∞2,∞3,∞4.
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For the points 0, 1, . . . , v − 5, take a cyclic 2-(v − 4, {3, 4}, 3) design of the
following form, where the blocks Bj (j = 1, 2, . . . , 2i− 3) are distinct and of
size 4, and the blocks Aj (j = 1, 2, 3, 4) are each of size 3:

B1, B2, . . . , B2i−3

A1, A2, A3, A4

(0 x 4i x + 4i)PC4i (0 2i 4i 6i)PC2i

 mod (v − 4)

Then, if x 6= 2i or 6i, a 2-(v, 4, 3) design with multiplicity pattern 13 is
obtained by inserting ∞j in Aj (j = 1, 2, 3, 4) and appending three copies of
the block (∞1 ∞2 ∞3 ∞4). If x = 2i, then

(0 x 4i x + 4i)PC4i = (0 2i 4i 6i)2
PC2i

so the introduction of the elements ∞j gives us a 2-(v, 4, 3) design with the
multiplicity pattern (2i + 1)3.

The two variants of the construction give, for example, the 2-(20, 4, 3) designs
(a)

(0 1 3 12)
(0 1 7 ∞1) (0 2 5 ∞2) (0 2 5 ∞3) (0 6 12 ∞4)
(0 1 8 9)PC8 (0 4 8 12)PC4

 mod 16

(∞1 ∞2 ∞3 ∞4)
3

and
(b)

(0 2 5 11)
(3 4 10 ∞1) (7 13 14 ∞2) (1 12 15 ∞3) (6 8 9 ∞4)
(0 4 8 12)3

PC4

 mod 16

(∞1 ∞2 ∞3 ∞4)
3

5.3 Non-simple 2-(v, 4, 3) designs, v ≡ 5 or 9 (mod 12)

Construction 5.3 for v > 9.
Write v = 4i + 1 and denote the points by 0, 1, . . . , v − 5,∞1,∞2,∞3,∞4.
For the points 0, 1, . . . , v− 5, take a cyclic 2-(v− 4, 4, 3) design with at least
v− 4 pairs of repeated blocks (i.e. with at least one intitial block repeated),
which can thus be written
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B1, B2, . . . , Bi−3

(e f g h)2

}
mod (v − 4)

where the blocks B1, B2, . . . , Bi−3 may or may not all be distinct. Then
a 2-(v, 4, 3) design with at least a triple of repeated blocks is

B1, B2, . . . , Bi−3

(e f g ∞1) (e f h ∞2) (e g h ∞3) (f g h ∞4)

}
mod (v − 4)

(∞1 ∞2 ∞3 ∞4)
3

For example, we obtain the following designs:
2-(17, 4, 3), with multiplicity pattern 13:

(1 2 4 10)
(1 2 4 ∞1) (1 2 10 ∞2) (1 4 10 ∞3) (2 4 10 ∞4)

}
mod 13

(∞1 ∞2 ∞3 ∞4)
3

2-(21, 4, 3), with multiplicity pattern 13:
(0 2 6 9) (0 1 3 15)
(0 1 6 ∞1) (0 1 10 ∞2) (0 6 10 ∞3) (1 6 10 ∞4)

}
mod 17

(∞1 ∞2 ∞3 ∞4)
3

A fruitful variant of this construction, producing further designs, is avail-
able if the set of differences (mod (v − 4)) provided by the repeated initial
block (e f g h) is identical to that provided by the pair of blocks
(a c d) and (f g h), for some a, c and d. In the final design, the
initial blocks each containing just one of the points ∞i can then be taken to
be

(a c d ∞1) (a c d ∞2) (f g h ∞3) (f g h ∞4) mod (v − 4) .

In the above examples, these four blocks can then be taken to be

(5 6 9 ∞1) (5 6 9 ∞2) (2 4 10 ∞3) (2 4 10 ∞4) mod 13

and

(4 5 11 ∞1) (4 5 11 ∞2) (1 6 10 ∞3) (1 6 10 ∞4) mod 17

respectively.
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6 A catalogue of BIBDs with repeated blocks

Recently, the present authors made an extensive catalogue of BIBDs with
repeated blocks, whose parameters satisfy (1) and have r ≤ 20, including
many previously unknown BIBDs. The cyclic and the 1-rotational such ex-
amples with v ≤ 22, and certain other new examples with repeated blocks,
were generated using the DESIGN package [32] for GAP [13]. In particular,
the DESIGN package was used to construct and classify (up to isomorphism)
BIBDs invariant under given groups constructed by GAP or stored in a GAP
library, and DESIGN was also used to determine various properties of given
BIBDs, such as resolvability. The nauty package [21] was used directly and
indirectly for determining the automorphism groups of designs and for iso-
morphism testing of designs. Some further new examples of BIBDs with
repeated blocks were found using a (modified) program of Krc̆adinac [18]
implementing a “tabu search” for BIBDs, with the results filtered for iso-
morphism using pynauty [10]. Use was also made of the pydesign package
[9] for combinatorial and statistical design theory. More new examples with
large automorphism groups were constructed using the ∗-construction of [22],
discussed in section 4, and further examples came from the constructions of
section 5.

All gaps in van Lint’s table when r ≤ 20 are now filled with examples
of BIBDs with repeated blocks. Indeed, the only parameter tuple in our
catalogue for which the existence of a BIBD with repeated blocks is unknown
is (31,93,15,5,2). In addition, we do not know of any resolvable BIBDs with
repeated blocks and parameters (35,119,17,5,2) or (20,76,19,5,4).

6.1 On the condition gcd(b, r, λ) = 1

Given (v, bi, ri, k, λi)-BIBDs Di (i = 1, 2) on the same point set, we may
construct a BIBD which has the same point-set as D1 and D2, and whose
block list is obtained by concatenating those of D1 and D2. Denote this BIBD
by D1+D2. Note that there always exists a permutation φ of the points of D2

which maps some block of D2 to some block of D1, in which case D1 +φ(D2)
has repeated blocks and parameters (v, b1 + b2, r1 + r2, k, λ1 + λ2). A special
case of this is the double of D1, that is, D1 + D1.

As observed in [19], if D is a (v, b, r, k, λ)-BIBD with gcd(b, r, λ) = 1 then
there is no positive integer λ′ < λ such that both λ′(v − 1)/(k − 1) and
λ′v(v − 1)/(k(k − 1)) are integers. In particular, D cannot be of the form
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D1 + D2 (where D1 and D2 are BIBDs on the same point set as D). Thus,
BIBDs with repeated blocks and gcd(b, r, λ) = 1 are of particular interest.
However, as noted in [19], the condition gcd(b, r, λ) = 1 does exclude some
potentially interesting cases, such as small “quasi-multiples” of non-existent
designs. (For some quasi-doubles with repeated blocks, see [35] and [17].)

6.2 The parameters with gcd(b, r, λ) = 1 and r ≤ 20

We now give all parameter tuples (v, b, r, k, λ) satisfying (1) with r ≤ 20, in
lexicographic order of (r, k, λ). For each, we summarize what we know about
BIBDs with repeated blocks and those parameters. For (v, b, r, 3, 2)-BIBDs,
the reader is additionally referred to Rosa and Hoffman’s important work
[31].

The cyclic and the 1-rotational (v, b, r, k, λ)-BIBDs with v ≤ 22, r ≤ 20,
k ≤ v/2, and gcd(b, r, λ) = 1 (together with many other BIBDs) are available
online in [11], together with many of their combinatorial, group-theoretical
and statistical properties, in a machine and human readable XML format [6],
as part of the DesignTheory.org project [2].

6.2.1 (10,30,9,3,2)

For these parameters, there is no cyclic BIBD, and the unique 1-rotational
BIBD is simple. However, all BIBDs with these parameters are known [7,
12], and are available online [11]. Precisely 566 of these 960 BIBDs (up to
isomorphism) have repeated blocks, with multiplicity patterns:

(12)346, (22)142, (32)53, (42)15, (52)4, (62)4, (72)1, (92)1

(i.e. there are 346 BIBDs having multiplicity pattern 12, 142 with multiplic-
ity pattern 22, and so on).

The 2-(10,3,2) design given by Parker [26] has multiplicity pattern 12. The
unique 2-(10,3,2) design with multiplicity pattern 92 (whose automorphism
group has order 108) can be constructed as T+(P ), where T is the affine
plane of order 3 (the unique 2-(9,3,1) design) and P is any parallel class of
T . This design is given by Hanani [14], van Lint[19] and Hedayat and Hwang
[15].

6.2.2 (12,44,11,3,2)

These BIBDs have been completely classified by Österg̊ard [25].
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Precisely 4 of the 9 cyclic or 1-rotational BIBDs with these parameters
have repeated blocks, and these all have multiplicity pattern 42. Moreover, 3
of these 4 BIBDs with repeated blocks are resolvable. One of the resolvable
designs has automorphism group of order 144; this design is given by Taylor
and Carr [33].

An unresolvable 2-(12,3,2) design with multiplicity pattern 42 and auto-
morphism group of order 432 can be constructed as T#(x), where T is the
projective plane plane of order 3 (the unique 2-(13,4,1) design) and x is any
point of this plane.

One of the 2-(12,3,2) designs with multiplicity pattern 162 has auto-
morphism group of order 576; this design is given by Preece [27].

6.2.3 (12,33,11,4,3)

This is the tuple U1 of section 3, where it is shown that there is no resolvable
non-simple BIBD with these parameters. (This is also shown by Morales
and Velarde in [24], where all resolvable BIBDs with these parameters are
classified.)

All 10 of the cyclic or 1-rotational BIBDs with these parameters are
simple.

van Lint [19, pp.305–306] gives a design with multiplicity pattern 12 and
trivial automorphism group. (The first line of the matrix B4 on page 306
of [19] should read 0 1 0 0 .) Making use of a GAP program of Alexan-
der Hulpke to construct permutation groups of low order, we found other
non-simple BIBDs for this parameter tuple, in particular a design D with
multiplicity pattern 62. The automorphism group of D is

A := 〈(2, 3)(5, 6)(8, 9)(10, 11), (1, 2)(4, 5)(7, 8)(10, 11)〉

of order 6, and the blocks of D are:

(0 1 2 3) (0 1 4 7) (0 1 10 11)
(0 2 5 8) (0 2 10 11) (0 3 6 9)
(0 3 10 11) (0 4 5 9) (0 4 6 8)
(0 5 6 7) (0 7 8 9) (1 2 4 7)
(1 2 5 8) (1 3 4 7) (1 3 6 9)
(1 5 9 10)2 (1 6 8 11)2 (2 3 5 8)
(2 3 6 9) (2 4 9 11)2 (2 6 7 10)2

(3 4 8 10)2 (3 5 7 11)2 (4 5 6 10)
(4 5 6 11) (7 8 9 10) (7 8 9 11)
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There are two further (12, 33, 11, 4, 3)-BIBDS with repeated blocks and auto-
morphism group A. Both of these have multiplicity pattern 32.

6.2.4 (19,57,12,4,2)

Precisely 3 of the 22 cyclic or 1-rotational BIBDs with these parameters have
repeated blocks, and these all have multiplicity pattern 62.

6.2.5 (22,77,14,4,2)

Precisely 3 of the 43 cyclic or 1-rotational BIBDs with these parameters
have repeated blocks, and these all have multiplicity pattern 72. One of
them, given by Bose [3], Hanani [14] and van Lint [19], has automorphism
group of order 126.

6.2.6 (15,35,14,6,5)

All 8 of the cyclic or 1-rotational BIBDs with these parameters are simple.
Preece [28] gives a BIBD with multiplicity pattern 12 and with auto-

morphism group of order 12.

6.2.7 (16,80,15,3,2)

Precisely 9 of the 122 cyclic or 1-rotational BIBDs with these parameters
have repeated blocks, with multiplicity patterns:

(152)3, (162)3, (302)2, (322)1.

The last of these is given by Preece [27] and van Lint [19].
A 2-(16,3,2) design with multiplicity pattern 302 can be constructed as

T+(P ), where T is a 2-(15,3,1) design (an STS(15)) having at least one
parallel class P . In particular, if T is the 2-(15,3,1) design consisting of the
points and lines of the projective space PG(3, 2), and P is any parallel class
(i.e. spread of the projective space), then T+(P ) has an automorphism group
of order 360, and is isomorphic to a BIBD in a family constructed many years
ago by David H. Rees [29].
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6.2.8 (11,55,15,3,3)

Precisely 8 of the 21 cyclic or 1-rotational BIBDs with these parameters have
repeated blocks, with multiplicity patterns:

(102)2, (112)2, (53)2, (10253)2.

In [22], a 2-(11,3,3) design with multiplicity pattern 153 and automor-
phism group isomorphic to Sym(5) is constructed by applying the ∗-con-
struction to the unique 2-(11, {3, 5}, 1) design.

6.2.9 (31,93,15,5,2)

We do not know whether there exists a BIBD with these parameters and
repeated blocks. However, we can show that there is no such cyclic or 1-
rotational BIBD.

6.2.10 (16,48,15,5,4)

All of the 294 cyclic or 1-rotational BIBDs with these parameters are simple.
Using our version of the tabu search program of Krc̆adinac [18] we found

some BIBDs with these parameters, multiplicity pattern 12 and trivial auto-
morphism group. We give the blocks of one of these:

(0 1 2 10 13) (0 1 4 9 11)2

(0 1 6 10 12) (0 2 3 14 15) (0 2 5 11 14)
(0 2 7 8 13) (0 3 4 7 14) (0 3 5 7 12)
(0 3 8 10 12) (0 4 5 10 15) (0 5 6 8 14)
(0 6 7 11 12) (0 6 9 13 15) (0 8 9 13 15)
(1 2 4 7 8) (1 2 5 12 14) (1 2 8 9 12)
(1 3 5 6 15) (1 3 6 8 10) (1 3 7 11 15)
(1 3 10 13 14) (1 4 7 14 15) (1 5 6 8 11)
(1 5 7 9 13) (1 12 13 14 15) (2 3 4 6 13)
(2 3 6 9 15) (2 3 7 8 9) (2 4 5 10 13)
(2 4 6 10 11) (2 5 11 12 15) (2 6 9 12 14)
(2 7 10 11 15) (3 4 5 12 13) (3 4 8 11 12)
(3 5 9 11 13) (3 9 10 11 14) (4 5 8 9 14)
(4 6 7 12 13) (4 6 8 14 15) (4 9 10 12 15)
(5 6 7 9 10) (5 7 8 10 15) (6 7 11 13 14)
(7 9 10 12 14) (8 10 11 13 14) (8 11 12 13 15)
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6.2.11 (13,39,15,5,5)

Just one of the 76 cyclic or 1-rotational BIBDs with these parameters has
repeated blocks, with multiplicity pattern 122. This BIBD, which has an
automorphism group of order 240, is constructed as part of an infinite family
in [1], and is given by van Lint [19].

6.2.12 (26,65,15,6,3)

In a BIBD with these parameters and repeated blocks, each repeated block
has multiplicity 2, and since equality is achieved in (4) when b = 65, r = 15,
k = 6, λ = 3, m = 2 and y = 1, each block in a repeated pair must meet
each block not in this pair in 1 or 2 points (48 blocks in one point and 15
in two points). Using this information, it was straightforward to discover
the following BIBD which is invariant under a C5 × C5 and has multiplicity
pattern 52:

(00 10 20 30 40 ∞)2 mod (–,5)
(00 01 02 03 04 ∞) mod (5,–)

(00 10 22 23 41 44) (00 20 32 33 41 44) mod (5,5)

The automorphism group of this BIBD has order 100.
For these parameters, we can show that there is no cyclic or 1-rotational

BIBD with repeated blocks.

6.2.13 (17,68,16,4,3)

Precisely 4 of the 542 cyclic or 1-rotational BIBDs with these parameters
have repeated blocks, with multiplicity patterns:

(162)2, (172)2.

A 2-(17,4,3) design with multiplicity pattern 163 and automorphism group
of order 1152 can be constructed as T+(P ), where T is the affine plane of
order 4 (the unique 2-(16,4,1) design) and P is any parallel class of T .

6.2.14 (18,102,17,3,2)

Precisely 12 of the 186 cyclic or 1-rotational BIBDs with these parameters
have repeated blocks, with multiplicity patterns:

(172)10, (342)2.
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Three of these BIBDs with repeated blocks are resolvable, and each of these
has multiplicity pattern 172.

A 2-(18,3,2) design with multiplicity pattern 212 can be constructed as
follows. Start with a with a resolvable 2-(15,3,1) design and a resolution (i.e.
a KTS(15)), choosing three parallel classes P1, P2, P3 in this resolution, and
adding three new points ∞1,∞2,∞3 to the point set, with ∞i also being
added to each of the five blocks in Pi (i = 1, 2, 3). Then add in the block
(∞1 ∞2 ∞3). The result is a 2-(18, {3, 4}, 1) design D, and D∗(2, 3) is the
required 2-(18, 3, 2) design.

6.2.15 (35,119,17,5,2)

Bose [3] gives a BIBD with multiplicity pattern 72 and automorphism group
of order 210.

We do not know of any resolvable non-simple BIBD for this parameter
tuple.

6.2.16 (18,51,17,6,5)

All of the 582 cyclic or 1-rotational BIBDs with these parameters are simple.
John [16] gives a resolvable BIBD with multiplicity pattern 182 and auto-

morphism group of order 2160. (In line −3 of page 641 of [16], the second
value 10 is a misprint for 16.) He gives an explicit resolution whose stabiliser
in the automorphism group of the design has order 360.

Making use of the GAP library of transitive permutation groups, we found
an unresolvable non-simple BIBD D with these parameters, having multiplic-
ity pattern 92 and automorphism group

A :=

〈
(0, 14)(1, 4)(2, 6)(3, 5)(7, 12)(8, 11)(9, 10)(13, 16)(15, 17),
(0, 4, 12)(5, 10, 16)(6, 11, 17)(7, 8, 9)(13, 15, 14)

〉
of order 54. The blocks of D are are obtained by concatenating the A-orbits
of (0 1 2 4 7 16) (giving 27 blocks), (0 2 6 8 11 14)2 (giving 9 pairs of repeated
blocks), and (0 4 5 6 16 17) (giving 6 blocks).

6.2.17 (35,85,17,7,3)

This is the tuple U2 of section 3, where it is shown that there is no BIBD
with these parameters and repeated blocks.
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6.2.18 (19,57,18,6,5)

Precisely 3 of the 1535 cyclic or 1-rotational BIBDs with these parameters
have repeated blocks, all with multiplicity pattern 192 and automorphism
group of order 57.

6.2.19 (20,95,19,4,3)

Precisely 129 of the 10040 cyclic or 1-rotational BIBDs with these parameters
have repeated blocks, with multiplicity patterns:

(192)76, (202)10, (53)36, (53202)6, (253)1.

Three of these designs are given by, respectively, Bose [3], Preece [28] and
van Lint [19]. Moreover, 5 of these BIBDs with repeated blocks are resolvable,
and these have multiplicity patterns:

(192)1, (53)1, (53202)2, (253)1.

The resolvable BIBD with multiplicity pattern 192 has an automorphism
group of order 19, and can be written as:

(1 2 4 8)2 (0 2 6 11) (0 3 10 11) (0 5 10 ∞) mod 19

Its unique resolution can be obtained by cyclic generation modulo 19 of the
parallel class:

[ (1 2 4 8) (12 13 15 0) (3 5 9 14) (7 10 17 18) (6 11 16 ∞) ]

The resolvable BIBD with multiplicity pattern 253 has an automorphism
group of order 800, and can be written as:

(0 1 3 14)3 (0 5 10 15)3
PC5 (0 4 8 12) mod 20

An unresolvable 2-(20,4,3) design with multiplicity pattern 53 and auto-
morphism group of order 5760 can be constructed as T#(x), where T is the
projective plane plane of order 4 (the unique 2-(21,5,1) design) and x is any
point of this plane.

6.2.20 (20,76,19,5,4)

Precisely 28 of the 10067 cyclic or 1-rotational BIBDs with these parameters
have repeated blocks, all with multiplicity pattern 192. None of these BIBDs
with repeated blocks is resolvable, nor do we know any other resolvable non-
simple BIBD for this parameter tuple.
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6.2.21 (31,155,20,4,2)

The BIBDs with these parameters invariant under a group of order 93 are
available online [11]. Just 2 of these 43 (cyclic) BIBDs have repeated blocks;
both have multiplicity pattern 312.

6.2.22 (21,105,20,4,3)

Precisely 259 of the 26320 cyclic or 1-rotational BIBDs with these parameters
have repeated blocks, with multiplicity patterns:

(202)66, (212)192, (203)1.

The 1-rotational BIBD with multiplicity pattern 203 (which has an au-
tomorphism group of order 80) and some of its “near resolutions” are con-
structed in an extended example in the introduction to the DESIGN package
documentation [32]. Use is made of the ∗-construction of [22].

6.2.23 (11,55,20,4,6)

Precisely 90 of the 348 cyclic or 1-rotational BIBDs with these parameters
have repeated blocks, with multiplicity patterns:

(52)6, (102)53, (112)31.

Two of the designs with multiplicity pattern 112 are given by, respectively,
Preece [28] and van Lint [19].

In [22], it is reported that there are four 2-(11, {4, 5}, 2) designs where
both block sizes occur, and these, using the ∗-construction, lead to four
2-(11,4,6) designs, each with multiplicity pattern 103, and respective auto-
morphism group sizes 6, 8, 12, 120.

A 2-(11, {4, 5}, 2) design with both block sizes occurring may be obtained
by starting with a (symmetric) 2-(16, 6, 2) design S, taking a 5-set Y of
points on a block B, deleting B, and then removing the points in Y from the
point-set and from each remaining block of S.

6.2.24 (17,68,20,5,5)

Precisely 49 of the 7260 cyclic or 1-rotational BIBDs with these parameters
have repeated blocks, with multiplicity patterns:

(82)18, (162)3, (172)26, (242)2.
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[6] P. J. Cameron, P. Dobcsányi, J. P. Morgan and L. H. Soicher, The
External Representation of Block Designs,
http://designtheory.org/library/extrep/

[7] C. J. Colbourn, M. J. Colbourn, J. J. Harms and A. Rosa, A complete
census of (10, 3, 2) block designs and of Mendelsohn triple systems of
order ten, III, (10, 3, 2) block designs without repeated blocks, Cong.
Numer. 37 (1983) 211–234.

21



[8] C. J. Colbourn and J. Dinitz (editors), The CRC Handbook of Combi-
natorial Designs, CRC Press, Boca Raton, 1996.
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