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Summary

Faced with cost, time, or other pressures to keep an experiment small, blocking can be

an effective tool for increasing precision of treatment comparisons. The simplest im-

plementation of blocking is a division of experimental units into two equi-sized subsets,

allocating one degree of freedom to explain unit heterogeneity. Small experiments will

have block size k smaller than the number of treatments v being compared. This paper

solves the problem of optimal allocation of treatments to two small, equi-sized blocks.

The solution depends on the optimality criterion employed as well as the ratio k
v .

Some key words and phrases: Binary Design, incomplete block design, A-optimality,

D-optimality, E-optimality.

1 Introduction

Scarcity of resources not infrequently plays a significant role in designing an experiment.

In a study examining factors affecting vehicle traction, engineers asked us for a plan

incorporating three speeds, five loads, and five sand types (thus 3 × 5 × 5 treatment

combinations) to be executed over two days of experimentation. Strong interactions

were expected. Speed/load combinations were to be run through sand pits in which

lines of sensors were buried. Each day would begin with working the sand in each pit
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to a roughly uniform consistency and burying the sensors (which could not be left out

overnight). This and obvious environmental variation made blocking by day a prudent

choice. Allocating five minutes per run, with set-up, break-down and transport time it

was not possible to run every treatment each day. An incomplete block design with two

blocks and 75 treatments was needed.

Design theory offers a number of strategies to help the statistician get around some of

the constraints in situations like this one. One possibility is to posit adequacy of a low-

order polynomial model in the quantitative factors, allowing one to ask that the number

of levels of some factors, and thus the number of treatments, be reduced. Another, for

non-quantitative factors, is to discount interaction terms and employ a blocked fractional

factorial design. Should treatments not possess an underlying factorial structure, yet

another option is simply to ask experimenters to curtail their goals. What design theory

does not offer is a direct answer to the experimenter’s initial question: for the selected

treatments of interest, what design will maximize precision of all possible treatment

comparisons when having only two small blocks of material with which to work? Even

a decision to reduce the scope of the experiment, should it be made, will be on firmer

footing once the answer to this question is known, so that what is gained and what is

lost is fully understood.

Following the standard formulation of the block design problem, let D(v, b, k) denote

the class of all connected block designs having v treatments arranged in b blocks of equal

size k ≤ v. For b = 2 there are 2k experimental units in total. If 2k = 2v the universally

optimal design (Kiefer, 1975) is to allocate each treatment to one unit in each block:

the well-known randomized complete block design. If 2k < v then not every treatment

can be used, and if 2k = v then any design is disconnected (i.e. not every contrast can

be estimated). The problem requiring study is for settings with k < v < 2k, where there

can be many incomplete block designs with varying efficiencies from which to choose.

Block designs are judged by measures of variance defined as functions of the treat-

ment effects information matrix, commonly denoted by Cd, the subscript d making

explicit the dependence on design d ∈ D. This matrix is known (eg, Shah and Sinha,
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1989) to be

Cd = Diag(rd1, rd2, . . . , rdv)− k−1NdN
′
d (1)

where rdi is the number of units allocated treatment i by d and Nd = (ndij) with ndij

signifying the number of units in block j allocated treatment i. Cd is nonnegative

definite, has non-positive off-diagonal elements and has rows sums zero for all d ∈
D(v, b, k). Connected designs have Cd of rank v − 1.

A design d is equireplicate if rd1 = rd2 = . . . = rdv. Treatment i of d is binary if it

is allocated to rdi distinct blocks, that is, if ndij is 0 or 1 for all j. Design d is binary if

all its treatments are binary. While some other work has been done, design theory has

concentrated on settings where bk is a multiple of v so that equireplication is possible.

Optimality arguments then usually lead to binary, equireplicate designs. The problem

here does not allow equireplication, and it will be seen that the optimality of binary

assignment depends on the criterion employed.

Commonly used and statistically sensible optimality criteria are defined in terms of

the eigenvalues of Cd. Let these be 0 = zd0 < zd1 ≤ . . . ≤ zd,v−1. Design d∗ ∈ D is E-

optimal if 1
zd∗1

≤ 1
zd1

(equivalently zd∗1 ≥ zd1); is A-optimal if
∑i=v−1

i=1
1

zd∗i
≤ ∑i=v−1

i=1
1

zdi
;

and is D-optimal if
∏i=v−1

i=1
1

zd∗i
≤ ∏i=v−1

i=1
1

zdi
(equivalently

∏i=v−1
i=1 zd∗i ≥

∏i=v−1
i=1 zdi);

each inequality holding for all d ∈ D. The statistical meaning of these criteria is

discussed by, among others, Shah and Sinha (1989). Each is a natural measure of

variance of treatment contrasts, so that smaller values correspond to better designs.

This paper determines A-, D-, and E-optimal designs in D(v, 2, k) for each k sat-

isfying k < v < 2k. These problems are solved in sections 3, 4, and 5, respectively.

The surprising result is that E-optimal designs can be highly nonbinary. Section 2 lays

out an optimality tool needed for the derivations. Section 6 provides further discussion,

including a comparison of optimal designs. Some of the derivations in this paper are

best followed with an algebraic manipulator, such as Maple or Mathematica, in hand.
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2 Matrix Averaging

A key tool required in later proofs is matrix averaging, explained here. An optimality

criterion Φ : Cd → < is matrix convex if for any Cd1 and Cd2 and all 0 ≤ θ ≤ 1,

Φ(θCd1 + (1 − θ)Cd2) ≤ θΦ(Cd1) + (1 − θ)Φ(Cd2). The A, D, and E criteria are all

matrix convex (Kiefer, 1975). The importance of this is that bounds for a criterion’s

value can be found by “averaging” an information matrix as follows.

Definition Let P1, . . . , Pt be t permutation matrices of order v. An averaging of the

information matrix Cd is Cd = 1
t

∑t
i=1 PiCdP

′
i . Cd is called an average matrix of Cd.

Theorem 2.1 Suppose Cd is an average matrix of Cd. Then

(i) Cd is nonnegative definite with zero row sums and the same trace as Cd, and

(ii) Φ(Cd) ≤ Φ(Cd) for any matrix convex Φ.

Averaging as a tool for bounding optimality values first appeared in Constantine (1981).

To show that a design d∗ is better than any member of a class of competing designs

it is enough to show that Φ(Cd) ≥ Φ(Cd∗) for some averaged version of Cd for members

of that class. The question is in choice of the averaging. Let Πi for i = 1, . . . , l be

a partition of the treatments, |Πi| = vi (
∑

i vi = v). Then there is a collection of

vi! permutation matrices corresponding to all permutations of the treatments in Πi.

Applying these
∑

i vi! permutations to an information matrix Cd, the averaged version

is generalized block diagonal.

Definition A symmetric matrix X is generalized block-diagonal if it can be partitioned

as 


An1×n1 c12Jn1×n2 · · · c1pJn1×np

c21Jn2×n1 An2×n2 · · · c2pJn2×np

...
...

. . .
...

cp1Jnp×n1 cp2Jnp×n2 · · · Anp×np




(2)

where the matrices Ani×ni = xiI + yiJ are completely symmetric.
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It is evident that
∑p

i=1(ni−1) eigenvalues of (2) are ni−1 copies of xi for i = 1, . . . , p.

Following Morgan and Parvu (2007), the remaining eigenvalues are those of a p × p

matrix.

Lemma 2.2 Let X be a generalized block-diagonal matrix as given in (2). Also let

matrices Ani×ni have eigenvalues xi with multiplicity ni − 1 and ai = xi + niyi with

multiplicity 1. Then the eigenvalues of X are xi with multiplicity ni − 1, and the

eigenvalues of the (not necessarily symmetric) matrix:

X̃ =




a1 c12 · n2 · · · c1p · np

c21 · n1 a2 · · · c2p · np

...
...

. . .
...

cp1 · n1 cp2 · n2 · · · ap




Extracting functions of eigenvalues is sometimes eased by the following lemma.

Lemma 2.3 (Vieta’s Formulas) If λ1, λ2, . . . , λn are the n roots for an nth order equa-

tion P (λ) = 0 where P (λ) = anλn + an−1λ
n−1 + . . . + a1λ + a0, then

λ1 + λ2 + . . . + λn = (−1)an−1

an

λ1λ2 + λ1λ3 + . . . + λn−1λn = (−1)2 an−2

an

...

λ1λ2 . . . λn = (−1)n a0
an

.

(3)

The Intermediate Value Theorem will also be useful so is stated here for convenience.

Lemma 2.4 Consider P (λ) in lemma 2.3 and real numbers a and b. If P (a)P (b) < 0,

then P (λ) has at least one root in (a, b).

3 A-optimal Designs

Write bk = vr + p where p is a non-negative integer no larger than v − 1. Then p is

the number of plots available for use in a block design over and above that needed to

replicate each treatment r times. For b = 2 and v
2 < k < v these numbers are r = 1 and
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Block 1: 1 2 · · · p p+1 p+2 · · · k

Block 2: 1 2 · · · p k+1 k+2 · · · 2k-p

Figure 1: Binary design d0

p = 2k−v. Up to treatment labeling there is only one binary design d0 (see Figure 1) in

this situation, having exactly p treatments replicated twice, and v − p replicated once.

From (1), the information matrix Cd0 for the binary design is

Cd0 =




2Ip − 2
kJp − 1

kJp,k−p − 1
kJp,k−p

− 1
kJk−p,p Ik−p − 1

kJk−p 0k−p

− 1
kJk−p,p 0k−p Ik−p − 1

kJk−p




(4)

This matrix has positive eigenvalues 1 with frequency 2(k − p − 1), 2 with frequency

(p− 1), p
k , and v

k . Its A-value is thus

Ad0 =
v−1∑

i=1

1
zd0i

= 2(k − p− 1) +
p− 1

2
+

k

p
+

k

v
. (5)

It will be shown that any non-binary design in D(v, 2, k) is A-inferior to d0, and

consequently that d0 is A-optimal. This will be done employing the average matrix

technique of section 2 using a partition of the treatments into three subsets.

With p units in excess of that needed for a single replication of all treatments, at

least v − p = 2(k − p) treatments must be replicated exactly once. So let 2(k − p) + m

treatments have just one replicate where 0 ≤ m ≤ p− 1. If k − p− s is the number of

treatments with one replicate in block one, then k − p + s + m of the treatments have

one replicate in block two, where −m
2 ≤ s ≤ k − p. Connectedness further requires

0 ≤ s + m ≤ p− 1. A partition of the treatments into three subsets of sizes k − p− s,

k − p + s + m, and p−m has now been defined. The binary design d0 has m = s = 0.

The symbols s and m just defined will be used throughout:

m = the total excess in treatments with one replicate relative to d0,

s = the shortfall in treatments in block one with one replicate relative to d0.

6



A negative shortfall (s < 0) is actually an excess. The sign of s is not a consideration

in the A- and D-optimality problems, and it will be seen (lemma 5.2) that s < 0 need

not be considered for the E-optimality problem.

Lemma 3.1 Let d be any design in D(v, 2, k). The information matrix Cd ≡ Cd obtained

by averaging over the partition defined above is, for some values of ζ and η,

Cd =




Ik−p−s − 1
kJk−p−s 0k−p−s,k−p+s+m − p+s

k(p−m)Jk−p−s,p−m

0k−p+s+m,k−p−s Ik−p+s+m − 1
kJk−p+s+m − p−s−m

k(p−m)Jk−p+s+m,p−m

− p+s
k(p−m)Jp−m,k−p−s − p−s−m

k(p−m)Jp−m,k−p+s+m ζIp−m + ηJp−m




(6)

and the value ζ satisfies

ζ ≤ 2p−m

p−m
. (7)

Proof If s = k − p the matrix (6) simplifies from 3 × 3 block-diagonal to 2 × 2; this

case will not be separately handled. It is simple to verify that the average matrix has

this form:



Ik−p−s − 1
kJk−p−s 0k−p−s,k−p+s+m γ1Jk−p−s,p−m

0k−p+s+m,k−p−s Ik−p+s+m − 1
kJk−p+s+m γ2Jk−p+s+m,p−m

γ1Jp−m,k−p−s γ2Jp−m,k−p+s+m ζIp−m + ηJp−m




That the row sums of Cd are zero gives the values of γ1 and γ2 as seen in (6), and also

that ζ + (p−m)η = −γ1(k − p− s)− γ2(k − p + s + m), which simplifies to

ζ + (p−m)η =
−(p + s)2 − (p−m− s)2 + k(2p−m)

k(p−m)
. (8)

Denote by Ω the set of treatments with more than one replicate in d, |Ω| = p−m. Since

Cd and Cd have the same trace it must hold that

(p−m)(ζ + η) =
∑

i∈Ω

rdi − 1
k

∑

i∈Ω

2∑

j=1

n2
dij = 2p−m− 1

k

∑

i∈Ω

2∑

j=1

n2
dij . (9)

Combining (8) and (9) gives

∑

i∈Ω

2∑

j=1

n2
dij = k[(2p−m)− (p−m)(ζ + η)] = k[(2p−m)− (p−m− 1)ζ − (ζ + (p−m)η)]

= k[(2p−m)− (p−m− 1)ζ +
(p + s)2 + (p−m− s)2 − k(2p−m)

k(p−m)
]. (10)
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If ζ > 2p−m
p−m then (10) gives

∑

i∈Ω

2∑

j=1

n2
dij < k[(2p−m)− (p−m− 1)

2p−m

p−m
+

(p + s)2 + (p−m− s)2 − k(2p−m)
k(p−m)

]

= p−m +
2s(m + s) + p2

p−m
. (11)

On the other hand, since
∑

i∈Ω ndi1 = p + s and
∑

i∈Ω ndi2 = p−m− s,

∑

i∈Ω

2∑

j=1

n2
dij =

∑

i∈Ω

n2
di1 +

∑

i∈Ω

n2
di2

≥ (
∑

i∈Ω ndi1)2

p−m
+

(
∑

i∈Ω ndi2)2

p−m
= p−m +

2s(m + s) + p2

p−m
,

contradicting (11). ut

By lemma 2.2, the nonzero eigenvalues of Cd in (6) are 1 with frequency 2(k − p) +

m − 2, ζ with frequency p − m − 1, and the two nonzero eigenvalues of the following

3× 3 matrix :

C̃d =




p+s
k 0 −p+s

k

0 p−m−s
k −p−m−s

k

− (p+s)(k−p−s)
k(p−m) − (p−s−m)(k−p+s+m)

k(p−m) ζ + η(p−m)




(12)

where (8) specifies the value of ζ + η(p−m).

Now the main result of this section can be stated and proved.

Theorem 3.2 The binary design d0 is uniquely A-optimal in D(v, 2, k).

Proof The two nonzero eigenvalues λ1 and λ2 of (12) are the roots of the equation

|C̃d − λI3| = 0, which simplifies to

k2(m− p)λ2 − k(km− 2kp + mp + 2ms + 2s2)λ + (2k− p)(m− p + s)(p + s) = 0 (13)

Invoking lemma 2.3 gives the sum of their inverses:

1
λ1

+
1
λ2

=
λ1 + λ2

λ1λ2
=

k(km− 2kp + mp + 2ms + 2s2)
(2k − p)(m− p + s)(p + s)
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and so Ad̄ =
∑v−1

i=1
1

z
di

is

Ad̄ = 2(k − p) + m− 2 +
(p−m− 1)

ζ
+

k(km− 2kp + mp + 2ms + 2s2)
(2k − p)(m− p + s)(p + s)

(7)

≥ 2(k − p) + m− 2 +
(p−m− 1)(p−m)

2p−m
+

k(km− 2kp + mp + 2ms + 2s2)
(2k − p)(m− p + s)(p + s)

(14)

Taking the difference Ad̄ −Ad0 from (14) and (5) and after some simplification

v−1∑

i=1

1
zdi

−
v−1∑

i=1

1
zd0i

≥ m(p + 1)
4p− 2m

+
k(k − p)(2(s + m

2 )2 + m(p− m
2 ))

(2k − p)p(p−m− s)(p + s)
. (15)

It is easy to see that right side of (15) is always greater than zero as long as s and m

are not zero simultaneously. ut

4 D-optimal Designs

The main result of this section is:

Theorem 4.1 The binary design d0 is uniquely D-optimal in D(v, 2, k).

Proof Minimizing D-value is equivalent to maximizing the product of nonzero eigen-

values of Cd, which for the binary design d0 is

v−1∏

i=1

zd0i = 2p−1 p(2k − p)
k2

. (16)

The product of eigenvalues for an arbitrary design d can be bounded by that of the

average matrix (6) in lemma 3.1. Lemma 2.3 applied to (13) shows that λ1λ2 = (2k −
p)(p−m− s)(p + s)/(k2(p−m)). Using also (7) and the sentence preceding (12),

v−1∏

i=1

zdi ≤
(2k − p)(2p−m

p−m )p−m(p−m− s)(p + s)

k2(2p−m)
. (17)

A bound for the D-efficiency of d̄ relative to d0, D(d̄, d0) = (
v−1∏
i=1

zdi)/(
v−1∏
i=1

zd0i), is given

by the ratio of (17) to (16). After some simplification this is

D(d̄, d0) ≤
(2p−m

p−m )p−m

2p
× 2(p−m− s)(p + s)

(2p−m)p
. (18)
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Block 1: 1 2 · · · 2p-k 2p-k+1 2p-k+1 2p-k+2 2p-k+2 · · · 2p-k+(k-p)=p p

Block 2: 1 2 · · · 2p-k p+1 p+2 p+3 p+4 · · · 2k-p-1 2k-p

Figure 2: Non-binary design d∗

The second factor of (18) is 2(p−m−s)(p+s)
p(2p−m) = p(2p−m)−(m+s)2−s2−m(p−m)

p(2p−m) ≤ 1, with strict

inequality unless m = s = 0 (which is d0). The proof is complete if also W (m) =
( 2p−m

p−m
)p−m

2p ≤ 1. Writing x = p−m
2p−m < 1,

d

dm
log(W (m)) = 1− x + log(x) =

∞∑

j=2

(−1)j−1

j
(x− 1)j < 0

so that W (m) ≤ W (0) = 1. ut

5 E-optimal Designs

The E-optimality problem for D(v, 2, k) turns out to be considerably more complicated

than those for A and D. To begin, partition D into two subclasses, D1 consisting of

designs having all rdi ∈ {1, 2}, and D2 = D/D1 having those designs for which some

treatment has more than two replicates.

Lemma 5.1 In the class D1, binary design d0 is the unique E-optimal design if v
2 < k <

5v
6 ; non-binary design d∗ (see Figure 2) is the unique E-optimal design if 5v

6 < k < v;

and both d∗ and d0, and only these two designs, are E-optimal if k = 5v
6 .

Concrete examples for d∗ and d0 are found at the end of this section.

Proof For the binary design the smallest nonzero eigenvalue, found following (4), is

zd01 = p
k = α (say). Noting that existence of d∗ requires p > k

2 (⇔ k > 2v
3 ), that for d∗

is found from its information matrix:

Cd∗ =




2I2p−k − 2
kJ2p−k − 1

kJ2p−k,2(k−p) − 2
kJ2p−k,k−p

− 1
kJ2(k−p),2p−k I2(k−p) − 1

kJ2(k−p) 02(k−p),k−p

− 1
kJk−p,2p−k 0k−p,2(k−p) 2Ik−p − 4

kJk−p




(19)
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Applying lemma 2.2, the positive eigenvalues of Cd∗ are: 1 with frequency 2(k− p)− 1,

2 with frequency p− 2, and the nonzero eigenvalues of the matrix

C̃d∗ =




4(k−p)
k −2(k−p)

k −2(k−p)
k

−2p−k
k

2p−k
k 0

−2(2p−k)
k 0 2(2p−k)

k




(20)

The eigenvalue equation |C̃d∗ − λI3| = 0 reduces to

F (λ) = k2λ2 − (k2 + 2kp)λ− 4k2 + 10kp− 4p2 = 0. (21)

It is now easy to check that

F (0) = 2(2p− k)(2k − p) > 0 F ( p
k ) = (k − p)(5p− 4k)

F (1) = −4(k − p)2 < 0 F (2) = 2(2p− k)(k − p) > 0

So by lemma 2.4 one root, zd∗1, is in the interval (0, 1), and the other is in (1, 2). If

α = p
k < 4

5 then F (α) < 0 and lemma 2.4 says zd∗1 < α, that is, d∗ is E-inferior to

d0. Similarly, if α > 4
5 then zd∗1 > α and d∗ is E-better than d0. Obviously these two

designs are E-equal when α = 4
5 . Note that α = 4

5 is equivalent to k = 5v
6 .

For α > 4
5 , zd∗1 is found by solving (21):

zd∗1 =
k + 2p−√

17k2 − 36kp + 20p2

2k
(22)

=
1
2

+ α− 1
2

√
17− 36α + 20α2. (23)

Now the task is to eliminate other members of D1 relative to d0 and d∗. Every

design d ∈ D1 has the same numbers 2(k − p) and p of treatments with one and two

replicates respectively. So the combinatorial structure of any such d can be described

as follows. Found only in block one are k − p − s treatments replicated once, where

0 ≤ s ≤ k− p, and s + y treatments replicated twice, where y ≥ 0. Found only in block

two are k − p + s treatments with one replicate and y treatments with two replicates.

The two blocks have in common p−s−2y treatments with two replicates (see Figure 3).
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Block 1: (k-p-s) 1-rep trts s non-binary 2-rep trts y non-binary 2-rep trts (p-s-2y) binary 2-rep trts

Block 2: (k-p+s) 1-rep trts y non-binary 2-rep trts (p-s-2y) binary 2-rep trts

Figure 3: General Design Structure in D1(v, 2, k)

Connectedness requires that s + 2y < p. If s = y = 0 the design is d0 while d∗ is
found by setting s = k − p and y = 0. The information matrix Cd is:



Ik−p+s − 1
k
Jk−p+s 0k−p+s,k−p−s 0k−p+s,s+y − 2

k
Jk−p+s,y − 1

k
Jk−p+s,p−s−2y

0k−p−s,k−p+s Ik−p−s − 1
k
Jk−p−s − 2

k
Jk−p−s,s+y 0k−p−s,y − 1

k
Jk−p−s,p−s−2y

0s+y,k−p+s − 2
k
Js+y,k−p−s 2Is+y − 4

k
Js+y 0s+y,y − 2

k
Js+y,p−s−2y

− 2
k
Jy,k−p+s 0y,k−p−s 0y,s+y 2Iy − 4

k
Jy − 2

k
Jy,p−s−2y

− 1
k
Jp−s−2y,k−p+s − 1

k
Jp−s−2y,k−p−s − 2

k
Jp−s−2y,s+y − 2

k
Jp−s−2y,y 2Ip−s−2y − 2

k
Jp−s−2y




(24)

If y = 0 or s = k−p the information matrix collapses to fewer partitioned components.

From lemma 2.2 the nonzero eigenvalues of Cd in (24) are: 1 with frequency 2(k −
p)− 2, 2 with frequency p− 3, and the four nonzero eigenvalues of the following matrix:




p−s
k 0 0 −2y

k −p−s−2y
k

0 p+s
k −2(s+y)

k 0 −p−s−2y
k

0 −2(k−p−s)
k 2− 4(s+y)

k 0 −2(p−s−2y)
k

−2(k−p+s)
k 0 0 2(k−2y)

k −2(p−s−2y)
k

−k−p+s
k −k−p−s

k −2(s+y)
k −2y

k
2(k−p+s+2y)

k




(25)

The eigenvalues of (25) are 2 and the roots of

Fd(λ) = k2λ3 − 2k(2k − s− 2y)λ2 + (4k2 + 2kp− p2

−6ks + 2ps− s2 − 12ky + 4py)λ− 2(2k − p)(p− s− 2y) = 0
(26)

Corresponding to the collapsing of partitions in (24), function Fd in (26) is still the

characteristic polynomial for y = 0 but not s = k − p. There are thus two cases to

consider: s < k− p with s > 0 if y = 0, and s = k− p. In interest of space and because

the manipulations are similar, only the former is shown here.

First Fd is evaluated at a few easily simplified points:

Fd(0) = −2(p− s− 2y)(2k − p) < 0
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Fd(α) =
4(k − p)2(s + 2y)− ps2

k

Fd(1) = (k − p− s)(k − p + s) > 0

So zd1 is in (0, 1), and lemma 2.4 says that zd1 < x for any x such that Fd(x) > 0.

If p
k ≤ 4

5 then Fd(
p
k ) = [4(k−p)2−ps]s+8(k−p)2y

k > (4[k−p)2−p(k−p)]s+8(k−p)2y
k > 0 ⇒

zd1 < p
k , that is, d is E-inferior to d0.

For p
k > 4

5 write γ = k − p − s for some 0 < γ ≤ k − p. Using F (λ) in (21) (which

has zd∗1 as a root), a bit of algebra shows that Fd can be re-expressed as

Fd(λ) = (λ− 1− 2γ

k
)F (λ)

+γ(6k − 8p− γ)λ− (12k − 22p +
8p2

k
)γ + 4y[(2− λ)k − p](1− λ)

Since zd∗1 < 1, the trailing term 4y[(2− λ)k − p](1− λ) is nonnegative (positive unless

y = 0) at λ = zd∗1 and so

Fd(zd∗1) ≥ γ(6k − 8p− γ)zd∗1 − (12k − 22p +
8p2

k
)γ (27)

Using p = αk and zd∗1 from (23), after dropping the factor −γk
2 the RHS of (27) can be

rewritten as

Θ =
γ

k
(1 + 2α−

√
17− 36α + 20α2)− 2(−3 + 4α)(3− 4α +

√
17− 36α + 20α2)

If Θ < 0 the proof is complete. Since γ
k < (1−α) and also 1+2α−√17− 36α + 20α2 > 0

for 4
5 < α < 1,

Θ < (1− α)(1 + 2α−
√

17− 36α + 20α2)− 2(−3 + 4α)(3− 4α +
√

17− 36α + 20α2)

= 19 + 30α2 − 47α− (7α− 5)
√

17− 36α + 20α2

But (7α− 5)
√

17− 36α + 20α2 > 0 for α > 4
5 , so Θ < 0 is implied by T (α) < 0 where

T (α) = (19 + 30α2 − 47α)2 − [(7α− 5)
√

17− 36α + 20α2]2

= −8(α− 2)(α− 1)(2α− 1)(5α− 4)

Obviously T (α) < 0 for every α ∈ (4
5 , 1). ut
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Lemma 5.1 reduces the class of possible E-optimal designs to d0, d∗, and designs with

at least one treatment replicated three times or more. The next two lemmas further

restrict the potential competitors.

Lemma 5.2 Any design in D(v, 2, k) with both blocks containing at least k − p + 1

treatments with one replicate is E-inferior to the binary design d0.

Proof For any normalized vector l and any d, an upper bound for zd1 is v
v−x2 l′Cdl

where x = l′1 (Morgan, 2007, lemma 2). Here define a group of treatments as any

k − p + 1 treatments having replication one and appearing in the first block. Similarly

define a second group of singly-replicated treatments appearing in the second block.

Let l be the normalized contrast vector comparing these two groups. Then x = 0 and

l
′
Cdl = p−1

k < p
k . ut

Lemma 5.3 Any design in D(v, 2, k) with more than k − p
2 singly-replicated treatments

appearing in the same block is E-inferior to the binary design d0.

Proof Suppose WLOG treatments 1, 2, . . . , k − t are singly-replicated and appear in

the same block. Let l be the v-vector with 1’s in positions 1, . . . , k− t and 0 otherwise.

Then normalizing l and applying the result cited in the proof of lemma 5.2,

zd1 ≤ v

(k − t)(v − k + t)

k−t∑

i,i′=1

(Cd)ii
′ =

vt

(v − k + t)k
=

(2k − p)t
(k − p + t)k

which is less than zd01 = p
k if and only if t < p

2 . ut

Recalling the definition of m from section 3, if a design is to be E-optimal, then

lemma 5.3 says it must satisfy m + s ≤ p
2 (note that p = 2k − v). Lemma 5.2 further

implies s ≥ 0. These restrictions set the stage for lemma 5.4.

Lemma 5.4 Any design in which some treatment has more than two replicates cannot

be E-optimal in D(v, 2, k). That is, no design in D2 is E-optimal.
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Block 1: (k-p-s) 1-rep trts t3 binary 2-rep trts t1 non-binary 2-rep trts m trts

Block 2: (k-p+s+m) 1-rep trts t3 binary 2-rep trts t2 non-binary 2-rep trts m trts

Figure 4: Averaging Structure in D(v, 2, k)

Proof Designs in D2 are exactly those for which m ≥ 1. The proof proceeds by

averaging over a partition for an arbitrary member of D2, one subset of which consists

of m appropriately chosen treatments.

As discussed in section 3, there are 2(k−p)+m singly-replicated treatments, of which

k−p−s appear in block 1 and k−p+s+m appear in block 2. For any selected d ∈ D2,

at least p − 2m treatments have exactly two replicates. Let the number of treatments

having exactly two replicates and occurring only in block i of d be ti, i = 1, 2. Then

the number of treatments with two replicates and occurring in both blocks is at least

t3 = p − 2m − t1 − t2. Identify such a set of t3 treatments, thereby also identifying

exactly m treatments other than the p − 2m = t1 + t2 + t3 so far identified as having

exactly two replicates, and the 2(k − p) + m treatments having exactly one replicate.

Then a partition of the treatments into six subsets of sizes k− p− s, k− p + s + m, t1,

t2, t3 and m (see Figure 4) has been defined.

The average matrix corresponding to this partition is



ωIm + ψJm ξ1J ξ2J ξ3J ξ4J ξ5J

ξ1J 2It3 − 2
k
Jt3 − 2

k
J − 2

k
J − 1

k
J − 1

k
J

ξ2J − 2
k
J 2It1 − 4

k
Jt1 0 − 2

k
J 0

ξ3J − 2
k
J 0 2It2 − 4

k
Jt2 0 − 2

k
J

ξ4J − 1
k
J − 2

k
J 0 Ik−p−s − 1

k
Jk−p−s 0

ξ5J − 1
k
J 0 − 2

k
J 0 Ik−p+s+m − 1

k
Jk−p+s+m




.

(28)

where ξ1, . . . , ξ5 and ω + mψ are determined by all row and column sums of (28) being

zero. As will be seen, individual values of ω and ψ are not needed.

The eigenvalues of (28) are, by lemma 2.2, 1 with frequency 2(k−p)+m−2, 2 with
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frequency p− 2m− 3, ω with frequency m− 1, and the eigenvalues of



a −3t3
k −2t1w1

km −2w2t2
km −w1(k−p−s)

km −w2(k−p+s+m)
km

−3m
k

2(k−t3)
k −2t1

k −2t2
k −k−p−s

k −k−p+s+m
k

−2w1
k −2t3

k
2k−4t1

k 0 −2(k−p−s)
k 0

−2w2
k −2t3

k 0 2k−4t2
k 0 −2(k−p+s+m)

k

−w1
k − t3

k −2t1
k 0 p+s

k 0

−w2
k − t3

k 0 −2t2
k 0 p−s−m

k




(29)

where a = 3km−5m2−2m(s+t2−t1)−2(s+t2−t1)2

km , w1 = s+2m+t2−t1 and w2 = m−s−t2+t1.

The parameters w1 and w2 are the numbers of plots taken by the m treatments of the

partition in block 1 and 2 respectively. They must be nonnegative and cannot be zero

simultaneously. That is,

w1 = s + 2m + t2 − t1 ≥ 0, w2 = m− s− t2 + t1 ≥ 0, w1 + w2 6= 0 (30)

The average matrix will collapse to smaller dimensions if any of t1, t2, t3, or k − p− s

are zero; all designs considered have m ≥ 1.

Let G(λ) be the characteristic polynomial of (29). The approach from here parallels

proofs earlier in the paper: first establish G(0) > 0 and G(1) < 0 (proving zd1 < 1),

then show G(zd01) < 0 for k ≤ 5v
6 and G(zd∗1) < 0 for k > 5v

6 . The messy, tedious

details are relegated to the appendix. ut

Combining lemmas 5.1 and 5.4 gives the main result of this section. Examples of

E-optimal designs follow the Theorem.

Theorem 5.5 In the class D(v, 2, k), the binary design d0 is the unique E-optimal

design if v
2 < k < 5v

6 ; the non-binary design d∗ is the unique E-optimal design if
5v
6 < k < v; and both d∗ and d0, and only these two designs, are E-optimal if k = 5v

6 .

Example 1 Consider block size k = v − 2. If v = 9 then k < 5v
6 and the E-optimal

design in D(9, 2, 7), is:

Block 1: 1 2 · · · 5 6 7

Block 2: 1 2 · · · 5 8 9
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However, if v = 13 then k > 5v
6 and the E-optimal design in D(13, 2, 11), is:

Block 1: 1 2 · · · 7 8 8 9 9

Block 2: 1 2 · · · 7 10 11 12 13

6 Comparisons and Discussion

A general observation from sections 3-5 is that for experiments in two blocks, conven-

tional criteria lead to different design choice. This section further explores the interplay

of the A, D, and E criteria.

Definition A design is said to be φη-optimal for fixed η ≥ 0 if among all competing

designs d it minimizes φη(Cd) = (
∑v−1

i=1 (zdi)−η)
1
η

Introduced by Kiefer (1975), the φη criteria include A, D, and E as η = 1, η = 0, and

η → ∞, respectively. These criteria provide a useful bridge for assessing the relative

strengths of d0 and d∗ beyond what is revealed by A, D, and E alone. This is done

by comparing φη(Cd0) and φη(Cd∗) for all η. Of the many examples we have examined

(including all v ≤ 100), two are shown below, both having k
v > 5

6 .

We have found no example where d∗ is φη-superior to d0 for any η when k
v < 5

6 . On

the other hand, for k
v > 5

6 , we have found d0 to be φη-inferior to d∗ for all but a relatively

small set of η. This small set is of the form η ≤ η̃, with d∗ superior for all η > η̃. An

obvious implication is that unless overriding weight is placed on the A-criterion, d∗ is

the better choice for k
v > 5

6 .

Example 2 Table 1 presents the φη-comparisons of d0 and d∗ for D(24, 2, k), in which

k/v > 5/6 ⇔ k ≥ 21.

k 21 22 23

η̃ 5.401 4.494 4.459

Table 1: η̃ for v = 24 and 21 ≤ k ≤ 23
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Example 3 Table 2 presents the φη-comparisons of d0 and d∗ for D(100, 2, k), in which

k/v > 5/6 ⇔ k ≥ 84.

k 84 85 86 87 88 89 90 91

η̃ 9.771 7.316 6.253 5.628 5.213 4.923 4.714 4.566

k 92 93 94 95 96 97 98 99

η̃ 4.465 4.405 4.384 4.405 4.474 4.614 4.872 5.421

Table 2: η̃ for v = 100 and 84 ≤ k ≤ 99

A different comparison can be had through the Et-criterion, which is
∑t

i=1
1

zdi
for

fixed t ∈ {1, . . . , v−1}. If d is Et-optimal then it minimizes the largest average variance

over all t-dimensional subspaces of the (v − 1)-dimensional subspace of all treatment

contrasts. E1-optimality is the E-optimality of section 5, and Ev−1-optimality is the

A-optimality of section 3. With the eigenvalues for d∗ and d0 in hand, this can be easily

shown:

Theorem 6.1 For k > 5v
6 , d∗ is Et-better than d0 for 1 ≤ t < 2(v − k), and d0 is

Et-better than d∗ for 2(v − k) ≤ t ≤ v − 1.

E-optimality is a minimax criteria, and this theorem tells us how deeply d∗’s advan-

tage over d0 extends in a minimax sense. The depth of that advantage decreases as k

grows.

In closing we offer one last observation. There are designs other than d∗ which are

E-better then d0, and these designs vary with respect to their A-behavior. Proof of the

following can be found in Jin (2004). The parameters s and y are defined in Figure 3.

Theorem 6.2 Consider the class D1(v, 2, k) with k
v > 5

6 . The following hold:

(i) A necessary condition for a non-binary design to be E-superior to d0 is s ≥
b4(k−p)2

p c+ 1. This necessary condition is sufficient when y = 0.

(ii) Among all non-binary designs that are E-superior to d0, the design with s =

b4(k−p)2

p c+ 1 and y = 0 is A-best and D-best.
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A Further Details for the Lemma 5.4 Proof

The proof proceeds from the paragraph following (30), using the reduced average matrix

(29). The first job is to show there is a positive eigenvalue less than one for (29). The

characteristic polynomial for (29), after removing the factors λ and λ − 2, multiplying

by k2m, and employing the definitions of w1, w2, and t3, is

G(λ) = λ4k2m + λ3[2k(t1 − t2)2 − 4kst1 + 4k(s + m)t2 + 2ks2 + 2ksm + 2km2 − 7k2m]

+λ2[(−10k + 2p + m)(t1 − t2)2 + 2(10ks− km− 2ps + m2)t1

−2(10ks + 11km− 2ps− 2pm−m2)t2

+16k2m + 2kpm− 10ksm− 10ks2 − 8km2 + 2ps2 + 2psm− p2m− 2sm(s + m)]

+λ[(16k − 6p−m)(t1 − t2)2 − 2(16ks− 3km− 6ps + pm + m2)(t1 − t2)

+4(11km− 4pm + m2)t2

+16ks2 + 16ksm− 12k2m + 12km2 − 6ps2 + 5p2m− 2pm2 + 4sm(s + m)]

−2(2k − p)[2(t1 − t2)2 − (4s−m)(t1 − t2) + 6mt2 + 2(m2 + ms + s2)− 3mp]

The last line in the above expression, which is G(0), can be rearranged as

G(0) = 4(2k − p)(m− s + t1 − t2)(2m + s− t1 + t2) + 6(2k − p)m(p− 2m− t1 − t2)

= 4(2k − p)w1w2 + 6(2k − p)mt3

Now t3 ≥ 0 and from (30) w1w2 > 0, so G(0) > 0. Direct evaluation gives G(1) =

−2m(k − p − s)(k − p + m + s) < 0. Thus zd1 ∈ (0, 1) for any d inducing the full

6 × 6 matrix (29), i.e. for any d not having any ti = 0 or s = k − p, in which cases

the correct version of (29) has smaller dimension. It can be shown that G(λ) as given

above reduces to the correct polynomial if any ti = 0, so the result for zd1 holds in these

cases. If s = k − p, the characteristic polynomial can be expressed as Q(λ) (say) where

G(λ)|s=k−p = (1 − λ)Q(λ). For any λ < 1, (1 − λ)Q(λ) and Q(λ) have the same sign,

so again the result holds.

It remains to show that G(zd01) < 0 when p ≤ 4k
5 , and G(zd∗1) < 0 when p > 4k/5.

These are nontrivial tasks, each requiring investigation of several involved subcases.
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While the general thrust of the arguments for these two tasks are similar, working with

G(zd∗1) is relatively more difficult due to zd∗1 being irrational. Here only some cases

for G(zd∗1) are explored. The complete proof can be seen in Jin’s (2004) dissertation,

where it consumes 29 pages.

The main points of the proof are as follows. G(zd∗1) is a quadratic function of t1 and

t2. This function of (t1, t2) is concave and has no solution to the equations ∂G/∂t1 =

0 = ∂G/∂t2. Its maximum value must therefor lie somewhere on the boundaries, i.e.,

on the lines t1 = 0, t2 = 0, t1 + t2 = p− 2m, t2 − t1 = m− s or t1 − t2 = s + 2m. The

values on the five lines are all smaller than zero, and so G(zd∗1) < 0. Some of the fairly

extensive technical details for this straightforward line of thought follow.

Recall from (22) that zd∗1 = k+2p−
√

17k2−36kp+20p2

2k = α+ 1
2(1−√17− 36α + 20α2) =

α + 1
2(1 − δ), say, introducing the symbol δ to simplify the expression (which is best

left to software so is not shown here) of G(zd∗1). It can be seen that 0 < δ < 1 for
4
5 < p

k = α < 1. Considering G(zd∗1) as a functon of t1 and t2, differentiate to find

∂2G(zd∗1)
∂t21

=
∂2G(zd∗1)

∂t22
= −∂2G(zd∗1)

∂t1∂t2
= −∂2G(zd∗1)

∂t2∂t1

= −(k − 2p + 2δ)[9k2 − 18kp + 8p2 + 2mp + km(1− δ) + 6kδ(k − p) + k2δ2]
2k2

(31)

Evaluation of (31) requires showing k − 2p + kδ > 0. This is easily done with a sim-

ple plot as follows. Replacing δ by its actual value gives k − 2p + kδ = k(1 − 2α +
√

17− 36α + 20α2). Plotting 1−2α+
√

17− 36α + 20α2 shows that it is always greater

than zero for α ∈ (4
5 , 1). It can be similarly shown that 9k2− 18kp + 8p2 + 6kδ(k− p) +

k2δ2 > 0 for p > 4
5k.

As a consequence, the Hessian for G(zd∗1) with respect to t1 and t2 is non-positive

definite, implying G(zd∗1) is concave with respect to t1 and t2. If there is a solution

to the equations ∂G(zd∗1)/∂t1 = 0 = ∂G(zd∗1)/∂t2 in the feasible (t1, t2) range, then

that solution maximizes G(zd∗1); if no such solution exists, G(zd∗1) is maximized on a

boundary of the feasible region.

So set ∂G(zd∗1)/∂t1 = 0 and solve for t1, call the solution t̂11. Likewise set ∂G(zd∗1)/∂t2

= 0 and again solve for t1, call the solution t̂12 (again, this is an onerous task if done
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manually, but easily left to software). Setting t̂11 = t̂12 and cancelling their common

denominator gives

[15k2 − 26kp + 8p2 + k2δ2 + 2kδ(4k − 3p)] + [4mp + 2km(1− δ)] = 0.

The second bracketed term is obviously positive (since m > 0). Dividing the first

bracketed term by k2 produces a function of α alone which, when plotted, is positive

for α ∈ (4
5 , 1). Thus there is no solution to ∂G(zd∗1)/∂t1 = 0 = ∂G(zd∗1)/∂t2. The

maximum value for G(zd∗1) must be on the boundaries identified above.

Now the truly tedious part begins: checking the values of G(zd∗1) on the boundary

lines. Here the line t1 = 0 will be examined; other cases are in Jin (2004). Writing G∗
1

for −16k2G(zd∗1) evaluated at t1 = 0,

G∗
1 = 4(k − 2p + kδ)[9k2 − 18kp + 8p2 + 2mp + km(1− δ) + 6kδ(k − p) + k2δ2]t22

+8(k − 2p + kδ)[(k + 2p− kδ)m2 + (3k − 4p + kδ)(4k − 2p + kδ)m

+ s(3k − 4p + kδ)(3k − 2p + kδ)]t2

+(3k − 2p + kδ)L

where

L = 4[5k2 − 8kp + 4p2 − 2s(k + 2p− kδ) + kδ(2k − 4p + kδ)]m2

+4s[3k2 − 10kp + 8p2 − 2s(k + 2p− kδ) + kδ(4k − 6p + kδ)]m

+4s2(k − 2p + kδ)(3k − 4p + kδ)

+km(1− δ)(3k − 4p + kδ)(5k − 2p + kδ).

The goal is to show G∗
1 > 0. Now 3k − 4p + kδ > k − 2p + kδ ≥ k − 2p + 2δ > 0 for

p > 4k/5, the last inequality having been established following (31), so the coefficient of

t2 in G∗
1 is positive. The coefficient of t22 is positive by comparison with (31). It remains

to show that L > 0.

The two expressions in L in square brackets are each decreasing in s, so can be

bounded by setting s = k − p and simplifying as follows:

5k2 − 8kp + 4p2 − 2s(k + 2p− kδ) + kδ(2k − 4p + kδ) ≥ (k − 2p + kδ)(3k − 4p + kδ)
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and

3k2 − 10kp + 8p2 − 2s(k + 2p− kδ) + kδ(4k − 6p + kδ) ≥ 2(3k − 4p)(3k − 4p + kδ)

But

2(3k−4p)(3k−4p+kδ) = −2(k−2p+kδ)(3k−4p+kδ)+2(4k−6p+kδ)(3k−4p+kδ)

so

L ≥ 4(k − 2p + kδ)(3k − 4p + kδ)(m− s)2 + 8ms(4k − 6p + kδ)(3k − 4p + kδ)

+km(1− δ)(3k − 4p + kδ)(5k − 2p + kδ).
(32)

If 4k− 6p + kδ ≥ 0 then L > 0. If 4k− 6p + kδ < 0, drop the leading term on the RHS

of (32) and set s = k − p to get

L/m ≥ 8(k − p)(4k − 6p + kδ)(3k − 4p + kδ) + k(1− δ)(3k − 4p + kδ)(5k − 2p + kδ)

= 2(3k − 4p + kδ)[10k2 − 23kp + 14p2 + (2k − 3p)kδ].

where the last line is found by replacing k2δ2 by 17k2 − 36kp + 20p2. One may verify

that 10k2− 23kp + 14p2 + (2k− 3p)kδ = k2[10− 23α + 14α2 + (2− 3α)δ] > 0 by simply

plotting for α ∈ (4
5 , 1). ut
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