
Optimal Row-Column Design for Three Treatments

J. P. Morgan and Valentin Parvu

Department of Statistics, Virginia Tech

22nd February 2006

Abstract : The A-optimality problem is solved for three treatments in a row-column layout. De-

pending on the numbers of rows and columns, the requirements for optimality can be decidedly

counterintuitive: replication numbers need not be as equal as possible, and trace of the information

matrix need not be maximal. General rules for comparing 3 × 3 information matrices for their

A-behavior are also developed, and the A-optimality problem is also solved for three treatments in

simple block designs.
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1 Introduction

The classical row-column design problem begins with pq experimental units for use in comparing

some v treatments of interest. Visualized as a p×q array, these units are subject to two identifiable,

systematic sources of heterogeneity, represented by the rows and the columns of the array. Treat-

ments will be assigned to the units, with the goal of evaluating treatment differences as efficiently

as possible after removing row and column variation.

Latin square, Youden, generalized Youden and pseudo-Youden designs are examples of optimal row-

column designs (Kiefer, 1975; Cheng, 1981). These designs are all subject to strict combinatorial

requirements, with the consequence that in the universe of all possible row-column experiments

(v, p, q), they comprise a very small fraction. Optimality progress outside of these combinatorially
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rarefied settings has been at best sporadic, with most known results being for the E-criterion;

see Jacroux (1985, 1986, 1987, 1990), Bagchi and van Berkum (1991), Singh and Gupta (1991),

Das (1993), Bagchi (1996), and Parvu and Morgan (2005). It has long been known that optimal,

equireplicate block designs (v treatments in b blocks of size k) can be arranged into optimal row-

column designs (of size b × k) whenever b is a multiple of v; the underlying technical result was

formalized by Magda (1980). Bagchi and Shah (1989) managed to find strong optimality results,

including A-optimality, for a class of designs in which each of the rows and the columns are linked

block designs. Sonnemann (1985) solved the row-column optimality problem for v = 2.

To the authors’ knowledge, Sonnemann (1985) is the only published work to have established A-

optimality in a row-column setting when pq is not a multiple of v, that is, when equal replication is

not possible. Indeed, knowledge of A-optimal row-column designs, aside from the Youden families

and those directly derivable from block designs as described above, is quite thin. This is general ev-

idence that these are very difficult problems. Specific evidence can be found in a reading of Kiefer’s

(1975) intricate work on A-optimality for the GYDs, which with their considerable symmetry would

otherwise appear to be excellent candidates for a simpler, relatively transparent proof. One reason

for the difficulties, and as noted by Das and Dey (1992), is that GYDs need not have maximal trace

of the information matrix. This is contrary to intuition from the much better understood problem

of one-way blocking, and is a major reason why the elegant (though also sometimes difficult) ar-

guments there have not translated well. More generally for row-column settings, binarity in rows

and columns need not produce maximal trace of the information matrix, and maximal trace need

not be a property of optimal designs.

This paper tackles, and solves, the A-optimality problem for v = 3 treatments in a p×q row-column

experiment. When p and q are such that equal replication is not possible, A-optimal designs

sometimes do, and sometimes do not, have replications as close to equal as possible. Section

2 provides relevant optimality background, then develops A-bounds for the general (not limited

to row-column) problem for three treatments. These bounds help solve the simpler block design

problem in section 3, then are used in section 4 as the backbone on which fairly intricate optimality

calculations comprising the main proof are built. Discussion follows in section 5. With no loss of

generality, p ≤ q is assumed throughout.
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2 Terminology and preliminary results

A row-column design has two component block designs, consisting of the p row blocks of size

q, and the q column blocks of size p. Because each of these components comes into play, this

discussion begins with block design terminology. For any block design, let nij denote the number of

experimental units to which treatment i is assigned in block j. Block (and row-column, and other)

designs are evaluated in terms of the v × v treatment information matrix, usually denoted by Cd

for design d and also called the C-matrix. For a block design with v treatments in b blocks of size

k, the C-matrix is

Cd = diag(r1, . . . , rv)− 1
k
NN ′ (1)

where N = (nij) is the matrix of block-wise assignment numbers and ri is the total replication for

treatment i. While the ri and nij (and other quantities to appear) are certainly functions of the

design d, this fact will not be reflected in the notation unless needed for clarity.

Definition 2.1. The assignment of treatment i to blocks of size k is binary if nij ∈ {0, 1} for all

j. The assignment of treatment i is generalized binary if |nij − k/v| < 1 for all j.

As a verbal shorthand, “treatment i is binary” will be used for “the assignment of treatment i is

binary.” A block design is said to be binary (generalized binary) if all the treatments are binary

(generalized binary). Generalized binary designs maximize the trace of the C-matrix in the class

of designs for one blocking factor with fixed (v, b, k).

Definition 2.2. In a block design, the assignment of treatment i is said to be uniform if |nij−nij′ | ≤
1 for any blocks j and j′.

As before, “treatment i is uniform” is shorthand for “the assignment of treatment i is uniform.”

A design is said to be uniform if all the treatments are uniform. If treatment i is generalized

binary, it is uniform. Also, if treatment i is uniform with a replication number ri such that

b[int(k
v )] ≤ ri ≤ b[int(k

v ) + 1] and v - k, treatment i is also generalized binary.

Turning now to row-column designs, let N1 = (nij1) (N2 = (nij2)) be the v × p (v × q) incidence

matrix between the v treatments and the p row blocks (q column blocks). The information matrix

3



for row-column design d is

Cd = diag(r1, . . . , rv)− 1
q
N1N

′
1 −

1
p
N2N

′
2 +

1
pq

rr′ (2)

where r is the v×1 replication vector. Imbedded in (2) is the column component information matrix

diag(r1, . . . , rv)− 1
pN2N

′
2. Indeed, Cd of (2) can be written Cd = diag(r1, . . . , rv)− 1

pN2N
′
2−X where

X = 1
qN1N

′
1 − 1

pqrr′ is non-negative definite. It follows that for any design d, Φ(diag(r1, . . . , rv)−
1
pNdN

′
d) ≤ Φ(Cd) for any optimality criterion Φ as defined below, with equality precisely when X

is null. Nullity of X occurs when the row assignment numbers nij1 are constant in the row index j,

which can be incompatible with replicating the treatments as equally as possible, and so also with

generalized binarity in rows and in columns.

The ith diagonal element of Cd for a row-column design is

ci = ri − 1
q

p∑

j=1

n2
ij1 −

1
p

q∑

j=1

n2
ij2 +

1
pq

r2
i . (3)

If
∑p

j=1 nij1 = ri is fixed, then
∑p

j=1 n2
ij1 is minimized when the nij1’s are as close to each other

as possible (i.e. treatment i is uniform in rows); a similar statement applies to columns. Thus,

given that treatment i has replication ri, the diagonal element ci will be maximized if treatment

i is uniform in rows and in columns (see Definition 2.2). The trace of Cd is maximized for given

replications if each treatment is uniform in rows and in columns, in which case each treatment as

well as d itself is said to be uniform.

Define the function h of positive integers x and y by

h(x, y) = x + (2x− y)int(
x

y
)− y[int(

x

y
)]2. (4)

The value h(x, y) is the minimum of
∑y

j=1 a2
j subject to

∑y
j=1 aj = x and aj ’s nonnegative integers.

For any design where treatment i is uniform in rows and columns,

ci = ri − 1
q
h(ri, p)− 1

p
h(ri, q) +

1
pq

r2
i , (5)

denoted ci(ri) when thought of as a function of ri. A related useful quantity is ∆h, the difference

between h(x + 1, y) and h(x, y). Simple manipulation (see Morgan, 1997) gives

∆h(x, y) = h(x + 1, y)− h(x, y) = 1 +
2
y
(x− x(y)), (6)

4



where x(y) = x (mod y). If x is allowed to be any positive real number, h(x, y) is a continuous,

increasing function of x, differentiable at all points except x = sy for integers s. Thus ci(ri) in (5)

is also a continuous function of ri, differentiable at all points except ri = sp or sq, for integers s.

Lemma 2.1. If ri ≤ (p−1)(q−1)
2 , the function ci(ri) is an increasing function of ri.

Proof. Using (5) and (6), one gets:

pq[ci(ri + 1)− ci(ri)] = pq − p∆h(ri, p)− q∆h(ri, q) + (2ri + 1)

= pq + 1− 2ri − (p + q) + 2[(ri)(p) + (ri)(q)]

≥ (p− 1)(q − 1)− 2ri

For block designs, ci(ri) = ri− 1
kh(ri, b) for uniform treatment i, which is increasing in ri ≤ b(k−1)

2 .

Most commonly used optimality criteria are functions of the v − 1 positive eigenvalues z1 ≥ z2 ≥
· · · ≥ zv−1 (> zv = 0) of the C-matrix. A typical criterion Φ is

Φ(Cd) =
v−1∑

i=1

f(zi)

for some convex, non-increasing f . A Φ-optimal design minimizes Φ(Cd) with respect to d. Of chief

concern here is the A-criterion, for which f(x) = 1
x . Minimization of ΦA is equivalent to minimizing

the average variance of estimators of any v − 1 orthogonal contrasts.

A useful technique for establishing optimality bounds was introduced by Constantine (1981). Given

Cd, define C̄d by

C̄d =
1
s

s∑

i=1

P ′
iCdPi, (7)

where the Pi are a collection of s ≤ v! permutation matrices. If the nonzero eigenvalues of C̄d are

z̄1 ≥ z̄2 ≥ · · · ≥ z̄v−1, then
∑v−1

i=1 f(zi) ≥
∑v−1

i=1 f(z̄i) for every convex f (see 9.G.1 in Marshall and

Olkin, 1979).

The remainder of this section will specialize to v = 3. Since the 3 × 3 information matrix is

symmetric with row and column sums of zero, it can be written entirely in terms of its diagonal
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elements:

Cd =




c1
1
2(−c1 − c2 + c3) 1

2(−c1 + c2 − c3)
1
2(−c1 − c2 + c3) c2

1
2(c1 − c2 − c3)

1
2(−c1 + c2 − c3) 1

2(c1 − c2 − c3) c3


 . (8)

The positive eigenvalues of (8) are

z1 =
1
2


∑

ci +
√

2
∑

i<j

(ci − cj)2


 and z2 =

1
2


∑

ci −
√

2
∑

i<j

(ci − cj)2


 .

An A-optimal design minimizes

ΦA(Cd) =
1
z1

+
1
z2

=
4
3
(c1 + c2 + c3 − 2

c2
1 + c2

2 + c2
3

c1 + c2 + c3
)−1 (9)

which is equivalent to maximizing the quantity A given by

A = c1 + c2 + c3 − 2
c2
1 + c2

2 + c2
3

c1 + c2 + c3
. (10)

The expression in (10) looks inviting, but is far from simple to manipulate. Several lemmas, needed

in the optimality proofs of sections 3 and 4, are developed next. Let d(x, y, z) denote a design whose

C-matrix has diagonal elements c1 = x, c2 = y, and c3 = z. Since any C-matrix is nonnegative

definite, x, y, and z are non-negative numbers.

Lemma 2.2. Given a design d∗(x∗, y∗, z∗), consider a competitor d(x, y, z). If

(i) x∗ + y∗ + z∗ ≥ x + y + z, and

(ii) x∗2 + y∗2 + z∗2 < x2 + y2 + z2

then d∗ is A-superior to d.

Lemma 2.2 follows directly from (10).

Lemma 2.3. If x ≥ y ≥ z, then A increases as x increases if and only if x < −(y + z) +

2
√

y2 + yz + z2. A sufficient condition for this is x < (
√

3 − 1)(y + z). Also, A is an increasing

function of y and z for x ≥ y ≥ z.

Proof. The partial derivative of A with respect to x is:

∂A

∂x
= 1− 2

2x(x + y + z)− x2 − y2 − z2

(x + y + z)2
=

4y2 + 4z2 + 4yz − (x + y + z)2

(x + y + z)2
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which is positive if and only if the numerator is positive, that is, if and only if

4y2 + 4z2 + 4yz > (x + y + z)2 ⇔ x + y + z < 2
√

y2 + yz + z2 ⇔ x < −(y + z) + 2
√

y2 + yz + z2.

Since y2 + yz + z2 ≥ 3
4(y + z)2, with equality when y = z, the sufficient condition is established.

Likewise the partial derivative of A with respect to y is

∂A

∂y
=

4x2 + 4z2 + 4xz − (x + y + z)2

(x + y + z)2
=

(x2 − y2) + 2x(x− y) + 2z(x− y) + 3z2

(x + y + z)2
.

which is obviously positive because x ≥ y.

Lemma 2.4. Given a uniform design d∗(x∗ ≥ y∗ ≥ z∗), consider a nonuniform design d(x, y, z)

with the same treatment replications as d∗. If x∗ < (
√

3− 1)(y∗ + z∗), then d is A-inferior to d∗.

Proof. Since for fixed replications uniform designs maximize the diagonal elements of the C-matrix,

x∗ ≥ x, y∗ ≥ y, and z∗ ≥ z, with at least one strict inequality. Now apply lemma 2.3.

Lemma 2.5. Given a design d∗(x∗, y∗, y∗) with x∗ > y∗, consider a competitor d(x, y, y). If

(i) x∗ < 2(
√

3− 1)y∗,

(ii) x + 2y ≤ x∗ + 2y∗, and

(iii) y < y∗

then d is A-inferior to d∗.

Proof. If x ≤ y∗, then d(x, y, y) is A-inferior to d(y∗, y∗, y∗) since the latter C-matrix is completely

symmetric of higher trace, and by (i) and lemma 2.3, d(y∗, y∗, y∗) is A-inferior to d∗.

If y∗ < x ≤ x∗, (iii) and lemma 2.3 ⇒ d(x, y, y) is A-inferior to d(x, y∗, y∗), which is inferior to d∗.

If x > x∗, write x = x∗ + a, and y = y∗ − b
2 . From (ii) and (iii) it follows that b ≥ a > 0. Let A∗

and A be computed as in (10) for designs d∗(x∗, y∗, y∗) and d(x, y, y). Then

A∗ −A = (x∗ + 2y∗)− 2(x∗2 + 2y∗2)
x∗ + 2y∗

− (x∗ + 2y∗ + a− b) +
2[(x∗ + a)2 + 2(y∗ − b/2)2]

x∗ + 2y∗ + a− b

= b− a− 2(x∗2 + 2y∗2)
x∗ + 2y∗

+
2(x∗2 + 2y∗2 + 2x∗a− 2y∗b + a2 + b2/2)

x∗ + 2y∗ + a− b

=
x∗2(a + 3b)− 8y∗2a + 4x∗y∗a + x∗(a2 + 2ab) + y∗(2a2 + 4ab)

(x∗ + 2y∗)(x∗ + 2y∗ + a− b)
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which has positive denominator. Since b ≥ a > 0 and x∗ > y∗, then x∗2(a + 3b) > 4ay∗2 and

4x∗y∗a > 4ay∗2, and thus (x∗+2y∗)(x∗+2y∗+a−b)(A∗−A) > x∗(a2 +2ab)+y∗(2a2 +4ab > 0

Lemma 2.6. Given a design d∗(x∗, x∗, y∗) with x∗ > y∗, consider a competitor d(x, x, y). If

(i) 2x + y ≤ 2x∗ + y∗, and

(ii) y < y∗

then d is A-inferior to d∗.

Proof. First notice that x < −(x + y) + 2
√

x2 + xy + y2 for any x and y, so for x ≤ x∗, lemma 2.3

implies d(x, x, y) is A-inferior to d(x∗, x∗, y), which by (ii) and lemma 2.3 is A-inferior to d∗.

If x > x∗, write x = x∗ + a
2 , and y = y∗ − b. Similarly to the proof of lemma 2.5,

A∗ −A = b− a− 2(2x∗2 + y∗2)
2x∗ + y∗

+
2(2x∗2 + y∗2 + 2x∗a− 2y∗b + b2 + a2/2)

2x∗ + y∗ + a− b

=
8bx∗2 − (3a + b)y∗2 − 4bx∗y∗ + x∗(2b2 + 4ab) + y∗(b2 + 2ab)

(2x∗ + y∗)(2x∗ + y∗ + a− b)

Since x∗ > y∗, and by (i) and (ii), b ≥ a > 0, it follows that (3a+b)y∗2 < 4bx∗2 and 4bx∗y∗ < 4bx∗2

and thus (2x∗ + y∗)(2x∗ + y∗ + a− b)(A∗ −A) > x∗(2b2 + 4ab) + y∗(b2 + 2ab) > 0

3 A-optimal Designs with One Blocking Factor

As a first application of results in section 2, this section will determine A-optimality for three

treatments in simple block designs. Here and in section 4 it is assumed that r1 ≥ r2 ≥ r3. The

diagonal elements of the C-matrix (1) can be written as:

ci = ri − 1
k

b∑

j=1

n2
ij , (11)

which if treatment i is uniform is

ci = ri − 1
k
h(ri, b) (12)

where h is defined in (4).

Theorem 3.1. A block design for three treatments in b blocks of size k is A-optimal if and only if

it is generalized binary with r3 ≥ r1 − 1.
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Proof. For bk ≡ 0 (mod 3) the proposed design is just a BBD as defined by Kiefer (1975), so is

universally optimal. Uniqueness follows from two considerations. Any competitor d with the same

trace, but for which Cd is not completely symmetric, is eliminated by lemma 2.2. Symmetrizing over

all treatments (via (7)) any competitor d with smaller trace produces another, obviously inferior,

information matrix.

For bk ≡ 2 (mod 3), write r̄ = bk−2
3 and denote the proposed generalized binary design with

replications (r1, r2, r3) = (r̄+1, r̄+1, r̄) by d0 = d0(c0
1, c

0
2, c

0
3). Given a competitor design d(c1, c2, c3)

with r3 < r̄, symmetrize on treatments 1 and 2 as in (7) to produce d(c̄1, c̄1, c3), where c1 = c1+c2
2 .

Since tr(Cd) = tr(Cd̄) and c2
1 + c2

2 ≥ 2c2
1, it follows from lemma 2.2 that Ad ≤ Ad̄. Treatment 3 is

generalized binary and has higher replication in d0 than in d, so c0
3 > c3. Also, Cd0 has maximum

trace, so the conditions of lemma 2.6 are satisfied. Therefore d0 is A-superior to d, which is

A-superior (or equal) to d.

Since designs with r3 < r̄ are A-inferior to d0, the remaining candidates have replications (r̄+2, r̄, r̄)

or (r̄ + 1, r̄ + 1, r̄). For a generalized binary design with these replications, c1 is maximum and

c2 + c3 is minimum for (r̄ + 2, r̄, r̄); call this design d′. Using (12) and (4), c1 and c2 = c3 can

be calculated for d′ as explicit functions of b and k, from which c1 < 2(
√

3 − 1)c2 easily follows.

Lemma 2.4 now eliminates all nonbinary competitors, leaving only d0 and d′, which have equal

trace. Equation (10) says the better of these two has smaller
∑

i c
2
i , easily seen to be d0.

The proof for bk ≡ 1 (mod 3) follows similar steps, so is not given here.

Theorem 3.1 offers no surprises. A-optimal block designs have (M,S)-property, that is, they maxi-

mize trace, and among maximum trace designs they minimize tr(C2
d) (compare conjecture 3, Shah

and Sinha, 1989, page 60). The surprise, which underscores the non-triviality of Theorem 3.1, is

that these designs need not be optimal in other useful senses; see Parvu and Morgan (2005). Cheng

(1979a) solved the optimality problem for v = 4 treatments in incomplete (k < 4) blocks.

4 A-optimal Row-Column Designs

The main result of this paper is now stated.
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Theorem 4.1. The A-optimal row-column designs for three treatments are uniform, with replica-

tions as specified in Table 1.

Table 1: Replications for A-optimal row-column designs (p ≤ q)

p (mod 3) q (mod 3) range for q r1 r2 r3

0 0,1,2 - pq
3

pq
3

pq
3

0,1,2 0 - pq
3

pq
3

pq
3

1 1 - p(q+2)
3

p(q−1)
3

p(q−1)
3

q ≥ 2p p(q+1)
3

p(q+1)
3

p(q−2)
3

1 2 q < 2p, q even q(2p+1)
6

q(2p+1)
6

q(p−1)
3

q < 2p, q odd q(2p+1)+3
6

q(2p+1)−3
6

q(p−1)
3

q ≥ 3p+2
2 , p even, or

q ≥ 3p−1
2 , p odd pq+1

3
pq+1

3
pq−2

3

2 1 q < 3p+2
2 , p even p(2q+1)

6
p(2q+1)

6
p(q−1)

3

q < 3p−1
2 , p odd p(2q+1)+3

6
p(2q+1)−3

6
p(q−1)

3

2 2 - pq+2
3

pq−1
3

pq−1
3

A complete proof of Theorem 4.1 covers in excess of 50 pages in the second author’s dissertation

(Parvu, 2004). This length is due in large measure to the idiosyncratic behavior of the quantity A

defined in (10). If the number of experimental units is a multiple of 3, or if p and q are both 2

(mod 3), then the three replication numbers are as close as possible. But as can be seen in Table

1, replications for A-optimality otherwise depend non-trivially on the (mod 3) values of p and q

as well as the absolute difference |p − q|. Trace of the information matrix also varies, achieving

the largest possible value only in the first four lines (of ten) in the table. Maximizing A is a

correspondingly intricate task. Bounding arguments are useful, but only up to a point, after which

A must be worked with directly.

When either p or q is a multiple of 3, the A-optimal (indeed, universally optimal) designs are

generalized Youden designs. This result has previously been given by Kiefer (1975), and Cheng

(1979b) has established existence. These are the only equireplicate cases.
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A detailed proof for (p, q) ≡ (1, 2) (mod 3) will be given here. Proofs for the other cases where

equal replication is not possible can be found in Parvu (2004). They use the same machinery and

the same general breakdown into cases as shown here, so that the technical problems encountered

are fairly represented by this proof.

When equireplicated designs do not exist, the general strategy is:

(i) eliminate replication numbers outside of some neighborhood of r̄ = int[pq
3 ] by

comparison to a selected design (which may or may not be A-optimal)

(ii) for replications in the neighborhood determined in (i), eliminate nonuniform (13)

designs relative to uniform designs

(iii) now examine the behavior of A in that neighborhood, which given uniformity

is solely a function of (r1, r2, r3).

Proof. The steps of this proof are best followed with an algebraic manipulator, such as Maple or

Mathematica, in hand. Remember p ≤ q always.

For (p, q) ≡ (1, 2) (mod 3) let d∗ be a uniform design with replications as given in Table 1. The

task of showing A-optimality of d∗ will be divided into two parts, depending on the ratio q
p . Each

part will be subdivided into several steps as in the general strategy outlined in (13). More of the

detail will be shown in Part I than in Part II.

Part I: q ≥ 2p. The smallest possible (p, q) are (4, 8), and regardless of (p, q), d∗ is of maximal

trace (since rows are permutations of one another, and the design is generalized binary in columns).

Let any competitor design d have replications r1 ≥ r2 ≥ r3. The steps of the general strategy (13)

are implemented as

1. Eliminate all designs with r3 < p(q−2)
3 and so with r1 > p(q+4)

3 .

2. Eliminate all nonuniform designs with ri ∈ [p(q−2)
3 , p(q+4)

3 ] for all i.

3. Eliminate all remaining designs with r1 > p(q+1)
3 .

4. Show that among uniform designs with replications ri ∈ [p(q−2)
3 , p(q+1)

3 ], d∗ is A-optimal.

Step 1. Consider a design d with r3 < p(q−2)
3 , and c1, c2, c3 the diagonal elements of Cd. Create

the symmetrized design d̄ with c̄3 = c3 and c̄1 = c̄2 = c1+c2
2 . Design d̄ is A-inferior to d∗ by lemma
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2.6, since c3 < c∗3 by lemma 2.1, and d∗ is of maximal trace. Using (7), design d is A-inferior to d̄.

All remaining competitors must have ri ∈ [p(q−2)
3 , p(q+4)

3 ]. Note this step does not require q ≥ 2p.

Step 2. The second step eliminates nonuniform designs with replications in the neighborhood just

determined. Use of lemma 2.4 requires showing that (
√

3 − 1)(c2 + c3) − c1 ≥ 0, where the ci’s

are the diagonal elements of a uniform design with all ri ∈ [p(q−2)
3 , p(q+4)

3 ]. Write r1 = p(q+4)
3 − x

for some 0 ≤ x ≤ 4p−1
3 , r3 = p(q−2)

3 + u for some 0 ≤ u ≤ x
2 , and r2 = p(q−2)

3 + x − u. For these

replications, x ≤ p + u
2 and

int[
r1

q
] =

p− 1
3

, int[
r1

p
] =





q+1
3 if 0 ≤ x ≤ p

q−2
3 if p < x ≤ 4p−1

3

,

int[
r2

q
] = int[

r3

q
] =

p− 1
3

, int[
r2

p
] = int[

r3

p
] =

q − 2
3

except at boundary points. There are two cases depending on the value of int[ r1
p ]. If 0 ≤ x ≤ p,

then using (3) and (4) gives

9pq[(
√

3− 1)(c2 + c3)− c1] = 2(2
√

3pq − 2
√

3p2q + 3q2 − 2
√

3q2 − 3p2q2 + 2
√

3p2q2 − 9u2

+9
√

3u2) + 3(6p− 3
√

3p−√3q +
√

3pq + 6u− 6
√

3u)x− 9(2−√3)x2 (14)

which is a quadratic in x with negative coefficient for x2, so is positive if it is positive at the

endpoints x = 0 and x = 4p−1
3 . For x = 0 (⇒ u = 0) this expression is a quadratic in q, easily

seen to be positive for all q ≥ 8. For x = 4p−1
3 it is a quadratic in u that attains its minimum at

u = 4p−1
3 ; that value is p−1

3 (2
√

3− 3)[6q2(p + 1)− 3q(2−√3)−√3(4p− 1)] > 0. If x > p then

9pq[(
√

3− 1)(c2 + c3)− c1] = 2(−9p2 + 2
√

3pq − 2
√

3p2q + 3q2 − 2
√

3q2 − 3p2q2 + 2
√

3p2q2

−9u2 + 9
√

3u2) + 3(12p− 3
√

3p−√3q +
√

3pq + 6u− 6
√

3u)x− 9(2−√3)x2. (15)

It is easy to see that (15)−(14)= 18p(x − p) > 0 since x > p. Thus (15) is also positive, and all

nonuniform competitors are eliminated.

Step 3. The neighborhood determined in step 1 will now be further trimmed by eliminating all

uniform designs with p(q+1)
3 < r1 ≤ p(q+4)

3 . For a fixed r3 = p(q−2)
3 + u with 0 ≤ u ≤ p

2 (since

r3 ≤ pq−r1

2 ), write r1 = p(q+1)
3 +x, and r2 = pq− r1− r3 = p(q+1)

3 −x−u, with 0 ≤ x ≤ p−2u since

r2 ≥ r3. With these ri the function A defined in (10) is differentiable in x everywhere. It will be

12



shown that the derivative of A with respect to x is negative, thus forcing r1 ≤ p(q+1)
3 for A-optimal

designs.

∂A

∂x
= (c′1 + c′2)− 2

(2c1c
′
1 + 2c2c

′
2)(

∑
ci)− (c′1 + c′2)(

∑
c2
i )

(
∑

ci)2

sign
=

27p3q3

8
{(c′1 + c′2)[(

∑
ci)2 + 2

∑
c2
i ]− 4(c1c

′
1 + c2c

′
2)(

∑
ci)} (16)

where c′i = ∂ci
∂x (c3 does not depend on x, so ∂c3

∂x = 0). Evaluation of the ci and their derivatives

requires the values of int[ ri
p ] and int[ ri

q ], which are

int[
r1

p
] =

q + 1
3

, int[
r2

p
] = int[

r3

p
] =

q − 2
3

, int[
r1

q
] = int[

r2

q
] = int[

r3

q
] =

p− 1
3

,

except at the boundary point r1 = p(q+4)
3 . Using (3) and (4), (16) becomes a quadratic function

s2x
2 + s1x + s0 in x with coefficients

s2 = 3pq(p− 1)(pq − q − 3u),

s1 = −2q2(p− 1)2[−p2 + 2pq(p + 1)− 2q2(p + 1)] + 18q(p− 1)[p2 − pq(p + 1) + q2(p2 − 1)]u

−18p[−3p + 4q(p− 1)]u2 + 54(pq − p− q)u3,

s0 = −pq2(p− 1)2(pq − p + q)2 + q(p− 1)[8pq2 − 2q3 + p3(−9 + 13q − 8q2) + p2q(2q2 + 5)]u

+3[−9p3 + 12p2q(p− 1)− 2pq2(p− 1)(2p + 1) + 3q3(p + 1)(p− 1)2]u2

−54p(pq − p− q)u3 + 27(pq − p− q)u4.

Coefficients s2 and s1 are positive for any 0 ≤ u ≤ p
2 and q ≥ 2p ≥ 8. Thus the derivative of this

quadratic is an increasing function of x. Setting x at its maximum value, which is p− 2u, produces

a quartic polynomial in u with coefficients sj of uj being

s4 = −81(pq − p− q), s3 = −4
3
ps4, s2 =

1
9
(3p2q2 − 3q2 − p2q + pq + 3p2)s4,

s1 = 3q2(p− 1)(p2 − 7p3 − 6pq + 6p3q + 2q2 − 2p2q2)

s0 = −pq2(p− 1)2(−4p2 + 2pq + 2p2q − 3q2 − 2pq2 + p2q2)

The coefficients s0, s2, and s4 are negative for any q ≥ 2p ≥ 8. Also, s2 + s3u < 0 and s0 + s1u < 0

since u ≤ p
2 , so that the entire quartic is strictly negative. Thus the derivative of A with respect to

x is negative, as claimed.

13



Step 4. It remains to show that among uniform designs with replications ri ∈ [p(q−2)
3 , p(q+1)

3 ], d∗ is

A-optimal. For a fixed r1 = p(q+1)
3 −u with 0 ≤ u ≤ p−1

3 , let r3 = p(q−2)
3 +x and so r2 = p(q+1)

3 +u−x

with 2u ≤ x ≤ p+u
2 , since r1 ≥ r2 ≥ r3. It will be shown that A is a decreasing function of x,

thereby eliminating designs with r1 6= r2. Similar to (16), the derivative of A with respect to x is

∂A

∂x

sign
=

27p3q3

8
{(c′2 + c′3)[(

∑
ci)2 + 2

∑
c2
i ]− 4(c2c

′
2 + c3c

′
3)(

∑
ci)}. (17)

For p(q−2)
3 ≤ ri < p(q+1)

3 , the integer-part functions needed in the ci are int[ ri
p ] = q−2

3 and int[ ri
q ] =

p−1
3 . These with (3) and (4) show that (17) is a linear function of x, which can be written as

(p + u− 2x)S, where S is a cubic polynomial in u with coefficients:

s3 = 27(pq + p− q), s2 = −ps3, s1 =
1
3
q2(p− 1)(p + 1)s3,

s0 = −q2(p− 1)2(2pq2 + 2q2 + p2q + pq + p2).

Simple algebra shows that s0+s1u and s2+s3u are negative for any u ∈ [0, p−1
3 ]. Thus S is negative,

and since p + u − 2x ≥ 0, (17) is negative for any x. This means that A is a decreasing function

of x, and so for a fixed r1 the A-best designs have x = 2u and consequently r1 = r2 = p(q+1)
3 − u,

r3 = p(q−2)
3 + 2u for some u.

It is here that the proof becomes counterintuitive. If the intuition from one-way blocking held,

then maximizing u, that is, making the replications as equal as possible, would maximize A. To

the contrary, Part I of this proof will be completed by showing that the best of the remaining

competitors has u = 0. That is, maximizing separation of the replications produces the best result.

So consider A as a function of u for uniform designs with the given replications. Depending on the

values of p and q, A may or may not be monotonic in u. It will, however, be shown that the second

derivative of A with respect to u is positive, so that A is always convex in u. It will then be shown

that A is larger at u = 0 than at u = p−1
3 .

The derivative of A with respect to u is

∂A

∂u

sign
=

9
32

p3q3{(2c′1 + c′3)[(
∑

ci)2 + 2
∑

c2
i ]− 4(2c1c

′
1 + c3c

′
3)(

∑
ci)} ≡ g(u) (18)

14



where now c′i = ∂ci
∂u . Using (3) and (4) to expand the ci’s in (18) gives

g(u) = −27
2

(pq + p− q)u4 + 18p(pq + p− q)u3 − 9
2
(p2q2 + p2 − q2)(pq + p− q)u2 + q2(p2 + 2p3

−2pq + 2p3q − q2 + p2q2)(p− 1)u− 1
6
pq2(p− 1)2(p2 + pq + p2q + 2q2 + 2pq2) (19)

Taking the derivative of g with respect to u gives a cubic polynomial in u with coefficients sj of uj

being

s3 = −54(pq + p− q), s2 = −ps3, s1 =
1
6
(p2q2 + p2 − q2)s3,

s0 = q2(p− 1)(p2q2 − q2 + 2p3q − 2pq + 2p3 + p2).

Since s0+s1u and s2+s3u are each positive for any 0 ≤ u ≤ p−1
3 , (19) is increasing and A is a convex

function of u. Next, let A∗ and A′ denote the function A at u = 0, and at u = p−1
3 , respectively.

Substituting in (10) using (3) and (4) and then simplifying yields A∗ − A′ = 4(p−1)(pq−p+q)
9pq(p+1)(q−1) > 0.

This concludes part I of the proof.

Part II: p < q < 2p. It follows from the (mod 3) values of p and q that p+1 ≤ q ≤ 2p−3. In this

part some competitor designs will be eliminated by a uniform design, call it d0, with replications

r0
1 = q(p+2)

3 , r0
2 = r0

3 = q(p−1)
3 and for which c0

1, c0
2, c0

3 = c0
2 are the diagonal elements of the

information matrix Cd0 . Cd0 is identical to the corresponding row component information matrix

since in d0 columns are permutations of one another.

Let any competitor design d have replications r1 ≥ r2 ≥ r3. Step 1 of part I has already estab-

lished that ri ∈ [p(q−2)
3 , p(q+4)

3 ]. The steps of the general strategy (13) are now implemented as

1. Eliminate all designs with r1 > q(p+2)
3 , so that ri ∈ [p(q−2)

3 , q(p+2)
3 ] for all i.

2. Eliminate all nonuniform designs with every ri ∈ [p(q−2)
3 , q(p+2)

3 ].

3. Eliminate all remaining designs with r3 < q(p−1)
3 .

4. Show that among uniform designs with replications ri ∈ [ q(p−1)
3 , q(p+2)

3 ], d∗ is A-optimal.

Step 1. Consider a design d with replication r1 > q(p+2)
3 , and c1, c2, c3 the diagonal elements of

the row component design information matrix. Create the symmetrized design d̄, which is at least

as good as d, with c̄1 = c1 and c̄2 = c̄3 = c2+c3
2 . Lemma 2.5 will show that d̄ is A-inferior to d0.

For condition (i) of lemma 2.5, compute:

2(
√

3− 1)c0
2 − c0

1 = −2
9
(
√

3q +
√

3− 6) +
2p[(2

√
3− 3)q2 − 2

√
3]

9q
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which is positive for any q > p ≥ 4.

Condition (ii) of lemma 2.5 requires trace[Cd0 ] ≥ trace[Cd̄] = c1 + c2 + c3. By (11),

c1 + c2 + c3 = pq − 1
q

p∑

j=1

(n2
d1j + n2

d2j + n2
d3j) and c0

1 + 2c0
2 = pq − 1

q

p∑

j=1

(n2
d01j + n2

d02j + n2
d03j)

where ndij is the number of times treatment i occurs in row j for design d. To maximize trace[Cd̄],

take d to be uniform in rows. Then r1 ∈ [ q(p+2)
3 + 1, p(q+4)

3 ] implies nd1j ∈ { q+1
3 , q+4

3 }. Also,

ri ≥ p(q−2)
3 ⇒ r3 ≤ r2 ≤ p(q+1)

3 ⇒ ndij ∈ { q−2
3 , q+1

3 } for i = 2, 3. The nd0ij fall in the same

intervals. In a generalized binary design in rows, all of these counts are in { q−2
3 , q+1

3 } and the sum

of their squares has minimum possible value p[h(q, 3)]. For designs d and d0, the deviation from

this minimum is two units for each unit that the largest replication is above p(q + 1)/3:

p∑

j=1

3∑

i=1

n2
dij = p[h(q, 3)] + 2(r1 − p(q + 1)

3
),

p∑

j=1

3∑

i=1

n2
d0ij = p[h(q, 3)] + 2(r0

1 −
p(q + 1)

3
).

Since r1 > r0
1, (ii) is established.

Lemma 2.5 (iii) requires c0
2 > c̄2. The quantity 2c̄2 = c2 + c3 is maximized if d is uniform in rows,

and then

c2 + c3 = pq − r1 − 1
q

2∑

i=1

p∑

j=1

n2
dij ≤ pq − r1 − 2

q
p(

pq − r1

2p
)2 =

pq

2
− r2

1

2pq
.

If r1 ≥ r0
1 + 2, then

2c0
2 − 2c̄2 ≥ 2[(q + 3)2 + 2pq − 2p2]

9pq
> 0.

If r1 = r0
1 + 1, then

2c0
2 − 2c̄2 ≥ 2c0

2 − (pq − r0
1 − 1) +

1
q
h[pq − r0

1 − 1, 2p] =
q + 1
3q

> 0.

All conditions of lemma 2.5 are met, so all designs with r1 > q(p+2)
3 are eliminated.

Step 2. Next lemma 2.4 will be used to eliminate nonuniform designs with ri ∈ [p(q−2)
3 , q(p+2)

3 ].

So for any uniform design with replications in this neighborhood, it must be established that

(
√

3− 1)(c2 + c3)− c1 > 0.
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By lemma 2.1, ci is an increasing function of ri if ri ≤ q(p−1)
3 . For q(p−1)

3 ≤ ri ≤ q(p+2)
3 , ci is still

an increasing function of ri, since by (3),

ci(ri + 1)− ci(ri) =





1
3pq (6ri − pq − q + p + 3) if q(p−1)

3 ≤ ri < p(q+1)
3

1
3pq (6ri − pq − q − 5p + 3) if p(q+1)

3 ≤ ri < q(p+2)
3

.

Thus, c2 ≥ c3 ≥ ci(
p(q−2)

3 ) and c1 ≤ ci(
q(p+2)

3 ). Using (3) again,

2(
√

3− 1)ci(
p(q − 2)

3
)− ci(

q(p + 2)
3

) = −2
9
(−15 + 10

√
3− 2p + 2

√
3p)− 4p

9q

+
2q(−4 + 4

√
3− p− 3p2 + 2

√
3p2)

9p

which is an increasing function of q, positive if q ≥ p + 4 or if p ≥ 7. The only (p, q) pair that does

not yield a positive number is p = 4 and q = 5. However, in this case all nonuniform designs can

be eliminated numerically.

Step 3. Now the remaining designs with r3 < q(p−1)
3 will be eliminated. For a given r1 = q(p+2)

3 −u

with 0 ≤ u ≤ q
2 , write r3 = q(p−1)

3 − x and r2 = pq − r1 − r3 = q(p−1)
3 + x + u with 0 ≤ x ≤

min(q − 2u, 2p−q
3 ), where the restrictions for u and x follow directly from r1 ≥ r2 ≥ r3 ≥ p(q−2)

3 .

Similar to step 3 of Part I, the derivative of the function A defined in (10) with respect to x can be

shown to be negative. This is equivalent to establishing negativity of the expression (17) for the

ci’s here. Depending on the value of int[ r1
p ], there are two forms that (17) can take, both quadratic

in x with coefficients sj of xj having s2 > 0. With arguments similar to those in step 3 of Part I,

each of these quadratics can be shown to be negative for every u at the endpoints for x (details

omitted in deference to space). Thus (17) is negative for any x and u. Henceforth, only uniform

designs with ri ∈ [ q(p−1)
3 , q(p+2)

3 ] need to be considered.

Step 4. For the remaining competitors, it will first be shown that for a given r1 the A-best design

has minimum r3. Then it will be shown that among such designs, the A-best design is d∗.

Similar to the previous step, write r1 = q(p+2)
3 − u with 0 ≤ u ≤ 2q−1

3 , r3 = q(p−1)
3 + x, and

r2 = pq − r1 − r3 = q(p−1)
3 − x + u with 0 ≤ x ≤ u

2 . Also, x ≥ 2u − q for any given u; restrictions

for u and x follow directly from r1 ≥ r2 ≥ r3 and ri ∈ [ q(p−1)
3 , q(p+2)

3 ]. It will be shown that

A is a decreasing function of x. Like in step 3, this is equivalent to establishing negativity of the

expression (17) for the ci’s here. Again, (17) has two different forms depending on int[ r1
p ]. Both are
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linear in x with positive coefficient for x, and both are zero at x = u
2 (details again omitted). Thus,

for given r1, A-best designs have minimum r3. This is r3 = q(p−1)
3 if r1 ≥ pq−q(p−1)/3

2 = q(2p+1)
6 ,

and r3 = pq − 2r1 if r1 < q(2p+1)
6 .

To find the A-optimal design among the remaining competitors, write r1 = q(p+2)
3 − x. It will be

shown that A is increasing in x for x ≤ q
2 , and decreasing for x ≥ q

2 .

First, for x ≤ q
2 the other replication numbers are r2 = q(p−1)

3 + x and r3 = q(p−1)
3 . The sign of

the derivative of A with respect to x is now the sign of (16) evaluated for the ci’s here. Again, this

expression takes two forms depending on int[ r1
p ].

If x ≤ 2q−p
3 , then (16) is a quadratic function of x with coefficients

s2 = −3p2q(p− 1)(q − 2),

s1 = 2p2[4p2 + (7− 4p− 6p2)q2 + (−4 + p + 4p2)q3 + (1− p)q4],

s0 = p2[4p3 − 4p2q + (3p− 6p3)q2 + (−7 + 2p + 7p2 + 2p3)q3 + (4− 6p2 + p3)q4 + (p− 1)q5].

The coefficient s2 of x2 is negative, and this quadratic is positive both at x = 0 and x = q
2 , so (16)

is positive. If x > 2q−p
3 , then (16) reduces to a linear function of x with coefficients

s1 = −2p2(q + 1)2(pq2 − q2 + 2p2q − pq − 2p2), s0 = −q

2
s1.

This is decreasing in x and is 0 at x = q
2 , so (16) is positive, and A is increasing in x, for any x ≤ q

2 .

Now suppose x > q
2 , so that r2 = r1 = q(p+2)

3 − x, r3 = pq − 2r1 = q(p−4)
3 + 2x, and also c1 = c2.

For these values ∂A
∂x can be expressed as

∂A

∂x

sign
=

27p3q3

16
[c′3(8c2

1 − 4c1c3 − c2
3) + 6c2

3c
′
1] (20)

which when simplified using (3) is the quartic function
∑4

j=0 sjx
j with

s4 = −81(pq + p− q), s3 = −8
3
qs4, s2 =

1
3
(p2q2 + 7q2 − p2)s4,

s1 = −6[−p4 + (7p3 − p4)q + (−8p2 + 7p3 + p4)q2 + (−9p− p2 − 7p3 + p4)q3

+(9− 9p + 7p2 − 7p3)q4],

s0 = −4p2q(q + 1)(4pq3 − 4q3 − p2q2 + 5q2 − 4pq + p2).
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Coefficient s4 is negative, and s2 + 3s3x < 0 for any x ∈ [ q
2 , 2q−1

3 ] and q ≥ p + 1 ≥ 5. Hence, this

quartic polynomial must be concave; also its first derivative is positive at x = 2q−1
3 , and so the

quartic is increasing in x. But it is negative at x = 2q−1
3 , and so (20) is negative for any allowable

x, that is, A is decreasing in x > q
2 .

In summary, the optimizing value for x is x = q
2 , and it is obvious that when q is even, d∗ with

r∗1 = r∗2 = q(2p+1)
6 , r∗3 = q(p−1)

6 is A-optimal. But if q is odd, q(2p+1)
6 is not an integer. Two

competitors remain:

d′ with r1 = r2 =
q(2p + 1)− 3

6
, r3 =

q(p− 1)
3

+ 1, and

d∗ with r1 =
q(2p + 1) + 3

6
, r2 =

q(2p + 1)− 3
6

, r3 =
q(p− 1)

3
.

To show that d∗ is A-superior to d′, simply use (10) and (3) to compute Ad∗ −Ad′ > 0.

5 Discussion

Many practicing scientists gain their design knowledge from statistics texts, which typically limit

coverage of row-column settings to Latin squares and Youden designs. Consequently these “stan-

dard” designs are sometimes employed by modifying one or more of v, p, and q relative to original

intent and total available resources. But experimental practice should be limited only by the re-

sources, not by inadequate lists of recommended options. This cannot change until statistical theory

gets a better handle on the row-column problem, so that fuller, more flexible design catalogs can

be made available. This work is one step in that direction. Construction of designs meeting the

conditions of Theorem 4.1 is solved in section 4.4.2 of Parvu (2004).

While three treatments is of limited scope relative to the (v, p, q) universe, it does have important

practical implications. As one example, row-column designs are sometimes employed for repeated

measures experiments (row=subject, column=time period), requiring only that adequate washout

intervals are provided to negate carry-over effects. The designs here can be used for comparing three

drugs, say, for whatever numbers of subjects and time periods that a researcher can muster. Row-

column designs appear in many other applications, including agricultural field experimentation,

greenhouse experiments, and growth chamber trials in which rows and columns correspond to
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spatial distribution of experimental units. The results here offer full flexibility in design whenever

three treatments are to be compared, be they genetically modified varieties, competing management

practices, pesticide rates, fertilizing dates, or any of a plethora of other possibilities.

It is worth mentioning that the lemmas of section 2 are applicable not just for row-column designs,

but for any 3× 3 information matrix with zero row and column sums. They can thus be used, for

example, in the study of optimal 3-treatment designs with more than two blocking factors, and/or

with correlated errors.

Parvu and Morgan (2005) investigated the same problem as here from an E-optimlity perspective.

In contrast to Theorem 4.1, they found that E-optimal designs must have replications as equal as

possible, but in many cases are nonuniform. Both results stand in contrast to Theorem 3.1, in

that the row and column component designs need not be the optimal block designs identified there.

Taken all together, these results make abundantly clear the technical intricacy of row-column design

optimality. It is conjectured that, depending on p and q, similar behaviors will be found for any v.
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