1

This paper starts from the observation that there are striking similarities
among Steiner triple systems, Latin squares, and 1-factorisations of com-
plete graphs. For all three cases, the number of designs of admissible or-
der grows rapidly (the logarithm of the counting function is asymptotically
cn?logn), and almost all of these designs admit no non-trivial automor-
phisms. There are similar results about subdesigns (we prove such a result
for 1-factorisations in this paper). Moreover, as we will see, very similar
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Abstract

This paper defines a class of designs which generalise t-designs, re-
solvable designs, and orthogonal arrays. For the parameterst =2, k =
3 and A = 1, the designs in the class consist of Steiner triple systems,
Latin squares, and 1-factorisations of complete graphs. For other val-
ues of t and k, we obtain t-designs, Kirkman systems, large sets of
Steiner triple systems, sets of mutually orthogonal Latin squares, and
(with a further generalisation) resolvable 2-designs and indeed much
more general partitions of designs, as well as orthogonal arrays over
variable-length alphabets.

The Markov chain method of Jacobson and Matthews for choosing
a random Latin square extends naturally to Steiner triple systems and
1-factorisations of complete graphs, and indeed to all designs in our
class with ¢t = 2, £ = 3, and arbitrary A, although little is known
about its convergence or even its connectedness.

Introduction

Markov chains can be defined for all three types.

We define a concept which, in the case t = 2, k = 3, A = 1, gives precisely
these three types of design, but which has generalisations to arbitrary ¢-

designs, resolvable designs, and orthogonal arrays.

We use the notation ()k() to denote the set of all k-subsets of the set X.
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2 Definition and basic properties

Let t,k, A be given positive integers with A > 0 and £k > ¢t > 0 Let k =
(k1,...,kn) be a composition of k (that is, a tuple of positive integers with
sum k), and let v = (vy,...,v,), where v; > k; for all i. Then we define
a t-(v,k, \) design to consist of an m-tuple X = (X1,...,X,,) of pairwise
disjoint sets with | X;| = v; for i =1,...,m, and a set

with the following property:

if t = (t1,...,tn) is a t-tuple of integers with sum ¢ satisfying
0<t; <kfori=1,...,m, then for any choice T = (T1,...,Ty,)
with T; € (f) for i« = 1,...,m, there are precisely A members
K= (Ky,...,K,) € B for which T; C K; fori=1,...,m.
The order of the design is the m-tuple v.
Note that, in the case when k = (k), v = (v), this is precisely the
definition of a t-(v, k, \) design.
There are some necessary conditions on the order which must be satisfied
in order for a design to exist.

Proposition 1 Suppose that at-(v,k, \) design B exists withk = (ky, ..., kny)

and order v = (vi,...,vy), with |B| = b. Then, for any m-tuple t =
(t1, ..., tm) summing to t with 0 <t; < k; fori=1,...,m, we have

2i{ER ]

The proof is straightforward counting.

This theorem gives necessary conditions for the existence of a design.
As well as divisibility conditions (as we expect from the case of ¢-designs),
sometimes it follows directly from the parameters that no non-trivial designs
can exist.

Here is an example. Let t =2, k =4, k = (2,2), and v = (v1,v2). Then
we have

4b = Avyvs,
. (%1 _ (%)
0= 5)=6)
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giving equations vy = vq, v1 = 2(vy — 1), v9 = 2(v; — 1), solvable only in the
trivial case v = vy = 2.

In fact, it is straightforward to check that, for t = 2 and k£ = 4, the only
partitions k allowing non-trivial designs are (4), (1,1,1,1), and (3,1). Tt
seems that this phenomenon occurs for 1 <t < k£ — 1, but not for ¢t =1 or
t =k —1 (see below).

Proposition 2 Suppose that a t-(v,k, \) design exists withk = (ki1, ..., ky)
and order v = (vy,...,vy). Suppose that the t-tuple t = (t1,...,t,) has sum
t and satisfies 0 < t; < k; fort =1,...,m. Suppose also that, for fired p # q,
we have t, > 0 and t, < k;. Then

(kp —tp + 1)(vg — t4) = (kg — tg) (v, — t, + 1).

Proof Putt, =1t,—1,t, =1t,+1, and t; = ¢; for i # p,q. The numbers
1y, tr also sum to t and satisfy 0 < ¢} < k; for all i. So we can apply the
previous proposition to obtain two expressions for b. Equating them gives
the result.

Corollary 3 A necessary condition for the existence of a 1-(v,k, \) design
is that v; /k; is constant fori =1,...,m. Moreover, if v; = rk; for 1 <i <m,
for a fixed integer r, then such a design exists.

Proof The only way of applying the proposition is with ¢, = 1 and ¢, = 0,
when it gives k,v, = vyk,, giving the result.

Now if v; = rk; for all 7, choose a partition of X; into r sets of size k;, say
(Y, ..., Y5, for each i; let

B:{(Ylj,...,ij):jzl,...,m}.

It is easily verified that this is a 1-(v, k, 1) design. Repeating the “blocks” A
times gives the general case.

Corollary 4 Suppose that a t-(v,k, \) design exists with k =t + 1. Then
v; — k; 1s constant fori=1,...,m.

Proof Apply the proposition with ¢, = k, and ¢, =k, — 1.



3 Small £ and ¢

As we have seen, the case t = 1 is uninteresting. We consider the next few
cases.

3.1 Thecaset=2,k=3

In this case we obtain precisely our motivating examples.

Case k = (3) We have a collection of 3-subsets of X = X such that any
two points of X lie in exactly A of them; that is, a 2-(v, 3, \) design, where
v = |X|. For A = 1, this is a Steiner triple system.

Case k = (1,1,1) We have a collection B of elements of X; x X5 x Xj
such that, if we pick any two of the three sets Xi, X5, X3 and an element
from each set, there are exactly A elements of B having those entries in the
appropriate positions; an orthogonal array of strength 2 and degree 3. For
A = 1, this is equivalent to a Latin square, where X7, X5, X3 are the sets of
rows, columns, entries.

Case k = (2,1) In the case A = 1, this is equivalent to a 1-factorisation of
the complete graph on X, with X, a set indexing the 1-factors. An element
of B consists of an edge and the index of the 1-factor containing it. Two
distinct points of X; are together in a unique 1-factor, and given any point
and any 1-factor, there is a unique pair in the 1-factor containing the point.
(For arbitrary A\, we have a A-factorisation of the complete multigraph with
edge-multiplicity A; that is, each factor is a (multi)graph with degree \.)

3.2 Thecaset=2, k=4

We saw earlier that there are no non-trivial designs when k = (2, 2), and the
same is true for k = (2,1,1). For simplicity we take A = 1.

Case k = (4) Here we have Steiner systems S(2,4,v).



Case k = (3,1) We have vy = (v; — 1)/2. A block consists of a 3-subset of
X, together with a point of X5 which we can regard as a label. The 3-sets
which arise form a Steiner triple system, and the 3-sets labelled by a fixed
element of X, form a 1-factor. So the design is a Kirkman system, a resolved
Steiner triple system (a Steiner triple system with a specified resolution).

Case k = (1,1,1,1) We have v; = v9 = v3 = vy, and B is an orthogonal
array of strength 2 and degree 4, equivalent to a pair of orthogonal Latin
squares.

3.3 Thecaset=3, k=4

Again we assume that A = 1 for simplicity.
Case k = (4) Here we have Steiner quadruple systems S(3,4,v).

Case k = (3,1) We have vy = v; — 2. A block consists of three points of
X, labelled by a point of X5. Each 3-subset of X; occurs exactly once, and
the points with a given label form a Steiner triple system. So the design is
a large set of Steiner triple systems, a partition of ()21) into Steiner triple

systems. Such sets exist for all admissible orders greater than 7.

Case k = (2,2) Now X; = X,. A design of this type is described by a
function f from (gl) to the set of 1-factors on Xs, and a function g from

(?) to the set of 1-factors on X, such that, if P; is a 2-subset of X; for
i = 1,2, then P, € f(Py) if and only if P, € g(P,). Here are three entirely
different types of example.

e Take two 1-factorisations on X; and X, two sets of the same size v,
with a bijection between the 1-factors. Now (P;, P;) is a block if P,
is a 2-subset of X; for ¢ = 1,2 and the 1-factors containing P, and P,
correspond.

e Suppose that there exists a Steiner quadruple system S(3,4,2v) con-
taining a subsystem S(3,4,v). (This requires v = 2 or 4 mod 6.) The
complement of such a subsystem is also a subsystem. Now let X; and
X5 be the subsystem and its complement. Let B consist of all pairs



(Py, Py) for which P; is a 2-element subset of X; such that P, U P, is a
block of the SQS.

e A special case of both the above is obtained by taking X; and X5 to be
the same elementary abelian group of order 2¢ for some d, and letting
B consist of all pairs ({x1, 1}, {x2,y2}) for which 21 +y; = 22 +y2 # 0.

e The remarkable outer automorphism of Sg gives another example. Let
X, be a set of six points, and X5 the set of six 1-factorisations of the
complete graph on X. Then B consists of pairs (P, P,), where the 2-set
P, belongs to the unique 1-factor common to the two 1-factorisations
in Pg.

Case k = (2,1,1) Here is a family of examples. (There are others.) Take
a 1-factorisation on a set of size v, with factors fi,..., f,_1, and a Latin
square L of order v — 1. Now the blocks have the form ({z,y},1,7), where
{z,y} € fr and the (i, j) entry of L is k.

Case k = (1,1,1,1) The design is an orthogonal array of strength 3 and
index 4, equivalent to a Latin cube. Lots of these exist. For example, take
two Latin squares of order v with the same symbol set, say L; and L, and
consider all quadruples (i, j, k,1) such that (L;);; = (La)r. Alternatively,
take a group G of order v and consider all quadruples (i, j, k,1) for which

9i9;9kg1 = 1.

4 Triple systems

As explained, the three types of design with ¢t = 2, Kk = 3, and A = 1 have
many common features. Often a theorem which has been proved for one class
can be extended to the others. We can also ask whether such results can be
extended to other values of ¢, k£ and \.

We give here a brief survey of some examples. Recall that k = (3)
for Steiner triple systems, (2,1) for 1-factorisations, and (1,1, 1) for Latin
squares. The natural number n is admissible in the first case if n = 1 or 3
(mod 6); in the second if n is even; and in the third, every natural number
is admissible.



The number of designs of admissible order n. In each case, the num-
ber F(n) satisfies log F'(n) ~ cn?logn. We have ¢ = %, % and 1 respectively
in the three cases. The proofs are based on the van der Waerden permanent

conjecture. More accurate estimates are known in the first and third case
(see [14, 17]).

Almost all have trivial automorphism group. This was proved for
k = (3) by Babai [1], and in the other two cases by the author (unpublished)
at about the same time; a proof is to be published soon [15].

Block-transitive designs. The Steiner triple systems which have block-
transitive automorphism groups are known: they are projective spaces over
GF(2), affine spaces over GF(3) and Netto systems (Clapham [7]). Such a
characterisation is not known in the other cases, and it is unlikely that one
will be found. For example, the Cayley table of any group is a Latin square
with block-transitive automorphism group.

However, if one imposes a stronger condition, a uniform classification is
known. The number of possible relations between two blocks is m + 2, where
m is the number of sets X;: they may be equal, they may intersect in a point
of X; fori=1,...,n, or they may be disjoint. (This assumes that the order
is large enough that disjoint blocks exist.) Now designs whose automorphism
group has just m + 2 orbits on pairs of blocks are all known:

e for Steiner triple systems, we have just projective spaces over GF(2)
and the affine plane of order 3 with 9 points (Higman [10]);

e for 1-factorisations, we have affine spaces over GF(2) and a unique
example on 6 points (this is unpublished as far as I know, but is an
exercise for the reader);

e for Latin squares, we have the Cayley tables for elementary abelian
2-groups and the cyclic group of order 3 (Bailey [2]).

All the proofs are “elementary” (not relying on the Classification of Finite

Simple Groups).

Embeddings of designs. A design of admissible order n is embeddable
in designs of all admissible orders at least f(n), where f(n) = 2n+1, 2n, 2n
in the three cases respectively. This is easy for Latin squares. For suppose
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that m > 2n. Extend the Latin square of order n to a n x m Latin rectangle
using m —n new symbols; then extend this Latin rectangle to a Latin square.
For Steiner triple systems it is a result of Doyen and Wilson [8]. I do not
know a proof in the literature for 1-factorisations (this is mentioned as an
open problem in [4]), so one is given below.

Embeddings of partial designs. A partial design of order n is embed-
dable in designs of all admissible orders at least f(n), with the same function
f as in the last paragraph. This is a theorem of Ryser [13] for Latin squares,
and of Bryant and Horsley [3] for Steiner triple systems. I do not know of a
proof for 1-factorisations: this is an open problem. Of course, one has to be
more careful about what constitutes a partial design in this case; we assume
that |X;| = n and |X3| = n—1, and that B is a set of triples each containing
two elements of X; and one of X5, so that any two points of X, or any 2-set
containing one point from each of X; and Xs, is contained in at most one
block.

Embedding partial designs so that automorphisms extend. There
is a function f(n), growing exponentially with n, such that a partial Steiner
triple system P of order n is embeddable in a Steiner triple system S of every
admissible order at least f(n) such that all automorphisms of P are induced
by automorphisms of S (Cameron [6]). Such a result is not known in the
other two cases but is presumably not too difficult.

Every group is the automorphism group of a design. This is a result
of Mendelsohn [12] for Steiner triple systems, and can be transferred to the
other classes.

A Markov chain whose limiting distribution should be uniform.
This is due to Jacobson and Matthews [11] for Latin squares. A general-
isation to all types, and arbitrary values of A, is proposed in this paper.
Unfortunately, it is not known whether the Markov chain is connected in the
other cases; if it is, then its limiting distribution will be uniform. This is
another open problem.

Resolutions. A resolution class and a resolution are just the usual concepts
for a Steiner triple system. In the case of a Latin square, a resolution class is



a transversal (a set of v cells with one in each row, one in each column, and
one carrying each symbol), while a resolution is a Latin square orthogonal
to the given square.

This pattern does not complete: for t =2, k = (2,1) and A = 1, only the
trivial design has a resolution class. For each block contains two elements of
X and one of X,, where |X;| = v and |X3| = v — 1; so the existence of a
resolution class would imply that 2(v — 1) = v, whence v = 2.

4.1 Subdesigns

Proposition 5 Suppose that m and n are even and n > m. Then there
exists a 1-factorisation of order n with a subdesign of order m if and only if
n > 2m.

Proof The necessity of evenness of m and n is clear; for the inequality,
suppose that a set X of size m in a 1-factorisation of order n carries a
subdesign. Choose a point y ¢ X. Then the edges {z,y}, for x € X, all lie
in distinct 1-factors not appearing within X; so m+ (m — 1) <n — 1.

For the sufficiency, we simplify notation by putting n = 2a and m = 2b.
Puta=b+r=2b+t;thenr >b,sot=r—5b2>0.

What we need for this construction is a complementary pair GG; and G,
of graphs on a set Y of 2r vertices, such that

e (G5 has degree 2b — 1 and has a 1-factorisation,

e (1 has degree 2t and its edge-set can be partitioned into 2r partial
1-factors fo, ..., for_1 each of size t,

o the set X; of vertices not on edges of f; can be written as y; 0, ..., ¥i2-1
such that, for fixed j € {0,...,2b— 1}, each vertex in Y occurs as y; ;
for a unique value of 7.

Given such a structure, the construction is as follows. Given any 1-factorisation
on aset X = {xg,...,xe 1} of size 2b, with factors e, ..., eq_1, we take the
following 1-factors on X UY":

e ¢;Ug; for 1 <i < 2b—1, where g; is the ith factor of the graph Go;

o for 0 < i < 2r — 1, the set f; together with the edges {z;,v;;} for
j€{0,...,20 —1}.



This is clearly a 1-factorisation on n = 2b + 2r vertices containing the given
1-factorisation on m = 2b vertices.

We construct the required structure using a special row-complete Latin
square of order 2r called a Williams square [16]. A Latin square is row-
complete if each ordered pair of distinct symbols occurs exactly once in ad-
jacent positions in a row of the square. The Williams square has symbol set
and index sets of rows and columns as {0,...,2r — 1}; the Oth row is

(0,1,2r —1,2,2r —2,...,7),

and the ith row is obtained by adding ¢ mod 2r. Let L = (I; ;) denote this
square.

Now we separate two cases. Suppose first that 2t < r, that is, n < 3m.
We partition the edges of the complete graph Ks,. on the vertex set Y =
{y; : i € {0,...,2r — 1} into two subgraphs G; and G, as follows. The first
graph Gy has 2rt edges, indexed by {l; 2p+25, liop+2j41} for i =0,...,2r — 1
and 7 =0,1,...,t—1}. (That is, we take the last ¢ consecutive pairs in each
row.) By construction, l; opi2j11 — li2pr2; = 2b+ 25 + 1; since we are in the
case where t < b, this difference is in the interval (r,2r), and so its negative
does not occur. Thus all the edges are distinct. Moreover, by the properties
of a Latin square, GG is a regular graph of degree 2t.

We have to show that the complementary graph (G, has a 1-factorisation.
Partition its vertex set into two parts A and B, each of size r, according to
the parity of the index. Since all edges of GGy join edges of opposite parity, G
consists of coomplete graphs on A and B together with a regular bipartite
graph between these sets. Choose a 1-factorisation of the latter.

If r is even, we can take a 1-factorisation of each of the complete graphs
and match up the 1-factors; the unions of pairs of 1-factors provide the
remaining 1-factors of Gs.

If r is odd, take two dummy vertices o and 3, and construct 1-factorisations
of the complete graphs on AU {a} and BU {f}. Pick a 1-factor F' between
A and B. Now, for each edge {a,b} of I, match the 1-factors containing
{a,a} and {b, B}, delete these two edges and add the edge {a,b} instead.
The resulting 1-factors, together with the 1-factors other than F between A
and B, form the required 1-factorisation of Gb.

In the other case, where 2t > r, we proceed differently. The edges of G
are {l;2j-1,l;i0;} for 1 < j < |r/2], together with edges {l; 2+2j, li 2p+2j+1}
for 0 < i <t —[r/2]. In other words, we take the first [r/2] pairs in

10



each row (skipping the first element), and then some pairs from the end
of the row. Again, the partial 1-factors are given by fixing the value of i.
The edges of the first type have even differences and those of the second
type have odd differences, so there is no overlap. Now (G, consists of all
the edges joining vertices of the same parity (if r is odd) or all except those
joining antipodal points (if 7 is even), together with a regular subgraph of the
complete bipartite graph between these two sets. So G4 is regular bipartite,
together with (in the case where 7 is even) one further 1-factor consisting of
antipodal pairs; so G has a 1-factorisation.

5 Markov chains for t =2 and £ =3

We now present a Markov chain method of choosing a random 2-(v,k, \)
design in the case when k£ = 3. This is a straightforward generalisation of
the method given by Jacobson and Matthews [11] for Latin squares. Un-
fortunately, we cannot even prove that it is connected in general; if it is,
then the limiting distribution is uniform. Note that other methods have
been proposed in special cases (for example, hill-climbing for Steiner triple
systems [9]); the present method has the theoretical advantage that (modulo
the conjecture about connectedness) its limiting distribution is known to be
uniform.

We denote by [z,y, 2] a triple of the appropriate form: for k = (1,1, 1),
this is an ordered triple from X; x X5 x X3; for k = (3), a 3-element subset of
X (so the triple is unordered); and for k = (2, 1), it has the form ({z,y}, 2)
where {z,y} is a 2-element subset of X, and z € X,. Let X denote the
set of all such triples. By AX[ we mean the multiset in which each triple
occurs with multiplicity A.

Now a t-(v, k, A) design can be regarded either as a multiset B of elements
of XB! or as a function f from X! to the non-negative integers such that

> flwy,z]) = A

and similar equations for sums over x and y, where the summation variables
range over the appropriate sets. Let P be the set of such functions, which
we call proper.

An improper function is defined to be a function on XPl, satisfying the
same summation conditions as above, and taking non-negative integer values
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except for the value —1 which is taken just once. Let Z denote the set of all
improper functions.

The basic Markov chain has state space P UZ. It is defined as follows.
Let f be a function in P UZ.

1. Suppose that f € P. Choose a triple [z, y, z] randomly and uniformly
from AXP '\ B. (This means that the probability of choosing a given
triple is proportional to A — f([z,y, 2])). Go to Step 3.

Note that the cardinality (which we will denote by N) of AXPI\ B is
determined by the type and parameters: it is

An?(n —1) if k= (1,1,1),
N=¢n-1)(n—-2)/2 ifk=(21),
An(n —1)(n—3)/6 if k = (3).

2. Suppose that f € Z. Choose [z,y, z] to be the unique triple on which
f takes the value —1.

3. Choose 2’ randomly, with probability proportional to f([z',vy, 2]) (ex-
cluding the case ' = z in the improper case). Choose ¢/, 2’ similarly.

4. If 2,4/, 2, x,y, z are not all distinct, then return f.

5. Otherwise, increase the values of f([x,v,z2]), f([',¢, 2]), f([2',y,2])
and f([z,y, 2']) by one; decrease the values of f([2',vy, z]), f([x,¥, z]),
f([z,y,2']) and f([2',v,7']) by one; and return the resulting func-
tion (which is proper or improper according as the original value of
f([z',y, Z']) was positive or zero).

Note that f([z,y,z2]) < A, so there are points z’,y/, 2’ available to be
chosen in Step 3. Moreover, the chosen points are such that f([2/,y, z]) > 0,
and similarly for the others; so, if we do change f, at most one negative value
is introduced.

Proposition 6 If the Markov chain on P UZ is connected, its limiting dis-

tribution has a constant value py on elements of P and a constant value py
on elements of T, where p; = (A + 1)3/(A3N)po.
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Proof The first Markov chain is a random walk on a graph in which vertices
in P have degree N3 (there are N choices of [z,y, 2], and \ for each of z/,
y', '), while vertices in Z have degree (A + 1) (there is only one possible
[z,y, 2], but A+ 1 choices for each of 2/, ¥/, z’). Moreover, the edges of the
graph are undirected. (We only have to check this for non-loops; for these
the trade of [z,y, 2| for [2/,y/, 2] is obviously reversible.) So, as in [11], the
result follows from the general theory of Markov chains.

As in the paper of Jacobson and Matthews [11], we define a Markov chain
on P by starting at an element of P and following the above-defined chain
until we return to P. If the earlier Markov chain is connected, then so is this

one, and its limiting distribution is uniform on P, by the same arguments as
in [11].

Conjecture For any v, k, and A, the above-defined Markov chain is con-
nected.

Jacobson and Matthews prove this conjecture in the case of Latin squares
(withk = (1,1,1) and A = 1). Connectedness is known in some other specific
cases. The above conjecture is posed for Steiner triple systems, and questions
about the rate of convergence are raised, in [5].

The question can be resolved in the case k = (1, 1, 1) by a simple extension
of the argument of Jacobson and Matthews. Here is a sketch of the argument.
We can think of one of these designs as a v x v array with a multiset of symbols
of cardinality A in each cell, so that each symbol occurs once in each row or
column. Given two such arrays A and B, we wish to transform A into B
by a series of moves. We can suppose that, in the course of these moves, we
have changed A so that its first m rows agree with those of B, and we need
to confine the effect of all further moves to the last v — m rows.

Suppose that a particular cell, without loss of generality the first cell in
row m+ 1, contains the symbol a more often in A than in B, and the symbol
b less often. We want to make an a,b switch. Construct a directed graph
whose vertices are the cells, which has an edge between two cells in the same
column if the source has more as than bs and the target has more bs than as,
and between two cells in the same row if the reverse conditions hold. Clearly
all arcs are within the last v — m rows, and a cell is the source of an arc in
a column if and only if it is the target of an arc in a row (and wvice versa.
Now this graph must contain a directed cycle whose arcs lie alternately in
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rows and columns. A sequence of moves switches as and bs on this cycle.
We can continue this procedure until an a in the chosen cell is replaced by a
b. Continuing in this way we can adjust the m + 1st row of A to agree with
that of B. After v — 1 such sequences of moves, we have indeed transformed
A into B.

We refer to [11] for a more detailed explanation.

The case k = (2, 1) may be intermediate in difficulty between k = (1,1, 1)
and k = (3).

6 A generalisation

In a more general version of the definition, the condition would run as follows.
Again we are given a partition k = (kq,...,k,,) of k and a positive integer
t < k. We call an m-tuple t = (t1,...,t,) admissible if its sum is t and 0 <
t; < k; fori=1,...,m. Now suppose that, for each admissible t, a positive
integer A¢ is given. Now a t-(v,k, (A¢)) design of order v = (vq,...,0y)
consists of sets X1, ..., Xy, with | X;| =wv; fori=1,... m,

X Xom
-
o< (i) ()

with the following property:
if t = (t1,...,t,) is admissible, then for any choice of sets T; €
)t(’ (fori =1,...,m), there are precisely Ay members (K1,..., K,,) €
B for which T; C K; fori =1,...,m.

The additional flexibility makes many more examples possible. We men-
tion a couple of these.

a-resolvable 2-designs Take k = (k,1), t = 2, and let A0 = A and
A1,1) = @. Now our design is a 2-(v, k, A) design whose block set is partitioned
into 1-(v, k, ) designs.

Orthogonal arrays over variable-size alphabets Consider the array

0 0 O 0o 01 1 1 1 1 1

0
o 0 061110 001 1 1
o 00 1 1 1 1 1 1 0 0 O
A B C A B C A B C A B C
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Any ordered pair of symbols from the appropriate alphabets occurs three
times in two of the first three rows, and twice in one of the first three rows and
the fourth row. We have a 2-(v,(1,1,1,1), (A¢)) design where v = (2,2,2, 3)

and
\ _{3 if t = (1,1,0,0) or (1,0,1,0) or (0,1,1,0),
¢ =

2 if t=(1,0,0,1) or (0,1,0,1) or (0,0,1,1).

A further generalisation would be to consider the analogues of packing
(resp. covering) designs replacing the condition that the number of blocks
covering the sets 71, ..., T},) is equal to A¢ by the condition that it is at most
(resp. at least) A¢; the natural question is the maximum (resp. minimum)
size of such a design.

Further interesting structures are obtained by allowing ¢ to vary. For
example, consider resolvable t-designs. If X is the set of points and X5 a set
indexing the resolution classes, then any ¢ points of X, or any two points
with one in X; and one in X5, are contained in a unique block. I have not
attempted to examine this systematically.
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