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Abstract

It has long been an open problem whether or not there exists a partial
geometry with parameters (s,t,a) = (4,27,2). Such a partial geometry,
which we call a McLaughlin geometry, would have the McLaughlin graph
as point graph. In this note we use tools from computational group theory
and computational graph theory to show that a McLaughlin geometry
cannot have certain automorphisms, nor can such a geometry satisfy the
Axiom of Pasch.

1 Introduction

The McLaughlin graph M was constructed by J. McLaughlin for the construc-
tion of his sporadic simple group McL [10]. The graph M has full automorphism
group Aut (M) = McL: 2, acting transitively with permutation rank 3 on the
set of vertices. Indeed, M is a particularly fascinating strongly regular graph,
with parameters

(v, k, A, 1) = (275,112, 30, 56),

and in [7], it is shown that M is the unique strongly regular graph with these
parameters.

Partial geometries were introduced by Bose [1] to generalize certain classes of
finite geometries. Partial geometries and related concepts will be defined in the
next section; a good concise introduction is contained in [5]. It has long been an
open problem whether or not there exists a partial geometry with parameters
(s, t,a) = (4,27,2) (see [3, 9, 5, 11]). Such a partial geometry, which we call a
McLaughlin geometry, would have the McLaughlin graph as point graph.

In this note we use tools from computational group theory and computational
graph theory to show that a McLaughlin geometry cannot have automorphisms
in any of the conjugacy classes 24,3B,5B,9AB,2B of McL: 2, nor can such a
geometry satisfy the Axiom of Pasch. The calculations used in this note were
performed using GAP [6] and GRAPE [15], taking a total CPU-time of under 23



seconds on a 2.4 GHz PC running Linux. For the interested reader, a log-file of
these calculations is available on the internet [16].

Combining the results of this note with those of Mathon [11], we deduce that
the automorphism group of a McLaughlin geometry has order dividing 3, and we
are led to conjecture (like some others) that there is no McLaughlin geometry. If
this is so, then M would be a pseudogeometric (s, ¢, a)-graph attaining equality
in the Krein bound, (s + 1 — 2a)t < (s — 1)(s + 1 — )2, but M would not
be geometric, and the existence of such a graph would answer a long-standing
question [3, Question 7.10]. However, we believe that determining whether or
not there is a McLaughlin geometry remains a very difficult problem.

Throughout this note, we use ATLAS [4] notation for group structures and
conjugacy classes.

2 Partial linear spaces, graphs
and partial geometries

Let s and ¢ be positive integers. A partial linear space with parameters (s,t), or
a pls(s, t), is an ordered pair (P, L), where P is a non-empty set (of points) and
L is a nonempty set of (s+ 1)-subsets of P (called lines), such that every point
is in exactly ¢ + 1 lines, and every pair of distinct points are on at most one
line (and so every pair of distinct lines meet in at most one point). The point
graph of a partial linear space (P, L) is the graph with vertex-set P where two
points are joined by an edge if and only if they are distinct and on a common
line. Two partial linear spaces (P, L) and (P’,L’) are isomorphic if there is a
bijection ¢ : P — P’ such that ¢(L£) = L. An automorphism of a partial linear
space is an isomorphism onto itself. The set of all automorphisms of a partial
linear space S forms a group, the automorphism group Aut (S) of S. Since any
automorphism of S permutes its points and preserves the property of two points
being distinct and on a common line, we see that Aut (S) is a subgroup of the
automorphism group of the point graph of S.

Instead of starting with a partial linear space, we may start with a regular
(simple) graph T' = (V, E) of degree s(t + 1) and ask whether it is the point
graph of some pls(s, t), or more generally, we may wish to determine all pls(s, t),
up to isomorphism, having I' as point graph. Now such a I' is the point graph
of a pls(s, t) if and only if there is a set C of (s+ 1)-cliques of T forming a spread
of E (i.e. every edge of T" is contained in exactly one element of C), in which
case (V,C) is a pls(s, t) with point graph I'. Indeed, it is not difficult to see that
(the line sets of) a transversal of the isomorphism classes of the pls(s,t) with
point graph I' is given by a transversal of the Aut (I')-orbits on the set of all
sets C of (s + 1)-cliques such that C is a spread of E. Of course such spreads
need not exist; it may even be that I' contains no (s + 1)-clique.

For positive integers s, t, a, a partial geometry with parameters (s, t,a), or a
pg(s,t, @), is a pls(s, t) for which every line L and every point p not on L, there
are exactly « lines through p meeting L. It is well-known that a pg(s,t,«) has
a strongly regular point graph, with parameters

((s+1)(st+a)/a, s(t+1),s—1+ta—-1), (t+ 1)) (1)

(see [1]). A strongly regular graph with parameters of the form (1), with 1 < s,¢
and 1 < a < min{s + 1,t + 1}, is called a pseudogeometric (s,t,a)-graph, and



such a graph is called geometric if it is the point graph of at least one pg(s, t, «).
It is known that in a pseudogeometric (s, t, @)-graph I' having an (s + 1)-clique
C, that every vertex not in C is adjacent to exactly « elements of C, and so a
pseudogeometric (s, ¢, a)-graph I' is geometric if and only if it is the point graph
of a pls(s, t), and every pls(s, t) having I" as point graph is a pg(s, t, a) (see [8]).

The GRAPE package [15] for GAP [6] contains a function PartialLinear-
Spaces to classify the partial linear spaces with given point graph and parame-
ters. (The algorithm used is similar to that independently devised by Reichard
[12].) In general this can be an extremely difficult problem, but this function has
been used successfully with certain pseudogeometric (s, t, «)-graphs to classify
the pg(s,t, ) having these as point graphs. One such application, described
fully in the GRAPE documentation [15], shows that the Haemers partial geome-
try [8], a certain pg(4,17,2), is uniquely determined (up to isomorphism) by its
point graph, as is the dual of the Haemers partial geometry, and each of these
geometries has automorphism group isomorphic to A7. Unfortunately, the prob-
lem of classifying the pg(4,27,2) (whose point graph would be the McLaughlin
graph) seems much too difficult to handle in the same way.

3 The 5-cliques of the McLaughlin graph

In this section we collect some results about the 5-cliques of the McLaughlin
graph. These facts can be easily established using the information on McL and
MecL: 2 contained in the ATLAS [4, pp. 100-101], together with straightforward
calculation in GAP and GRAPE, which the interested reader can find in [16], or
do for herself using the copy of the McLaughlin graph (in GRAPE format) in
the GRAPE package file grh/McL. The automorphism group of this graph can
be obtained using the GRAPE command AutGroupGraph.

Theorem 3.1 Let M be the McLaughlin graph, and let G = Aut (M) =2 McL: 2.
Then M has exactly 15400 mazimal cliques, all of size 5, forming just one G-
orbit. The stabilizer in G of a 5-clique C' is a group H of shape 3}~_+4: 4.S5, the
normalizer in G of a 3A-generated subgroup T of order 3, corresponding to C.
This subgroup T is the centre of the derived subgroup of H, and C is the set
of fized points of T'. In ils action on the set of 5-cliques of M, H has just five
orbits, of sizes
1, 90, 1215, 2430, 11664.

Representative cliques in these orbits have respective intersection sizes
5,2,1,0,0

with C, and the cyclic 3A-subgroups corresponding to these representatives gen-
erate with T respective groups of shapes

3, 3%, 27 Ay, 2° 45, 5123,

4 A group-theoretical condition equivalent to
the existence of a McLaughlin geometry

This short section is independent of the remainder of the paper, but contains a
result we think is worth pointing out.



A McLaughlin geometry would have exactly (275x28)/5 = 1540 lines, and so
if the McLaughlin graph M is geometric it would contain 1540 5-cliques meeting
pairwise in at most 1 vertex. Conversely, if M has a set C of 1540 5-cliques
meeting pairwise in at most 1 vertex, then each vertex of M would have to be
contained in exactly 28 elements of C, and so (V(M),C) would be a pls(4,27)
with point graph M, and so a McLaughlin geometry. From Theorem 3.1, we
see that two distinct 5-cliques of M meet in more than one point (necessarily
in two points) if and only if their corresponding subgroups of order 3 commute.
We have thus proved:

Theorem 4.1 There is a McLaughlin geometry if and only if the McLaughlin
group has a set of 1540 3A-generated subgroups of order 3, no distinct pair of
which commute.

5 A McLaughlin geometry has a small
automorphism group

In this section we consider possible groups of automorphisms of a McLaughlin
geometry M = (P,£). Such a group must be a subgroup of the automor-
phism group of the McLaughlin graph M. Moreover, if H < Aut (M) and
g € Aut (M), then HY < Aut (MY), where HY = g~'Hg, and M9 = (P, LY) is
a McLaughlin geometry isomorphic to M. Hence, we restrict our attention to
conjugacy class representatives of subgroups of McL: 2.

We shall apply the GRAPE package functionality which can classify the
cliques with given vertex-weight sum in a vertex-weighted G-graph (see [14] and
the GRAPE documentation [15]), in order to show that a McLaughlin geometry
cannot have an automorphism of order 2, nor an automorphism in class 3B
or 5B of McL: 2. (This technique has applicability to other pseudogeometric
(s,t,a)-graphs, even very large ones whose (s + 1)-cliques cannot be explicitly
listed.) We also show that a McLaughlin geometry has no automorphism in
class 9AB of McL: 2 (the class 9AB is the union of McL-classes 94 and 9B).

In [11], Mathon describes the computational techniques he used to show that
a McLaughlin geometry has no automorphism of order 5, 7 or 11. Combining our
results with those of Mathon, it follows (see [4, p.101]) that the automorphism
group of a McLaughlin geometry is trivial or a 3-group whose nontrivial elements
are all in class 3A. Consideration of the five possibilities of subgroups generated
by two 3A-elements (see Theorem 3.1) shows that the only possibility is a 3A-
generated subgroup of order 3 (the 32 possibility contains 3B-elements).
Remarks The computations required to obtain the results of this section were
surprisingly quick, and Reichard [13] has since used the methods of Mathon to
verify these results. We plan to apply our methods to larger pseudogeometric
graphs. Reichard has done further work to establish the non-existence of a
McLaughlin geometry having certain line-sets through a point. These line-sets
correspond to certain “point-spreads” of a pg(3,9,1); all the point-spreads of
such a geometry have been determined independently by Reichard and Brouwer
(see [2]).



5.1 Eliminating some possible groups of automorphisms

We make use of the following:

Lemma 5.1 Let S = (P, L) be a pls(s,t) with point graph T, and let H <
Aut (S8). Then there is a set C of H-invariant (s + 1)-cliques of T, such that
each edge of U fized by H is contained in an element of C, and no two distinct
elements of C meet in two or more vertices.

Proof.  Suppose H fixes the edge e of I'. There is just one L € £ containing
e, and if 0 € H then e =¢” C L7, and so L? = L. Thus, the set of H-invariant
edges of I" must be covered by a set C of H-invariant (s + 1)-cliques of I, corre-
sponding to the H-invariant lines of S containing these fixed edges, and so no
two distinct elements of C meet in two or more vertices. |

We shall apply the above lemma to eliminate certain cyclic subgroups H
of McL: 2 as possible groups of automorphisms of a McLaughlin geometry by
showing in these cases the required set C of fixed 5-cliques does not exist.

The McLaughlin graph has just 15400 edges and 15400 5-cliques, and so it
is easy to store these on a computer and to determine which are H-invariant
for a given H < McL: 2. However, we may use GRAPE to directly compute the
H-invariant cliques of a given size (including size 2), as described below.

Let T' be a (finite, simple) graph, and let H < Aut (I"). We define a vertex-
weighted graph A = A(T, H), called the collapsed complete-orbits graph of T'
with respect to H, as follows. We have that v is a vertex of A if and only if v
is an H-orbit of vertices of I as well as a clique of I'. Furthermore, if v is a
vertex of A then its weight is the size of v. Vertices v and w are adjacent in A
if and only if v # w and v U w is a clique of I". Now let N be a subgroup of
Aut (I') such that N normalizes H. Then N permutes the H-orbits of vertices
of I' and preserves the property of being a clique of I' of a given size. We thus
see that N acts on A as a group of vertex-weight preserving automorphisms.
To classify the H-invariant k-cliques of I' up to the action of NV, we may use
GRAPE to first compute A = A(T', H) as an N-graph (see the GRAPE documen-
tation for CollapsedCompleteOrbitsGraph) and then use the GRAPE function
CompleteSubgraphs0fGivenSize applied to A to classify the cliques of A with
vertex-weight sum k (corresponding to the H-invariant k-cliques of I'). We can,
if we desire, then list all H-invariant k-cliques of I'.

We now assume we are given a subgroup H of the group G of automorphisms
of the McLaughlin graph M, together with the set £ of the edges of M fixed by
H and the set C of the 5-cliques of M fixed by H and containing at least one
element of £. We then form a vertex-weighted graph A, with vertex-set C, the
weight of a vertex C' being the number of edges in £ contained in C, and with
two distinct vertices C, D € C adjacent if and only if their intersection has size
at most 1. We then use the GRAPE function CompleteSubgraphs0fGivenSize
to determine whether or not A has a complete-subgraph with vertex-weight sum
equal to |&|, the number of edges fixed by H. If not, then Lemma 5.1 tells us
that H cannot be a group of automorphisms of a McLaughlin geometry.

We apply this method to a set of representatives H of the conjugacy classes
of the non-trivial cyclic subgroups of G = Aut (M), such that H has order 2 or
odd order, and fixes at least one edge of M. These are the groups (x), where x
is in one of the conjugacy classes 2A4,3A,3B,5B,9AB, 2B of G. These groups



have, respectively, 280, 10,37,5,1,66 fixed edges and 56,91,10,0,1,110 fixed
cliques, each containing at least one fixed edge. Applying the above method,
we obtain the following:

Theorem 5.2 The automorphism group of a McLaughlin geometry contains no
element in any of the conjugacy classes 2A,3B,5B,2B of McL: 2.

In particular, since McL: 2 has just two conjugacy classes of involutions,
we have that the automorphism group of a McLaughlin geometry contains no
element of even order.

The above method does not eliminate elements in classes 34 or 9AB (in
both cases the required set of fixed cliques exists), but we can eliminate the
possibility of an automorphism in class 9AB as follows. Let H = (z), where
x € 9AB. Then H fixes just one edge, e = {v,w} say, of M. We then consider
the 5-cliques of M intersecting e nontrivially, and determine that there is no
H-invariant subset D of these cliques, such that the elements of D meet pairwise
in at most one vertex, and the elements of D cover all edges of M incident to
v or w (or both). This is done via further applications of the GRAPE functions
CollapsedCompleteOrbitsGraph and CompleteSubgraphsOfGivenSize.

6 No McLaughlin geometry satisfies the
Axiom of Pasch

A partial geometry satisfies the Aziom of Pasch if for any pair Ly, Ly of distinct
lines meeting in one point z, and any two further lines My, M> each meeting
both L; and L, in one point other than x each, we have that M; and M,
meet (see [5]). In this section, we show that there is no McLaughlin geometry
satisfying the Axiom of Pasch.

As usual, let M be the McLaughlin graph, and G = Aut (M). By The-
orem 3.1 we see that, up to the action of G, there is a unique pair X,Y of
5-cliques meeting in just one vertex, say x. Let x1,xs, 3,24 be the remain-
ing vertices of X. Now x; is adjacent to just two vertices of Y (since M is a
pseudogeometric (4,27, 2)-graph), one of which is z. Call the other y;. As y; is
adjacent to just two vertices of X, these must be x and x;. Similarly, there are
three further vertices y; of Y (i = 2, 3,4), with z; adjacent to z and y; in Y, and
y; adjacent to x and x; in X. Calculation (see [16]) shows that there is only one
set {Z1, Za, Z3, Z4} of four 5-cliques of M with the properties that Z; contains
x; and y; and no other vertex of X or Y, and that, if ¢ # j, then Z; and Z;
meet in exactly one vertex. Hence, if X and Y are lines in a McLaughlin geom-
etry (with point graph M) satisfying the Axiom of Pasch, then Zy, Zs, Z5, Z,
are lines as well. We call P := {X|Y, Z1, Zs, Z3, Z4} the Pasch closure of the
pair {X,Y} of 5-cliques of M (which meet in just one vertex). We remark that
the 3A-subgroups corresponding to the cliques in P generate a subgroup 2- Ag
of G, and that the G-stabilizer of P is of shape 4.5 (these facts are verified
computationally in [16]).

Theorem 6.1 No McLaughlin geometry satisfies the Aziom of Pasch.

Proof.  Let M be a McLaughlin geometry satisfying the the Axiom of Pasch
and having point graph M. Without loss of generality, we assume the line set



of M includes two given 5-cliques X and Y of M meeting in just one vertex, x
say.

Let H be the stablilizer of {X,Y} in Aut (M). Then H (of order 192) acts
on the set C of 5-cliques containing x and meeting neither X nor Y in any other
vertex. (C is the set of candidates for the lines through z in addition to X and
Y.) Now H acting on C has orbit-lengths 96, 64,48,2. Let Cq,C5,C3,Cy be
representatives of the orbits with these respective lengths. For each i = 1,2,3
we set £; = {X,Y,C;}, and then, we add to each £; the elements of the Pasch
closures of {X,Y}, of {X,C;}, and of {Y,C;}, so that each L; has size 15. It
turns out that L3 has 6 pairs of 5-cliques meeting in two points, and so no
cliques in the third H-orbit can be lines of M. For i = 1,2 we attempt to
further enlarge £; by adding to it the elements of the Pasch closures of every
distinct pair of intersecting cliques in the original £; of size 15. After doing this,
|£1] = |L2] = 63, but £; has 15 pairs of cliques meeting in 2 points and Lo has
12 such pairs. We conclude that no cliques in the first or second orbit can be
lines of M. This leaves just the two cliques in the fourth orbit as possible lines
through x together with X and Y, but there should be 28 lines through a point
of M. We conclude that M does not exist. ]
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