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Abstract: When the necessary conditions for a BIBD are satisfied, but no BIBD exists, there is

no simple answer for the optimal design problem. This paper identifies the E-optimal information

matrices for any such irregular BIBD setting when the number of treatments is no larger than 100.

A- and D-optimal designs are typically not E-optimal. An E-optimal design for 15 treatments in

21 blocks of size 5 is found.
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1 Introduction

A block design setting is an integer triple (v, b, k) specifying the numbers of treatments, blocks, and

experimental units per block, respectively, available for an experiment. If these three integers satisfy

(i) v|bk and (ii) v(v − 1)|bk(k − 1), then (v, b, k) is called a BIBD setting. A balanced incomplete

block design (shortly, BIBD) is an assignment of the v treatments to the bk experimental units

so that no treatment appears more than once in any block (binarity), each treatment appears on

exactly r = bk
v units (equireplication), and each pair of treatments occurs in λ = bk(k−1)

v(v−1) blocks

(equiconcurrence).

That (v, b, k) is a BIBD setting is obviously a necessary condition for existence of a BIBD. If

(v, b, k) is a BIBD setting but no BIBD exists, then it is called an irregular BIBD setting.

Let D(v, b, k) be the class of all connected designs for the setting (v, b, k), that is, the class of

1



designs for which all treatment contrasts are estimable. For any given setting, the statistician’s

problem is to determine the best member of D according to the relevant criterion or criteria.

Criteria are usually formulated as functions of the information matrix Cd for design d:

Cd = D(rdi)− 1
k
NdN

′
d

where D(rdi) is the diagonal matrix of replications numbers rdi, i = 1, . . . , v for design d, and Nd

is the v × b treatment/block incidence matrix with elements (Nd)ij = ndij = the number of plots

assigned treatment i in block j by design d. Cd is symmetric and nonnegative definite, with rank

v − 1 for d ∈ D. Thus it has eigenvalues

0 = zd0 < zd1 ≤ . . . ≤ zd,v−1.

Among the popular criteria are Ad =
∑v−1

i=1 z−1
di , Dd = −∑v−1

i=1 log(zdi), and Ed = 1/zd1. An

optimal design with respect to a criterion minimizes that criterion, so that (for instance) an A-

optimal design d∗ achieves Ad∗ = mind∈D Ad. BIBDs, when they exist, are known to enjoy A, D,

E, and many other optimalities; see Kiefer (1975).

Denote the binary subclass of D by M(v, b, k) and the subclass of M containing only equirepli-

cate designs by M0(v, b, k). A common strategy in optimal design theory is to use bounds to rule

out both nonbinary designs and nonequireplicate designs, then develop techniques to determine the

best design in M0. Let I denote the identity matrix and J the all-ones matrix. For any d ∈ M0 in

an irregular BIBD setting, write ∆d = NdN
′
d − rI − λ(J − I) so that

Cd = rI − r

k
I − λ

k
(J − I)− 1

k
∆d

=
λv

k
(I − 1

v
J)− 1

k
∆d

∆d is called the discrepancy matrix for design d; its diagonal entries are 0 and off-diagonal are

δdii′ =
∑b

j=1 ndijndi′j − λ = λdii′ − λ, called the pairwise discrepancies for design d.

The all-ones vector is the eigenvector of Cd corresponding to zd0 = 0, and likewise is an eigen-

vector of ∆d with eigenvalue xd0 = 0. Consequently any set of eigenvectors for zd1, . . . , zd,v−1 are

each orthogonal to the all-ones vector, are thereby also eigenvectors of I − 1
vJ , and so too of ∆d.

Setting xd0 aside, let xd1 ≥ xd2 ≥ . . . ≥ xd,v−1 be the remaining v − 1 eigenvalues of ∆d (which

may include one or more additional zeros and in any case sum to zero). Then

xdi = (λv − zdi)/k (1)
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i = 1, . . . , v − 1. For any eigenvalue-based criterion, optimality over M0 may be studied through

the discrepancy matrices ∆d rather than the information matrices Cd.

Morgan and Srivastav (2000) determined a collection of 11 discrepancy matrices with this

property: should a design exist with corresponding discrepancy matrix in their list, then any

A-optimal and any D-optimal design must have discrepancy matrix in their list. Defining the

discrepancy δd of design d as the absolute value of one-half the sum of the negative entries in ∆d,

these 11 matrices are exactly those with δd ≤ 4. Reck and Morgan (2005) extended Morgan and

Srivastav’s (2000) result to include all 51 discrepancy matrices with δd ≤ 5. Determining an optimal

design depends on solving the existence/nonexistence problems for designs corresponding to at least

some of these discrepancy matrices. Reck and Morgan (2005) find an A- and D-optimal design in

D(15, 21, 5) with discrepancy 4 by conducting a constructive search that also rules out existence of

all designs with δd ≤ 3 in this setting.

It should be noted here that any permutation applied simultaneously to rows and columns of

a discrepancy matrix produces an equivalent discrepancy matrix with the same eigenvalues (this is

just a relabelling of treatments). Thus all nonzero rows/columns may be brought to the upper left

s × s submatrix of any ∆d for some s (depending on d), and only that s × s submatrix need be

examined, as the eigenvalues of ∆d are those of the submatrix in addition to v − s zeros. These

submatrices are themselves discrepancy matrices for designs with s treatments. More generally

they are discrepancy matrices for designs with any v ≥ s, it being understood that this means they

are embedded in a v× v matrix with all other elements zero. The discrepancy matrices in the lists

of the two papers cited above are in fact submatrices of various orders as just described.

Not yet addressed in the literature is the question of E-optimality in irregular BIBD settings.

Many well-known A-optimal block designs in settings where equireplication is possible (v|bk) are

also E-optimal; this includes the BIBDs and many group divisible designs. For irregular BIBD

settings, this raises the question of whether or not the E-best discrepancy matrices are among

those in the lists of Morgan and Srivastav (2000) or Reck and Morgan (2005). The surprising

answer, as shown in section 3, is no. The optimality tools needed to build this result are developed

in section 2. With the E-best discrepancy matrices in hand, an E-optimal design for D(15, 21, 5) is

found in section 4. Summary remarks are in section 5.
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2 E-ordering of discrepancy matrices

An E-optimal design d∗ satisfies Ed∗ = mind∈D
1

zd1
. By virtue of (1), if d∗ can be shown to lie in

M0, then

Ed∗ = min
d∈M0

1
λv − kxd1

. (2)

In any case, d∗ is E-optimal over M0 if and only if

xd∗1 = min
d∈M0

xd1. (3)

That is, d∗ minimizes the maximum eigenvalue of ∆d.

The plan here is to determine the E-best discrepancy matrices, that is, those discrepancy

matrices satisfying (3). These lead to E-best designs only if designs in D that are not in M0

can be ruled out as E-competitors. This latter task will be disposed of first.

Lemma 1 Let d̄ ∈ M0 for the irregular BIBD setting (v, b, k) have discrepancy matrix ∆d̄ with

maximum eigenvalue xd̄1. If xd̄1 < 2 then any E-optimal design must be in M(v, b, k) (that is, must

be binary).

Proof Let d be a nonbinary design in D(v, b, k) with E-value Ed. From the proof of proposition

3.1 of Jacroux (1980b),

Ed ≥ k(v − 1)
[r(k − 1)− 2]v

≥ k

λv − 2
.

From equation (2), the E-value of d̄ is

Ed̄ =
k

λv − xd̄1

and the result follows.

Lemma 2 Let d̄ ∈ M0 for the irregular BIBD setting (v, b, k) have discrepancy matrix ∆d̄ with

maximum eigenvalue xd̄1. If xd̄1 < (k − 1) then any E-optimal design must be equally replicated.

Proof Let d be any unequally replicated design, and let ρd be the largest replication shortfall for

d, ρd = maxi(r − rdi). If Ed is the E-value of d then, by Theorem 3.1 of Jacroux (1980a),

Ed ≥ (v − 1)k
(r − ρd)(k − 1)v

=
rk

λv(r − ρd)
.
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Design d is ruled out if

Ed̄ =
k

λv − xd̄1

≤ rk

λv(r − ρd)

or equivalently if

xd̄1 <
λvρd

r
= (k − 1 +

λ

k
)ρd

for which xd̄1 < (k − 1) is clearly sufficient.

Corollary 3 For the irregular BIBD setting (v, b, k), if there exists d̄ ∈ M0 having discrepancy

matrix among the list of 51 matrices given by Reck and Morgan (2005), then the E-best design in

D(v, b, k) must be equireplicate. If there exists d̄ ∈ M0 having discrepancy matrix with xd̄1 < 2, any

E-optimal design must be binary as well as equireplicate, that is, must lie in M0(v, b, k).

Proof Since nonexistence of a BIBD implies k ≥ 5 (see Nandi, 1945, and Hanani, 1961) the

first part of the corollary is a simple manner of checking that xd̄1 < 4 for all 51 of the relevant

discrepancy matrices. The corresponding list of xd̄1-values is given in Appendix A, and the largest

value is 3.44949 for D51. The second part of the corollary is now immediate from the two preceding

lemmas.

In the Reck and Morgan (2005) listing of discrepancy matrices, there are four for which the

largest eigenvalue is less than 2, these being (in their labelling) matrices D2, D13, D23, and D5 with

respective values 1.73205, 1.87939, 1.902112, 1.93543 (see Appendix A). It is immediately obvious,

and contrary to both the A and D behavior, that the E-ordering of discrepancy matrices does not

respect the δd-ordering: the discrepancy values δd for these four matrices are respectively 3, 5, 5, 4.

There are another seven matrices (D1, D4, D6, D7, D14, D15, D24) with largest eigenvalues of 2,

among which is the sole minimum discrepancy matrix with δd = 2. If 2 is the smallest achievable

value of xd1 over M0, then any corresponding design is E-optimal, though lemma 1 leaves open the

possibility that E-equal competitors lie outside M0.

That the E-ordering of discrepancy matrices need not respect the δd-ordering is further evi-

denced by the following fact: if ∆d is a discrepancy matrix with discrepancy value δd and maximum

eigenvalue xd1, then In ⊗ ∆d is a discrepancy matrix with discrepancy value nδd but still having

maximum eigenvalue xd1. Taking n = int(v
6 ), there is a discrepancy matrix of order no more than

v with discrepancy 3n that is as good as or better than every discrepancy matrix with positive
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discrepancy less than 6. Even if a design with discrepancy matrix D2 does not exist, as is the

case in (15, 21, 5), there may well exist a design with discrepancy matrix In ⊗D2. In light of this

observation and the results above, the E-question in irregular BIBD settings may be posed thusly:

does there exist a discrepancy matrix with maximal eigenvalue less than that of D2 (1.73205)?

This problem will be attacked with a constructive approach in section 3, building up submatrices

of discrepancy matrices one row and column at a time until either an E-superior discrepancy matrix

is obtained or the current submatrix is eliminated from contention. As each new row/column is

added to a submatrix, it is judged for feasibility using the next result.

Lemma 4 Let ∆d with maximal eigenvalue xd1 be the discrepancy matrix for a design d ∈ M0(v, b, k),

and define ∆d11 to be the m×m, m ≤ v, leading diagonal submatrix of ∆d. Then for any normalized

wm×1,

xd1 ≥
[
1− (

∑
wi)2

v

]−1

wT ∆d11w.

Proof Since ∆d has row and column sums of zero,

xd1 = max
xT x=1

xT 1=0

xT ∆d x.

Partition ∆d as

∆d =




∆d11 ∆d12

∆d21 ∆d22




and consider the vector yT = (wT , 0T ), wT w = 1, so that yT ∆d y = wT ∆d11 w. Then, provided

wT 1 = 0,

xd1 ≥ wT ∆d11 w.

If wT 1 6= 0, consider y∗ = (I − 1
vJ)y = y − 1

v

∑
yi1 = y − 1

v

∑
wi1. Then y∗T 1 = 0 and

y∗T y∗ = yT y − 2
v
(
∑

wi)yT 1 +
1
v2

(
∑

wi)21T 1

= 1− (
∑

wi)2

v

= q (say).

Thus

xd1 ≥ 1
q
y∗T ∆d y∗ =

1
q
(y − 1

v

∑
wi 1)T ∆d (y − 1

v

∑
wi 1)
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=
1
q
yT ∆d y (since 1T ∆d = 0)

=

[
1− (

∑
wi)2

v

]−1

wT ∆d11 w.

Building up discrepancy matrices ∆d = (δdii′) also requires knowing a set of admissible values

for the pairwise discrepancies δdii′ . That is the purpose of the next result.

Lemma 5 Let d ∈ M0 for the irregular BIBD setting (v, b, k) have discrepancy matrix ∆d with

maximum eigenvalue xd1. Then

min
i6=i′

δdii′ ≥ −xd1 (4)

and

max
i6=i′

δdii′ ≤ v − 2
v

xd1. (5)

Proof By Proposition 3.2 of Jacroux (1980b), Ed for any d in M0 satisfies, for all λdii′ (i 6= i′)

Ed ≥ k

r(k − 1) + λdii′
(6)

and

Ed ≥ (v − 2)k
[r(k − 1)− λdii′ ]v

. (7)

Since M0 is a BIBD setting, r(k − 1) = λ(v − 1). Using the relationships λdii′ = λ + δdii′ and

Ed = 1
λv−kxd1

, inequality (6) may be rewritten as δdii′ ≥ −xd1 for all i 6= i′, and, similarly, inequality

(7) becomes δdii′ ≤ v−2
v xd1 for all i 6= i′, establishing (4) and (5).

Corollary 6 If design d with discrepancy matrix ∆d is E-better than design d̄, then

min
i6=i′

δdii′ > −xd̄1 (8)

and

max
i6=i′

δdii′ <
v − 2

v
xd̄1 (9)

In corollary 6 let d̄ be a design having discrepancy matrix In ⊗ D2 for some n ≥ 1, so that

xd̄1 = 1.73205. Then equaling (relax the inequalities to not be strict) or bettering d̄ can only
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be achieved by a design d satisfying −1 ≤ δdii′ ≤ 1 for all i 6= i′. Indeed the same statement is

true relative to any of the eleven matrices in the Reck and Morgan (2005) listing having maximal

eigenvalue no more than 2.

Before beginning the construction of discrepancy matrices, one last ordering result is needed.

Lemma 7 If ∆d can be partitioned

∆d =




∆d11 ∆d12

∆d21 ∆d22




so that ∆d11 is a discrepancy matrix, then ∆d cannot be E-better than ∆d11.

Proof Theorem C.1 on page 225 of Marshall and Olkin (1979) says that ∆d majorizes
(

∆d11 0
0 ∆d22

)
,

which in turn majorizes
(

∆d11 0
0 0

)
, from which the E-ordering is immediate.

3 Construction of E-best discrepancy matrices

The goal here is to find any and all discrepancy matrices that are at least as good, in the E sense,

as In ⊗D2. Let Σs be a possible s× s principle submatrix of such a discrepancy matrix, call it ∆.

All entries in ∆, and consequently in Σs, must be in {−1, 0, 1} by virtue of corollary 6. And as ∆

is symmetric with zero diagonal, Σs is necessarily so as well. Σs is said to be feasible if

max
w

[
1− (

∑
wi)2

v

]−1

wT Σsw ≤ xd̄1 (10)

where xd̄1 is the largest eigenvalue of D2. This simply says that Σs may be a principle submatrix

for one of the discrepancy matrices sought. If the lefthand side of (10) is greater than xd̄1, then Σs

is eliminated from consideration (is infeasible) by lemma 4.

Given feasible Σs, it is either itself a discrepancy matrix, or some of its rows have nonzero sums.

In the latter case, fix any row (i, say) that does not sum to zero. Create a vector hs×1 with all

entries from {−1, 0, 1} and with hi = −1 or 1 as the fixed row i has positive or negative sum. Now

create a new matrix Σs+1 by

Σs+1 =




Σs h

h′ 0



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If Σs+1 is a discrepancy matrix, its largest eigenvalue can be compared to xd̄1. If not, it can be

checked for feasibility. If feasible it can be extended to some Σs+2, the evaluation repeated, and so

on. This produces the following constructive algorithm for discrepancy matrices:

1. For a convenient value of s, create an exhaustive list of nonequivalent (under row/column

permutation) s×s matrices that could serve as leading diagonal submatrices for a discrepancy

matrix. Each matrix must be symmetric with zero diagonal and have all off-diagonal elements

in {−1, 0, 1}.

2. If any matrix in the list is a discrepancy matrix (has zero row/column sums), remove it from

the list and calculate its largest eigenvalue. If larger than xd̄1, the matrix is dropped from

consideration. Otherwise, it is one of the matrices sought.

3. Evaluate each matrix in the list for feasibility using (10). Discard all infeasible matrices.

4. If the list is nonempty, pick a remaining submatrix and select a row with nonzero sum.

Construct all 3s−1 extension vectors hs×1 with the selected row position fixed at −1 ×
(sign of row sum), and from these all 3s−1 extended submatrices of order s + 1. Repeat

for each list member.

5. Replace the list of order s matrices with the list of all the order s+1 matrices created. Return

to step 2 with s replaced by s + 1.

Step 2 says that the algorithm will not find discrepancy matrices containing principle submatrices

which are also discrepancy matrices. This is the point of lemma 7: the larger ∆ cannot improve on

(in fact is Schur-inferior to) a discrepancy submatrix Σs. The algorithm will find every discrepancy

matrix that does not contain a discrepancy matrix submatrix; these “parts” can be assembled into

larger discrepancy matrices if desired. Note that in the partitioning of lemma 7,
(

0 ∆d12
∆d21 ∆d22

)

is also a discrepancy matrix, as is
(

0 ∆d12
∆d21 0

)
should ∆d22 be. The process of “fixing” a row,

described in step 4, with no loss of generality can be done for any one row not currently summing

to zero, since the fixed position value can always be achieved by row/column permutation of ∆

with the first s row/columns (Σs) fixed.

To keep the list of submatrices from becoming explosively large, a few size-reducing measures

are advisable. First, in step 4, symmetries among the rows can be taken advantage of to avoid
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creating the full set of 3s−1 extensions. For instance, if all permutations of rows/columns 1, 2, and

3 produce the same matrix, then only 10 choices for positions (1,2,3) in h need be considered, not

27. Second, in step 5, an equivalence screen can be performed on the new list before returning to

step 2. It is not uncommon to have different submatrices extend to equivalent candidates. Finally,

for each submatrix the choice in step 4 of which row to “fix” can significantly change the number

of feasible extensions produced. Experience with the algorithm helps in making good choices.

As described the constructive algorithm is for a given v. But notice that the lefthand side of

(10), when considered as a function of v, is decreasing. Consequently, if the algorithm is completed

for value v∗, the results are correct for all v ≤ v∗ (omitting, of course, any discrepancy matrices

of order larger than the desired v). The downside is that larger v∗ can increase the number of

submatrices surviving the feasibility check at each order, possibly becoming too large to handle.

The remainder of this section will describe the results found by completing the algorithm for

100 treatments. The problem was further divided into three disjoint cases (cases 1 and 2 place

clear restrictions on choice of extension vectors h in step 4):

Case 1: There is at most a single one in every row. With s = 3 the only submatrix for starting

the constructive algorithm is:

0 1 −1

1 0 0

−1 0 0

This submatrix is not subjected to the initial step 2 screen, for there cannot exist a design

for which it is a discrepancy matrix.

Case 2: There is at least one row with exactly two ones but no row with three or more ones.

Taking s = 3 and without loss of generality assuming first row and column as shown, there

are three nonequivalent submatrices:

(i) (ii) (iii)

0 1 1

1 0 −1

1 −1 0

0 1 1

1 0 0

1 0 0

0 1 1

1 0 1

1 1 0
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Case 3: There is at least one row with three or more ones. Taking the initial value s = 4, this

leads to 10 nonequivalent 4 × 4 submatrices which without loss of generality have first row

and column as shown in the three matrices below. Of these, seven are immediately discarded

as infeasible (do not survive step 3). The three remaining are:

(i) (ii) (iii)

0 1 1 1

1 0 −1 −1

1 −1 0 −1

1 −1 −1 0

0 1 1 1

1 0 −1 −1

1 −1 0 0

1 −1 0 0

0 1 1 1

1 0 −1 0

1 −1 0 0

1 0 0 0

The constructive algorithm was run to completion (see below for a wrinkle in case 3) for each

case, for v = 100 and comparing to xd̄1 = 1.73205 of discrepancy matrix D2 of Reck and Morgan

(2005). Case 1 quickly resolves to a single discrepancy matrix, which in fact is D2. For case 2,

submatrix (iii) is infeasible and submatrix (ii) has no feasible extensions after 6×6 (in our sequence

of choices for fixed positions; other choices could conceivably lead to either fewer or more loops

through the algorithm). Case 2(i) produces exactly two discrepancy matrices, one superior to D2

and one its equal; see Table 1.

Table 1: Constructed Discrepancy Matrices

0 1 1 −1 −1 0 0

1 0 −1 1 0 −1 0

1 −1 0 0 1 0 −1

−1 1 0 0 0 1 −1

−1 0 1 0 0 −1 1

0 −1 0 1 −1 0 1

0 0 −1 −1 1 1 0

0 1 1 −1 0 0 −1 0 0

1 0 −1 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0

−1 0 0 0 1 1 −1 0 0

0 0 0 1 0 −1 0 0 0

0 0 0 1 −1 0 0 0 0

−1 0 0 −1 0 0 0 1 1

0 0 0 0 0 0 1 0 −1

0 0 0 0 0 0 1 −1 0

max eigenvalue = 1.69202 max eigenvalue = 1.73205
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Case 3 was more problematic in the many competitors produced and in an additional argument

needed to bring the constructive algorithm to completion. Let ej denote a j × 1 vector with one in

the jth position and otherwise 0. As usual Ij is the order j identity matrix, and Jj1,j2 is a j1 × j2

matrix of ones. The argument requires two partitioned matrices, call them Dt and D0
t , with exact

form depending on the parity of t:

D2n =




In − Jn,n Jn,n

Jn,n In − Jn,n


 D0

2n =




In−1 − Jn−1,n−1 Jn−1,n

Jn,n−1 In − Jn,n

−e2n−1

−e′2n−1 0




D2n+1 =




In − Jn,n Jn,n+1

Jn+1,n In+1 − Jn+1,n+1


 D0

2n+1 =




In − Jn,n Jn,n

Jn,n In − Jn,n

−e2n

−e′2n 0




Though requiring lengthy runs, cases 3(ii) and 3(iii) both complete the constructive algorithm

without producing a discrepancy matrix. With this information in hand, every feasible submatrix

arising from case 3(i) at any step containing either 3(ii) or 3(iii) as a submatrix can be eliminated

immediately (as it has already been proven that their paths could not be completed to an acceptable

discrepancy matrix). This is useful in culling a great number of possibilities, and by the 11 × 11

stage of our run only two matrices remained: D11 and D0
11 (n = 5 in the display above). Fixing

the last row of D0
11, it produces no feasible extensions. Fixing the first row of D11 produces two

feasible extensions: D12 and D0
12. Fixing the last row of D0

12, it produces no feasible extensions,

while fixing the first row of D12 produces two feasible extensions: D13 and D0
13.

Lemma 8 For any t ≥ 11 and v ≤ 100, Dt admits at most two feasible extensions, Dt+1 and D0
t+1,

when fixing its first row. Upon fixing its last row, D0
t admits no feasible extensions.

Proof By induction. Assume the statement is true up to given t and suppose Dt+1 is feasible

(otherwise this branch of the constructive algorithm has stopped). Consider extending Dt+1 to

Et+2 =




Dt+1 h

h′ 0




where position 1 of the (t + 1) × 1 extension vector h is fixed at −1. If the remaining positions

in h are all 0, then Et+2 is equivalent to D0
t+2. If h is −1 in all of its first int( t+1

2 ) positions, and
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1 elsewhere, then it is equivalent to Dt+2. With this in mind, delete two rows and columns from

Et+2, one chosen from positions 2, 3, . . . , int( t+1
2 ), and one from the remaining positions save the

last. This produces

E∗
t =




Dt−1 h∗

h∗′ 0




Now E∗
t is a submatrix of the feasible matrix Dt+1, so is itself feasible. It is also an extension of

Dt−1 with first row fixed at −1, so by the induction hypothesis there are only two possibilities for

the vector h∗. Since the same possibilities occur regardless of which pair of rows (one from each set

of positions) are deleted, h has only the two possible values already mentioned, giving the result.

A similar argument quickly gives the conclusion when extending D0
t+1.

The consequence of lemma 8 is that case 3 can produce no discrepancy matrices (neither Dt

nor D0
t is a discrepancy matrix for any t).

Theorem 9 The first discrepancy matrix in Table 1 is E-best for all irregular BIBD settings with

with up to 100 treatments.

4 E-optimality in D(15, 21, 5)

The smallest irregular BIBD setting in terms of k is D(15, 21, 5). Reck and Morgan (2005) executed

a search to determine A- and D-optimal designs in this setting. Adopting their techniques to focus

on the first discrepancy matrix in Table 1 produces the E-optimal design d∗ in Table 2.

Table 2: An E-optimal Design In D(15, 21, 5)

1 1 2 4 5 2 1 5 1 4 3 2 1 3 4 1 3 3 2 2 1
2 6 3 5 6 4 3 9 2 7 5 6 4 7 8 10 6 4 7 5 5
3 7 8 6 8 9 7 11 6 9 8 11 8 10 12 11 9 6 8 7 9
4 8 9 7 10 10 11 12 10 10 10 12 11 12 13 13 13 13 13 13 14
5 9 11 11 12 12 12 13 14 15 15 15 14 14 14 15 14 15 15 14 15

Is this the unique E-optimal design? Probably not. There may be nonisomorphic designs

with the same discrepancy matrix. And there may well be E-equal designs in D(15, 21, 5) with

discrepancy matrix I2 ⊗∆d∗ .
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5 Summary

This research began as an attempt to determine an E-optimal design in D(15, 21, 5). It quickly

became apparent that, even for v as small as 15, enumeration of all discrepancy matrices was

impossible, leading to development of the feasibility bound (10) and the constructive algorithm.

The realization that the lefthand side of (10) is decreasing in v then meant that results were not

constrained by a “one design setting at a time” approach. That fact has allowed us to produce

results for all v up to 100.

The results tell those seeking E-optimal designs in irregular BIBD settings what structures to

look for, at least for v ≤ 100. The first discrepancy matrix in Table 1 is preferred. Should no design

with this concurrence structure be found, kronecker products of that matrix with the identity can

be tried; the desirability of this may be limited if other criteria such as A are also of some interest,

as A-efficiency is generally expected to decline with increasing discrepancy value. The next best

choices are D2 (for which no design exists in D(15, 21, 5)) and the second matrix in Table 1.

Unless a great many concurrence structures fail to exist, it appears unlikely that A- and E-

optimal designs will coincide in irregular BIBD settings. We find this very surprising. It is, in some

sense, an artifact of difficulties imposed by the nonexistence of symmetry.
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A E-ordering of discrepancy matrices

The 51 discrepancy matrices with discrepancy values δd ≤ 5 are ordered here by E-value. The

actual matrices may be found in Reck and Morgan (2005). Those authors define the concurrence

range ld, while wd is the treatment deficiency of Hedayat, Stufken, and Zhang (1995).

rank Matrix δd ld wd xd1

1 D2 3 2 4 1.73205
2 D13 5 2 4 1.87939
3 D23 5 2 5 1.90211
4 D5 4 2 4 1.93543
5 D1 2 2 2 2.00000
5 D4 4 2 3 2.00000
. D6 4 2 4 2.00000
. D7 4 2 4 2.00000
. D14 5 2 3 2.00000
. D15 5 2 3 2.00000
5 D24 5 2 5 2.00000
12 D20 5 2 5 2.13452
13 D3 3 2 3 2.23607
. D16 5 2 4 2.23607
. D26 5 2 5 2.23607

13 D29 5 2 5 2.23607
17 D17 5 2 4 2.29240
18 D25 5 2 5 2.30278
19 D27 5 2 5 2.35829
20 D21 5 2 3 2.37720
21 D28 5 2 3 2.37951
22 D12 4 3 3 2.41421
23 D41 5 2 5 2.42534
24 D8 4 2 3 2.44949
25 D22 5 2 4 2.45585
26 D10 4 2 4 2.47283
27 D30 5 2 3 2.52434
28 D19 5 2 3 2.52543
29 D18 4 3 4 2.56155
. D31 5 2 3 2.56155
. D32 5 2 3 2.56155
. D33 5 2 3 2.56155
. D44 5 2 3 2.56155

29 D45 5 2 4 2.56155
35 D34 5 2 3 2.61050
36 D35 5 2 3 2.64575
37 D42 5 2 3 2.69963
38 D36 5 2 4 2.71519
39 D37 5 2 3 2.79793
39 D38 5 2 3 2.79793
41 D46 5 2 3 2.81361
42 D9 4 2 2 2.82843
43 D43 5 2 4 2.85323
44 D47 5 2 4 2.89511
45 D11 4 2 3 2.90321
46 D39 4 3 3 3.00000
. D40 4 3 3 3.00000

46 D48 4 3 4 3.00000
49 D50 5 2 4 3.04892
50 D49 5 2 3 3.15633
51 D51 4 3 3 3.44949
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