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Summary

There are a number of different models for cross-over designs which take
account of carry-over effects. Since it seems plausible that a treatment with
a large direct effect should generally have a larger carry-over effect, Kempton,
Ferris and David (2001) considered a model where the carry-over effects are
proportional to the direct effects. The advantage of this model lies in the fact
that there are fewer parameters to be estimated. Its problem lies in the non-
linearity of the estimates. Kempton et al. (2001) considered the least squares
estimate. They point out that this estimate is asymptotically equivalent to
the estimate in a linear model which assumes the true parameters to be
known.

For this estimate they determine optimal designs numerically for some
cases. The present paper generalizes some of their results. Our results are
derived with the help of a generalization of the methods used in Kunert and
Martin (2000).
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1 Introduction

In cross-over designs the experimental subjects are exposed to a series of
treatments, one after the other. One important example of cross-over designs
is the case of a sensory trial. Here, products are described with the human
senses. Each assessor tastes and evaluates a series of products, such as the
bitterness of several brands of beer. A problem with this kind of experiment
is the liability to have carry-over effects. This may be a lingering taste of
a product that influences the perception of the next product, or it may be
a tendency to give a lower rating to the next product after a very intense
product. For instance, it is well known that assessors have a tendency to give
a lower bitterness rating to a product if it is evaluated directly after a very
bitter one.

There are a number of models for cross-over designs which take account
of carry-over effects. It seems plausible from what was said above that a
treatment with a large direct effect should generally have a larger carry-over
effect. Kempton, Ferris and David (2001) considered a model where the
carry-over effects are proportional to the direct effects. The advantage of
this model lies in the fact that there are fewer parameters to be estimated.
The problem lies in the non-linearity of the estimates. Kempton et al. (2001)
considered the least squares estimate. They point out that this estimate is
asymptotically equivalent to the estimate in a linear model which assumes the
true parameters to be known. For this estimate they numerically determine
optimal designs for some cases. The present paper generalizes some of their
results.

We consider cross-over designs for t treatments in p periods and n sub-
jects. We will restrict attention to the case that p ≤ t. We assume that there
is no carry-over effect in the first period, while there are carry-over effects in
later periods which are proportional to the direct effect of the treatment in the
previous period. A design d ∈ Ωt,n,p is a mapping of {1, . . . , n}×{1, . . . , p} to
{1, . . . , t}, which determines the treatment assigned to subject i in period j.
Let Td and Fd be the plots-by-treatments incidence matrices for direct and
carry-over effects in design d respectively, and U = In ⊗ up be the plots-by-
subjects incidence matrix and P = un ⊗ Ip be the plots-by-periods incidence
matrix. Here Is is the identity matrix of size s, while us is the s-vector of
ones.
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Let yij be the measurement on subject i in period j, and

y = [y11, y12, . . . , y1p, y21, . . . , ynp]
>.

Like Kempton et al. (2001), we assume the model

y = Tdτ + Fdτλ + Pα + Uβ + e, (1)

where e is a vector of independent identically distributed errors with zero
mean and variance σ2, and we analyse the data by least squares. For this
analysis, we assume that we are interested in the estimation of τ and not in
the estimation of the unknown proportionality factor λ, which we restrict to
lie between −1 and 1.

If, in model (1), we add a constant κ to every element of τ , then we
increase every response in the first period by κ and every other response by
κ(1 + λ). Since model (1) includes period effects, we may suppose that the
elements in τ sum to zero.

As was observed by Kempton et al. (2001), the least squares solution
(τ̂ , λ̂) is asymptotically equivalent to the least squares solution of the linear
model

ỹ = (Td + λ0Fd)τ + (Fdτ0)λ + Pα + Uβ + e, (2)

where τ0 is the unknown true value of τ , λ0 is the unknown true value of λ,
and ỹ = y + λ0Fdτ0.

Define
Cd = (Td + λ0Fd)

>ω⊥([Fdτ0, P, U ])(Td + λ0Fd),

where for a matrix M we define ω(M) = M(M>M)−M> and ω⊥(M) = I −
ω(M). Since λ0Fdτ0 is a constant vector, assumed known, and the elements
in τ sum to zero, the covariance matrix cov(τ̂ ) of the estimate τ̂ in model (2)
is σ2C+

d , where M+ is the Moore–Penrose generalized inverse of the matrix M .
Hence, the covariance of the estimates depends on the unknown true values
τ0 and λ0.

A class of designs which have excellent optimality properties in cross-over
experiments under various aspects are the totally balanced designs (Kunert
and Stufken, 2002). These are defined as follows.

Definition 1 A design d ∈ Ωt,n,p is called totally balanced if

(i) d is a generalized Youden design,

(ii) d is a balanced block design in the carry-over effects,

(iii) d is balanced for carry-over effects, and
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(iv) the number of subjects where both treatments i and j appear [p/t] + 1
times and treatment j does not appear in the last period is the same
for every pair i 6= j.

2 An upper bound for the Ā-criterion

Put Bt = It − t−1utu
>
t . Then

Cd = (BtT
>
d + λ0BtF

>
d )ω⊥([BtFdτ0, P, U ])(TdBt + λ0FdBt).

This is because Tdut and Fdut are in the column span of P : see, for example,
Kunert (1983).

It follows from Kunert (1983) that

Cd ≤ (BtT
>
d + λ0BtF

>
d )ω⊥([BtFdτ0, U ])(TdBt + λ0FdBt) = C̃d, (3)

say. Equality holds in (3) if and only if

(BtT
>
d + λ0BtF

>
d )ω⊥([BtFdτ0, U ])P = 0. (4)

We define

Cd11 = T>
d ω⊥(U)Td, Cd12 = T T

d ω⊥(U)FdBt, Cd22 = BtF
>
d ω⊥(U)FdBt.

Note that these three matrices were called U , W> and V by Kempton et al.
(2001). Then the bound in (3) can be written as

C̃d = Ed − (Cd12τ0 + λ0Cd22τ0)(τ
>
0 Cd22τ0)

−1(τ>
0 C>

d12 + λ0τ
>
0 Cd22),

where Ed = Cd11 + λ0Cd12 + λ0C>
d12

+ λ2
0Cd22; while (4) can be written as

BtT
>
d ω⊥(U)P + λ0BtF

>
d ω⊥(U)P

− (Cd12τ0 + λ0Cd22τ0)(τ
>
0 Cd22τ0)

−1τ>
0 BtF

>
d ω⊥(U)P = 0.

Now, ω⊥(U)P = P −p−1unpu
>
p , so, if the design d is such that in each period

all treatments appear equally often, then T>
d ω⊥(U)P = F>

d ω⊥(U)P = 0.
This implies that equation (4) is true and we have equality in (3). A problem
is that the information matrix depends on the unknown parameters λ0 and τ0.
Like Kempton et al. (2001), we decided to take two different approaches to
deal with this problem. With respect to the parameter τ0, we considered the
average performance over a distribution of τ0. To do this, we assume that
the distribution of τ0 is permutation invariant. Note that this assumption is
valid if we randomize the treatment labels. For the parameter λ0, there is no

4



canonical distribution. We may, however, assume that λ0 is small in absolute
size. Again, this is justifiable by practical considerations. The experimenter
will try to carry out the experiment in such a way that the carry-over effects
are small. This can (and has to) be achieved by non-statistical measures like
washout periods.

We are interested in determination of an Ā-optimal design. That is, we
want to determine a design that minimizes the average A-criterion, where
the average is taken over the distribution of the unknown parameter τ0. We
do this in several steps.

Step 1 Consider a fixed but arbitrary τ0 and an arbitrary design d ∈ Ωt,n,p.
We assume that θ1,d ≥ θ2,d ≥ · · · ≥ θt−1,d are the nonnegative eigenvalues
of Cd. The local A-criterion given by Kempton et al. (2001) is 2φA(Cd, τ0)σ

2/(t−
1), where

φA(Cd, τ0) =

t−1
∑

i=1

1

θi,d

.

Because τ0 is orthogonal to ut, we can find an orthonormal basis {x1, . . . , xt}
of R

t such that xt−1 and xt are scalar multiples of τ0 and ut respectively.
Then it is well known that the A-criterion satisfies

φA(Cd, τ0) ≥
t−1
∑

i=1

1

x>
i Cdxi

,

because [xT
1 Cdx1, . . . , x

>
t−1Cdxt−1] is majorized by [θ1, . . . , θt−1], see Fan (1949,

Theorem 1).
Since Cd ≤ C̃d, it follows that

φA(Cd, τ0) ≥
t−1
∑

i=1

1

x>
i C̃dxi

.

The convexity of 1/x further implies that

φA(Cd, τ0) ≥
(t − 2)2

∑t−2

i=1
x>

i C̃dxi

+
1

x>
t−1C̃dxt−1

.

Some straightforward algebra shows that

x>
t−1C̃dxt−1 =

1

τ>
0 τ0

(

τ>
0 Cd11τ0 −

(τ>
0 Cd12τ0)

2

τ>
0 Cd22τ0

)

= `τ0,d,

say. Now,
t−2
∑

i=1

x>
i C̃dxi ≤

t−2
∑

i=1

x>
i Edxi = tr Ed − x>

t−1Edxt−1,
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because C̃d ≤ Ed, trace is invariant to change of basis and Edxt = 0. Hence,
defining

sτ0,d = tr Ed −
1

τ>
0 τ0

τ>
0 Edτ0,

we get that

φ(Cd, τ0) ≥
1

`τ0,d

+
(t − 2)2

sτ0,d

.

Now assume the design d is such that all Cdij, 1 ≤ i ≤ j ≤ 2, are
completely symmetric, that is Cdij = cdij(t − 1)−1Bt, where cdij = tr Cdij.
Then the vectors x1, . . . , xt are eigenvectors of C̃d, and, for 1 ≤ i ≤ t − 2 we
have

x>
i C̃dxi = x>

i Edxi =
sτ0,d

t − 2
.

The first equality is due to the fact that for those i

x>
i Cdijτ0 =

cdij

t − 1
xT

i Btτ0 = 0.

The second equality is due to the fact that x>
i Btxi is the same for all 1 ≤

i ≤ t − 1.
If the design additionally satisfies equation (4), we therefore have

φ(Cd, τ0) =
1

`τ0,d

+
(t − 2)2

sτ0,d

.

Note that for this design the numbers `τ0,d and sτ0,d do not depend on τ0.

Step 2 We assume that the distribution of τ0 is permutation invariant. Let
S denote the set of all t × t permutation matrices and assume that for each
π ∈ S we have determined sτπ ,d and `τπ ,d as in Step 1, where τπ = πτ0. Then,
due to the to the convexity of 1/x, we have

1

t!

∑

π∈S

(

1

`τπ ,d

+
(t − 2)2

sτπ ,d

)

≥ t!
∑

π∈S `τπ ,d

+
t! (t − 2)2

∑

π∈S sτπ ,d

.

If `τπ ,d and sτπ ,d are the same for all π, then we have equality.
To continue, we need to determine

∑

π∈S `τπ ,d and
∑

π∈S sτπ ,d. For
∑

π∈S sτπ ,d,
this is straightforward. We have

1

t!

∑

π∈S

sτπ ,d = tr Ed −
1

t!

∑

π∈S

(

1

τ>
0 π>πτ0

τ>
0 π>Edπτ0

)

= tr Ed −
1

τ>
0 τ0

1

t!
τ>
0

(

∑

π∈S

π>Edπ

)

τ0
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= tr Ed −
1

τ>
0 τ0

τ>
0

(

tr Ed

t − 1
Bt

)

τ0

=
t − 2

t − 1
tr Ed =

t − 2

t − 1

(

cd11 − 2λ0cd12 + λ2

0cd22

)

.

Note that this does not depend on τ0.
The same argument shows that

1

t!

∑

π∈S

1

τ>
0 π>πτ0

τ>
0 π>Cd11πτ0 =

tr Cd11

t − 1
=

cd11

t − 1
.

Put aπ = τ>
0 π>Cd12πτ0 and bπ = τ>

0 π>Cd22πτ0. Since the aπ and bπ are
positive, it follows that

∑

π∈S

1

τ>
0 π>πτ0

a2
π

bπ

=
1

τ>
0 τ0

∑

π∈S

(

aπ√
bπ

)2

≥ 1

τ>
0 τ0

1

t!

(

∑

π∈S

(

aπ√
bπ

)

)2

≥ 1

τ>
0 τ0

1

t!

( ∑

aπ
∑√

bπ

)2

≥ 1

τ>
0 τ0

(
∑

aπ)2

∑

bπ

=
1

τ>
0 τ0

(

t! τ>
0 τ0cd12

t − 1

)2
(t − 1)

t! τ>
0 τ0cd22

=
t!

t − 1

c2
d12

cd22

.

Hence
1

t!

∑

π∈S

`τπ ,d ≤ 1

t − 1

(

cd11 −
(cd12)

2

cd22

)

.

Again, the right hand side does not depend on τ0.
In all, we have shown that for every τ0 we have

1

t!

∑

π∈S

φA(Cd, πτ0) ≥
(t − 1)cd22

cd11cd22 − c2
d12

+
(t − 1)(t − 2)

cd11 + 2λ0cd12 + λ2
0cd22

,

with equality holding if all the Cdij are completely symmetric.

We therefore have shown our first result.

Proposition 1 For any design d ∈ Ωt,n,p define

φ̄A(Cd) =

∫

φA(Cd, τ0)dP (τ0),

where the distribution P of τ0 is permutation invariant. Then

φ̄A(Cd) ≥
(t − 1)cd22

cd11cd22 − c2
d12

+
(t − 1)(t − 2)

cd11 + 2λ0cd12 + λ2
0cd22

= φ̄∗
A(Cd),

say. Equality holds if in each period all treatments appear equally often and
all Cdij, for 1 ≤ i ≤ j ≤ 2, are completely symmetric.
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Note that φ̄A(Cd) = (t − 1)Ā/(2σ2)), where Ā is the Ā-criterion defined
by Kempton et al. (2001). It is a local criterion, depending on the unknown
true λ0.

As a corollary, we get a slight generalization of Theorem 1 of Kempton
et al. (2001).

Corollary Assume that a design d∗ ∈ Ωt,n,p, where p ≤ t, is totally bal-
anced, that λ0 is arbitrary and that we consider the φ̄A(Cd) criterion. Then
d∗ is optimal over all designs for which each treatment appears at most once
for each subject.

Proof The design d∗ fulfils the conditions in Proposition 1 which guarantee
that

φ̄A(Cd∗) =
(t − 1)cd∗22

cd∗11cd∗22 − c2
d∗12

+
(t − 1)(t − 2)

cd∗11 + 2λ0cd∗12 + λ2
0cd∗22

.

Since for all competing designs d we have cdij = cd∗ij, for 1 ≤ i ≤ j ≤ 2, the
proof is complete. 2

Kempton et al. (2001) defined the IA-criterion as the average A-criterion
over the joint distribution of both τ0 and λ0. If λ0 and τ0 are independent
and the distribution of τ0 is permutation invariant, then the corollary implies
that a totally balanced design is IA-optimal over all designs for which each
treatment appears at most once for each subject, whatever distribution of λ0

we might assume.
The foregoing optimality results use the average of the A-criterion over

permutations of τ0 (and possibly over a distribution of λ0). The following
example shows that we cannot strengthen this either to A-optimality for all
τ0 or to maximality, in the Loewner order, of the average of the Cd matrix
itself, which would be needed for an analogue of universal optimality. More
precisely, let C̄d be the average of Cd over permutations of τ0.

Example Here are two designs for four treatments in three periods and
24 subjects. Since Designs 1–5 are named in the paper by Kempton et al.
(2001), the new designs are called Design 6 and Design 7. Design 6 consists
of two copies of

A B C D B C A D C A B D
B A D C C B D A A C D B
C D A B A D B C B D C A

while Design 7 consists of three copies of

A B C D A B C D
B A D C B A D C
C D A B D C B A
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Periods are shown as rows and subjects as columns. Both designs have all
treatments equally often in each period, so C6 = C̃6 and C7 = C̃7. Moreover,
Design 6 is totally balanced.

In Design 6, C611 = 16B4, C612 = −(16/3)B4 and C622 = (28/3)B4. Hence

C6 =
1

3
(48 − 32λ0 + 28λ2

0)B4 −
4(7λ0 − 4)2

21

τ0τ
>
0

τ>
0 τ0

=
4

3
(12 − 8λ0 + 7λ2

0)

(

B4 −
τ0τ

>
0

τ>
0 τ0

)

+
272

21

τ0τ
>
0

τ>
0 τ0

.

The average of τ0τ
>
0 /τ>

0 τ0 over all permutations of τ0 is (1/3)B4, so

C̄6 =
4

3

(

12 − 8λ0 + 7λ2

0 −
(49λ2

0 − 56λ0 + 16)

21

)

B4

=
4

63
(98λ2

0 − 112λ0 + 236)B4.

Put θ1 = (1, 1,−1,−1)>, θ2 = (1,−1, 1,−1)> and θ3 = (1,−1,−1, 1)>.
The permutations of θ1 consist of ±θ1, ±θ2 and ±θ3 equally often. We shall
take τ0 to be one of the θi. For i = 1, 2, 3, put Si = θiθ

>
i /θ>i θi. Then the

Si are mutually orthogonal idempotents of rank 1 whose sum is B4. Further,
put

G =









1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1









Then S1 = 2−1G − 4−1u4u
>
4 and S2 + S3 = I − 2−1G = B4 − S1.

In Design 7, C711 = 16B4, C712 = −6B4 + GB4 = −4S1 − 6S2 − 6S3 and
C722 = 12B4 − 4GB4 = 4S1 + 12S2 + 12S3. Therefore

(C712 + λ0C722)θiθ
>
i (C>

712 + λ0C722)

θ>i C722θi

=
[4(λ0 − 1)S1 + 6(2λ0 − 1)(S2 + S3)]θiθ

>
i [4(λ0 − 1)S1 + 6(2λ0 − 1)(S2 + S3)]

θ>i (4S1 + 12(S2 + S3))θi

,

which is equal to 4(λ0 − 1)2S1 if i = 1 and to 3(2λ0 − 1)2Si if i = 2 or 3.
Hence, if τ0 = θ1 then

C7 = (16 − 8λ0 + 4λ2

0)S1 + (16 − 12λ0 + 12λ2

0)(S2 + S3) − 4(λ0 − 1)2S1

= 12S1 + 4(4 − 3λ0 + 3λ2

0)(S2 + S3);
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while if τ0 = θi for i = 2 or 3 then

C7 = (16 − 8λ0 + 4λ2

0)S1 + (16 − 12λ0 + 12λ2

0)(S2 + S3) − 3(2λ0 − 1)2Si

= 4(4 − 2λ0 + λ2

0)S1 + 13Si + 4(4 − 3λ0 + 3λ2

0)S5−i.

Therefore,

C̄7 =
4

3
(2λ2

0 − 4λ0 + 11)S1 + (8λ2

0 − 8λ0 + 15)(S2 + S3).

First we examine the performance of Designs 6 and 7 without permuting
the entries in τ0. The eigenvalues of C6 are 4(12 − 8λ0 + 7λ2

0)/3, twice, and
272/21, no matter what τ0 is: in particular they are 16, 16 and 12.95 when
λ0 = 0. If τ0 = θ1 then the eigenvalues of C7 are 4(4 − 3λ0 + 3λ2

0), twice,
and 12, which reduce to 16, 16 and 12 if λ0 = 0; while if τ0 = θ2 then the
eigenvalues of C7 are 4(4− 3λ0 + 3λ2

0), 4(4− 2λ0 + λ2
0) and 13, which reduce

to 16, 16 and 13 if λ0 = 0. Thus if λ0 = 0 then Design 6 is A-better than
Design 7 if τ0 = θ1 but A-worse than Design 7 if τ0 = θ2. Thus total balance
does not guarantee A-optimality for all values of τ0 and λ0 even over the
binary designs.

Secondly, we compare the average performance of Designs 6 and 7 over
permutations of τ0. We obtain C̄6 − C̄7 = µ1S1 + µ2(S2 + S3), where µ1 =
4(56λ2

0 − 28λ0 + 5)/63 and µ2 = −(112λ2
0 − 56λ0 + 1)/63. Now, µ1 is always

positive, while µ2 is positive if and only if 0.019 < λ0 < 0.481. For other
values of λ0, neither of C̄6 and C̄7 is greater than the other in the Loewner
order. However, Design 6 is Ā-better than Design 7 for all λ0.

For further optimality results, we need a further generalization of Kush-
ner’s (1997) method: see also Kunert and Martin (2000).

3 Optimality of totally balanced designs

Step 3 For a given design each unit receives a sequence of treatments. Two
sequences are called equivalent if one can be transformed to the other by
relabelling of treatments. For given p and t there is a number K, say, of
possible equivalence classes of sequences. For an arbitrary sequence from a
given class k, we can define matrices Tk and Fk, which are the p × t design
matrices for direct and carry-over effects for this sequence. We then define

c11(k) = tr
(

BtT
>
k BpTkBt

)

,

c12(k) = tr
(

BtT
>
k BpFkBt

)

,

c22(k) = tr
(

BtF
>
k BpFkBt

)

.
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Then the cij(k) do not depend on the special choice of the sequence, only
on the equivalence class k. We denote by πd,k the proportion of subjects to
which design d assigns a sequence from equivalence class k. Then the cdij

can be written as linear combinations of cij(k). More precisely,

cdij = n

(

K
∑

k=1

πd,kcij(k)

)

,

for 1 ≤ i ≤ j ≤ 2. Hence, one possibility to find an Ā-optimal design would
be to determine a lower bound for φ̄∗

A(Cd), or, equivalently, an upper bound
for

q∗d = −
∑

πd,kc22(k)
∑

πd,kc11(k)
∑

πd,kc22(k) − (
∑

πd,kc12(k))2

− t − 2
∑

πd,k (c11(k) + 2λ0c12(k) + λ2
0c22(k))

.

For real x, y, z and v, put gk(v) = c11(k) + 2vc12(k) + v2c22(k),

hk(x, y, z) = (t − 2)gk(λ0)x
2 + (t − 2)2x + gk(z)y2 + 2y,

and qd(x, y, z) =
∑K

k=1
πd,khk(x, y, z). Then q∗d is the minimum of qd(x, y, z)

over x, y and z. We therefore are looking for a design d such that

1. in every period all treatments appear equally often,

2. all Cdij are completely symmetric

3. the proportions πd,k of units with sequences from the equivalence class
k ∈ {1, . . . , K} are such that

min
x

min
y

min
z

K
∑

k=1

πd,khk(x, y, z)

is as large as possible.

We consider a totally balanced design d∗ and restrict attention to the
case p ≤ t . Then d∗ consists entirely of sequences which are equivalent to
[p, p − 1, . . . , 2, 1]. We denote the class of all these sequences by k = 1. We
may assume that p ≥ 3; for if p = 2 then all sequences not confounded with
subjects are equivalent to sequence 1. Hence t − 2 is positive and hk(x, y, z)
does depend on λ0.
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It is easily seen that, for a general sequence class k,

c11(k) = p − 1

p

t
∑

i=1

n2

ik,

c12(k) =
t
∑

i=1

mik −
1

p

t
∑

i=1

nikñik,

c22(k) = (p − 1)
(pt − 1)

pt
− 1

p

t
∑

i=1

ñ2

ik,

where nik is the number of appearances of treatment i in the representative
sequence for class k, ñik is the number of appearances of treatment i in the
first p− 1 periods of the representative sequence, while mik is the number of
appearances of treatment i preceded by itself. For the sequence class 1, we
have

c11(1) = p − 1,

c12(1) = −p − 1

p
,

c22(1) =
(p − 1)

p

(pt − t − 1)

t
,

and the minimum of h1(x, y, z) is attained for

z = −c12(1)

c22(1)
= z∗, say,

y = − 1

g1(z∗)
= y∗, say,

x = − 1

g1(λ0)
= x∗, say.

Note that z∗ > 0 and does not depend on λ0. Neither does y∗ depend
on λ0. Also, g1(v) > 0 for all real v, and z∗ minimizes g1.

For a given sequence class k, there is one treatment, say treatment 1, that
appears in the last period of the representative sequence. Then ñik = nik for
all 2 ≤ i ≤ t, while ñ1k = n1k − 1. This implies that

t
∑

i=1

nikñik =
t
∑

i=2

niknik + n1k(n1k − 1) =
t
∑

i=1

n2

ik − n1k =
t
∑

i=1

n2

ik − ñ1k − 1

and
t
∑

i=1

ñ2

ik =

t
∑

i=2

n2

ik + (n1k − 1)2 =

t
∑

i=1

n2

ik − 2n1k + 1 =

t
∑

i=1

n2

ik − 2ñ1k − 1.
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We therefore have

c11(k) = c11(1) +
1

p
(p −

∑

n2

ik),

c12(k) = c12(1) +
∑

mik +
1

p
(p −

∑

n2

ik + ñ1k),

c22(k) = c22(1) +
1

p
(p −

∑

n2

ik + 2ñ1k).

From this we get that

gk(v) = g1(v) − a

p
+ 2v

(

m − a

p
+

ñ1k

p

)

+ v2

(

−a

p
+ 2

ñ1k

p

)

,

where a =
∑

n2
ik − p and m =

∑

mik. Note that a and m are both non-
negative integers.

If, for a given design, we can show that all sequences in the design come
from classes k such that hk(x

∗, y∗, z∗) ≤ h1(x
∗, y∗, z∗), then this design cannot

perform better than the totally balanced design d∗. Hence, when trying to
find a design that performs better than d∗, we try to choose

∑

n2
ik,
∑

mik,
and ñ1k in such a way that hk(x

∗, y∗, z∗) is as large as possible.
Let s be the number of treatments occurring in the sequence k. Then

m ≤ p−s, with equality if and only if every treatment has all its occurrences
consecutive. Moreover, if nik ≥ 1 then n2

ik ≥ 3nik−2, so a+p ≥ 3
∑

nik−2s =
3p−2s, so a ≥ 2(p−s), with equality if and only if no treatment occurs more
than twice in the sequence. Hence a ≥ 2m: compare this with Proposition 4.2
of Kunert (1984). Similarly, a + p ≥

∑

i6=1
nik + 3n1k − 2 = p + 2(n1k − 1) =

p + 2ñ1k, so a ≥ 2ñ1k, with equality if and only if n1k ≤ 2 and nik ≤ 1 for
i > 1.

In all, we get that a ≥ 2 max{ñ1k, m}. We have a = 2m = 2ñ1k if and
only if either a = 0, which happens only for sequences in class 1, or the
sequence is equivalent to [p − 1, p − 2, . . . , 3, 2, 1, 1].

Put F (v) = p(gk(v)− g1(v)) = −a(1 + v)2 + 2mpv + 2ñ1kv(1 + v) for real
numbers v. Then

hk(x
∗, y∗, z∗) − h1(x

∗, y∗, z∗) =
(t − 2)(x∗)2

p
F (λ0) +

(y∗)2

p
F (z∗).

This equation is linear in ñ1k and in m. For given a > 0, therefore, the
largest hk(x

∗, y∗, z∗) will be bounded above by one of the following four cases:
m = ñ1k = 0; m = 0 and ñ1k = a/2; m = a/2 and ñ1k = 0; m = ñ1k = a/2.

If m = 0 = ñ1k then F (v) = −a(1 + v)2 ≤ 0 for all v so hk(x
∗, y∗, z∗) ≤

h1(x
∗, y∗, z∗).

13



If m = 0 and ñ1k = a/2 then F (v) = −a(1 + v) ≤ 0 for v ≥ −1. Since
−1 ≤ λ0 ≤ 1 and z∗ > 0, it follows that hk(x

∗, y∗, z∗) ≤ h1(x
∗, y∗, z∗).

If m = a/2 and ñ1k = 0 then F (v) = a(pv − (1 + v)2) and so F ′(v) =
a(p−2(1+v)). Thus F ′(v) ≥ 0 for v ≤ 1/2. Moreover, F (1/(p−2)) = −a(p−
2)−2 < 0, so F (λ0) < 0 if λ0 ≤ 1/(p−2). Also, z∗ = t/(pt− t−1) < 1/(p−2)
so F (z∗) < 0. Hence hk(x

∗, y∗, z∗) ≤ h1(x
∗, y∗, z∗) for all λ0 in [−1, 1/(p−2)].

Finally, if m = ñ1k = a/2 then F (v) = a(−1 + (p − 1)v) so

hk(x
∗, y∗, z∗) − h1(x

∗, y∗, z∗)

=
a

p

[

(t − 2)(−1 + (p − 1)λ0)(x
∗)2 + (−1 + (p − 1)z∗)(y∗)2

]

=
a

p
[(t − 2)f(λ0) + f(z∗)], (5)

where f(v) = [−1 + (p − 1)v]/[g1(v)]2. Then

f ′(v) =
(p − 1)g1(v) − 2[−1 + (p − 1)v]g′

1(v)

[g1(v)]3
.

The denominator is always positive. The numerator is a quadratic polyno-
mial in v, which is negative when v is large in absolute value and positive
on an interval containing z∗, because g1(z

∗) > 0 and g′
1(z

∗) = 0. It fol-
lows that f(v) is decreasing for all v less than some v0 < z∗ and increas-
ing for all v between v0 and z∗. Therefore, if (t − 2)f(−1) < −f(z∗) and
(t − 2)f(λ∗) < −f(z∗) for some λ∗ in (−1, z∗) then the expression in (5) is
negative for all λ0 in [−1, λ∗]. Note that

f(z∗) =
1

pt − t − 1

1

[g1(z∗)]2
=

1

pt − t − 1

1

[1 − z∗/p]2
1

(p − 1)2
. (6)

First we examine f(−1). Now, g1 increases away from z∗ and −(p−1)z∗ <
−1, so

g1(−1) ≤ g1(−(p − 1)z∗) = (p − 1)(1 − z∗

p
+ pz∗).

Since t ≥ p, we have

z∗ ≤ 1

p − 1 − 1/p
=

p

p2 − p − 1
, (7)

so
pz∗

1 − z∗/p
≤ p2

p2 − p − 2
≤ 9

4
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because p ≥ 3. Hence g1(−1)/g1(z
∗) ≤ 13/4, and so

(t − 2)f(−1) =
−p(t − 2)

[g1(−1)2]
≤ − 42

132

p(t − 2)

[g1(z∗)]2

= − 42

132
p(t − 2)(pt − t − 1)f(z∗)

≤ − 42

132
p(p − 2)(p2 − p − 1)f(z∗), because t ≥ p,

≤ −16 × 15

169
f(z∗), because p ≥ 3,

< −f(z∗).

Secondly, we define

λ∗ =
1

(t − 2)(p − 1)

[

t − 2 − 1

pt − t − 1

1

(1 − z∗/p)2

]

. (8)

Note that λ∗ is slightly smaller than 1/(p − 1). We have g1(0) = p − 1
and g1 increases away from z∗, so if 0 ≤ v ≤ z∗ then g1(v) ≤ p − 1. But
(p− 1)−1 < z∗, so if 0 ≤ v < (p− 1)−1 then f(v) ≤ [−1 + (p− 1)v]/(p− 1)2.
It follows that

(t − 2)f(λ∗) ≤ (t − 2)[−1 + (p − 1)λ∗]/(p − 1)2

=
−1

pt − t − 1

1

[1 − z∗/p]2

/

(p − 1)2

Equation (6) then shows that (t − 2)f(λ∗) ≤ −f(z∗).
Now, inequality (7) shows that 1 − z∗/p ≥ (p2 − p − 2)/(p2 − p − 1);

moreover pt − t − 1 ≥ p2 − p − 1. Hence,

λ∗ ≥ 1

(t − 2)(t − 1)
[t − 2 − p2 − p − 1

(p2 − p − 2)2
]

which is positive since t ≥ p ≥ 3.

We have therefore proven the following two propositions.

Proposition 2 For all −1 ≤ λ0 ≤ 1, a totally balanced design d∗ ∈ Ωt,n,p

is Ā-optimal over all designs d ∈ Ωt,n,p for which no treatment is directly
preceded by itself.

Proposition 3 If −1 ≤ λ0 ≤ λ∗, where λ∗ > 0 is defined by equation (8),
then a totally balanced design d∗ ∈ Ωt,n,p is Ā-optimal over all possible designs
d ∈ Ωt,n,p.

15



Note that the situation where λ0 is small in absolute size is an important
case. Generally, experimenters will try to run the experiment in such a way
that carry-over effects can be avoided as much as possible, see also Jones,
Kunert and Wynn (1992).

If λ0 gets large and positive, then designs with positive m will get better
than d∗, as was shown by Kempton et al. (2001).

Because g1 is rather flat on [1, z∗], Equation (8) gives a good approxima-
tion to the upper bound for values of λ0 for which the totally balanced design
is optimal, but the actual upper bound is slightly higher. For example, when
p = t = 4 then λ∗ = 0.315 but numerical investigation of Equation (5) shows
that (t−2)f(0.318) ≈ −f(z∗). Hence, for all λ0 ≤ 0.318, the totally balanced
design “Design 1” of Kempton et al. (2001) is optimal over Ω4,12,4.
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