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Summary

Amongst resolvable incomplete block designs, affine resolvable designs are optimal in many con-

ventional senses. However, different affine resolvable designs for the same numbers of treatments,

replicates, and block size can differ in how well they estimate elementary treatment contrasts. An

aberration criterion is employed to distinguish the best of the affine resolvable designs for this task.

Methods for constructing the best designs are detailed and an extensive online catalog compiled.

1 Introduction

An oft-sought property of incomplete block designs is resolvability: an incomplete block design

for v treatments in blocks of size k (< v) is resolvable if the blocks can be partitioned into sets

containing each treatment exactly once. The sets of this partition may be used to accommodate

a second blocking factor, orthogonal to treatments, and containing the first. Quite naturally, the

sets, or “large” blocks, are termed replicates, the number of which is denoted by r. Examples of the

use of resolvable designs are abundant and may be found in several of the papers cited forthwith.

One special class of resolvable designs has received special attention, for good reason. Suppose any

two blocks from distinct replicates of a resolvable design intersect in the same number of treatments,

call this number µ. Such a design is said to be affine resolvable (Bose, 1942). Using s to denote the

number of small blocks per replicate in a resolvable design, and b the total number of small blocks,

then v = ks and b = rs. For an affine resolvable design, the number µ is necessarily µ = k/s, and
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so v = µs2 and k = µs. That k is a multiple of s is the limitation imposed by affineness relative to

all resolvable designs. The advantage gained is a host of very nice statistical properties.

Bailey, Monod , and Morgan (1995) established Schur-optimality of affine resolvable designs amongst

all resolvable designs with the same v, r and k. Thus an affine resolvable design minimizes (i) the

average variance of any complete set of orthonormal treatment contrasts, which is proportional

to the average variance of the v(v − 1)/2 pairwise treatment contrasts (i.e. is A-optimal); (ii) the

largest variance over all normalized treatment contrasts (i.e. is E-optimal); (iii) the volume of the

confidence ellipsoid for any v − 1 orthonormal treatment contrasts (i.e. is D-optimal). Moreover,

the treatment contrasts estimation space is especially simple for an affine resolvable design, there

being just two canonical efficiency factors 1 and (r − 1)/r.

Given these many excellent statistical properties, one might think that every affine resolvable

design with the same v, r, and k should be equally efficacious. Inspection of the variances of the

elementary treatment contrasts, however, shows this notion to be false, for the distribution of these

variances depends on the particular affine resolvable design selected. The purpose of this paper is

to identify the best of the affine resolvable designs for estimation of elementary contrasts. Section

2 formalizes the notion of “best,” provides two representations of affine resolvable designs useful

in finding best designs, and constructs a family of best designs based on orthogonal Latin squares.

Section 3 provides a full solution in up to five replicates having two blocks per replicate. The known

best designs for up to 200 treatments are compiled in an online catalog, as discussed in Section 4.

Section 5 includes additional discussion and examples.

2 Minimum PV aberration

Though not generally partially balanced, affine resolvable designs share an important property with

the partially balanced incomplete block designs. This property, stated next as a lemma, is the key

to ordering the designs in terms of how well they estimate elementary contrasts. For a given affine

resolvable design, let λij be the number of small blocks containing both treatments i and j. For

any resolvable design write pij for the pairwise variance Var(τ̂i − τj).

Lemma 1. (Bailey, Monod, Morgan, 1995) The pairwise variance pij when using an affine resolv-
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able design is a linear function of λij. Specifically,

pij =
2[r − λij + k(r − 1)]

kr(r − 1)
σ2 (1)

where σ2 is the plot variance.

The best affine resolvable design for estimating elementary treatment contrasts is one that, in

some appropriate sense, makes the v(v − 1)/2 quantities pij in (1) small. Lemma 1 says that,

equivalently, the quantities λij should be made large in a correspondingly appropriate sense. Since

every resolvable design has
∑

i

∑
j>i λij = bk(k − 1)/2, the average pairwise variance for every

affine resolvable design is the same (and, as mentioned in Section 1, is minimal over all resolvable

designs). If the collection of pij (or λij) for an affine design is thought of as a uniform distribution

on its points, then the problem is one of selecting among distributions with the same mean. The

statistically meaningful route is to consider the tails of these distributions. Specifically, minimizing

the number of poorly estimated elementary contrasts is achieved by selecting a design for which

the left tail of its λij distribution is dominant in a natural sense. This motivates the following

definition.

Definition 1. For any affine resolvable design d, let ηdu = |(i, j) : i < j and λij = u| and write

ηd = (ηd0, ηd1, . . . , ηdr). Design d1 is said to have smaller pairwise variance aberration (shortly,

PV-aberration) than design d2 if, for some t, ηd1t < ηd2t and ηd1u = ηd2u for u < t. If no affine

design has smaller PV-aberration than d, then d has minimum PV-aberration.

If a design has minimum PV-aberration, then it minimizes the maximal pij , that is, it is MV-

optimal amongst all affine resolvable competitors. Minimal PV-aberration is generally stronger

than MV-optimality, however, for it examines more than just the largest pij . When there are

several MV-optimal designs, minimizing PV-aberration selects among them according to the next

largest pairwise variance, then the next, and so on, sequentially on the ordered pij .

The task of determining the best affine resolvable design for pairwise comparisons has been trans-

lated into a study of the ηdu, beginning with ηd0. Needed now is a description of affine resolvable

designs that lends itself to evaluating these quantities. Two such descriptions will be given here,

beginning with the sometimes useful connection to orthogonal arrays.
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Figure 1: First two replicates of an arbitrary affine resolvable design

Bailey, Monod and Morgan (1995) constructed affine resolvable designs based on orthogonal arrays

of strength two as follows. Begin with an orthogonal array OA(v, r, s) having v rows, r columns,

and s symbols in each column, such that the rows of any two columns produce the s2 ordered pairs

of symbols µ times each; necessarily v = µs2. Placing treatment i in block m of replicate q if and

only if the mth symbol occurs in row i, column q, produces an affine resolvable design (v, r, k) for

k = v/s. This process is reversible, i.e. strength two orthogonal arrays and affine resolvable designs

are equivalent combinatorial objects (see Shrikhande and Bhagwandas, 1969; Morgan, 1996). Now

λij is the number of columns in the orthogonal array for which rows i and j share the same symbol.

These numbers are the basis for the power moments of a fractional factorial design as defined by

Xu (2003). Good factorial designs are found by sequentially minimizing the power moments (eg.

Theorem 2 of Xu, 2003); in a broad sense this says to make the λij small. Thus the orthogonal

arrays sought here are quite different from those pursued in the fractional factorial literature.

The second description, here called the standard description, takes direct advantage of the block

intersection property. Fix any ordering of the replicates, then the first two replicates produce a

partition of the treatments into sets S1, S2, . . . , Ss2 , each set of size µ (see Figure 1). Replicate

x > 2 may then be described in terms of subsets of sets of treatments appearing in replicate x− 1

as follows: for e = 1, . . . , s2 and x = 3, . . . , r, set Sem1m2···mx−2 is the subset of Sem1m2···mx−3 that

appears in block mx−2 of replicate x. This is displayed for five replicates with s = 2 in Figure 2

where, for example, S11 is the subset of S1 appearing in the first block of replicate three, S112 is the

subset of S11 appearing in the second block of replicate four, and S1121 is the subset of S112 in the

first block of replicate five. Denote the number of treatments in Sem1m2···mx by vem1m2···mx ≥ 0.
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Rep #3

S11
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S41
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S22

S32
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Rep #4

S111, S121

S211, S221

S311, S321

S411, S421

S112, S122

S212, S222

S312, S322

S412, S422

Rep #5

S1111, S1211, S1121, S1221

S2111, S2211, S2121, S2221

S3111, S3211, S3121, S3221

S4111, S4211, S4121, S4221

S1112, S1212, S1122, S1222

S2112, S2212, S2122, S2222

S3112, S3212, S3122, S3222

S4112, S4212, S4122, S4222

Figure 2: Affine resolvable design for s = 2 with 5 replicates

The two descriptions provide two paths for attacking the PV-aberration problem. The standard

description is employed for the remainder of this section and throughout Section 3, providing a

common framework for all of the results obtained. Some of these, though not all, can also be

derived with roughly equivalent effort working with the OA formulation and OA identities. The

OA description is taken up again in Section 4, allowing best designs to be plucked from existing

OA enumerations.

The standard description admits useful formulae for the ηdu. Write m = (m1,m2, . . . , mr−2) where

each mi ∈ {1, 2, . . . , s}. Starting with s = 2 as an example, if m and m′ differ in every coordinate,

then members of S1m have never occurred with members of S4m′ , and members of S2m have never

occurred with members of S3m′ . Observe that ηd0 simply counts the treatment pairs formed by

each member of S1m with each member of S4m′ , and each member of S2m with each member of

S3m′ . That is, ηd0 =
∑ ∑

(v1mv4m′ + v2mv3m′), the sums being over all m and m′ such that

the Hamming distance between m and m′ is h(m,m′) = r − 2. Extending this perspective, for

any subscript e, let B(e) be the collection of subscripts for the sets among S1, . . . , Ss2 that are

contained in a small block with Se in either of the first two replicates (other than e itself). For
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instance, B(1) = {2, 3, . . . , s} ∪ {s + 1, 2s + 1, (s − 1)s + 1} (see Figure 1). Let A(e) be all other

subscripts (other than e itself). Following the same reasoning for general s demonstrated for s = 2

above gives

ηd0 =
1
2

∑
e

∑

e′ ∈ A(e)

∑∑

m, m′ �:
h(m, m′) = r − 2

vemve′m′ (2)

which is a special case of this more general expression for u = 0, 1, . . . , r − 1:

ηdu =
1
2




∑
e

∑

e′ ∈ A(e)

∑∑

m, m′ �:
h(m, m′) = r−2−u

vemve′m′ +
∑

e

∑

e′ ∈ B(e)

∑∑

m, m′ �:
h(m, m′) = r−1−u

vemve′m′ +
∑

e

∑∑

m, m′ �:
h(m, m′) = r−u

vemvem′




(3)

The number of treatment pairs in a block in every replicate is ηdr =
∑

e

∑
m vem(vem − 1)/2.

With these expressions in hand, methods for constructing minimum PV-aberration designs can be

obtained. A general method based on sets of mutually orthogonal Latin squares (MOLS) is given

next.

Let L1, L2, . . . , Lr−2 be a set of r− 2 MOLS of order s, and let L0 be the s× s array whose entries

are the s2 sets of size µ exactly as displayed in the first replicate of Figure 1. The first two replicates

of an affine resolvable design are as displayed in Figure 1. For each y = 1, . . . , r − 2, block m of

replicate y + 2 contains the sets of L0 that are in the same cells as the mth symbol of Ly. It is easy

to see that this produces an affine resolvable design with r replicates, since any two blocks from

different replicates intersect in exactly one of the sets S1, . . . , Ss2 . Not obvious, but proven next,

is that this design, call it d∗, has minimum PV-aberration. Examples of d∗ are given in the first

paragraph of Section 3 and by Example 1 of Section 5.

Theorem 1. The affine resolvable design d∗ has minimum PV-aberration.

Proof. It will be shown that only designs of the form d∗ minimize ηd0, and that ηd∗ is the same

vector regardless of the choice of orthogonal Latin squares. As always the first two replicates of

any affine resolvable design are as displayed in Figure 1. To begin, consider r = 3. Then m in Sem
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is a singleton and ηd0 is

ηd0 =
1
2

∑
e

∑

e′∈A(e)

∑
m

∑

m′ 6=m

vemve′m′ =
1
2

∑
e

∑

e′∈A(e)

∑
m

vem(ve′ − ve′m)

=
1
2

∑
e

∑

e′∈A(e)

∑
m

vem(µ− ve′m) =
s2(s− 1)2

2
µ2 − 1

2

∑
e

∑
m

vem


 ∑

e′∈A(e)

ve′m




=
s2(s− 1)2

2
µ2 − 1

2

∑
e

∑
m

vem


(s− 1)µ− 1

2

∑

e′∈B(e)

ve′m


 (by affineness of reps 1 and 3)

=
(s− 1)(s− 2)

2
µv +

1
4

∑
m

∑
e

∑

e′∈B(e)

vemve′m (4)

From (4), ηd0 attains its minimum value if and only if vemve′m = 0 for every m ∈ {1, . . . , s},
e ∈ {1, . . . , s2} and e′ ∈ B(e). That is, ηd0 is minimized if and only if any two treatments from

distinct sets and in the same block in replicates one or two, are in different blocks in replicate

three. Now if the treatments in any set Se are not all in the same block in replicate three, then the

minimum cannot be attained, for there are then at most s − 2 blocks into which treatments from

the other s− 1 sets occurring with Se in replicate one can be placed. Thus each block in replicate

three must consist of s of the sets S1, . . . , Ss2 , and e′ ∈ B(e) ⇒ Se and Se′ are in different blocks in

replicate three. This says precisely that the minimum for ηd0 is uniquely attained when the blocks

of replicate three are disjoint transversals of L0, that is, when they are formed as in d∗.

For a design with two replicates the number of treatment pairs that have not occurred in a block

is ηd0 = (s − 1)2µv/2, and for three replicates the minimum PV-aberration design has ηd0 =

(s−1)(s−2)µv/2, a decrease of (s−1)µv/2 due to the third replicate. It is easy to see that any choice

of L1 to build d∗ gives the same vector ηd∗ , which is ((s−1)(s−2)µv/2, 3(s−1)µv/2, 0, s2µ(µ−1)/2).

Thus for three replicates, only designs of form d∗ have minimum PV-aberration.

Moreover, it is now clear that for r ≥ 3, the absolute minimum of ηd0 is achieved if and only if,

relative to the first two replicates, each of replicates 3, . . . , r independently decreases ηd0 by the

maximal amount of (s−1)µv/2. This happens if and only if (i) for each of these replicates the blocks

are disjoint transversals of L0, and (ii) no two of the sets S1, . . . , Ss2 occur together in more than

one small block. Property (i) says that the replicates correspond to r − 2 Latin squares as in the

construction for d∗, and property (ii) says those Latin squares are orthogonal. Thus minimization
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of ηd0 requires a design of form d∗. Regardless of the MOLS L1, . . . , Lr−2 employed to build d∗,

ηd∗ = (
(s− 1)(s− r + 1)

2
µv,

(s− 1)r
2

µv, 0, . . . , 0,
1
2
(µ− 1)v).

This is because any two treatments in the same set Se occur together in one small block in every

replicate, and any other two treatments, from sets Se and Se′ say, occur together in no or one small

block as Se and Se′ do the same. This completes the proof.

3 Minimum PV-aberration with two blocks per replicate

Affine resolvable designs with two blocks per replicate are shown for up to five replicates, in the

standard representation, in Figure 2. The block intersection number is µ = v/4, and so v must be a

multiple of 4. This section will determine the minimum PV-aberration designs for s = 2 and r ≤ 5.

For r = 2 the best (and only) affine design is the first two replicates in Figure 2. To this add the

replicate

Rep #3

S2

S3

S1

S4

(5)

to get the unique minimum-PV aberration design in three replicates, having ηd0 = 0. In terms

of the third replicate in Figure 2, this choice results from selecting set sizes v11 = v41 = 0 and

v21 = v31 = µ. This is an example of design d∗ of Theorem 1.

Affine resolvability places a number of restrictions on the set sizes vem. These restrictions may be

written as a collection of linear equations, any solution to which specifies an affine resolvable design,

so long as that solution consists entirely of nonnegative integers. For instance, there are eight set

sizes for the third replicate in Figure 2, but in fact only one is linearly independent: all designs are

specified by all values of v11 ∈ {0, 1, . . . , µ/2}. While the numbers of sets, and consequently the

number of independent set sizes, grows with r, they are still manageable for r ≤ 5. Minimum PV-

aberration designs can be determined for these cases by solving the equations with the additional

restriction that ηd0 be minimized. When there are multiple solutions, these are compared on ηd1,
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then ηd2, and so on. Details of this approach are presented in the subsections below covering four

and five replicates.

3.1 Four replicates with two blocks per replicate

For four replicates there are 24 set sizes v11, v21, . . . , v42 and v111, v121, . . . , v422 (cf. Figure 2).

Linear restrictions on these quantities arise from the basic properties of any affine resolvable design

for s = 2: each replicate contains all v treatments, each block contains v/2 treatments, and any two

blocks from different replicates intersect in v/4 treatments. Let Bfg be the gth block in replicate f .

As mentioned in the preceding paragraph, v11 determines all of the vem for the third replicate, since

v

4
= |B11 ∩B31| = v11 + v21 ⇒ v21 =

v

4
− v11

v

4
= |B21 ∩B31| = v11 + v31 ⇒ v31 =

v

4
− v11 (6)

v

2
= |B31| =

∑
e

ve1 = v11 + (
v

4
− v11) + (

v

4
− v11) + v41 ⇒ v41 = v11

and ve1 + ve2 = v/4 for e = 1, . . . , 4. For the fourth replicate, in addition to vem2 = vem − vem1 for

e = 1, . . . , 4 and m = 1, 2, there are four independent restrictions specified by v/4 = |B11 ∩B41| =
|B21 ∩B41| = |B31 ∩B41| = |B32 ∩B41|. These yield

v221 = v
4 − v111 − v121 − v211

v321 = v
4 − v111 − v121 − v311

v411 = v
4 − v111 − v211 − v311

v421 = 2v111 + v121 + v211 + v311 − v
4

(7)

There are thus five free variables v11, v111, v121, v211, v311. The determined variables above satisfy

0 ≤ v221 ≤ v22 = v11, 0 ≤ v321 ≤ v32 = v11, 0 ≤ v411 ≤ v41 = v11, and 0 ≤ v421 ≤ v42 = v/4 − v11.

Thus the free variables, in addition to being nonnegative integers, must satisfy

v
4 − v11 − v111 ≤ v121 + v211 ≤ v

4 − v111

v
4 − v11 − v111 ≤ v121 + v311 ≤ v

4 − v111

v
4 − v11 − v111 ≤ v211 + v311 ≤ v

4 − v111

v
4 − 2v111 ≤ v121 + v211 + v311 ≤ v

2 − v11 − 2v111

0 ≤ v111 ≤ v11
2

(8)
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the last line with no loss of generality, and likewise v11 ≤ v/8.

The initial problem is to satisfy the constraints (8) while minimizing ηd0 = v111v422+v121v412+· · ·+
v222v311. The best designs will be among those having ηd0 = 0, whenever that value is achievable.

The possibilities for ηd0 = 0 are explored in the following two cases.

Case 1: v11 = 0. This says that the third replicate is that displayed in (5). The inequalities (8)

give v111 = 0 and v121 = v211 = v311 = v/8. Thus the fourth replicate is

Rep #4

S121

S211

S311

S421

S112

S222

S322

S412

(9)

with each set displayed in (9) being of size v/8.

Case 2: v11 > 0. Then (6) and v11 ≤ v/8 say that all the sets Se1 and Se2 are nonempty. If ηd0 = 0

then each of the pairs (S11, S42), (S21, S32), (S22, S31), and (S12, S41) must occur in the same block

of replicate four. For the first three of these pairs this says that (v111, v421) = (0, 0) or (v11, v42),

(v211, v321) = (0, 0) or (v21, v32), and (v221, v311) = (0, 0) or (v22, v31). But v111 = v11 contradicts

the last inequality in (8), so v111 = v421 = 0. This leaves four combinations to explore, each of which

leads to a contradiction (e.g. there is no design with v111 = v421 = v211 = v321 = v221 = v311 = 0), or

to a design that is isomorphic to that found in Case 1. To illustrate the latter, if (v211, v321) = (0, 0)

and (v221, v311) = (v22, v31) then replicate four must be

Rep #4

S12

S22

S31

S41

S11

S21

S32

S42

(10)

and v/4 = |B21 ∩B41| = v12 + v31 = 2(v/4− v11) ⇒ v11 = v/8 and so all sets in (10) have size v/8.

Now make new sets S∗11 = S12, S
∗
12 = S22, S

∗
21 = S31, S

∗
22 = S41, S

∗
31 = S32, S

∗
32 = S42, S

∗
41 = S11, and
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S∗42 = S21. Then among the blocks found here are B11 = (S11, S12, S21, S22) = (S∗41, S
∗
11, S

∗
42, S

∗
12) =

(S∗1 , S∗4), B31 = (S11, S21, S31, S41) = (S∗41, S
∗
42, S

∗
21, S

∗
22) = (S∗2 , S∗4), and B41 = (S12, S22, S31, S41) =

(S∗11, S
∗
12, S

∗
21, S

∗
22) = (S∗1 , S∗2), showing that replicates one, three, and four found here are identical

to the first three replicates in Case 1, as claimed.

Cases 1 and 2 show that ηd0 = 0 is uniquely achieved in four replicates, but only for v a multiple of

8. This solves the minimum PV-aberration problem for v ≡ 0 (mod 8), but v ≡ 4 (mod 8) requires

further work leaning more heavily on the relations (6)-(8). Writing (2) in terms of the five free

variables gives

ηd0 =
3v2

16
− 4x2

0 − z(v − 4x0)− (v − 4z)θ + 2(θ2 −
3∑

i=1

x2
i ) (11)

where for notational simplicity z = v11, x0 = v111, x1 = v121, x2 = v211, x3 = v311 and θ = x1 +

x2 + x3. The problem is to minimize (11) subject to (8). The details are left to appendix A, where

again ηd0 is found to be uniquely (up to isomorphism) minimized. In terms of the free variables,

the best designs for four replicates are specified in Table 1, along with their η-distributions.

3.2 Five replicates with two blocks per replicate

As seen in Figure 2, the fifth replicate is represented by 32 additional variables. Given the variables

from replicate four, all those in the second block are determined by those in the first block via

vem2 = vem − vem1 (in this subsection m = (m1,m2) and each mi ∈ {1, 2}). The sixteen first-block

variables are subject to the five linearly independent constraints v/4 = |B11 ∩B51| = |B21 ∩B51| =
|B31 ∩B51| = |B41 ∩B51| = |B42 ∩B51|. These resolve to

v2221 =
v

4
− v1111 − v1121 − v1211 − v1221 − v2111 − v2121 − v2211

v3221 =
v

4
− v1111 − v1121 − v1211 − v1221 − v3111 − v3121 − v3211

v4121 =
v

4
− v1111 − v1121 − v2111 − v2121 − v3111 − v3121 − v4111 (12)

v4211 =
v

4
− v1111 − v1211 − v2111 − v2211 − v3111 − v3211 − v4111

v4221 = 3v1111 + 2v1121 + 2v1211 + v1221 + 2v2111 + v2121 + v2211 + 2v3111 + v3121 + v3211 + v4111 − v

2
.

Thus there are 11 free variables for replicate five, making a total of 16 free variables in the standard

representation of the five replicate design. While an analytic solution in the fashion of Section
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3.1 would appear to be unwieldy (to say the least), judicious use of software makes a full solution

feasible, as will be seen.

The key insight is that very small values of ηd0 give an abundance of information about the variables

in replicate five. Write e′ = A(e), which here is a singleton (e.g. A(1) = 4), and m′
i = 3 − mi.

Consider ηd0 = 0. The expression for ηd0 in (2) is the sum of eight products v1m1m2m3v4m′
1m′

2m′
3

and eight products v2m1m2m3v3m′
1m′

2m′
3
, which collectively contain each of the 32 variables once.

If ηd0 = 0 then every one of these products is zero, implying that at least 16 of the replicate

five variables are zero. If vem1 (say) is zero, then either vem = 0 (determining a replicate four

parameter) or vem2 = vem (determining a replicate five parameter in terms of a nonzero replicate

four parameter). The former case also forces vem2 = 0, while ve′m′1 and ve′m′2 may take any values

subject only to ve′m′1 + ve′m′2 = ve′m′ . The latter case forces ve′m′2 = ve′m′ and consequently

ve′m′1 = 0.

Here then is a route for determining all designs having ηd0 = 0:

1. Specify a subset of the 16 replicate four variables to be set to zero, all others taken to be

positive.

2. Given the selection in step 1, specify the corresponding information about the replicate five

variables (as given in the preceding paragraph). For each pair (vem, ve′m′) neither of which

is set to zero in step 1, this entails a selection of which of the two pairs (vem1, ve′m′1) and

(vem2, ve′m′2) is set to (0, 0), and which is set to (vem, ve′m′).

3. Solve the system of equations comprised of the five constraints (12) and the specifications in

steps 1 and 2. Discard solutions violating nonnegative integer requirements.

4. Repeat for each distinct selection of variables in step 1 and for each selection of pairs set to

(0, 0) in step 2.

This algorithm assumes 0 < v11 < v/4 so that all third replicate variables are positive. For v11 = 0

(for which any design is isomorphic to a design with v11 = v/4), the third replicate is that shown

in (5) and ηd0 = 0 has been achieved if there is any five replicate solution including (5). Section 3.1

established that there was exactly one four replicate design including (5), making this a simple case
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to handle separately. This, in fact, produces the five replicate solution for v ≡ 0 (mod 8) shown in

Table 2.

While any one iteration of this algorithm would be a straightforward task with pen and paper,

there are far too many iterations to complete manually. This is a task for a computer; symbolic

software for linear algebra can perform the iterations quickly and in full generality. It is a simple

matter to write code to generate the selections and feed each to a symbolic equations solver (this

author used Maple). Even with machine processing, the task would be too lengthy were it not

possible to significantly reduce the number of iterations relative to “all.” Reductions are achieved

by application of these basic, design-preserving symmetries apparent in Figure 2:

• The blocks within replicate three can be reversed, as can those within replicate four and those
within replicate five.

• Sets S1 and S4 can be interchanged, as can sets S2 and S3.

• The pair of sets (S1, S4) can be interchanged with the pair (S2, S3).

These symmetries can be used in combination with other considerations to great effect. For example,

at most eight of the sixteen variables from replicate four can be set to zero, for with v11 > 0,

at most one of vem1, vem2 can be zero. Of the four vem with the same e, at most two can be

zero, and there are only two ways in which two can be set to zero (otherwise the design becomes

isomorphic to one having v11 = 0). Applying the symmetries above, additional restrictions are:

(i) #{m : v1m = 0}+#{m : v4m = 0} ≥ #{m : v2m = 0}+#{m : v3m = 0} (otherwise interchange

(S1, S4) with (S2, S3)), (ii) #{m : v1m = 0} ≥ #{m : v4m = 0} (otherwise interchange S1 and S4),

(iii) #{m : v2m = 0} ≥ #{m : v3m = 0} (otherwise interchange S2 and S3), (iv) v111 = 0 (otherwise

reverse blocks within replicate three and/or replicate four).

Implementing this algorithm shows that, unlike for four replicates in Section 3.1 above, there is not

a unique solution to ηd0 = 0. Here solutions for the same v are found having different ηd vectors,

from which the best is selected in accord with definition 1. Results appear in Table 2.

Like for four replicates in Section 3.1 above, ηd0 cannot achieve zero for every v. Setting ηd0 = 1, now

exactly one of the products vem1ve′m′2 is nonzero, which can be taken (using suitable symmetries)

to be v1111v4222 = 1. Since then v1112v4221 = 0, this implies either v111 = 1 or v422 = 1, so (again

using suitable symmetries) take v111 = v1111 = v4222 = 1. With this change, the ideas above for
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solving ηd0 = 0 are easily transferred, so the details will not be repeated. Results appear in Table 2,

completing the minimum PV-aberration problem for five replicates.

4 A catalog of minimum PV-aberration designs

The methods of Sections 2 and 3 provide best affine resolvable designs for the ranges of r shown in

Table 3. The values of s displayed are sufficient to cover all numbers of treatments up to v = 200.

A further result based on deletion of replicates is easily added. Whenever an affine resolvable design

is a BIBD, all of its λij are identical so it trivially has minimum PV-aberration. Removing any

one replicate decreases some λij by one, leaving the rest unchanged; this too is a minimum PV-

aberration design. Now an affine resolvable design is a BIBD whenever r = (µs2−1)/(s−1) = rmax.

Recalling from Section 2 that each replicate in an affine resolvable design corresponds to a column

of an orthogonal array, further deletions can be used with small s in accord with the following

result.

Theorem 2. (Shrikhande and Bhagwandas, 1969; Vijayan, 1976) OA(v, rmax − w, s) can be ex-

tended to OA(v, rmax, s) if (i) s = 2, w ≤ 4, or (ii) s = 3, w ≤ 2.

Thus deletion of any two replicates from an affine resolvable BIBD with s = 2 or s = 3 produces

a minimum PV-aberration design. For s = 2, the same result holds for deletion of three replicates

provided that the deleted replicates, when considered as an affine resolvable design d, minimize

aberration of the vector (ηd3, ηd2, ηd1, ηd0). Likewise deletion of a four-replicate subdesign d requires

minimizing aberration of (ηd4, ηd3, ηd2, ηd1, ηd0) over all 4-replicate affine resolvable designs.

So that they may be easily accessed for application, all of these designs (for up to 200 treatments

and 23 replicates) have been compiled in an online catalog at designtheory.org, a website devoted to

free storage and access to block designs and many of their properties. The designs are stored there

as xml files, in external representation format (see Bailey et al, 2006), along with lists of canonical

efficiency factors, pairwise variances, and much more. Mutually orthogonal Latin squares, needed

for the construction of d∗ in Theorem 1, can be found in Abel, Colbourn, and Dinitz (2007).

Taking further advantage of the orthogonal array representation of an affine resolvable design, best
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designs can be found whenever all nonisomorphic orthogonal arrays OA(v, r, s) for s symbols in v

rows and r columns have been enumerated. OA enumeration has been pursued with some vigor

of late, with the following cases now completed: OA(12, r, 2) for r ≤ 11, OA(16, r, 2) for r ≤ 15,

and OA(20, r, 2) for r ≤ 19, all in Sun, Li, and Ye (2002); OA(24, r, 2) for r ≤ 7, OA(28, r, 2) for

r ≤ 6, and OA(32, r, 2) for r ≤ 6, all in Angelopoulos et al (2007); and OA(18, r, 3) for r ≤ 7 in

Evangelaras, Koukouvinos, and Lappas (2007). All of these lists have been searched to determine

a minimum PV-aberration design, and these designs have all been added to the online catalog.

At this writing the catalog contains 522 designs, including all parameter combinations with v ≤ 20

for which an affine resolvable design can exist. Because all of these designs are affine, they are

excellent resolvable designs. Being additionally optimized for estimation of pairwise contrasts will

make them the preferred choice in most applications.

5 Examples and discussion

Two detailed examples are shown next, covering Theorem 1 and the methods of Section 3. While

both example designs can be downloaded from the web catalog, numbers outside the catalog’s range

require the techniques they illustrate. Those interested in the analysis of data from affine resolvable

designs are referred to the thorough coverage of this topic in Caliński, Czajka, and Pilarczyk (2009).

That paper includes examples of and data from applications of these designs in agricultural trials.

Example 1. A four replicate, affine resolvable design with minimal PV-aberration, for v = 18

treatments in blocks of size k = 6, can be found with the construction underlying Theorem 1. First

write v = µs2 = 2(3)2. The 18 treatments are partitioned into s2 = 9 sets of µ = 2 treatments each:

S1 = {1, 2}, S2 = {3, 4}, . . . , S9 = {17, 18}. Placing the Si’s into blocks as displayed in general form

in Figure 1 gives the first two replicates of the design (Figure 3).

Finding the remaining two replicates requires 4− 2 = 2 mutually orthogonal Latin squares of order

s = 3. They are:

1 2 3

3 1 2

2 3 1

1 3 2

3 2 1

2 1 3

15



Rep #1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Rep #2

1

2

7

8

13

14

3

4

9

10

15

16

5

6

11

12

17

18

Rep #3

1

2

9

10

17

18

5

6

7

8

15

16

3

4

11

12

13

14

Rep #4

1

2

11

12

15

16

5

6

9

10

13

14

3

4

7

8

17

18

Figure 3: A minimal PV-aberration design for 18 treatments in blocks of size 6.

Superimpose the first of these squares on the first 3× 3 square in Figure 1; sets Si coincident with

number j in this Latin square are placed in block j of the third replicate. Thus the first block

of the third replicate contains S1, S5, S9, the second contains S3, S4, S8, and the third S2, S6, S7.

Superimpose the second Latin square on the first 3×3 square in Figure 1 to similarly get the fourth

replicate in Figure 3. ¤

Example 2. A five replicate, affine resolvable design with minimal PV-aberration, for v = 16

treatments in blocks of size k = 8, results from the calculations in Section 3. The design can

be built from the information in Table 2; the values there tell the sizes of the subsets in the

third through fifth replicates shown in general form in Figure 2. The sets comprising the first

two replicates are S1 = {1, 2, 3, 4}, S2 = {5, 6, 7, 8}, S3 = {9, 10, 11, 12}, and S4 = {13, 14, 15, 16}.
Reading from the first row of Table 2, the relevant information for the third replicate is v11 = 0.

This says no part of S1 is in the first block of replicate three so that S11 = ∅ and S12 = S1.

The remainder of replicate three follows from affineness with respect to the first two replicates; see

Figure 4.

For the fourth replicate Table 2 says v121 = v211 = v311 = 2. So any two treatments from each of

S12 = S1, S21 = S2, and S31 = S3 are placed in the first block of replicate four. It follows that

v421 = 2 and that block, and consequently the fourth replicate, is completed by any two treatments

from S42 = S4.
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4
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8
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15

16
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1
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6
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13

14
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4
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8
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16

Rep #5

1

2

7

8

11

12

13

14

3

4

5

6

9

10

15

16

Figure 4: A minimal PV-aberration design for 16 treatments in blocks of size 8.

With the fourth replicate in place, now use v1211 = v2121 = v3121 = 2 and, from (12) and the zeros

specified in Table 2, v4211 = 2. So S1211 = S121, S2121 = S212, S3121 = S312, and S4211 = S421,

determining the fifth replicate of Figure 4. ¤

The technique of Section 3, based on the standard representation introduced in Section 2, becomes

rapidly more demanding as either r or s grows. This is to be expected, for the equivalent problem

of searching all orthogonal arrays, beyond the smallest cases, is notoriously difficult. Pushing on

to r ≥ 6 for s = 2, or to r ≥ 5 for s = 3, is likely to require additional knowledge as to how the

problem can be reduced, be it through exploiting additional symmetries, mathematical derivation

of additional restrictions on the variables vem that are consonant with minimum aberration, or

some combination of the two.
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A Appendix: Minimizing ηd0 for (v, r, 2) = (4 (mod 8), 4, 2)

Noting that x1, x2, and x3 are interchangeable (this corresponds in Figure 2 to permutations of

blocks within replicates, and of sets within blocks of the first two replicates,), there is no loss of

generality in taking x1 ≤ x2 ≤ x3 ≤ v/4 − z (the last inequality from (6)). Minimizing (11) first

for fixed z, x0, and θ, says to maximize
∑3

i=1 x2
i for fixed θ. A simple majorization argument shows

this is accomplished by sequentially minimizing x1, and then x2. Since θ is fixed, minimizing x1

is equivalent to maximizing x2 + x3, and by the third line of (8), x2 + x3 ≤ v/4 − x0. Putting

x1 = θ + x0 − v/4 and x2 + x3 = v/4− x0 in (11) gives

ηd0 ≥ 3v2

16
− 4x2

0 − z(v − 4x0)− (v − 4z)(x1 − x0 +
v

4
)

+ 2[(x1 − x0 +
v

4
)2 − x2

1 − x2
2 − (

v

4
− x0 − x2)2]

= −v2

16
− 4x2

0 − 4x2
2 + (v − 4x0)x2 + 4(z − x0)x1 + vx0 (13)

where, since x2 + x3 = v/4− x0 and x1 ≤ x2 ≤ x3 ≤ v/4− z,

0 ≤ x1 ≤ x2 ≤ 1
2
(
v

4
− x0) (14)

and from the first and third lines of (8),

v

4
− z − x0 − x2 ≤ x1 ≤ v

4
− x0 − z. (15)

Importantly, the RHS of (14) need not be an integer, though x2 must be; this is why different

solutions are found depending on the (mod 8) value of v. The minimization proceeds in two steps.

Step 1: minimize with x0 = 0. From (13) the quantity to be minimized is

H(z, x1, x2) = −v2

16
− 4x2

2 + vx2 + 4zx1 (16)

which, from (14) and (15) is subject to the constraints v/4 − z − x2 ≤ x1 ≤ x2 for (v − 4z)/8 ≤
x2 ≤ (v−4)/8. If z = 0 there are no feasible values for x2, so z ≥ 1. Also z ≤ v/8 ⇒ z ≤ (v−4)/8.

Since (16) is linear in x1 with positive slope,

H(z, x1, x2) ≥ H(z, v/4− z − x2, x2) = −v2

16
− 4x2

2 − 4z2 − 4zx2 + v(x2 + z) ≡ H̃(z, x2) (17)

Now H̃(z, x2) is concave in x2, so is minimized as a function of x2 at either x2 = (v − 4)/8 or

x2 = b(v − 4z)/8c, the latter value depending on the parity of z. Thus three evaluations of (17)
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are required, each of which produces a concave function of z, and which are then minimized by

evaluating at the endpoints for z. This produces the minimum value of v/2−3 for ηd0 when x0 = 0

at the values (z, x0, x1, x2, x3) = (v11, v111, v121, v211, v311) = ((v − 4)/8, 0, 1, (v − 4)/8, (v + 4)/8)

and (1, 0, (v− 4)/8, (v− 4)/8, (v + 4)/8). These yield the same ηd vectors; indeed, it may be shown

that they are isomorphic solutions.

Step 2: minimize with x0 > 0. Now fix a positive integer value for x0. The same sequence

of evaluations is carried out as in Step 1, with the appropriate endpoints as given by (14) and

(15) (which are now a bit more complicated). For x0 > 1 many of the evaluations do not require

attending to the integer nature of the endpoints as done in Step 1; this subcase is easily eliminated

as inferior to x0 = 0. Not surprisingly, x0 = 1 requires care in strictly adhering to the exact

integer endpoints, but it, too, produces a minimum larger than v/2−3. Thus the unique minimum

PV-aberration design was identified in Step 1, as listed in Table 1.
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Table 1: Minimum PV-aberration designs for four replicates, two blocks per replicate

v (v11, v111, v121, v211, v311) ηd = (ηd0, ηd1, ηd2, ηd3, ηd4)

v ≡ 0 (mod 8) (0, 0, v
8 , v

8 , v
8 ) (0, 3v2

16 , 3v2

16 , v2

16 , v(v−8)
16 )

v ≡ 4 (mod 8) (v−4
8 , 0, 1, v−4

8 , v+4
8 ) (v−6

2 , 3v2

16 − (v − 5), 3v2

16 + 3, v2

16 + (v − 9), v(v−8)
16 − (v−8)

2 )

Design variables not shown are determined by (6) and (7).

Table 2: Minimum PV-aberration designs for five replicates, two blocks per replicate

v
(v11, v111, v121, v211, v311, v1111, v1121, v1211, v1221, v2111, v2121, v2211, v3111, v3121, v3211, v4111)

ηd = (ηd0, ηd1, ηd2, ηd3, ηd4, ηd5)

v ≡ 0 (mod 8)
(0, 0, v

8 , v
8 , v

8 , 0, 0, v
8 , 0, 0, v

8 , 0, 0, v
8 , 0, 0)

(0, v2

16 , v2

4 , v2

8 , 0, v(v−8)
16 )

v ≡ 0 (mod 36)
( v
12 , 0, v

6 , v
12 , v

12 , 0, 0, v
18 , 0, v

12 , v
36 , 0, v

12 , v
36 , 0, v

36)

(0, 119v2

1296 , 61v2

324 , 29v2

216 , 4v2

81 , 47v2

1296 − v
2 )

v ≡ 0 (mod 28)
( v
14 , 0, 3v

28 , v
14 , 3v

28 , 0, v
14 , v

28 , v
14 , v

14 , 0, 0, v
28 , 0, 0, v

14)

(0, 75v2

784 , 5v2

28 , 55v2

392 , 5v2

98 , 27v2

784 − v
2 )

v ≡ 0 (mod 12)
( v
12 , 0, v

6 , v
12 , v

12 , 0, 0, v
6 , 0, 0, v

12 , 0, 0, v
12 , 0, v

12)

(0, 5v2

48 , 5v2

36 , 5v2

24 , 0, 7v2

144 − v
2 )

v ≡ 4 (mod 8)
(v+4

8 , 1, v−4
8 , v−12

8 , v−12
8 , 1, 0, 0, 0, v−12

8 , 1, 0, v−12
8 , 0, 1, 1)

(1, v2

16 + v − 11, v2

4 − 2v + 18, v2

8 + 2, 2v − 19, v2

16 − 3v
2 + 9)

Best design for given v is in first applicable row. For example, for v = 36 use second row (not fourth or fifth),

for v = 72 use first row (not second or fourth). Design variables not shown are determined by (6), (7), and (12).

Table 3: Solutions found for s ≤ 14

s 2 3 4 5 6 7 8 9 10 11 12 13 14

r ≤ 5 4 5 6 3 8 9 10 4 12 7 14 5
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