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Abstract

Two simple operations on graphs (deleting isolated vertices, and iden-
tifying vertices with the same neighbour sets) do not change the rank and
signature of the adjacency matrix. Moreover, for any given rank, there are
only finitely many reduced graphs (those in which distinct vertices have dis-
tinct neighbour sets) of any given rank. It follows that any graph parameter
which is unchanged by the two reductions (such as clique number or chro-
matic number) is bounded by a function of the rank. We give a list of some
such parameters and best possible bounds in some cases.

The rank of a graph is bounded by a function of the nunloénegative
eigenvalues. Hence the above parameters are also bounded by functions of
t. The problem of finding the best possible bound is open.

We also report on the determination of all reduced graphs with rank at
most 7, and give information of the classification by rank and signature up
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to rank 7. This also gives (at least implicitly) an exact enumeration of all
graphs with rank at most 7. We have also determined the largest reduced
graphs of rank 8, and we make a conjecture about the general case.

Finally, we discuss some special constructions (line graphs and graph
products) from this point of view.

1 Introduction

A number of authors have considered the rank of the adjacency matrix of a graph,
and shown that a number of graph-theoretic parameters are bounded by functions
of the rank.

This paper was motivated by the question: How many graphs of ordave
adjacency matrix of rank, givenn andr? This question can be answered (for
labelled graphs) if we know the reduced graphs of ranfA graph is said to be
reducedf no two vertices have the same set of neighbours.) There are only finitely
many reduced graphs of any given rank, and there is an algorithm to find them all.
If the largest reduced graph with rankhasm = m(r) vertices, then the number
of graphs of rank onn vertices is asymptoticallgm!’ for some constant. Thus,
it is important to computen in terms ofr. Kotlov and Lovasz [8] gave upper
and lower bounds of ordefZ. We conjecture that the lower bound is correct,
and further conjecture the complete list of all reduced graphs of rawkm(r)
vertices. (The truth of this conjecture would give the precise asymptotic for the
number of labelled graphs of ramk) Our conjectures are verified for< 8 by
computation. We also give a new proof (with explicit bounds) of a theorem of
Torgd&ev [14], according to which the rank of a graph is bounded by a function of
the number of negative eigenvalues.

2 Reduced graphs

Adding isolated vertices to a graph does not change the rank of its adjacency
matrix. So we may assume that our graphs have no isolated vertices.

Given any graplG, we define an equivalence relation on the vertices by set-
ting v=w if vandw have the same sets of neighbours. Each equivalence class
is a coclique; shrinking each class to a single vertex gives a reduced 'ggaph
Conversely, any graph can be constructed from a unique reduced graph by replac-
ing the vertices by cocliques of appropriate sizes, and edges by complete bipartite
graphs between the corresponding cocliques. We call this protmssg-up
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Various graph-theoretic properties are preserved by reducing and blowing-
up. Among these is connectedness; indeed, the number of connected compo-
nents which are not isolated vertices is preserved. Other parameters preserved by
blowing-up include clique number and chromatic number. More important for us
is the following observation. Let raf) denote the rank of the adjacency matrix
of G, and signiG) the signature (the paiis,t) wheres andt are the numbers of
positive and negative eigenvalues respectively).

Proposition 1 rank("G) = rank(G) andsign"G) = sign(G).

Proof The adjacency matrix db is obtained from that ofG by replacing each
0 by a block of zeros and each 1 by a block of 1s. The result is cleaf.]

Thus, to find all graph& with rank(G) = r, we should find all reduced graphs
with rankr and then blow them up in all possible ways.

Proposition 2 Let H be a reduced graph on m vertices. Then the number of
labelled graphs G on n vertices witls =~ H is

m!iS(n, m)
| Aut(H)[’

where $m, n) is the Stirling number of the second kind afdt(H) is the auto-
morphism group of H.

Proof There are&S(n, m) partitions of then vertices intamparts, anan! /| Aut(H)|
ways of drawingH on the set of parts. [

Note that there is an inclusion-exclusion formula giving
1 m

s = 5 o™ ()

so the number in the proposition is asymptoticaiy/| Aut(H)| for fixed m and
largen.



3 A finiteness theorem

The main result of this section is due to Kotlov and Bex [8]: we give the proof
since we will make use of the analysis later.

Let G be a graph whose adjacency matixas rank, and which has no iso-
lated vertices. By Theorem 8.9.1 in Godsil and Royle {8f;ontains an induced
subgraptH whose adjacency matri® also has rank. Note thatH must be re-
duced, since otherwiséd would be smaller thail and could not have rank

Moreover, we have
B BX
A= (xTB xTBx) @

for some (unique) matrixX.

Theorem 3 There are only finitely many reduced graphs whose adjacency matrix
has rank r. Such a graph has at m@tvertices.

Proof Observe that two columns of the matrix in Equation (1) are equal if and
only if their restrictions to the first rows are equal. So we require that each
column ofBX is a zero-one vector, and that none is equal to a rot® @h other
words, no column oX is equal to a standard basis vector). There are at mest 2
choices for these columns (sinBas invertible, each column dBX determines
the corresponding column & uniquely). So the graph has at most2rtices.
Now the number of such graphs is finite. [

Corollary 4 Let G;,...,G, be the reduced graphs of rank r, and let kave m
vertices. Then the number of labelled graphs of rank r on n vertices is

< m!S(n,m)

& |AU(G)[
This is asymptotically Chfor some constant C, wheresmmax{m,,...,m,}.

Proof This is immediate from Proposition 2. The const@nis the sum of the
reciprocals of the automorphism groups of the reduced graphs ofrrankm
vertices. [

We can make one simplification. L&tbe a reduced graph anvertices with
no isolated vertex, an@’ the graph obtained by adding an isolated verte&to



Then Au{G) = Aut(G’). Now the contributions o6 andG’ to the sum are

m! (m+1)!
mqn,m) + msm,er 1)
_ %(S(n, m) + (M+ 1)S(n,m-+ 1))
m!
= m8(n+ 1,m+1).

So we only need to consider reduced graphs without isolated vertices, if we re-
placeS(n,m) by S(n+1,m + 1) in the sum.

Problem Calculate the functiom, wherem(r) is equal to the order of the largest
reduced graph with rank The value of this function is the exponential constant
in the asymptotic formula for the number of labelled graphs with rank

Algorithm  We now present an algorithm to find the reduced graphs of rank
with no isolated vertices, for given

Step 1 Find all the graphs onvertices which have rank

Step 2 LetH be such a graph, with adjacency matix For each zero-one
column vectorv which is not a column oB, find the unique vectox such that
Bx=v. Test whethek' Bx= 0, and keep the vectarif so. Let(x,,...,X,) be the
list of such vectors. (These correspond to all the ways of adding one vertéx to
without increasing the rank.)

Step 3 Form an auxiliary graph on the vertex 4ét ...k} as follows. For
each two distinct indicesand j, put an edge fronn to j if and only if xiTij €
{0,1}. Find all cliques in this graph.

For each clique€€ = {i,,...,i;}, let X be the matrix with column:;il,...,xi ,

and let t
A B BX
“\X™B X'BX

as in Equation (1). TheA s the adjacency matrix of a graph with rank



Step 4 If we want the list of unlabelled graphs, make the collection of all
such matrices, for all choices &f. Test for isomorphism and return a list of
isomorphism types.

The algorithm works because, by Equation (1), the adjacency matrix must
have the required form; and the entriesXofBX must be zero or one, with zero
on the diagonal.

Note that we can improve the algorithm as follows. A reduced graph can
have at most one isolated vertex. So, if we determine all reduced graphs with no
isolated vertices, then we obtain the rest by adding one isolated vertex to each of
them. This can be done by modifying Step 2 of the algorithm to exclude the case
v =0 as well as the case thatis a column ofB. In the calculations below we
always use this modified version.

4 Two constructions

Kotlov and Lovasz [8] proved tham(r) < C2'/2 for some explicit constar(
(which they did not calculate). They also gave, with a sketch of a proof, a con-
struction showing tham(r +2) > 2m(r) + 1:

Construction A Let G be a reduced graph with= m(r) vertices and rank.
(Note thatG has an isolated vertex) Blow up G by doubling each vertew into
two verticesw, andw;, ; then add one vertea joined tow, for all w. Clearly the
resulting graptG* is reduced and ha$2- 1 vertices. Now it can also be described
as follows: blow upG — v by doubling each vertex; add a veri@joined to one of
each pair, a vertex, joined only toa, and an isolated vertex . After the doubling
the rank is stillr; then by Theorem 2 of [2]G* has rank + 2. MoreoverG* has
a unique vertex of degree 1; its neighbour is fixed by all automorphisms, so that
Aut(G*) = Aut(G).

We give another construction which also builds a reduced graph ofrrargk
on 2n+ 1 vertices from one of rank on n vertices. It is more specialized, but
gives more information.

Construction B Let G be a reduced regular graph om 2ertices with degrem
and rankr with adjacency matri\n, having non-zero eigenvalues 1,, ..., A.
Let Gt be obtained fronG as follows: blow up each vertex of G into two
verticesv, andv,, then add two new verticess anda,, wherea; is joined tov; for
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all verticesv of G, anda, anda, are joined to each other. Th@" is a reduced
regular graph of degreen®+ 1 on 22m+- 1) vertices, with rank + 2 and non-
zero eigenvaluesr@+ 1,24, ..., 24, 0,,0,, whered, and6, are the roots of the
equationx® +x—2m= 0.

The facts thaG™ is reduced and regular are straightforward. Alsonif 1,
then| Aut(G™)| = 2| Aut(G)|. For clearly there is an automorphism interchanging
the verticex; andx, for all x. Also the vertices, anda, have complementary
neighbour sets and have the property that, if they are deleted from the graph, then
each equivalence class of vertices has cardinality ;3 1 then no other pair of
vertices has these properties. (Foe 1, we haveG = K, andG™ is the triangular
prismK, 0K, so that Aut(G)| = 2 and| Aut(G™)| = 12.

We compute the rank o&(G*) andA(G"), and find in each case a basis for
the null space.

It is straightforward to see that there are $ix1,0,1}-eigenvectors for the
triangular prisnK, LJK,, as follows

Eigenvalue Transposed eigenvector
3 [1,1,1,1,1,1]
—2 [1,0,—1,-1,0,1]
-2 [1,-1,0,—1,1,0]
1 [-1,-1,-1,1,1 1]
0 [-1,0,1,—1,0,1]
0 [-1,1,0,—1,1,0]

The adjacency matrices & andG* are

An An O | An An | O
Am— 0 jT 0 1 7Am_ J‘T 0 0o 11|
iT 0 10 0 0O 1 0

where j is the all-1 column vector. IK is an eigenvector oA, orthogonal to
j, with eigenvaluel, then[X",X7,0,0]" and[X",—X",0,0]" are eigenvectors
of A, with eigenvalues 2 and 0 respectively. Any other eigenvalueAgf is an
eigenvalue of the matrix

o33
o¥ 33
O Frr O
Ok O



since if [a,b,c,d]" is an eigenvector oB, with eigenvaluel, then the vector
[@aj",bj",c,d]", wherej is of size 2n, is an eigenvector ok}, with eigenvaluel.
Itis readily checked that the characteristic polynomiaBgfis (x— 2m— 1)x(x? +
x—2m). Note that if6 is a root of polynomialf(x) = X%+ x — 2m, then—1— 6
is also a root. It is easy to see tHat—1,-6,6]" and[1,-1,1+6,-1—6]"
are two eigenvectors d3,, with eigenvaluesd and 1— 0, respectively. Thus
Z,=[j",—j",-6,0]" andZ, = [j",—j",1+6,—1—6]" are eigenvectors of
Al with eigenvalue® and—1— 6, respectively.

We show that the nullity oA\ is 4m—r. Suppose thad is the null space of
Am. Then for anyX andY in W, the vector{X,Y,0,0] is a vector in the null space
Al. But the number of independent vectors of this kind is 2dira- 4m — 2r.
Since rank\, = r, Ay, has exactly non-zero eigenvalues such&s. .., Ay, with
eigenvectorsy,...,X,. Foranyi, 1<i<r, [X',—X",0,0]" is contained in the
null space ofA};, and these vectors are independent of the previous vectors. Thus
the null space of\}, has dimension@—r (since by the above argumeft, has
at leastr +2 = (r — 1) + 3 non-zero eigenvalues). But we know that two vectors
T,=[Z],-Z],0,0/" andT,=[Z],—~Z],0,0]" are contained in the null space of
A, Now using these vectors we construct two independerit 0, 1}-vectors
inthe null space oA . Indeed two vector§, — T, andT, +(6/(1-6))T, are in
the null space °A$+1- Now we want to give § —1,0, 1}-basis for the null space
Al. We proceed by induction om. Clearly 4n—r independent vectors that we
obtained using the null space Af, are {—1,0,1}-vectors in the null spacA;,.
Also if X is a{—1,0,1}-vector corresponding to a non-zero eigenvalué\gf
then[XT,—X",0,0]" is a{-1,0,1}-vector in the null space o&},. Now if Z;
andZz, are two non{—1,0,1}-vector corresponding to two non-zero eigenvalues
of Am which obtained using the roots d¢f(x) for somei < m, then as we saw
before we can obtain twfp—1,0, 1}-vectors in the null spack;,.

Also it is seen that any eigenvalue Afis an eigenvalue foA};, and other
eigenvalue of\}, is an eigenvalue of the matrix

m m 1 O
C_mmOO
" 12m 0 0 1

0O 0 1 0

The characteristic polynomial @y, is x(x3 — 2mx¥ — (2m+4- 1)x+ 2m? 4- 2m).
Note that, ifG + v hasn vertices and rank, thenG™ +v has &+ 1 vertices
and rankr + 2, just as in ConstructioA.
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Now we propose two questions about the null space and the image space of
graphs.

Question 1 For which graphs there is{a-1,0, 1}-basis for the null space?

Question 2 For which graphs there is at least a non-zgdl }-vector in the row
space which does not occur as a row?

If the answer to Question 2 is affirmative for all graphs, then by considering
the related vectaxin Theorem 3 of [2], we see thai(r) is an increasing function.
We cannot prove this, but we conjecture the precise value(Of (see below).

Proposition 5

e 20+2)/2_1  ifris even,
= 15.-20-3/2_1 ifrisodd, r> 1.

For the values of n on the right, there exist at leaist2| no-isomorphic reduced
graphs of rank r on n vertices.

Proof Apply either of the constructions, starting with= K, if r =2 andG =
K,OK, if r = 5. The lower bound for the number of graphs is proved inductively;
we can apply Construction A to all the graphs of rardnd Construction B to the
regular graph.

The casea = 3 is trivial; the extremal graph iK; with an isolated vertex.
O

Conjecture The bound omm(r) in Proposition 5 is attained for all> 2, and the
extremal graphs are just the ones given by Constructions A andiBAd, 3, 5.

If this conjecture is true, then thig /2| reduced graphs with rankon m(r)
vertices have automorphism groups of orders 2, 12, 24, .-.2"/3if r is even,
and orders 6, 48, 96, ...,-2073/2 if r is odd. Summing the reciprocals of
these numbers would give the consténin the asymptotic formul&m(r)" for
the number of labelled graphs with rankn n vertices.



5 Parameters bounded by a function of the rank

Proposition 6 Each of the following graph parameters is bounded by a function
of the rank of a graph G:

e number of connected components (other than isolated vertices);
e cliqgue number;
e chromatic number;

e smallest number of factors in an edge partition into complete k-partite
graphs, for fixed k;

e domination numbey(G) and total domination numbeg (G) (if there are
no isolated vertices);

e diameter (if the graph is connected);

¢ the order of the largest composition factor of the gré\yg(G) which is not
an alternating group.

Proof Each of the first four parameters is unaffected by blowing up or adding
isolated vertices. For domination number, see Proposition 9 below. It is well
known that a graph of diameter has more thar distinct eigenvalues, since
I,A,...,Ad are linearly independent; so its rank is at ledstAlternatively, blow-

ing up doesn’t change the diameter except from 1 to 2.) Finally, the automorphism
group ofG has a normal subgrouy (fixing all the equivalence classes of the rela-
tion ~) which is a direct product of symmetric groups on the equivalence classes;
the composition factors dfl are thus alternating groups and cyclic groups of or-
der 2. The factor grou/N is a subgroup of AYtG), and so its composition
factors have bounded order. [

For each of the parameters in the theorem, we can now pose the problem of
finding the best bound for that parameter in terms of the rank. We give a few
examples. LeG be a graph of rank.

e The number of connected components (other than isolated vertices) is at
most |r/2]; equality holds if and only if at most one such component is
complete tripartite and all the rest are complete bipartite.
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e The clique number o& is at mostr, with equality if and only ifG is com-
pleter-partite (possibly with isolated vertices). The proof is given below.

e It was conjectured by van Nuffelen [11] that the chromatic number of a
graph does not exceed its rank. This was disproved by Alon and Sey-
mour [1]; and Raz and Spieker [12] showed that in fact the chromatic num-
ber is not bounded by any polynomial functionrof

¢ If Ghas noisolated vertices, thgiiG) <r; equality is realised by a disjoint
union of complete bipartite graphs, and only by these (see below).

e The path orm vertices, form odd, has diameter and rank— 1, attaining
the bound in the Proposition.

e It is not easy to find the best bound in terms of the rank for the order
of the largest non-alternating composition factor. Ror 2, the group
PSL(n,q) is a composition factor of the automorphism group of a graph on
2(g"—1)/(g— 1) vertices having full rank (the incidence graph of points
and hyperplanes in the projective space). The order of this group is roughly
q”z, which is greater thar; so there is no bound which is polynomialrin

The relation between cligue number and rank is as follows. Note that a com-
plete graph has full rank.

Proposition 7 The only reduced graph of rank r with no isolated vertices which
contains K is K; itself.

Proof We haveB = J—1, from which we find thaB=1 = J/(r —1) —|. Take a
zero-one vectoy, in which the sum of the entries g Thenx = B~lv=sj/(r —
1) —v, wherej is the all-1 vector. Sa'Bx=x"v=¢*/(r — 1) —s. So we require
s=0ors=r—1. Butif s=0 then there is an isolated vertex; and i r —1
thenv is one of the columns d, and the graph is not reduced. [J

Corollary 8 A graph G of rank r has cligue number at most r; equality holds if
and only if G is complete r-partite (possibly with some isolated vertices)[]

We now discuss domination. Tldemination numbey(G) of Gis the smallest
number of vertices with the property that the union of their closed neighbourhoods
contains all vertices; thetal domination numbey; (G) is similarly defined us-
ing open neighbourhoods. (The open neighbourhidgd) is the set of vertices
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joined tov; the closed neighbourhoodng; [v] = {v} UN;(V).) If G has no isolated
vertices, then

Y(G) < #(G) =%('G),
since a minimal total dominating set contains at most one point from each equiv-
alence class. Moreover, the bound on the left is attained if the equivalence classes

are sufficiently large, since a dominating set must either include all vertices in a
class or one vertex dominating that class.

Proposition 9 Let G be a graph with no isolated vertices, having rank r. Then
Y(G) <®(G) <r.

Moreover,y(G) =r if and only each component of G is a complete bipartite graph
Ky with k1 > 2; and %(G) = r if and only if each component of G is complete
bipartite.

Proof After re-ordering if necessary, the adjacency matrixsdfas the form

A B BX
“\XTB XTBX

whereBisr x r and rankB) = r. Since there are no isolated verticBX has no
zero columns, so every vertex outside the set consisting of the frestices has
a neighbour among the firstvertices, which thus form a total dominating set.
Suppose that this dominating set is minimal. Then, foriadyr, there exists
j > r such thais/j is joined tov; and to no other vertex among,...,Vv;. Choose
one such vertey; for eachy; with i <r, and re-order the vertices so that i +r
fori=1,...,r. LetY be the submatrix consisting of the firstows of X. Then
BY =1,s0Y =B 1=YT, andY"BY =B~ Itis easy to check that, if a graph
H has the property thak(H)~! is the adjacency matrix of a graph, thehnis a
matching andA(H)~! = A(H). Applying this to the subgrapH on {vg,-. v}
we see that this subgraph is a matching, andthatis joined tov; if and only
if v; is joined tov;. So the induced subgraph ¢w,, ..., v, } is a disjoint union of
4-cycles.
Suppose thatis joined to more than one vertexwith i <r, say tov,,...,V,.
It is easy to see that;,...,v, are pairwise nonadjacent. Now replace the neigh-
bour ofy, in H by w to obtain another graph of ramkonr vertices which is not
a matching, and hence not a minimal dominating set. Thus no such vertex ex-
ists. It follows thatG is obtained by blowing upi, as claimed. The converse is
straightforward.
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Now suppose tha® satisfiesy (G) = r; without loss of generality$ is re-
duced. Our remarks before the proposition show that it is possible to bld@ up
to a graphH with y(H) =r. By the previous part of the prodf] (and hences)
is obtained by blowing up a matching. Again the converse is clear]

6 Positive and negative eigenvalues

Suppose thab is a graph of rank, and write its adjacency matrix in the form

B BX
X'B X'BX )’

as in the proof of the finiteness theorem. The columps..,x, of (1X) are
vectors inR", which are singular with respect to the non-degenerate quadratic
form Q(x) = x" Bx, sinceX ' BX has zeros on the diagonal.
The set of columns corresponding to any cocliqu&ihas all inner products
0 with respect to the form@, and so is contained in a totally singular subsp@ce
The quadratic formQ is indefinite with signaturés,r —s), wheres is the
number of positive eigenvaluesBf (Note that sometimes the signature is defined
to be the single integes— (r —s).) The largest totally singular subspace of this
form has dimension mifs,r —s} < |r/2]. The columns ofB BX) corresponding
to a coclique are zero-one vectors lying in the imag& ahderB. Now a set of
zero-one vectors in a space of dimenssmas cardinality at mostS2as can be
seen by an argument like that of the finiteness theorem. So we have:

Proposition 10 If G is a reduced graph of rank r and has s positive eigenvalues,
then
OC(G) < 2min{s,rfs} < 2Lr/2j_ ]

The bound in terms of is attained for alk. This can be seen by observing
that it is true forr = 2 andr = 3, and that ifG™ is the graph obtained froi@ by
Construction A, themx(G") = 2a,(G) (and of course rariGt) = rankG) + 2).

A simple explicit construction goes as follows. Lete the bipartite incidence
graph of elements and subsets ofasset. Then the adjacency matrixlohas the

form
O N
NT O)’
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whereN is mx 2™ and has rankn. ClearlyL has rank thand contains a coclique
of size 2". A similar argument shows that if we add an arbitrary number of edges
to the the smaller part df, for the resultant graph also the equality holds.

Proposition 11 Let G be a reduced graph of rank r amd G) = 2l"/2] Thenris
odd and G is the bipartite incidence graph of elements and subsetq ofanset,
as well as some arbitrary edges added to the of sizer.

O B
A= (BT C) )

be the adjacency matrix @& and O is a zero matrix of size /2!, Clearly if
rank(B) = s, then we have rar{ld) > 2s. It implies that rankB) < |r/2|. Now
if rank(B) = s < |r/2], then the number of distind, 1)-vectors lying in the
row space ofB is at most 2. SinceA is reduced all rows oB are distinct, a
contradiction. Thus we conclude that rgBk= |r/2]. Without loss of generality
assume that the firgr /2] columns ofB are independent. B’ is the matrix of
order 2"/2) x |r/2| obtaining by the submatrix d induced on the firstr /2]
column of B, thenB' has no repeated rows, because any columB isfa linear
combination of the columns &' andG is a reduced graph. First assume thist
even. Then

Proof Let

rank( (2)) =rank(B) =r/2.

We know that any(0, 1)-vector of sizer /2 appears as a row & once. We
claim thatB has exactly /2 columns. Indeed BB has some columns , saynot in
B’, since the identity matrix of size/2 is a submatrix oB andv is a(0, 1)-vector,
we conclude that this column should be a linear combination of columiBs of
with coefficients 0 and 1. Now consider all rowsBifwith exactly two 1s. If in
the linear combination at least two coefficients are 1, then one componeid of
at least 2, a contradiction. Thuds a column ofB’. Since the first /2 columns

of the matrix

B

C
is a basis for its column space, we find tAdtas two equal columns, a contradic-
tion. Thus our graph ik as well as some additional edges in its small part.

Now letr be odd. We want to show that(G) < 2"/2/. LetH be a maximal
subgraph ofG containing all vertices correspondenceB{csuch that raniH ) =
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2|r/2|. We haveG # H. Add a new vertexu € G\ H to H and name this graph
by H’. We show that ranld’) = 2|r/2| or ranKH’) = 2|r /2] + 2. If H" is the
submatrix ofH formed by deleting the last row ¢f’ andu’ is the last column of
H”, then we have two cases:

1) U is not a combination of other columns df’. In this case by Theorem 3 of
[2], the result follows.

2) U is a linear combination of other columns Hf’. In this case as we saw
beforeu’ is equal to the one of the columns correspondend®.tdf we extend

this column to corresponding columnli, we show that this column is the same
asu. To see this it is enough to check that the last entries of these columns are
the same. But since the adjacency matrix corresponding to the vertide$ of
not containinga(G) vertices ofH’ is a symmetric matrix we conclude that the
last entries of mentioned vectors are 0. Tliisis a non-reduced graph and so
rankH’) = 2|r /2|, a contradiction. [J

The bound of Proposition 10 has the following consequence, first proved by
Torgasev [14]:

Theorem 12 The rank of a graph is bounded by a function of the number of neg-
ative eigenvalues.

Proof Itis enough to show that, & is a reduced graph with no isolated vertices,
then the numben of vertices ofG is bounded by a function of the humbhteof
negative eigenvalues of

SincekK,  , hast + 1 negative eigenvalues, we must havgG) <t+ 1. Also,
by Proposition 10, sinc& is reduced, we have(G) < 2! — 1 (we subtract 1
because there is no isolated vertex).

Now Ramsey’s Theorem implies that< R(t +2,2!) — 1, and we are done.
O

Remarks 1. The complete graphs show that there is no bound for the rank in
terms of the number of positive eigenvalues.

2. Let f(t) be the largest rank of a graph witmegative eigenvalues. The
proof of the Theorem 12 give$(t) < Rt +2,2') — 1. Fort = 1, this is best
possible:R(3,2) — 1 = 2, andK, satisfies the conditions. For larggrwe can
assume that the graph is reduced andijot, so that it contains né&_ ,, and
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we havef(t) < R(t+1,2') — 1. This bound is still probably much too large.
Torgasev [14] showed that(2) =5 andf(3) = 9.

3. In the other direction, sinde(Ky) has rankn(n— 1)/2 andn — 1 negative
eigenvalues fon > 5, we havef (t) > t(t+1)/2 fort > 4.

4. This theorem and Proposition 6 show that each of the parameters in that
Proposition is bounded by a function of the number of negative eigenvalues. In
each case, we can pose the problem of determining the best possible bound.

7 Small rank

A reduced graph of rank O is an isolated vertex, and there are no graphs of rank 1
(since the sum of the eigenvalues of the adjacency matrix is zero). F@and
r =3, it is easy to see that the only graph of ranén r vertices is the complete
graphK;. By Proposition 7, the only reduced graphs of ran&re K, with or
without one isolated vertex, so thatr) =r + 1 in these cases.

We have computed all reduced graphs of rahér r < 7; forr = 8, we have
computed just those of maximum order. The results are summarized in Table 1.

4 5 6 7 8
7 9 15 19 31
18 50 3308 46892 77?
2 2 3 3 4

-
Max no. vertices
No. of graphs
No. of max. order

RINWN
RIN AW

Table 1: Reduced graphs with given rank

These computations were performedGAP [5] at the Scientific Computing
Center at IPM and in London. Th@AP packageGRAPE [13] was used for the
clique finding and isomorphism testing (via its interface wighity [9]). We also
made use of Brendan McKay'’s list [10] of graphs on eight vertices in order to save
time in Step 1 of the algorithm in this case.

Tables 2-5 give data on the reduced graphs with no isolated vertex, by,rank
number of negative eigenvalugsand number of vertices. The negative eigen-
values were counted by Sturm’s Theorem so that exact rational arithmetic could
be used.

The list of adjacency matrices of the reduced graphs of rank up to 7 with no
isolated vertices is available from the second author on request.
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t\n |4 5 6| Total
2 |33 2 8
3 /100 1
Total|4 3 2| 9

Table 2: Reduced graphs with no isolated vertex,4

t\n |5 6 7 8| Total
2 |1 000 1
3 |7 7 7 2] 23
4 |1 000 1
Total|9 7 7 2| 25

Table 3: Reduced graphs with no isolated vertex,5

t\n| 6 7 8 9 10 11 12 13 14Total
3 |39 142 315 428 371 204 70 15 |3587
4 |17 19 19 9 2 0O 0 O 0 66
5 1 0 0 0 0 0O 0 0 @ 1
Total | 57 161 334 437 373 204 70 15 |3654

Table 4: Reduced graphs with no isolated vertex,6

7 8 9 10 11 12 13 14 15 16 17 18Total

25 50 61 30 11 2 0 0 0O 0 0O p 179

295 1304 3368 5346 5634 4027 2037 778 238 65 13|23108
33 40 46 26 11 2 0 0 0O 0 O p 158
1 0 0 0 0 0 0 0 0 0 0 1

354 1394 3475 5402 5656 4031 2037 778 238 65 13|23446

Table 5: Reduced graphs with no isolated vertex,7
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Using this data we can write down the formulae for the nunfRr, k) of
labelled graphs of rankonnvertices. As explained earlier, we need only consider
graphs with no isolated vertex. We have

(n,2) = S(n+1,3),
(n,3) = S(n+1,4),
R(n,4) = 28§(n+1,5)+1805(n+1,6)+4208(n+1,7),
(n,5) = 2683Nn+1,6)+2520(n+1,7)+96605(n+ 1,8) + 75608(n+ 1,9)

The expressions faR(n,6) andR(n,7) are implicit in our data but are cumber-
some to write down. Table 6 gives some values.

Table 6: Labelled graphs of given rank

r\n|1 2 3 4 5 6 7 8
0O |1 11 1 1 1 1 1
1 (000 O 0 0 0 0
2 1 6 25 90 301 966 3025
3 1 10 65 350 1701 7770
4 28 600 8120 89040 864948
5 268 8148 151508 2228688
6 15848 972944 36324456
7 880992 70339752
8 158666816

Total|1 2 8 64 1024 32768 2097152 268435456

We see, for example, th&(n,3) > R(n,2) for all n > 6. The table suggests
that perhapf(n,r) is an increasing function affor 2 <r <nif n> 8.

8 Some graph constructions

In this section we say a few words about line graphs, cartesian products, and
categorical products.
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8.1 Line graphs

Proposition 13 If G is a connected graph witlV (G)| # 4, then L(G) is reduced.
Hence there are only finitely many line graphs with given rank r.

Proof Suppose that two edgegande, of G have the same neighboursli(G).
Thene; ande, are disjoint but every edge that mee{salso meet®, andvice
versa Soe; Ue, is a union of connected components. [J

In fact, we can obtain a much better bound for the order of a line graph of
rankr than the exponential bound in the general case. Suppose that the adjacency
matrix A of L(G) has non-zero eigenvaluds, ..., A; (in decreasing order). We
know thati,,..., A > —2; since the trace oA is zero, we havel; < 2(r —1).

Now the number of edges &fG) is half the trace of\?, which is not more than
2r(r —2). So the number of vertices of a line graph is bounded by a quadratic
function of its rank.

In addition, we have:

Proposition 14 If G is a connected graph with n vertices, thef@) has rank at
least n— 2.

Proof G contains a spanning trek, andL(G) containsL(T) as an induced
subgraph, so that the rank bfG) is at least as great as that IofT); and the
nullity of L(T) isatmostone [7]. O

This is best possible: ifi is divisible by 4, therL(C) = C, has rankn— 2.
We note as a curiosity that all the reduced graphs of rank at most 5 are line
graphs.

8.2 Cartesian product

The vertex set of the Cartesian prod@tdG, is V(G;) x V(G,); there is an
edge from(vy,V,) to (w;,w,) if and only if eitherv, = w; andv, is joined tow,,
orv, =W, andv; is joined tow;.

Proposition 15 If G, has no vertices of degrdgor 1, and G has no isolated
vertices, then GLI G, is reduced.
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Proof The vertex(v;,v,) has at least two neighboulx,,x,) with x; = vy,
whereas the vertexw,,w,) for w; # v, has at most one such neighbour. So
equivalent vertices have the same first coordinate. (But/,) has a neighbour
(X1,%,) With X, = v,, while (v;,w,) has no such neighbourwi, #v,. O

Now we have
AGUG,) = (AG) @)+ (I ®A(Gy)),

so the eigenvalues @, [1G, are all sums of an eigenvalue G and an eigen-
value ofG, (with appropriate multiplicities).

8.3 Categorical product

The vertex set of the categorical prod@tx G, isV(G,) x V(G,); there is an
edge from(v;,Vv,) to (w;,w,) if and only if v, is joined tow; andv, is joined to
W2-

Proposition 16 If G; and G, are reduced and have no isolated vertices thgxG
G, is reduced.

Proof The neighbour set ofv,,v,) is the Cartesian product of the neighbour
sets ofv; andv,, and so determines these two sets as long as both are non-empty.
O

9 Number of edges

The Turan graph F is the complete-partite graph om vertices with parts as
nearly equal as possible, that is, all parts of $iz& | or [n/r]. Turan’s Theorem
asserts that it has the largest number of edges of any graphestices containing
no (r +1)-clique (see West [15], p. 208).

Now "T,r = Ky, soTy, has rank'; moreover, a graph of rankcannot contain
an(r + 1)-clique. So we have:

Proposition 17 The largest number of edges in a graph on n vertices of rank r is
realised by the Tun graph.

For the minimum we have the following:
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Proposition 18 (a) The smallest number of edges of a graph of rankIron n
vertices (with n>r) is

r/2 if r is even,
(r+3)/2 ifrisodd.

(b) The smallest number of edges of a connected graph of rarkkan n vertices
(withn>r)is
n—1 ifniseven
{ n if nis odd.

Proof

(a) The extremal graph consistsof2 disjoint edges if is even, or(r —3)/2
disjoint edges and a triangle iifis odd. We cannot do better since there
must be at leastnon-isolated vertices; and if we have offfy+ 1) /2 edges
in the case whenis odd, then some component would be a path of length 2,
but this does not have full rank.

(b) If r is even, a path of length— 1 has rank. (The rank of a tree is twice the
size of the largest set of pairwise disjoint edges, see Theorem 8.1 on p. 233
of [4].) Now blow up an end vertex into a set of-r + 1 vertices. Ifr is
odd, then no tree has rami(since trees are bipartite and have even rank).
But if we take a triangle with a “tail” of lengtlhh — 3, we obtain a graph
of rankr on n vertices (this follows easily from Problem 2b on p. 11 of
Biggs [3]), and again we can blow up the end vertex of this graph to obtain
a graph witn vertices. [

10 Open problems

e Is it true thatm(r) is equal to the function given earlier, and that the only
reduced graphs of rarkon m(r) vertices are those produced by Construc-
tions A and B?

e What is the largest order of a connected line graph of ré@nlEarlier, we
gave a quadratic upper bound for this. A linear lower boufrd-2L) comes
from the graptK, UK, _; = L(K;, ).
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e Isittrue that the numbeR(n,r) of labelled graphs on vertices with rank
is an increasing function affor 2 <r <n, for alln > 8?

e We conjecture tham(r) is strictly monotonic. We know thatn(r +2) >
2m(r) + 1, and obviously this conjecture would follow from our main con-
jecture about the value af(r). However, a direct proof presents some
difficulties. It would suffice to show that, & is a reduced graph om(r)
vertices with rankr, then it is possible to add one vertex@ojoined to a
suitable set of existing vertices so that the rank increases by only one.
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