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Abstract

Two simple operations on graphs (deleting isolated vertices, and iden-
tifying vertices with the same neighbour sets) do not change the rank and
signature of the adjacency matrix. Moreover, for any given rank, there are
only finitely many reduced graphs (those in which distinct vertices have dis-
tinct neighbour sets) of any given rank. It follows that any graph parameter
which is unchanged by the two reductions (such as clique number or chro-
matic number) is bounded by a function of the rank. We give a list of some
such parameters and best possible bounds in some cases.

The rank of a graph is bounded by a function of the numbert of negative
eigenvalues. Hence the above parameters are also bounded by functions of
t. The problem of finding the best possible bound is open.

We also report on the determination of all reduced graphs with rank at
most 7, and give information of the classification by rank and signature up
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to rank 7. This also gives (at least implicitly) an exact enumeration of all
graphs with rank at most 7. We have also determined the largest reduced
graphs of rank 8, and we make a conjecture about the general case.

Finally, we discuss some special constructions (line graphs and graph
products) from this point of view.

1 Introduction

A number of authors have considered the rank of the adjacency matrix of a graph,
and shown that a number of graph-theoretic parameters are bounded by functions
of the rank.

This paper was motivated by the question: How many graphs of ordern have
adjacency matrix of rankr, givenn and r? This question can be answered (for
labelled graphs) if we know the reduced graphs of rankr. (A graph is said to be
reducedif no two vertices have the same set of neighbours.) There are only finitely
many reduced graphs of any given rank, and there is an algorithm to find them all.
If the largest reduced graph with rankr hasm = m(r) vertices, then the number
of graphs of rankr onn vertices is asymptoticallycmn for some constantc. Thus,
it is important to computem in terms ofr. Kotlov and Lov́asz [8] gave upper
and lower bounds of order 2r/2. We conjecture that the lower bound is correct,
and further conjecture the complete list of all reduced graphs of rankr on m(r)
vertices. (The truth of this conjecture would give the precise asymptotic for the
number of labelled graphs of rankr.) Our conjectures are verified forr ≤ 8 by
computation. We also give a new proof (with explicit bounds) of a theorem of
Torgăsev [14], according to which the rank of a graph is bounded by a function of
the number of negative eigenvalues.

2 Reduced graphs

Adding isolated vertices to a graph does not change the rank of its adjacency
matrix. So we may assume that our graphs have no isolated vertices.

Given any graphG, we define an equivalence relation on the vertices by set-
ting v≡ w if v andw have the same sets of neighbours. Each equivalence class
is a coclique; shrinking each class to a single vertex gives a reduced graphrG.
Conversely, any graph can be constructed from a unique reduced graph by replac-
ing the vertices by cocliques of appropriate sizes, and edges by complete bipartite
graphs between the corresponding cocliques. We call this processblowing-up.

2



Various graph-theoretic properties are preserved by reducing and blowing-
up. Among these is connectedness; indeed, the number of connected compo-
nents which are not isolated vertices is preserved. Other parameters preserved by
blowing-up include clique number and chromatic number. More important for us
is the following observation. Let rank(G) denote the rank of the adjacency matrix
of G, and sign(G) the signature (the pair(s, t) wheres andt are the numbers of
positive and negative eigenvalues respectively).

Proposition 1 rank(rG) = rank(G) andsign(rG) = sign(G).

Proof The adjacency matrix ofG is obtained from that ofrG by replacing each
0 by a block of zeros and each 1 by a block of 1s. The result is clear.�

Thus, to find all graphsG with rank(G) = r, we should find all reduced graphs
with rankr and then blow them up in all possible ways.

Proposition 2 Let H be a reduced graph on m vertices. Then the number of
labelled graphs G on n vertices withrG∼= H is

m!S(n,m)
|Aut(H)|

,

where S(m,n) is the Stirling number of the second kind andAut(H) is the auto-
morphism group of H.

Proof There areS(n,m) partitions of thenvertices intomparts, andm!/|Aut(H)|
ways of drawingH on the set of parts. �

Note that there is an inclusion-exclusion formula giving

S(n,m) =
1
m!

m

∑
i=1

(−1)m−i
(

m
i

)
in,

so the number in the proposition is asymptoticallymn/|Aut(H)| for fixed m and
largen.
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3 A finiteness theorem

The main result of this section is due to Kotlov and Lovász [8]: we give the proof
since we will make use of the analysis later.

Let G be a graph whose adjacency matrixA has rankr, and which has no iso-
lated vertices. By Theorem 8.9.1 in Godsil and Royle [6],G contains an induced
subgraphH whose adjacency matrixB also has rankr. Note thatH must be re-
duced, since otherwiserH would be smaller thanH and could not have rankr.
Moreover, we have

A =
(

B BX
X>B X>BX

)
(1)

for some (unique) matrixX.

Theorem 3 There are only finitely many reduced graphs whose adjacency matrix
has rank r. Such a graph has at most2r vertices.

Proof Observe that two columns of the matrix in Equation (1) are equal if and
only if their restrictions to the firstr rows are equal. So we require that each
column ofBX is a zero-one vector, and that none is equal to a row ofB (in other
words, no column ofX is equal to a standard basis vector). There are at most 2r−r
choices for these columns (sinceB is invertible, each column ofBX determines
the corresponding column ofX uniquely). So the graph has at most 2r vertices.
Now the number of such graphs is finite. �

Corollary 4 Let G1, . . . ,Gk be the reduced graphs of rank r, and let Gi have mi
vertices. Then the number of labelled graphs of rank r on n vertices is

k

∑
i=1

mi !S(n,mi)
|Aut(Gi)|

.

This is asymptotically Cmn for some constant C, where m= max{m1, . . . ,mk}.

Proof This is immediate from Proposition 2. The constantC is the sum of the
reciprocals of the automorphism groups of the reduced graphs of rankr on m
vertices. �

We can make one simplification. LetG be a reduced graph onmvertices with
no isolated vertex, andG′ the graph obtained by adding an isolated vertex toG.
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Then Aut(G) = Aut(G′). Now the contributions ofG andG′ to the sum are

m!
|Aut(G)|

S(n,m)+
(m+1)!
|Aut(G)|

S(n,m+1)

=
m!

|Aut(G)|
(S(n,m)+(m+1)S(n,m+1))

=
m!

|Aut(G)|
S(n+1,m+1).

So we only need to consider reduced graphs without isolated vertices, if we re-
placeS(n,mi) by S(n+1,mi +1) in the sum.

Problem Calculate the functionm, wherem(r) is equal to the order of the largest
reduced graph with rankr. The value of this function is the exponential constant
in the asymptotic formula for the number of labelled graphs with rankr.

Algorithm We now present an algorithm to find the reduced graphs of rankr,
with no isolated vertices, for givenr.

Step 1 Find all the graphs onr vertices which have rankr.

Step 2 Let H be such a graph, with adjacency matrixB. For each zero-one
column vectorv which is not a column ofB, find the unique vectorx such that
Bx= v. Test whetherx>Bx= 0, and keep the vectorx if so. Let(x1, . . . ,xk) be the
list of such vectors. (These correspond to all the ways of adding one vertex toH
without increasing the rank.)

Step 3 Form an auxiliary graph on the vertex set{1, . . . ,k} as follows. For
each two distinct indicesi and j, put an edge fromi to j if and only if x>i Bxj ∈
{0,1}. Find all cliques in this graph.

For each cliqueC = {i1, . . . , it}, let X be the matrix with columnsxi1
, . . . ,xit

,
and let

A =
(

B BX
X>B X>BX

)
as in Equation (1). ThenA is the adjacency matrix of a graph with rankr.
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Step 4 If we want the list of unlabelled graphs, make the collection of all
such matrices, for all choices ofH. Test for isomorphism and return a list of
isomorphism types.

The algorithm works because, by Equation (1), the adjacency matrix must
have the required form; and the entries ofX>BX must be zero or one, with zero
on the diagonal.

Note that we can improve the algorithm as follows. A reduced graph can
have at most one isolated vertex. So, if we determine all reduced graphs with no
isolated vertices, then we obtain the rest by adding one isolated vertex to each of
them. This can be done by modifying Step 2 of the algorithm to exclude the case
v = 0 as well as the case thatv is a column ofB. In the calculations below we
always use this modified version.

4 Two constructions

Kotlov and Lov́asz [8] proved thatm(r) ≤ C2r/2 for some explicit constantC
(which they did not calculate). They also gave, with a sketch of a proof, a con-
struction showing thatm(r +2)≥ 2m(r)+1:

Construction A Let G be a reduced graph withn = m(r) vertices and rankr.
(Note thatG has an isolated vertexv.) Blow upG by doubling each vertexw into
two verticesw0 andw1; then add one vertexa joined tow0 for all w. Clearly the
resulting graphG∗ is reduced and has 2n+1 vertices. Now it can also be described
as follows: blow upG−v by doubling each vertex; add a vertexa joined to one of
each pair, a vertexv0 joined only toa, and an isolated vertexv1. After the doubling
the rank is stillr; then by Theorem 2 of [2],G∗ has rankr + 2. Moreover,G∗ has
a unique vertex of degree 1; its neighbour is fixed by all automorphisms, so that
Aut(G∗) = Aut(G).

We give another construction which also builds a reduced graph of rankr + 2
on 2n+ 1 vertices from one of rankr on n vertices. It is more specialized, but
gives more information.

Construction B Let G be a reduced regular graph on 2mvertices with degreem
and rankr with adjacency matrixAm, having non-zero eigenvaluesm,λ2, . . . ,λr .
Let G+ be obtained fromG as follows: blow up each vertexv of G into two
verticesv1 andv2; then add two new verticesa1 anda2, whereai is joined tovi for
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all verticesv of G, anda1 anda2 are joined to each other. ThenG+ is a reduced
regular graph of degree 2m+ 1 on 2(2m+ 1) vertices, with rankr + 2 and non-
zero eigenvalues 2m+ 1,2λ2, . . . ,2λr ,θ1,θ2, whereθ1 andθ2 are the roots of the
equationx2 +x−2m= 0.

The facts thatG+ is reduced and regular are straightforward. Also, ifm 6= 1,
then|Aut(G+)|= 2|Aut(G)|. For clearly there is an automorphism interchanging
the verticesx1 andx2 for all x. Also the verticesa1 anda2 have complementary
neighbour sets and have the property that, if they are deleted from the graph, then
each equivalence class of vertices has cardinality 2; ifm> 1 then no other pair of
vertices has these properties. (Form= 1, we haveG= K2 andG+ is the triangular
prismK2�K3, so that|Aut(G)|= 2 and|Aut(G+)|= 12.

We compute the rank ofA(G∗) andA(G+), and find in each case a basis for
the null space.

It is straightforward to see that there are six{−1,0,1}-eigenvectors for the
triangular prismK2�K3, as follows

Eigenvalue Transposed eigenvector
3 [1,1,1,1,1,1]
−2 [1,0,−1,−1,0,1]
−2 [1,−1,0,−1,1,0]
1 [−1,−1,−1,1,1,1]
0 [−1,0,1,−1,0,1]
0 [−1,1,0,−1,1,0]

The adjacency matrices ofG+ andG∗ are

A+
m =


Am Am 0 j
Am Am j 0
0 j> 0 1
j> 0 1 0

 , A∗m =


Am Am j 0
Am Am 0 0
j> 0 0 1
0 0 1 0

 ,
where j is the all-1 column vector. IfX is an eigenvector ofAm orthogonal to
j, with eigenvalueλ , then[X>,X>,0,0]> and[X>,−X>,0,0]> are eigenvectors
of A+

m with eigenvalues 2λ and 0 respectively. Any other eigenvalue ofA+
m is an

eigenvalue of the matrix

Bm =


m m 0 1
m m 1 0
0 2m 0 1

2m 0 1 0

 ,
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since if [a,b,c,d]> is an eigenvector ofBm with eigenvalueλ , then the vector
[a j>,b j>,c,d]>, wherej is of size 2m, is an eigenvector ofA+

m with eigenvalueλ .
It is readily checked that the characteristic polynomial ofBm is (x−2m−1)x(x2+
x−2m). Note that ifθ is a root of polynomialfm(x) = x2 + x−2m, then−1−θ

is also a root. It is easy to see that[1,−1,−θ ,θ ]> and [1,−1,1+ θ ,−1− θ ]>

are two eigenvectors ofBm with eigenvaluesθ and 1− θ , respectively. Thus
Z1 = [ j>,− j>,−θ ,θ ]> andZ2 = [ j>,− j>,1+ θ ,−1− θ ]> are eigenvectors of
A+

m with eigenvaluesθ and−1−θ , respectively.
We show that the nullity ofA+

m is 4m− r. Suppose thatW is the null space of
Am. Then for anyX andY in W, the vector[X,Y,0,0] is a vector in the null space
A+

m. But the number of independent vectors of this kind is 2dimW = 4m− 2r.
Since rankAm = r, Am has exactlyr non-zero eigenvalues such asλ1, . . . ,λr , with
eigenvectorsX1, . . . ,Xr . For anyi, 1≤ i ≤ r, [X>i ,−X>i ,0,0]> is contained in the
null space ofA+

m and these vectors are independent of the previous vectors. Thus
the null space ofA+

m has dimension 4m− r (since by the above argumentAm has
at leastr + 2 = (r−1) + 3 non-zero eigenvalues). But we know that two vectors
T1 = [Z>1 ,−Z>1 ,0,0]> andT2 = [Z>2 ,−Z>2 ,0,0]> are contained in the null space of
A+

m+1. Now using these vectors we construct two independent{−1,0,1}-vectors
in the null space ofA+

m+1. Indeed two vectorsT1−T2 andT1+(θ/(1−θ))T2 are in
the null space ofA+

m+1. Now we want to give a{−1,0,1}-basis for the null space
A+

m. We proceed by induction onm. Clearly 4m− r independent vectors that we
obtained using the null space ofAm are{−1,0,1}-vectors in the null spaceA+

m.
Also if X is a {−1,0,1}-vector corresponding to a non-zero eigenvalue ofAm,
then [X>,−X>,0,0]> is a {−1,0,1}-vector in the null space ofA+

m. Now if Z1
andZ2 are two non-{−1,0,1}-vector corresponding to two non-zero eigenvalues
of Am which obtained using the roots offi(x) for somei < m, then as we saw
before we can obtain two{−1,0,1}-vectors in the null spaceA+

m.
Also it is seen that any eigenvalue ofA is an eigenvalue forA∗m and other

eigenvalue ofA∗m is an eigenvalue of the matrix

Cm =


m m 1 0
m m 0 0
2m 0 0 1
0 0 1 0

 .
The characteristic polynomial ofCm is x(x3−2mx2− (2m+1)x+2m2 +2m).

Note that, ifG+ v hasn vertices and rankr, thenG+ + v has 2n+ 1 vertices
and rankr +2, just as in ConstructionA.
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Now we propose two questions about the null space and the image space of
graphs.

Question 1 For which graphs there is a{−1,0,1}-basis for the null space?

Question 2 For which graphs there is at least a non-zero{0,1}-vector in the row
space which does not occur as a row?

If the answer to Question 2 is affirmative for all graphs, then by considering
the related vectorx in Theorem 3 of [2], we see thatm(r) is an increasing function.
We cannot prove this, but we conjecture the precise value ofm(r) (see below).

Proposition 5

m(r)≥
{

2(r+2)/2−1 if r is even,
5·2(r−3)/2−1 if r is odd, r> 1.

For the values of n on the right, there exist at leastbr/2c no-isomorphic reduced
graphs of rank r on n vertices.

Proof Apply either of the constructions, starting withG = K2 if r = 2 andG =
K2�K4 if r = 5. The lower bound for the number of graphs is proved inductively;
we can apply Construction A to all the graphs of rankr and Construction B to the
regular graph.

The caser = 3 is trivial; the extremal graph isK3 with an isolated vertex.
�

Conjecture The bound onm(r) in Proposition 5 is attained for allr ≥ 2, and the
extremal graphs are just the ones given by Constructions A and B forr 6= 2,3,5.

If this conjecture is true, then thebr/2c reduced graphs with rankr on m(r)
vertices have automorphism groups of orders 2, 12, 24, . . . , 3·2r/2 if r is even,
and orders 6, 48, 96, . . . , 3· 2(r+3)/2 if r is odd. Summing the reciprocals of
these numbers would give the constantC in the asymptotic formulaCm(r)n for
the number of labelled graphs with rankr onn vertices.
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5 Parameters bounded by a function of the rank

Proposition 6 Each of the following graph parameters is bounded by a function
of the rank of a graph G:

• number of connected components (other than isolated vertices);

• clique number;

• chromatic number;

• smallest number of factors in an edge partition into complete k-partite
graphs, for fixed k;

• domination numberγ(G) and total domination numberγt(G) (if there are
no isolated vertices);

• diameter (if the graph is connected);

• the order of the largest composition factor of the groupAut(G) which is not
an alternating group.

Proof Each of the first four parameters is unaffected by blowing up or adding
isolated vertices. For domination number, see Proposition 9 below. It is well
known that a graph of diameterd has more thand distinct eigenvalues, since
I ,A, . . . ,Ad are linearly independent; so its rank is at leastd. (Alternatively, blow-
ing up doesn’t change the diameter except from 1 to 2.) Finally, the automorphism
group ofG has a normal subgroupN (fixing all the equivalence classes of the rela-
tion∼) which is a direct product of symmetric groups on the equivalence classes;
the composition factors ofN are thus alternating groups and cyclic groups of or-
der 2. The factor groupG/N is a subgroup of Aut(rG), and so its composition
factors have bounded order. �

For each of the parameters in the theorem, we can now pose the problem of
finding the best bound for that parameter in terms of the rank. We give a few
examples. LetG be a graph of rankr.

• The number of connected components (other than isolated vertices) is at
mostbr/2c; equality holds if and only if at most one such component is
complete tripartite and all the rest are complete bipartite.
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• The clique number ofG is at mostr, with equality if and only ifG is com-
pleter-partite (possibly with isolated vertices). The proof is given below.

• It was conjectured by van Nuffelen [11] that the chromatic number of a
graph does not exceed its rank. This was disproved by Alon and Sey-
mour [1]; and Raz and Spieker [12] showed that in fact the chromatic num-
ber is not bounded by any polynomial function ofr.

• If G has no isolated vertices, thenγt(G)≤ r; equality is realised by a disjoint
union of complete bipartite graphs, and only by these (see below).

• The path onm vertices, form odd, has diameter and rankm−1, attaining
the bound in the Proposition.

• It is not easy to find the best bound in terms of the rank for the order
of the largest non-alternating composition factor. Forn > 2, the group
PSL(n,q) is a composition factor of the automorphism group of a graph on
2(qn− 1)/(q−1) vertices having full rank (the incidence graph of points
and hyperplanes in the projective space). The order of this group is roughly
qn2

, which is greater thanrn; so there is no bound which is polynomial inr.

The relation between clique number and rank is as follows. Note that a com-
plete graph has full rank.

Proposition 7 The only reduced graph of rank r with no isolated vertices which
contains Kr is Kr itself.

Proof We haveB = J− I , from which we find thatB−1 = J/(r−1)− I . Take a
zero-one vectorv, in which the sum of the entries iss. Thenx = B−1v = s j/(r−
1)−v, where j is the all-1 vector. Sox>Bx= x>v = s2/(r−1)−s. So we require
s = 0 or s = r −1. But if s = 0 then there is an isolated vertex; and ifs = r −1
thenv is one of the columns ofB, and the graph is not reduced. �

Corollary 8 A graph G of rank r has clique number at most r; equality holds if
and only if G is complete r-partite (possibly with some isolated vertices).�

We now discuss domination. Thedomination numberγ(G) of G is the smallest
number of vertices with the property that the union of their closed neighbourhoods
contains all vertices; thetotal domination numberγt(G) is similarly defined us-
ing open neighbourhoods. (The open neighbourhoodNG(v) is the set of vertices
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joined tov; the closed neighbourhood isNG[v] = {v}∪NG(v).) If G has no isolated
vertices, then

γ(G)≤ γt(G) = γt(
rG),

since a minimal total dominating set contains at most one point from each equiv-
alence class. Moreover, the bound on the left is attained if the equivalence classes
are sufficiently large, since a dominating set must either include all vertices in a
class or one vertex dominating that class.

Proposition 9 Let G be a graph with no isolated vertices, having rank r. Then

γ(G)≤ γt(G)≤ r.

Moreover,γ(G) = r if and only each component of G is a complete bipartite graph
Kk,l with k, l ≥ 2; and γt(G) = r if and only if each component of G is complete
bipartite.

Proof After re-ordering if necessary, the adjacency matrix ofG has the form

A =
(

B BX
X>B X>BX

)
whereB is r× r and rank(B) = r. Since there are no isolated vertices,BX has no
zero columns, so every vertex outside the set consisting of the firstr vertices has
a neighbour among the firstr vertices, which thus form a total dominating set.

Suppose that this dominating set is minimal. Then, for anyi ≤ r, there exists
j > r such thatv j is joined tovi and to no other vertex amongv1, . . . ,vr . Choose
one such vertexv j for eachvi with i ≤ r, and re-order the vertices so thatj = i + r
for i = 1, . . . , r. Let Y be the submatrix consisting of the firstr rows ofX. Then
BY = I , soY = B−1 = Y>, andY>BY = B−1. It is easy to check that, if a graph
H has the property thatA(H)−1 is the adjacency matrix of a graph, thenH is a
matching andA(H)−1 = A(H). Applying this to the subgraphH on {v1, . . . ,vr},
we see that this subgraph is a matching, and thatvi+r is joined tov j+r if and only
if vi is joined tov j . So the induced subgraph on{v1, . . . ,v2r} is a disjoint union of
4-cycles.

Suppose thatw is joined to more than one vertexvi with i ≤ r, say tov1, . . . ,vk.
It is easy to see thatv1, . . . ,vk are pairwise nonadjacent. Now replace the neigh-
bour ofvk in H by w to obtain another graph of rankr on r vertices which is not
a matching, and hence not a minimal dominating set. Thus no such vertex ex-
ists. It follows thatG is obtained by blowing upH, as claimed. The converse is
straightforward.
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Now suppose thatG satisfiesγt(G) = r; without loss of generality,G is re-
duced. Our remarks before the proposition show that it is possible to blow upG
to a graphH with γ(H) = r. By the previous part of the proof,H (and henceG)
is obtained by blowing up a matching. Again the converse is clear.�

6 Positive and negative eigenvalues

Suppose thatG is a graph of rankr, and write its adjacency matrix in the form(
B BX

X>B X>BX

)
,

as in the proof of the finiteness theorem. The columnsx1, . . . ,xn of (I X) are
vectors inRr , which are singular with respect to the non-degenerate quadratic
form Q(x) = x>Bx, sinceX>BX has zeros on the diagonal.

The set of columns corresponding to any coclique inG has all inner products
0 with respect to the formQ, and so is contained in a totally singular subspaceS.

The quadratic formQ is indefinite with signature(s, r − s), wheres is the
number of positive eigenvalues ofB. (Note that sometimes the signature is defined
to be the single integers− (r − s).) The largest totally singular subspace of this
form has dimension min{s, r−s}≤ br/2c. The columns of(B BX) corresponding
to a coclique are zero-one vectors lying in the image ofSunderB. Now a set of
zero-one vectors in a space of dimensions has cardinality at most 2s, as can be
seen by an argument like that of the finiteness theorem. So we have:

Proposition 10 If G is a reduced graph of rank r and has s positive eigenvalues,
then

α(G)≤ 2min{s,r−s} ≤ 2br/2c. �

The bound in terms ofr is attained for allr. This can be seen by observing
that it is true forr = 2 andr = 3, and that ifG+ is the graph obtained fromG by
Construction A, thenα(G+) = 2α(G) (and of course rank(G+) = rank(G) + 2).
A simple explicit construction goes as follows. LetL be the bipartite incidence
graph of elements and subsets of anm-set. Then the adjacency matrix ofL has the
form (

O N
N> O

)
,
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whereN is m×2m and has rankm. ClearlyL has rank 2mand contains a coclique
of size 2m. A similar argument shows that if we add an arbitrary number of edges
to the the smaller part ofL, for the resultant graph also the equality holds.

Proposition 11 Let G be a reduced graph of rank r andα(G) = 2br/2c. Then r is
odd and G is the bipartite incidence graph of elements and subsets of anbr/2c-set,
as well as some arbitrary edges added to the of size r.

Proof Let

A =
(

O B
B> C

)
,

be the adjacency matrix ofG and O is a zero matrix of size 2br/2c. Clearly if
rank(B) = s, then we have rank(A) ≥ 2s. It implies that rank(B) ≤ br/2c. Now
if rank(B) = s< br/2c, then the number of distinct(0,1)-vectors lying in the
row space ofB is at most 2s. SinceA is reduced all rows ofB are distinct, a
contradiction. Thus we conclude that rank(B) = br/2c. Without loss of generality
assume that the firstbr/2c columns ofB are independent. IfB′ is the matrix of
order 2br/2c×br/2c obtaining by the submatrix ofB induced on the firstbr/2c
column ofB, thenB′ has no repeated rows, because any column ofB is a linear
combination of the columns ofB′ andG is a reduced graph. First assume thatr is
even. Then

rank(
(

B
C

)
) = rank(B) = r/2.

We know that any(0,1)-vector of sizer/2 appears as a row ofB′ once. We
claim thatB has exactlyr/2 columns. Indeed ifB has some columns , sayv, not in
B′, since the identity matrix of sizer/2 is a submatrix ofB andv is a(0,1)-vector,
we conclude that this column should be a linear combination of columns ofB′

with coefficients 0 and 1. Now consider all rows ofB′ with exactly two 1s. If in
the linear combination at least two coefficients are 1, then one component ofv is
at least 2, a contradiction. Thusv is a column ofB′. Since the firstr/2 columns
of the matrix (

B
C

)
is a basis for its column space, we find thatA has two equal columns, a contradic-
tion. Thus our graph isL as well as some additional edges in its small part.

Now let r be odd. We want to show thatα(G) < 2br/2c. Let H be a maximal
subgraph ofG containing all vertices correspondence toB′ such that rank(H) =
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2br/2c. We haveG 6= H. Add a new vertexu∈ G\H to H and name this graph
by H ′. We show that rank(H ′) = 2br/2c or rank(H ′) = 2br/2c+ 2. If H ′′ is the
submatrix ofH formed by deleting the last row ofH ′ andu′ is the last column of
H ′′, then we have two cases:

1) u′ is not a combination of other columns ofH ′′. In this case by Theorem 3 of
[2], the result follows.

2) u′ is a linear combination of other columns ofH ′′. In this case as we saw
beforeu′ is equal to the one of the columns correspondence toB′. If we extend
this column to corresponding column inH, we show that this column is the same
asu. To see this it is enough to check that the last entries of these columns are
the same. But since the adjacency matrix corresponding to the vertices ofH ′

not containingα(G) vertices ofH ′ is a symmetric matrix we conclude that the
last entries of mentioned vectors are 0. ThusH ′ is a non-reduced graph and so
rank(H ′) = 2br/2c, a contradiction. �

The bound of Proposition 10 has the following consequence, first proved by
Torgăsev [14]:

Theorem 12 The rank of a graph is bounded by a function of the number of neg-
ative eigenvalues.

Proof It is enough to show that, ifG is a reduced graph with no isolated vertices,
then the numbern of vertices ofG is bounded by a function of the numbert of
negative eigenvalues oft.

SinceKt+2 hast + 1 negative eigenvalues, we must haveω(G)≤ t + 1. Also,
by Proposition 10, sinceG is reduced, we haveα(G) ≤ 2t − 1 (we subtract 1
because there is no isolated vertex).

Now Ramsey’s Theorem implies thatn≤ R(t + 2,2t)− 1, and we are done.
�

Remarks 1. The complete graphs show that there is no bound for the rank in
terms of the number of positive eigenvalues.

2. Let f (t) be the largest rank of a graph witht negative eigenvalues. The
proof of the Theorem 12 givesf (t) ≤ R(t + 2,2t)− 1. For t = 1, this is best
possible:R(3,2)− 1 = 2, andK2 satisfies the conditions. For largert, we can
assume that the graph is reduced and notKt+1, so that it contains noKt+1, and
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we have f (t) ≤ R(t + 1,2t)− 1. This bound is still probably much too large.
Torgăsev [14] showed thatf (2) = 5 and f (3) = 9.

3. In the other direction, sinceL(Kn) has rankn(n−1)/2 andn−1 negative
eigenvalues forn≥ 5, we havef (t)≥ t(t +1)/2 for t ≥ 4.

4. This theorem and Proposition 6 show that each of the parameters in that
Proposition is bounded by a function of the number of negative eigenvalues. In
each case, we can pose the problem of determining the best possible bound.

7 Small rank

A reduced graph of rank 0 is an isolated vertex, and there are no graphs of rank 1
(since the sum of the eigenvalues of the adjacency matrix is zero). Forr = 2 and
r = 3, it is easy to see that the only graph of rankr on r vertices is the complete
graphKr . By Proposition 7, the only reduced graphs of rankr are Kr with or
without one isolated vertex, so thatm(r) = r +1 in these cases.

We have computed all reduced graphs of rankr for r ≤ 7; for r = 8, we have
computed just those of maximum order. The results are summarized in Table 1.

r 2 3 4 5 6 7 8
Max no. vertices 3 4 7 9 15 19 31

No. of graphs 2 2 18 50 3308 46892 ??
No. of max. order 1 1 2 2 3 3 4

Table 1: Reduced graphs with given rank

These computations were performed inGAP [5] at the Scientific Computing
Center at IPM and in London. TheGAP packageGRAPE [13] was used for the
clique finding and isomorphism testing (via its interface withnauty [9]). We also
made use of Brendan McKay’s list [10] of graphs on eight vertices in order to save
time in Step 1 of the algorithm in this case.

Tables 2–5 give data on the reduced graphs with no isolated vertex, by rankr,
number of negative eigenvaluest, and number of verticesn. The negative eigen-
values were counted by Sturm’s Theorem so that exact rational arithmetic could
be used.

The list of adjacency matrices of the reduced graphs of rank up to 7 with no
isolated vertices is available from the second author on request.
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t \n 4 5 6 Total
2 3 3 2 8
3 1 0 0 1

Total 4 3 2 9

Table 2: Reduced graphs with no isolated vertex,r = 4

t \n 5 6 7 8 Total
2 1 0 0 0 1
3 7 7 7 2 23
4 1 0 0 0 1

Total 9 7 7 2 25

Table 3: Reduced graphs with no isolated vertex,r = 5

t \n 6 7 8 9 10 11 12 13 14Total
3 39 142 315 428 371 204 70 15 31587
4 17 19 19 9 2 0 0 0 0 66
5 1 0 0 0 0 0 0 0 0 1

Total 57 161 334 437 373 204 70 15 31654

Table 4: Reduced graphs with no isolated vertex,r = 6

t \n 7 8 9 10 11 12 13 14 15 16 17 18Total
3 25 50 61 30 11 2 0 0 0 0 0 0 179
4 295 1304 3368 5346 5634 4027 2037 778 238 65 13 323108
5 33 40 46 26 11 2 0 0 0 0 0 0 158
6 1 0 0 0 0 0 0 0 0 0 0 0 1

Total 354 1394 3475 5402 5656 4031 2037 778 238 65 13 323446

Table 5: Reduced graphs with no isolated vertex,r = 7
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Using this data we can write down the formulae for the numberR(n,k) of
labelled graphs of rankk onnvertices. As explained earlier, we need only consider
graphs with no isolated vertex. We have

R(n,2) = S(n+1,3),
R(n,3) = S(n+1,4),
R(n,4) = 28S(n+1,5)+180S(n+1,6)+420S(n+1,7),
R(n,5) = 268S(n+1,6)+2520S(n+1,7)+9660S(n+1,8)+7560S(n+1,9)

The expressions forR(n,6) andR(n,7) are implicit in our data but are cumber-
some to write down. Table 6 gives some values.

r \n 1 2 3 4 5 6 7 8
0 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0
2 1 6 25 90 301 966 3025
3 1 10 65 350 1701 7770
4 28 600 8120 89040 864948
5 268 8148 151508 2228688
6 15848 972944 36324456
7 880992 70339752
8 158666816

Total 1 2 8 64 1024 32768 2097152 268435456

Table 6: Labelled graphs of given rank

We see, for example, thatR(n,3) > R(n,2) for all n≥ 6. The table suggests
that perhapsR(n, r) is an increasing function ofr for 2≤ r ≤ n if n≥ 8.

8 Some graph constructions

In this section we say a few words about line graphs, cartesian products, and
categorical products.
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8.1 Line graphs

Proposition 13 If G is a connected graph with|V(G)| 6= 4, then L(G) is reduced.
Hence there are only finitely many line graphs with given rank r.

Proof Suppose that two edgese1 ande2 of G have the same neighbours inL(G).
Thene1 ande2 are disjoint but every edge that meetse1 also meetse2 andvice
versa. Soe1∪e2 is a union of connected components. �

In fact, we can obtain a much better bound for the order of a line graph of
rankr than the exponential bound in the general case. Suppose that the adjacency
matrix A of L(G) has non-zero eigenvaluesλ1, . . . ,λr (in decreasing order). We
know thatλ2, . . . ,λr ≥ −2; since the trace ofA is zero, we haveλ1 ≤ 2(r −1).
Now the number of edges ofL(G) is half the trace ofA2, which is not more than
2r(r − 2). So the number of vertices of a line graph is bounded by a quadratic
function of its rank.

In addition, we have:

Proposition 14 If G is a connected graph with n vertices, then L(G) has rank at
least n−2.

Proof G contains a spanning treeT, and L(G) containsL(T) as an induced
subgraph, so that the rank ofL(G) is at least as great as that ofL(T); and the
nullity of L(T) is at most one [7]. �

This is best possible: ifn is divisible by 4, thenL(Cn) = Cn has rankn−2.
We note as a curiosity that all the reduced graphs of rank at most 5 are line

graphs.

8.2 Cartesian product

The vertex set of the Cartesian productG1�G2 is V(G1)×V(G2); there is an
edge from(v1,v2) to (w1,w2) if and only if eitherv1 = w1 andv2 is joined tow2,
or v2 = w2 andv1 is joined tow1.

Proposition 15 If G2 has no vertices of degree0 or 1, and G1 has no isolated
vertices, then G1�G2 is reduced.
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Proof The vertex(v1,v2) has at least two neighbours(x1,x2) with x1 = v1,
whereas the vertex(w1,w2) for w1 6= v1 has at most one such neighbour. So
equivalent vertices have the same first coordinate. But(v1,v2) has a neighbour
(x1,x2) with x2 = v2, while (v1,w2) has no such neighbour ifw2 6= v2. �

Now we have

A(G1�G2) = (A(G1)⊗ I)+(I ⊗A(G2)),

so the eigenvalues ofG1�G2 are all sums of an eigenvalue ofG1 and an eigen-
value ofG2 (with appropriate multiplicities).

8.3 Categorical product

The vertex set of the categorical productG1×G2 is V(G1)×V(G2); there is an
edge from(v1,v2) to (w1,w2) if and only if v1 is joined tow1 andv2 is joined to
w2.

Proposition 16 If G1 and G2 are reduced and have no isolated vertices then G1×
G2 is reduced.

Proof The neighbour set of(v1,v2) is the Cartesian product of the neighbour
sets ofv1 andv2, and so determines these two sets as long as both are non-empty.
�

9 Number of edges

The Turán graph Tn,r is the completer-partite graph onn vertices with parts as
nearly equal as possible, that is, all parts of sizebn/rc or dn/re. Turán’s Theorem
asserts that it has the largest number of edges of any graph onn vertices containing
no (r +1)-clique (see West [15], p. 208).

Now rTn,r = Kr , soTn,r has rankr; moreover, a graph of rankr cannot contain
an(r +1)-clique. So we have:

Proposition 17 The largest number of edges in a graph on n vertices of rank r is
realised by the Tuŕan graph.

For the minimum we have the following:
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Proposition 18 (a) The smallest number of edges of a graph of rank r> 1 on n
vertices (with n≥ r) is {

r/2 if r is even,
(r +3)/2 if r is odd.

(b) The smallest number of edges of a connected graph of rank r> 1 on n vertices
(with n≥ r) is {

n−1 if n is even
n if n is odd.

Proof

(a) The extremal graph consists ofr/2 disjoint edges ifr is even, or(r −3)/2
disjoint edges and a triangle ifr is odd. We cannot do better since there
must be at leastr non-isolated vertices; and if we have only(r +1)/2 edges
in the case whenr is odd, then some component would be a path of length 2,
but this does not have full rank.

(b) If r is even, a path of lengthr−1 has rankr. (The rank of a tree is twice the
size of the largest set of pairwise disjoint edges, see Theorem 8.1 on p. 233
of [4].) Now blow up an end vertex into a set ofn− r + 1 vertices. Ifr is
odd, then no tree has rankr (since trees are bipartite and have even rank).
But if we take a triangle with a “tail” of lengthr − 3, we obtain a graph
of rank r on n vertices (this follows easily from Problem 2b on p. 11 of
Biggs [3]), and again we can blow up the end vertex of this graph to obtain
a graph withn vertices. �

10 Open problems

• Is it true thatm(r) is equal to the function given earlier, and that the only
reduced graphs of rankr on m(r) vertices are those produced by Construc-
tions A and B?

• What is the largest order of a connected line graph of rankr? Earlier, we
gave a quadratic upper bound for this. A linear lower bound 2(r−1) comes
from the graphK2�Kr−1 = L(K2,r−1).
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• Is it true that the numberR(n, r) of labelled graphs onn vertices with rankr
is an increasing function ofr for 2≤ r ≤ n, for all n≥ 8?

• We conjecture thatm(r) is strictly monotonic. We know thatm(r + 2) ≥
2m(r) + 1, and obviously this conjecture would follow from our main con-
jecture about the value ofm(r). However, a direct proof presents some
difficulties. It would suffice to show that, ifG is a reduced graph onm(r)
vertices with rankr, then it is possible to add one vertex toG joined to a
suitable set of existing vertices so that the rank increases by only one.
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[14] A. Torgǎsev, On the numbers of positive and negative eigenvalues of a graph,
Publ. Inst. Math. (Beograd)(N.S.)51(65)(1992), 25–28.

[15] D. B. West,Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle
River, NJ, 2000.

23


