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Abstract

Given a finite partially ordered set X, and, for each z in X, an association
scheme on a set ,, we show how to define an association scheme on [], €,
in a way that specializes to iterated crossing and nesting when X is series-

parallel. The character table of the new association scheme is found.



1 Background

An association scheme of rank r on a finite set 2 is a partition of Q x € into

r subsets whose adjacency matrices Ag, A1, ..., A,_1 in R®*? satisfy:

(1) Ay = I, the identity matrix on €;

(2) fori=0,...,7—1, A = A;, where AT denotes the transpose of the
matrix A;
(3) fori, j=0,...,7—1, A;A; is a linear combination of Ay, ..., A,_1.

Note that Z;.:é A; = Jo, the all-1 matrix over €2, and that each A;Jq is a
scalar multiple of Jg. See [3].

There are two methods of combining two association schemes, called
crossing and nesting in the statistical literature. For ¢t = 1, 2, let Q; be
an association scheme on €2; whose adjacency matrices are Ay; for i =0, ...,
ry — 1. Crossing Q; and Q, produces the association scheme Q; x Qs on
0 x Qy whose adjacency matrices are A;; ® Ay; for 0 < 7 < r; — 1 and
0 < j <ry—1; this is called the direct product. Nesting Qs within Q; pro-
duces the association scheme Q;/Qs, also called the wreath product, whose
adjacency matrices are Ay; ® Jg,, for 1 < i < ry — 1, and Io, ® Ay, for
0<3<r,—1.

The crossing operator is commutative and associative (up to isomorph-
ism), and essentially corresponds to the 2-element antichain. By contrast,
the nesting operator is not commutative but is associative: the foregoing con-
struction corresponds to the 2-element chain in which 2 < 1. Iterated cross-

ing and nesting can lead to an association scheme such as (Q; x Qs)/Q3/Qy,



which corresponds to the following partially ordered set.
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Only series-parallel posets arise in this way. The goal of this paper is to give
a poset operator for combining association schemes indexed by an arbitrary
finite poset. The operator should specialize to iterated crossing and nesting
if the poset is a series-parallel one.

The equivalent problem has already been solved for transitive permuta-
tion groups. If G is a transitive group of permutations of {2 then the orbits
of G on Q x Q form a homogeneous coherent configuration [5], which is a

generalization of association scheme in which (2) is weakened to
(2) fori=1,...,r— 1, there is an index i* such that A] = A;-.

For t = 1, 2, let G; be a transitive group of permutations of €2;, with
corresponding homogeneous coherent configuration Q,. The partition of
(1 x Qy) x (21 x Q9) into the orbits of the permutation direct product
G1 x G4 is precisely Q; x Q,, while the partition of (£2; x Q) x (21 X ) into
the orbits of the permutation wreath product Gy wr G is precisely Q;/Qs.

The generalized wreath product of transitive permutation groups indexed
by a finite poset was given in [2]. In that paper, the main work was in
finding the correct definition of the action of the generalized wreath product,
finding the correct form for the orbits and proving that they were indeed
orbits. There was no need to prove an analogue of condition (3), because

that condition is automatically satisfied for adjacency matrices of orbits of a



permutation group. In this paper we “find” the correct adjacency matrices for
the generalized wreath product of association schemes by simply mimicking
the result for permutation groups: this is done in Section 2. Now the proof
of condition (3) does require some work, and we put part of this into some
technical lemmas before the main theorem.

Paper [2] concludes by giving the irreducible subspaces of the permuta-
tion representation of the generalized wreath product in terms of those of the
components. The analogue for an association scheme consists of the mini-
mal idempotents and the character table. This is dealt with in Section 3.
Again, the correct form is obtained by mimicking the result from permutation
groups. Having guessed eigenspaces correctly, it is a straightforward matter
to demonstrate that they are indeed eigenspaces, finding the eigenvalues in

the process.

2 Constructing the association scheme

For the remainder of this paper, X is a finite poset. For x in X, Q, is an
association scheme on a set €2, which is finite of cardinality at least two; the
rank of Q, is r, and the adjacency matrices of Q, are A,; for i in an index
set I, of cardinality r,. We abbreviate I, and Jg, to I, and J,, and choose
the labelling of IC; so that A, = I,. Put Q =], ¢ Q.

A subset Y of X is called an antichain if, whenever x < y, then not both

of x and y are in Y. For each antichain Y define
UplY)={reX:JyeY, y<uz},

Down(Y)={zeX:3yeY, z<y}.



Also, let A(Y') be the set of {0, 1} matrices in R®*% of the following form

QR Le@®A,® @ .

x¢Y UDown(Y) yey z€Down(Y")

where, for each y in Y, i, € K, \ {0}. Thus

AY) =[]0y — 1.

yey

Put A= A(Y), and let A be the span of A over R.

antichains Y

This collection of matrices is more natural than it appears at first sight.
For each x, the z-th component is either an adjacency matrix of Q, or is J,.
The whole idea of the partial order in the wreath product is that, for «, 3
in , if z < y then we are not interested in the relationship between «, and

3. unless o, = 3,: thus the z-component must be J, unless the y-component

is 1. The matrices in A are precisely those that satisfy this condition.

Example The smallest poset which is not series-parallel is the following

poset N.

Its antichains are 0, {1}, {2}, {1,2}, {3}, {2,3}, {4} and {3,4}. Table 1
shows Down(Y") and A(Y) for each of these antichains Y.

For x in X, let A, be the Bose-Mesner algebra of Q,; that is, A, is the
span over R of the adjacency matrices of Q,. Define B in @), A; to be
nice if, whenever x < y, either B, is a scalar multiple of J, or B, is a scalar

multiple of I,. Let B be the set of nice matrices.

Lemma 1 The sum of the matrices in A is Jq.



Y  Down(Y) A(Y)

0 0 {LHhoLel® I}
{1} {3,4} {4, LR 3@ Jy: 1 <i<r —1}
{2} {4} {h©Ay @@ Ji:1<j<r,—1}
{1,2}  {3,4} {Ai® A @30 J,:1<i<r —1, 1<j<r,—1}
{3} 0 {hehLh®Ay®Iy:1<1<r;—1}

{273} {4} {[1®A2j®Agl®J41§]§T2—171§l§7“3—1}
{4}
{3,4}

0 {(hehLh®L® Ay, 1<m<r,—1}
0 {holhb®Ay ® Ay 1 <1<r5—1, 1 <m <ry—1}
Table 1: Set of adjacency matrices corresponding to each antichain in the

poset N

Proof For each antichain Y, put
By= & Lo@L-L)e Q /.
2¢Y UDown(Y) yey z€Down(Y')
Then By is the sum of the matrices in A(Y'). As shown in [1], the poset X
defines a structure on €2 called a poset block structure, which in turn de-
fines an association scheme on ) whose adjacency matrices are the By for

antichains Y. Hence

Z By =Jo. m

antichains Y

Lemma 2 (a) For each antichain Y, every matriz in A(Y") is in B.
(b) The set B is closed under matriz multiplication.
(c) If B is nice then B € A.

Proof (a) Suppose that B € A(Y) and « < y. If B, # I, then y €
Y UDown(Y) so x € Down(Y') and B, = J,.
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(b) Suppose that B and C are in B and = < y. If either B, or C, is a
scalar multiple of J, then so is B,C,. Otherwise, both B, and C, are

scalar multiples of I, and then so is B,C),.

(c) If B is a nice matrix then B is a linear combination of nice matrices all
of whose components are either adjacency matrices or .J, so it suffices
to consider a nice matrix B which is itself of this form. Put M =
{re X :B,#1I,, B,# J,}. Then M is an antichain and B, = J,
whenever € Down(M). Let P ={z € X : 2 ¢ Down(M), B, = J,}.
Put B = ®x¢P B, and Jp = Q) ,cp Ja-

For each antichain @ in P, let Downp(Q) = Down(Q) N P and define
Ap(Q) analogously to A(Q) but with indices restricted to P.

If z € @ and y € M then z £ y, because x ¢ Down(M), and y £ x,
because B, = J, and B is nice. Therefore M U () is an antichain. If
x € Down(Q) then B, = J, so x € Down(M)U P, so Down(M UQ) =
Down(M) U Down(Q) = Down(M) U Downp(Q). This shows that if
C € Ap(Q) then B C € A(MUQ) C A. Now, B = B® Jp, and

Lemma 1 for P shows that Jp is the sum of the matrices in
U  4r)
antichains QCP

so B is a sum of elements of A and is therefore in A. =

Theorem 3 The matrices in A are the adjacency matrices of an association

scheme on ).

Proof Lemma 1 shows that the corresponding subsets form a partition of
Q x Q. The empty set is an antichain and A(0)) = {Iq}. Each component of

every matrix in A is symmetric, so every matrix in A is symmetric. Parts (a)



and (c) of Lemma 2 show that A = B, so part (b) of Lemma 2 shows that

A is closed under matrix multiplication. m

Definition Call the association scheme in Theorem 3 the generalized wreath

product of the association schemes O, over the poset X.

Remark The same construction can be applied to homogeneous coherent
configurations, in which case the generalized wreath product is also a homo-

geneous coherent configuration.

Theorem 4 The generalized wreath product over the poset X is the same as

the result of iterated crossing and nesting if X is a series-parallel poset.

Proof The proof is by induction on the cardinality of X. If X = {z} then
the antichains are () and X: A(0) = {I,} and A(X) = {A,; :i € K, \ {0}},
so the generalized wreath product is just Q,.

Now suppose that X is the disjoint union of non-empty series-parallel
posets (Xi,<;) and (X3, <,), for both of which the result is true. That
is, for t = 1, 2, after crossing and nesting, the adjacency matrices of the
association scheme Q; on (); have the form

X Le@A,o &Q

x¢Y:UDowny (Y3) yeYy z€Down¢(Yz)

for some i, in K, \ {0}, where Y; is an antichain in X, and Down, is defined
for X; analogously to Down for X. Let A;(Y;) be the set of such matrices for
each fixed antichain Y; in X;.

Crossing corresponds to taking the cardinal sum of (X7, <;) and (X3, <5)

to obtain the partial order on X defined by
reX,yeXjandx <,y or
r <y if

r € Xy, y€ Xoand x <5 y.

10



Each antichain Y in X is the disjoint union of antichains Y; and Y5 with
Y1 € X; and Yy € Xs; moreover, Down(Y) = Down;(Y;) U Downy(Y3).
Thus the tensor product of an element of A;(Y;) with an element of A5(Y3)
gives an element of A(Y'), and all elements of A(Y') are of this form; that is
AY)={C®D:C e A (Y1), D € Ay(Y3)}. Thus Q; x Qs is the generalized
wreath product over (X, <).

Nesting corresponds to taking the ordinal sum of (X, <;) and (X, <)

to obtain the partial order C on X defined by
re X, yeXjand x <;y or

rCy if r€ Xg,ye Xoand x <oy or
r € Xy and y € X;.
If Y] is a nonempty antichain in X; then Y] is an antichain in X, and
Down(Y;) = Down;(Y7) U Xs. If C € A;(Y1) then the nesting construc-
tion gives the adjacency matrix C' ® Jg,, which is in A(Y;): moreover, all
elements of A(Y;) arise in this way. All other antichains Y5 in X are anti-
chains in X5. For D in Ay(Y3) the nesting construction gives the adjacency
matrix Io, ® D, which is in A(Y3) because X; C X \ Y5 \ Downy(Y5); more-
over, all elements of A(Y3) arise in this way. Thus Q;/Q, is the generalized

wreath product over (X,C). =

3 The character table

The Bose-Mesner algebra of an association scheme is commutative and so
its matrices are simultaneously diagonalizable. Thus if Q is an association
scheme of rank r on a set 2 then R® is the direct sum of mutually orthogonal
spaces Wy, ..., W,._; which are contained in eigenspaces of every adjacency
matrix: see [4, Chapter 17]. Statisticians call these subspaces strata; the

orthogonal projectors onto them, which are themselves in the Bose-Mesner
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algebra, are variously called minimal idempotents or stratum projectors. The
table of the eigenvalues is called the character table of the association scheme.

The strata and character table for crossed and nested association schemes
were found in [6] in terms of the strata and character table of the components.
In this section we do the same thing for generalized wreath products.

For z in X, suppose that the strata for Q, are W, for e in an index
set &, of cardinality r,, where the labelling is chosen so that W, is the
one-dimensional space consisting of the constant vectors. Let T, be the
orthogonal projector onto W, so that T, = n;'J, where n, = |Q,|. For e
in &, \ {0}, let S, be the projector onto W,.. Let A, (i, e) be the eigenvalue
of Ay on Wy, for i in IC; and e in &,. In particular, A\,(0,e) = 1 for all e
and A, (4,0) is equal to the constant row sum k,; of A,;.

For each antichain Y of X, let S(Y') consist of all matrices of the form

® Le@se @ T

z€Up(Y) yey 2¢YUUp(Y)

which is the orthogonal projector onto the space

R R*Q@QW,e, @ K W

z€Up(Y) yey 2¢YUUp(Y)

we make the restriction that e, € &, \ {0} for y in Y. We shall show that

these spaces are the strata for the generalized wreath product. Put S =
Usntichains v 5 (Y)-

Theorem 5 The elements of S are the stratum projectors for the generalized
wreath product Q. Moreover, if C' is the adjacency matrix

R Le@A,e &K J

x¢ZUDown(Z) yeZ z€Down(Z

in A(Z) and W is the stratum

& BreQWne & W

zeUp(Y yey z¢YUUp(Y

12



whose projector D is in S(Y'), then the eigenvalue of C on W is equal to 0
if Down(Z)NY # 0 and is equal to

zeZ\Y reEZNY z€Down(Z)

otherwise.

Proof For each antichain Y, put
By= Q& LoQQU,-T)o K T.
z€Up(Y) yey 2¢YUUp(Y)

The projectors in S(Y) are non-zero and pairwise orthogonal, because they
have orthogonal components for at least one index y in Y. Their sum is Ey.
The matrices Ey, over all antichains Y, are the stratum projectors for the
poset block structure on §2 defined by X, so they are pairwise orthogonal
and sum to Iq.

The size of S is

Z H(Ty—l)v

antichains Y yeY
which is equal to the rank of Q. Thus it suffices to show that each putative

stratum is contained in an eigenspace of every adjacency matrix, in other
words that C'D is a scalar multiple of D for all C'in A(Z) and all D in S(Y),
for all antichains Y and Z. This demonstration also gives the eigenvalues.

First suppose that Down(Z) NY # (. Now J,S,., = 0 for all z in
Down(Z)NY, so CD = 0.

Secondly suppose that Down(Z) N'Y = (). Then there are no pairs y, 2
with y in Y, z in Z and y < z. Hence Z N Up(Y) = Down(Z) N Up(Y) = 0.
If « ¢ ZUDown(Z) then C,D, = I,D, = D,. If x € Z then D, is a stratum
projector for Q, so C,D, = A\.(iy,e,)D, if x € Y and C,D, = ky;, D, if
x ¢ YUUpY). If z € Down(Z) then z ¢ Y U Up(Y) so C,D, = J, T, =
ngdl, =n;D,. m
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Example Tables 2—-3 show part of the character table for the generalized
wreath product of association schemes Q;, ..., Q4 over the poset N. There
is one row for each antichain Z, showing one adjacency matrix in A(Z). Here
i€ K\ {0}, 7€ Ko\ {0}, 1 € K3\ {0} and m € K4\ {0}. There is one
column for each antichain Y, showing one stratum projector in S(Y). Here
ec & \{0}, fe&\ {0}, g€ &\ {0}, and h € & \ {0}. The entries in the

body of the table are the relevant eigenvalues.
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NeIL,eIT;T),

S1e T, @T5 @ Ty

T ® Sy @T3@Ty

Ste @ Soy @ T3 @ Ty

LRL®I3® 1y

A LR J3R Jy

]1®A2j®]3®<]4

A ® Ay ® Js® Jy

L®l®Ay® Iy

I @ Ay @ Ay ® Jy

LI, ®Is® Ay,

L@ ®As @ Ay

k1ingna

ijTL4

kliijn3n4

k2j kaing

k4m

k?;l k4m

A1 (i, e)ngng

k?an4

)\1 (2, 6)]€2j7’b3714

kSl

ks j Faing

k4m

k3l k4m

k1ingna

)\2(j7 f)n4

k1ix2 (g, f)nsna

k3l

Xa(F, f)ksina

k4m

k?;l k4m

A1 (i, €)ngng

>\2(j> f)”4

A1(i, )Xo (g, f)nsng

kSl

Ao (4, f)ksina

k4m

k3l k4m

Table 2: Character table for the generalized wreath product over the N poset:

one associate class per antichain and strata for four antichains
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I ®T,® 53, @Ty

I ® Sop ® Sz @ T}

]1®12®T3®S4h

I @ Iy ® S35 ® Sup,

LRL®I3® 1y

A LR J3R Jy

]1®A2j®]3®<]4

A ® Ay ® Js® Jy

L®L®A;® 1,

I @ Ay @ Ay ® Jy

L@, ®I3@ Ay

L@ ®As @ Ay

k2jn4

)\3(l> g)

k2j)\3(l> 9)”4

k4m

)\3(l> g)k4m

)\2(j7 f)n4

>\3(l> g)

A2 (7, F)As(l, g)na

k4m

)\3(l7g>k4m

)\4(771, h)

k?3l )\4 (m, h)

)\3(1{:7 g)

)\4(771, h)

)\3(1{?, g))\4(m, h)

Table 3: Character table for the generalized wreath product over the N poset:

one associate class per antichain and strata for the four other antichains
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