
Latin squares and related experimental designs

1 Introduction

A Latin square is an arrangement of v copies of v symbols into a v× v square so that (i) each symbol occurs
once in each row, and (ii) each symbol occurs once in each column. Three distinct Latin squares of order
v = 4 are shown in Example 1. Other than for small v, the number of distinct (non-identical as matrices)
Latin squares is not generally known, though it is known that it grows rapidly with v. For v = 3 the number
of distinct Latin squares is 12, for v = 7 is greater than 6.1× 1013, and for v = 11 is greater than 7.7× 1047;
see Laywine and Mullen (1998, chapter 1).

Our interest in Latin squares is due to their many uses in designing experiments. Suppose you have the
task of comparing wear of drill bits of four different compositions when used in industrial presses. Each day
each of your four press operators will be given a new bit, with wear to be measured at day’s end; this will
be repeated for four days. A Latin square can be employed to block out variation associated with operators
and with days. Consider the first square in Example 1, and identify rows with operators, columns with
days, and symbols with bit compositions. Then operator #1 uses composition #1 on day #1, operator #2
uses composition #3 on day #4, and so on. This design displays a basic fairness of allocation, in that each
composition is exposed once to each operator, and once to each day. Statistically this implies orthogonal
estimation of the operator, day, and composition effects. This is but one example of the many adaptations
of Latin squares for obtaining good experimental designs that will be explored in this chapter.

Before proceeding, one more basic definition is needed. Two Latin squares of order v are said to be orthogonal
(sometimes called a Graeco-Latin pair) if, upon superimposing one square upon the other, every ordered
pair of symbols occurs in the cells exactly once. Check Example 1 and you will see that every pair of squares
has this property; the superimposition of all three squares is displayed in Example 2.I. The set of three
squares is mutually orthogonal. This combinatorial orthogonality of Latin squares translates into statistical
orthogonality of various treatment and blocking factors when exploited in an experimental design. Latin
square designs are valuable because they provide orthogonal estimation, and because they do so with with
relatively little experimental material for given numbers of factors and levels.

2 Latin squares for blocking out two sources of nuisance variation

The example in section 1 illustrates the application of a Latin square as a row-column design for eliminating
two sources of nuisance variation. Given a Latin square, let rows denote levels of one blocking factor,
columns the levels of a second blocking factor, and symbols the levels of your treatment factor. The result
is simultaneously a complete block design (see chapter ???) for treatments with respect to the row blocking
factor and with respect to the column blocking factor.

Let d[i, j] be the treatment appearing in row i, column j of Latin square d (e.g. d[2, 4] = 3 for the first square
of Example 1). Denote by Yij the observation for the run in row i, column j (cell i, j). Analysis of the data
is based on this model:

Yij = µ + ρi + γj + τd[i,j] + Eij (1)

inducing the skeleton ANOVA (put s = 1) in Table 1.I. For ANOVA details, see chapter ???

Use of a Latin square means that each pair of rows, columns, and treatments is statistically orthogonal, one
consequence of which is that estimation of treatment effects is based on treatment data means only. A Latin
square thus provides a simple analysis while removing variation due to two v-level nuisance factors from

1



comparisons of a v-level treatment factor. It does this using only v2 experimental units, far less than the v3

possible combinations of rows, columns, and treatments. This is a highly efficient use of resources.

The drawbacks to this use of a Latin square arise from the requirement that numbers of rows, columns, and
treatments are all equal. What can one do, maintaining orthogonality, if this restriction cannot be met, or
if it leaves too few degrees of freedom for error? These questions are addressed in the following subsections.

2.1 More rows and columns

More levels of the row factor and/or column factor can be accommodated by juxtaposing several Latin
squares. Given ab Latin squares of order v, arrange them into a rows of b squares each, then “paste” them
together to yield an av×bv row-column design. Any ab Latin squares can be used (even ab copies of the same
square). This technique (i) allows some flexibility in numbers of rows and columns while (ii) preserving the
statistical orthogonality properties of a single Latin square and (iii) providing more degrees of freedom for
error. If now d denotes the av×bv design, then the model is still (1), and the skeleton ANOVA becomes that
in Table 1.II. It is also possible to extract degrees of freedom for treatment×row and/or treatment×column
interaction, but how much can be done is design specific, that is, depends on the Latin squares that are
pasted together.

2.2 More squares

Another possibility for gaining error degrees of freedom is multiple Latin squares. If the experiment described
in section 1 is to be run at m sites, each with its own operator and day-to-day variability, then m Latin
squares (identical or different) can be employed. The resulting skeleton ANOVA is in Table 1.VI (put s = 1).
Again, the orthogonality properties of a single Latin square are preserved, so that treatment estimation is
based on means.

2.3 More EUs per cell; semi-Latin squares

The basic Latin square has one experimental unit (EU, run), and thus only one treatment evaluated, per
cell. If we can procure k > 1 EUs per cell in an n× n row-column blocking layout, then v = nk treatments
can be accommodated in each row and column. The design is a semi-Latin square: there are k symbols
(treatments) in each cell so that each symbol appears once in each row and once in each column.

Semi-Latin squares can be found as superimpositions of k Latin squares of order n, each square having
its own set of distinct symbols. Choice of the k squares depends on which of two reasonable models are
employed. For Yijl the measurement on unit l in cell (i, j), they are

Yijl = µ + ρi + γj + τd[i,j,l] + Eijl (2)

and
Yijl = µ + βij + τd[i,j,l] + Eijl (3)

Model (2) is the direct extension of (1), accounting for noise through additive effects for the row and column
nuisance factors. The more detailed model (3) fits a separate noise effect for each cell; this is tantamount
to allowing interaction of the row and column factors. The respective ANOVA skeletons are Table 1.III and
IV. With model (2) treatment analysis is based on means, a consequence of the orthogonality of treatments
to rows and columns. Because treatments need not be orthogonal to cells, treatment analysis with model
(3) is adjusted for the cell blocks. There are also fewer error degrees of freedom with model (3). These are
the tradeoffs for the further variance reduction afforded by the finer model (3).

With model (2), any k Latin squares may be superimposed to form the semi-Latin square, for all such choices
provide orthogonality of rows, columns, and symbols and so are equally efficient. With model (3) the driving

2



consideration is not the rows or the columns, but the cells. The goal is to maximize the efficiency of the block
design formed by the cell blocks. So long as k < n, the best choice is to superimpose k MOLS. A semi-Latin
square formed in the way is called a Trojan square. Example 2.II is a Trojan square (corresponding to
Example 2.I with symbols distinguished). Details on maximal k for n × n Trojan squares are in section 3.
For n = 6, the best semi-Latin square for k = 2 is reported in Bailey and Royle (1997). Bailey (1992) gives
a comprehensive treatment of semi-Latin squares.

Latin and semi-Latin squares use each treatment once in each row and each column. With k EUs per cell,
orthogonality in an n × n row-column design is maintained if each treatment appears nk/v times in each
row and column. A k-depth Latin square is an arrangement of vk copies of v symbols into a v × v square so
that each cell has k symbols, and each symbol occurs k times in each row and in each column.

If when superimposing k Latin squares in the semi-Latin construction above, one takes the symbols to be the
same in each square, then one gets a k-depth Latin square (see Example 2.I). This particular class of designs,
while fully efficient for model (2), is inefficient for (3) due to replication of the same treatment within cell
blocks. The skeleton ANOVA for model (2) is Table 1.I with s = 1 and an additional (k − 1)v2 degrees of
freedom added to error and total.

For model (3), start with a n×n Latin square and a BIBD (chapter ???) for v treatments in n blocks of size
k. Place block i in each cell of the Latin square containing symbol i for i = 1, . . . , n. The resulting n × n
row-column design with k runs per cell is fully efficient for both models (2) and (3). It is a k-depth Latin
square if n = v. Example 2.III displays n = v = 3, k = 2. The standard BIBD analysis applies.

2.4 Other numbers of rows and columns: Youden designs

If one drops a single row from a Latin square, the rows of the resulting (v − 1) × v array are a complete
block design, while the columns are a BIBD. This incomplete Latin square is one version of a class of designs
known as Youden squares. A Youden square is a row-column design with k rows and v columns for which
each treatment appears once in each row, and columns are blocks of a BIBD. Every Youden square is an
incomplete Latin square, though the converse is not true.

Rows and columns may be added by joining separate Youden designs and Latin squares. Paste columns of
t Youden squares into a k × tv array, then add a pasting of at Latin squares as in section 2.1, to produce
a (k + av) × tv row-column design called a regular generalized Youden design. With the standard row-
column model (1) the skeleton ANOVA is Table 1.V. Since treatments are orthogonal to rows, the treatment
adjustment is for columns only.

Here is the general idea. Start with any incomplete block design, with v treatments in b blocks of size k.
Thinking of the blocks as columns, paste them into a k × b row-column array. If the treatments are equally
replicated, and if b is a multiple of v (so b = tv for some t), then the treatments can be ordered within
the columns so that each treatment appears t times in each row. This is now a row-column design with
treatments orthogonal to rows; treatment estimates are the same as for the original block design without the
row factor. If more rows are needed, it can be extended to a (k + av) × tv row-column design using Latin
squares as explained above and with the same skeleton ANOVA.

3 Designs based on MOLS

The Trojan squares of section 2.3 are built using mutually orthogonal Latin squares, or MOLS. Here other
designs based on or related to MOLS will be described. The common theme is that of adding more factors to
the designs of section 2, maintaining orthogonality without changing the amount of experimental material.
But first a basic question must be addressed: how many MOLS of a given order are there? Let N(v) be
the largest number of MOLS of order v. Then N(v) ≤ v − 1 for every v, and N(v) = v − 1 for v that is a
prime number or a power of a prime number. Example 1 provides N(4) = 3 MOLS of order 4. While upper

3



bounds sharper than v − 1 are known for some other v, and N(v) ≥ 2 for all v > 6, determining the exact
value of N(v) is a daunting (to say the least) combinatorial problem. For v ≤ 20 not a prime power, it is
known that N(6) = 1, N(10) ≥ 2, N(12) ≥ 5, N(14) ≥ 3, N(15) ≥ 4, N(18) ≥ 3, and N(20) ≥ 4. For a
catalog of known MOLS for every v ≤ 56 along with further results, see Abel, Colbourn, and Dinitz (2006).

3.1 Row-column designs with more blocking and/or treatment factors

Let’s introduce a third blocking factor, four suppliers of parts to be drilled, to the drill bit experiment
described in section 1. The original design, with rows for operators, columns for days, and symbols for drill
bits, is the first Latin square in Example 1. Let the levels of supplier be the symbols in the second square.
Superimposing the two squares, we see, for instance, that operator 1 on day 2 uses drill bit composition 3
on parts from supplier 2. The pair of MOLS means that each supplier’s parts are used once with each bit
type, once on each day, and once by each operator. That is, the supplier factor is orthogonal to the three
factors operator, day, and bit type (which, as we already know, are orthogonal to one another). The third
blocking factor has been introduced without requiring any further experimental runs, and without changing
that treatment effects are estimated by data means.

The example shows that two superimposed MOLS provide a design for comparing v treatments using v2 runs
subject to three v-level blocking factors. In the same way, s superimposed MOLS provide a design comparing
v treatments using v2 runs subject to s + 1 v-level blocking factors; effects of all factors are orthogonal to
one another. For the drill bit example, the symbols in the third square of Example 1, used as levels of a
fourth blocking factor, produce the design in Example 2.I.

Another advantage of the orthogonality is that any of the blocking factors could alternatively be used as a
treatment factor, so long as estimation of treatment interactions is not required. Thus s MOLS are designs
for f v-level treatment factors using v2 runs subject to s+2−f v-level blocking factors, for any 1 ≤ f ≤ s+2.
Table 1.I shows the skeleton ANOVA. Each of the first s + 2 rows is identified with either a blocking factor
or a treatment factor. Because only main effects, and no interactions, of treatment factors are estimable,
these are called (blocked) main effects plans. The case f = s + 2 demonstrates that s MOLS are equivalent
to a strength two orthogonal array (see chapter ???) with v2 runs on s+2 v-level factors.

3.2 More rows and columns

The designs of section 2.1 can also incorporate more blocking (or treatment) factors through orthogonal
mates. An av × bv array with one symbol per cell is an F-rectangle (F-square if a = b) if each of v symbols
occurs b times in each row and a times in each column; the designs of section 2.1 are F-rectangles. Two
F-rectangles are orthogonal if superimposition produces each ordered pair of symbols in ab cells. Mutually
orthogonal F-rectangles admit the same applications as described for MOLS in section 3.1, with now the row
and column factors having av and bv levels (and thus av− 1 and bv− 1 df) respectively. A set of s mutually
orthogonal F-rectangles is equivalent to a mixed level, strength 2 orthogonal array with s + 2 columns. For
examples of mutually orthogonal F-squares, and for further references, see Laywine and Mullen (2006).

3.3 More squares

Orthogonal mates can likewise be found for sets of m Latin squares in section 2.2. A collection of s ordered
sets, each containing m Latin squares of order v, is an (s, m) orthogonal collection if, on superimposition of
the m corresponding squares of any two sets, each ordered pair of symbols occurs m times. MOLS are the
special case m = 1.

The symbols in a given set of m squares, the same for each of these m squares, are levels of additional v-level
treatment factors. With s = 2 and m = 3, for example, the experiment of section 1 could be run at 3 sites,

4



each with its own days and operators, but evaluating levels of two treatment factors: drill bit composition
and (say) lubricant. The skeleton ANOVA is Table 1.VI.

Let Nm(v) be the largest s for an (s,m) collection of order v. Then N(v) ≤ Nm(v) ≤ m(v − 1). Known
values of Nm(v) for small m and v are N2(2) = 2, N3(2) = 1, N4(2) = 4, N2(3) = 2, N3(3) = 6, N4(3) = 2,
N2(4) = 5, N3(4) = 4, N4(4) = 12, N2(5) ≥ 4, N3(5) ≥ 6, N4(5) ≥ 5. Also, N2(6) ≥ 4, that is, at least four
orthogonal six-level factors can be accommodated in two 6 × 6 squares, while N1(6) ≡ N(6) = 1. Designs
and further details may be found in Morgan (1998).

3.4 More EUs per cell

It is not possible to add orthogonal v-level treatment factors to semi-Latin squares, for they have less than
v2 experimental units. However, this can be done for the other designs in section 2.3.

Starting with an (s, k)-orthogonal collection of Latin squares of order v, we can make a v × v row-column
design with k units per cell for s orthogonal treatment factors. The symbol in cell (i, j) of square u (= 1, . . . , k)
in set w (= 1, . . . , s) of the collection is the level of factor w that appears on unit u in cell (i, j) of our design.
If s = 1 this is a k-depth Latin square of section 2.3; if k = 1 it is the design of section 3.1. Relative to
the k-depth square, s − 1 additional orthogonal treatment factors have been incorporated; relative to a set
of MOLS, incorporating k EUs per cell has increased error degrees of freedom by (k − 1)v2. The skeleton
ANOVA is Table 1.I with an additional (k−1)v2 degrees of freedom added to error and total. Example 2.IV
has five 4-level factors in a 4 × 4 design with k = 2 units per cell. Like a single k-depth Latin square, this
design is fully efficient for model (2) but inefficient for model (3).

The design in the last paragraph of section 2.3 can accommodate orthogonal treatment factors by replacing
the BIBD with an orthogonal set of BIBDs. Orthogonal sets of BIBDs may be found in Morgan and Uddin
(1996). The orthogonality of treatment factors is after adjusting for the cell blocking factor in model (3).

3.5 Orthogonal Youden designs

It is sometimes possible to add orthogonal treatment factors to regular generalized Youden designs. Here,
too, the orthogonality of treatment factors is after adjusting for the column blocks. See Morgan and Uddin
(1996).

4 Discussion

This paper provides an overview of the chief uses of Latin squares for designs for industrial and manufacturing
experiments. The designs combine orthogonal estimation with an economy of experimental units, providing
for both blocking and treatment factors. While the variants presented offer flexibility in numbers of rows,
columns, factors, etcetera, there are many experimental possibilities that are not amenable to the inherent
restrictions of Latin squares. In such cases orthogonality is sacrificed.

Specialized Latin squares have been employed in experimental situations not discussed above, including the
following. Row-complete Latin squares, including Williams squares, are used as crossover designs (also called
changeover or repeated measures designs); see Hinkelmann and Kempthorne (2005, chapter 19). Quasi-
complete Latin squares are row-column designs with non-directional neighbor balance as discussed in Bailey
(1984) and Morgan (1988). Hedayat (1973) examines designs based on self-orthogonal Latin squares. Gerechte
squares (Bailey, Kunert, and Martin, 1990) are Latin squares with a third blocking factor orthogonal to
treatments but not to rows or columns. When v = 9 they are popularly known as completed Sudoku squares.

5



REFERENCES

Abel, R. J. R., Colbourn, C. J., and Dinitz, J. H. (2006). Mutually orthogonal Latin squares (MOLS).
In The CRC Handbook of Combinatorial Designs, 2nd Ed., Eds. C. J. Colbourn and J. H. Dinitz, CRC Press,
Boca Raton.

Bailey, R. A. (1984). Quasicomplete Latin squares: construction and randomization. J. Roy. Statist. Soc.
Ser. B 46, 323–334.

Bailey, R. A. (1992). Efficient semi-Latin squares. Statistica Sinica 2, 413–437.

Bailey, R. A., Kunert, J., and Martin, R. J. (1990). Some comments on Gerechte designs I: Analysis
for uncorrelated errors. J. Agron. Crop Sci. 165, 121–130.

Bailey, R. A. and Royle, G. (1997). Optimal semi-Latin squares with side six and block size two. Proc.
Roy. Soc. London Ser. A 453, 1903–1914.

Hedayat, A. (1973). Self orthogonal Latin square designs and their importance. Biometrics 29, 393–396.

Hinkelmann, K. and Kempthorne, O. (2005). Design and analysis of experiments, Vol. 2: Advanced
experimental design. John Wiley & Sons, New York.

Laywine, C. F. and Mullen, G. L. (1998). Discrete mathematics using Latin squares. John Wiley &
Sons, New York.

Laywine, C. F. and Mullen, G. L. (2006). Frequency squares and hypercubes. In The CRC Handbook
of Combinatorial Designs, 2nd Ed., Eds. C. J. Colbourn and J. H. Dinitz, CRC Press, Boca Raton.

Morgan, J.P. (1988). Balanced polycross designs. J. Roy. Statist. Soc. Ser. B 50, 93–104.

Morgan, J. P. (1998). Orthogonal collections of Latin squares. Technometrics 40, 327–333.

Morgan, J.P. and Uddin, N. (1996). Optimal blocked main effects plans with nested rows and columns
and related designs. Annals of Statistics 24, 1185–1208.

6



Example 1. Three 4× 4 Latin squares. These squares are mutually orthogonal.

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

1 2 3 4
4 3 2 1
2 1 4 3
3 4 1 2

Example 2. Various designs based on Latin squares.

I :

1, 1, 1 2, 2, 2 3, 3, 3 4, 4, 4
2, 3, 4 1, 4, 3 4, 1, 2 3, 2, 1
3, 4, 2 4, 3, 1 1, 2, 4 2, 1, 3
4, 2, 3 3, 1, 4 2, 4, 1 1, 3, 2

II :

1, 5, 9 2, 6, 10 3, 7, 11 4, 8, 12
2, 7, 12 1, 8, 11 4, 5, 10 3, 6, 9
3, 8, 10 4, 7, 9 1, 6, 12 2, 5, 11
4, 6, 11 3, 5, 12 2, 8, 9 1, 7, 10

III :
1, 2 2, 3 1, 3
1, 3 1, 2 2, 3
2, 3 1, 3 1, 2

IV :

(1, 4, 2, 3, 3), (3, 3, 3, 3, 3) (2, 2, 3, 4, 1), (4, 1, 2, 4, 1) (3, 1, 1, 2, 4), (1, 2, 4, 2, 4) (4, 3, 4, 1, 2), (2, 4, 1, 1, 2)
(2, 3, 1, 4, 4), (4, 4, 4, 4, 4) (1, 1, 4, 3, 2), (3, 2, 1, 3, 2) (4, 2, 2, 1, 3), (2, 1, 3, 1, 3) (3, 4, 3, 2, 1), (1, 3, 2, 2, 1)
(3, 2, 4, 1, 1), (1, 1, 1, 1, 1) (4, 4, 1, 2, 3), (2, 3, 4, 2, 3) (1, 3, 3, 4, 2), (3, 4, 2, 4, 2) (2, 1, 2, 3, 4), (4, 2, 3, 3, 4)
(4, 1, 3, 2, 2), (2, 2, 2, 2, 2) (3, 3, 2, 1, 4), (1, 4, 3, 1, 4) (2, 4, 4, 3, 1), (4, 3, 1, 3, 1) (1, 2, 1, 4, 3), (3, 1, 4, 4, 3)

(I)

Source df
rows v − 1

columns v − 1
symbols in square 1 v − 1

...
...

symbols in square s v − 1
error (v − 1)(v − s− 1)
total v2 − 1

(II)

Source df
rows av − 1

columns bv − 1
treatments v − 1

error (av − 1)(bv − 1)− (v − 1)
total abv2 − 1

(III)

Source df
rows n− 1

columns n− 1
treatments nk − 1

error (nk − 2)(n− 1)
total n2k − 1

(IV)

Source df
cells n2 − 1

treatments (adj) nk − 1
error (nk − n− 1)(n− 1)
total n2k − 1

(V)

Source df
rows k + av − 1

columns tv − 1
treatments (adj) v − 1

error (tv − 1)(k + av − 1)− (v − 1)
total tv(k + av)− 1

(VI)

Source df
squares m− 1

rows(squares) m(v − 1)
columns(squares) m(v − 1)
symbols in set 1 v − 1

...
...

symbols in set s v − 1
error (v − 1)(v − s− 1) + (m− 1)(v − 1)2

total mv2 − 1

Table 1: ANOVA skeletons for various applications of Latin squares (see text)

7


