# The CRC Handbook of Combinatorial Designs

## Edited by Charles J. Colbourn

Department of Computer Science and Engineering Arizona State University

Jeffrey H. Dinitz

Department of Mathematics and Statistics University of Vermont

AUTHOR PREPARATION VERSION  $21^{\rm st}~{\rm April}~2006$ 

.36 Nested Designs 1

### 36 Nested Designs

J. P. Morgan

#### 36.1 NBIBDs: Definition and Example

- **36.1 Definition** If the blocks of a BIBD  $(\mathcal{V}, \mathcal{D}_1)$  with v symbols in  $b_1$  blocks of size  $k_1$  are each partitioned into sub-blocks of size  $k_2$ , and the  $b_2 = b_1 k_1/k_2$  sub-blocks themselves constitute a BIBD  $(V, \mathcal{D}_2)$ , then the system of blocks, sub-blocks and symbols is a nested balanced incomplete block design (nested BIBD or NBIBD) with parameters  $(v, b_1, b_2, r, k_1, k_2)$ , r denoting the common replication.  $(V, \mathcal{D}_1)$  and  $(V, \mathcal{D}_2)$  are the component BIBDs of the NBIBD.
- **36.2 Example** An NBIBD(16,24,48,15,10,5). Sub-blocks are separated by |.

```
(0,1,2,3,4|5,6,7,8,9)
                                  (0, 1, 2, 3, 5|4, 6, 10, 11, 12)
                                                                    (0, 1, 2, 3, 6|4, 5, 13, 14, 15)
(0, 1, 10, 11, 12|2, 3, 7, 8, 9)
                                  (0, 2, 13, 14, 15|1, 3, 7, 8, 9)
                                                                    (0, 3, 13, 14, 15|1, 2, 10, 11, 12)
(0,4,5,7,11|1,8,10,13,14)
                                  (0,4,5,9,10|1,7,12,13,15)
                                                                    (0, 4, 5, 8, 12|1, 9, 11, 14, 15)
(0,6,7,10,13|2,4,8,11,14)
                                  (0,6,9,12,15|2,4,7,10,13)
                                                                    (0, 6, 8, 11, 14|2, 4, 9, 12, 15)
(0,7,8,10,15|3,5,6,12,14)
                                  (0,7,9,12,14|3,5,6,11,13)
                                                                    (0, 8, 9, 11, 13|3, 5, 6, 10, 15)
(1, 5, 7, 12, 14|2, 6, 8, 10, 15)
                                  (1, 5, 9, 11, 13|2, 6, 7, 12, 14)
                                                                    (1, 5, 8, 9, 15|2, 6, 9, 11, 13)
(1, 4, 6, 7, 13|3, 8, 11, 12, 15)
                                  (1, 4, 6, 9, 15|3, 7, 10, 11, 14)
                                                                    (1, 4, 6, 8, 14|3, 4, 8, 12, 13)
(2, 5, 7, 11, 15|3, 4, 8, 12, 13)
                                 (2, 5, 9, 10, 14|3, 4, 7, 11, 15)
                                                                   (2, 5, 8, 12, 13|3, 4, 9, 10, 14)
```

#### 36.2 NBIBDs: Existence

- **36.3 Remarks** The necessary conditions for existence of a NBIBD are those for the two component BIBDs  $(V, \mathcal{D}_1)$  and  $(V, \mathcal{D}_2)$ . Together they are:  $b_1 \geq v$ ,  $v|b_1k_1$ ,  $v(v-1)|b_1k_1(k_1-1)$ , and  $v(v-1)|b_1k_1(k_2-1)$ . The necessary conditions are sufficient for  $k_1 = 4$  [4].
- **36.4 Remarks** There are 3 non-isomorphic BIBDs with  $(v, b_1, k_1) = (10, 15, 6)$  and 960 non-isomorphic BIBDs with  $(v, b_2, k_2) = (10, 30, 3)$  but [5] there is no NBIBD(10, 15, 30, 9, 6, 3). Thus the necessary conditions are not sufficient. This is the only case of nonexistence, where suitable component designs do exist, for  $v \le 16$  and  $r \le 30$ .
- **36.5 Table** Initial blocks for NBIBDs for  $v \le 16$  and  $r \le 16$ . One solution, provided at least one exists, is listed for each set of parameters meeting the necessary conditions, except that multiples of r are not listed for fixed values of  $(v, k_1, k_2)$ .

|    | $(v, b_1, b_2, r, k_1, k_2)$ , Blocks                                                                                                      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | $(5,5,10,4,4,2), (14 \mid 23) \bmod 5$                                                                                                     |
| 2. | $(7,7,21,6,6,2),\ (1\ 6\  \ 2\ 5\  \ 4\ 3)\ \mathrm{mod}\ 7$                                                                               |
| 3. | $(7,7,14,6,6,3), (124 \mid 653) \bmod 7$                                                                                                   |
| 4. | $(8,14,28,7,4,2),\ (0\ 1\  \ 4\ 2)(3\ 6\  \ 5\ \infty)\ \mathrm{mod}\ 7$                                                                   |
| 5. | $(9, 18, 36, 8, 4, 2), (01\ 02\  \ 10\ 20)(11\ 22\  \ 12\ 21)\ \mathrm{mod}\ (3,3)$                                                        |
| 6. | $(9,12,36,8,6,2),\ (1\ 2\  \ 3\ 6\  \ 4\ \infty)(5\ 6\  \ 7\ 2\  \ 0\ \infty)(0\ 4\  \ 1\ 7\  \ 3\ 5)\ \ \mathrm{PC}(4),\ \mathrm{mod}\ 8$ |

2 Nested Designs

| 7. $(9,12,24,8,6,3)$ , $(1\ 3\ 4\  \ 2\ 6\ \infty)(5\ 7\ 0\  \ 2\ 6\ \infty)(1\ 3\ 4\  \ 5\ 7\ 0)$ PC(4), mod 8                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8. (9,9,36,8,8,2) (1 8   2 7   3 6   4 5), mod 9                                                                                                                                                                                                                                                             |
| 9. (9, 9, 18, 8, 8, 4), (01 02 10 20   11 22 12 21) mod (3,3)                                                                                                                                                                                                                                                |
| 10. $(10, 15, 45, 9, 6, 2), (0_0 \ 2_0   3_0 \ 2_1   3_1 \ 4_1)(2_0 \ 3_0   0_0 \ 3_1   4_0 \ 0_1)(0_0 \ 0_1   1_0 \ 3_1   2_1 \ 4_1) \mod 5$                                                                                                                                                                |
| 11. (10, 15, 30, 9, 6, 3), No NBIBD exists, see Example 36.28 for (10, 30, 60, 18, 6, 3)                                                                                                                                                                                                                     |
| 12. $(10, 10, 30, 9, 9, 3)$ , $(1_0 \ 2_0 \ 4_1   3_0 \ 4_0 \ 3_1   0_1 \ 1_1 \ 2_1)(2_0 \ 3_1 \ 0_0   1_0 \ 2_1 \ 3_0   1_1 \ 4_0 \ 4_1) \mod 5$                                                                                                                                                            |
| 13. $(6, 15, 30, 10, 4, 2)$ , $(0\ 2\  \ 1\ 3)(\infty\ 0 \ 3\ 4)(\infty\ 4\  \ 1\ 2)\ \text{mod}\ 5$                                                                                                                                                                                                         |
| 14. (11, 11, 55, 10, 10, 2), (1 10   2 9   3 8   4 7   5 6) mod 11                                                                                                                                                                                                                                           |
| 15. (11, 11, 22, 10, 10, 5), (1 3 4 5 9   2 6 8 10 7) mod 11                                                                                                                                                                                                                                                 |
| 16. $(12, 33, 66, 11, 4, 2)$ , $(0 \   \ 37)(10 \ 2 \   \ 94)(86 \   \ 5\infty) \mod 11$                                                                                                                                                                                                                     |
| 17. $(12, 22, 66, 11, 6, 2)$ , $(03   15   49)(810   76   2\infty)$ mod 11                                                                                                                                                                                                                                   |
| 18. $(12, 22, 44, 11, 6, 3)$ , $(0\ 13\  \ 4\ 5\ 9)(10\ 7\ \infty  \ 6\ 8\ 2) \mod 11$                                                                                                                                                                                                                       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                              |
| 20. (13, 39, 78, 12, 4, 2), (1 12   5 8)(2 11   3 10)(4 9   6 7) mod 13                                                                                                                                                                                                                                      |
| 21. (13, 26, 78, 12, 6, 2), (3 10   4 9   1 12)(5 8   11 2   6 7) mod 13                                                                                                                                                                                                                                     |
| 22. (13, 26, 52, 12, 6, 3), (1 3 9   4 12 10)(2 6 5   7 8 11) mod 13                                                                                                                                                                                                                                         |
| 23. (13, 13, 78, 12, 12, 2), (1 12   2 11   3 10   4 9   5 8   6 7) mod 13                                                                                                                                                                                                                                   |
| 24. (13, 13, 52, 12, 12, 3), (1 3 9   4 12 10   2 6 5   7 8 11) mod 13                                                                                                                                                                                                                                       |
| 25. (13, 13, 39, 12, 12, 4), (1 12 5 8   2 11 3 10   4 9 6 7) mod 13                                                                                                                                                                                                                                         |
| 26. (13, 13, 26, 12, 12, 6), (1 3 9 4 12 10   2 6 5 7 8 11) mod 13                                                                                                                                                                                                                                           |
| $27.  (15, 35, 105, 14, 6, 2), \ (1_1 \ 0_0   2_1 \ 0_1   \ 4_1 \ \infty)(0_0 \ 3_0   0_1 \ 5_0   \infty \ 6_0)(2_0 \ 1_0   4_0 \ 3_1   1_1 \ 0_1)$                                                                                                                                                          |
| $(2_0 \ 0_1 5_0 \ 1_1 3_1 \ 3_0)(4_0 \ 1_1 5_0 \ 0_0 0_1 \ 3_1) \mod 7$                                                                                                                                                                                                                                      |
| $28.  (15, 35, 70, 14, 6, 3), \ (1_1 \ 2_1 \ 4_1   0_0 \ 0_1 \ \infty)(0_0 \ 0_1 \ \infty   3_0 \ 5_0 \ 6_0)(2_0 \ 4_0 \ 1_1   1_0 \ 3_1 \ 0_1)$                                                                                                                                                             |
| $(2_0 \ 5_0 \ 3_1   0_1 \ 1_1 \ 3_0)(4_0 \ 5_0 \ 0_1   1_1 \ 0_0 \ 3_1) \mod 7$                                                                                                                                                                                                                              |
| 29. $(15, 21, 105, 14, 10, 2)$ , No $\mathcal{D}_1$ exists, but $(15, 42, 210, 28, 10, 2)$ does exist $([10])$                                                                                                                                                                                               |
| 30. $(15, 21, 42, 14, 10, 5)$ , No $\mathcal{D}_1$ exists, but $(15, 42, 84, 28, 10, 5)$ does exist ([10])                                                                                                                                                                                                   |
| 31. (15, 15, 105, 14, 14, 2), (1 14   2 13   3 12   4 11   5 10   6 9   7 8) mod 15                                                                                                                                                                                                                          |
| 32. $(15, 15, 30, 14, 14, 7)$ , $(0_1 \ 1_1 \ 2_1 \ 3_1 \ 4_1 \ 5_1 \ 6_1   0_0 \ 1_0 \ 2_0 \ 3_0 \ 4_0 \ 5_0 \ 6_0)$ fixed,                                                                                                                                                                                 |
| $(\infty \ 4_0 \ 1_0 \ 1_1 \ 2_0 \ 4_1 \ 2_1 \   \ 0_1 \ 6_1 \ 5_1 \ 5_0 \ 3_1 \ 6_0 \ 3_0)$                                                                                                                                                                                                                 |
| $(0_0 \ 2_0 \ 4_0 \ 5_1 \ 1_0 \ 6_1 \ 3_1 \   \ \infty \ 6_0 \ 5_0 \ 4_1 \ 3_0 \ 2_1 \ 1_1) \ \mathrm{mod} \ 7$                                                                                                                                                                                              |
| 33. $(16, 60, 120, 15, 4, 2)$ , $(\infty 0   5 10)(1 2   4 8)(6 9   7 13)(11 3   12 14) mod 15$                                                                                                                                                                                                              |
| 34. (16, 40, 120, 15, 6, 2), (0 1   9 3   5 12)(0 3   1 12   6 2)(11 9   1 3   0 8)                                                                                                                                                                                                                          |
| mod 16, last block PC(8)                                                                                                                                                                                                                                                                                     |
| $35.  (16, 40, 80, 15, 6, 3),  (0_0 \ 0_1 \ 0_2   1_1 \ 2_1 \ 3_1)(1_0 \ 3_0 \ 0_2   1_2 \ 0_1 \ 2_1)(1_0 \ 3_0 \ 0_1   0_0 \ 3_2 \ 4_1)$                                                                                                                                                                    |
| $(2_0 \ 3_0 \ 4_1   4_0 \ 0_2 \ 1_2)(0_0 \ 0_1 \ 0_2   1_2 \ 2_2 \ 4_2)(\infty \ 3_0 \ 4_0   0_0 \ 3_1 \ 4_2)(\infty \ 2_1 \ 4_2   0_0 \ 3_1 \ 1_2)$                                                                                                                                                         |
| $(\infty \ 3_1 \ 1_2   0_0 \ 1_1 \ 3_2) \ \text{mod} \ 5$                                                                                                                                                                                                                                                    |
| $36.  (16, 30, 120, 15, 8, 2), \ (\infty \ 0 \   \ 3 \ 14 \   \ 1 \ 4 \   \ 9 \ 7)(2 \ 8 \   \ 6 \ 13 \   \ 5 \ 10 \   \ 11 \ 12) \ \text{mod} \ 15$                                                                                                                                                         |
| $37.  (16, 30, 60, 15, 8, 4),  (0\ 1\ 3\ 7\  \ 4\ 9\ 14\ \infty)(2\ 10\ 11\ 13\  \ 5\ 6\ 8\ 12) \ \text{mod}\ 15$                                                                                                                                                                                            |
| 38. $(16, 24, 120, 15, 10, 2), (\infty_1 0_1   \infty_2 0_2   1_2 1_3   2_2 2_4   2_3 1_4)(\infty_2 0_3   \infty_3 0_2   1_1 2_4   2_1 2_3   1_3 1_4)$                                                                                                                                                       |
| $(\infty_1 \ 0_3   \infty_3 \ 0_1   1_1 \ 2_2   2_1 \ 1_4   1_2 \ 2_4)(\infty_2 \ 2_4   \infty_3 \ 2_3   \infty_4 \ 0_2   0_1 \ 2_2   1_1 \ 1_2)$                                                                                                                                                            |
| $(\infty_1 \ 0_3   \infty_3 \ 0_1   1_1 \ 2_2   2_1 \ 1_4   1_2 \ 2_4 ) (\infty_2 \ 2_4   \infty_3 \ 2_3   \infty_4 \ 0_2   0_1 \ 2_2   1_1 \ 1_2 )$ $(\infty_1 \ 0_2   \infty_3 \ 2_4   \infty_4 \ 0_3   2_1 \ 1_3   1_2 \ 2_3) (\infty_1 \ 2_4   \infty_2 \ 1_1   \infty_4 \ 0_1   2_1 \ 0_3   2_2 \ 1_3)$ |
| $(\infty_4 \ 0_4 1_1 \ 2_1 1_2 \ 2_2 1_3 \ 2_3 1_4 \ 2_4) \ \text{mod } 3, \text{ with } (\infty_1 \ \infty_2 \infty_3 \ \infty_4 2_1 \ 2_4 2_2 \ 1_4 2_3 \ 0_4)$                                                                                                                                            |
| $(\infty_1 \ \infty_3   \infty_2 \ \infty_4   0_1 \ 0_4   0_2 \ 2_4   0_3 \ 1_4)(\infty_1 \ \infty_4   \infty_2 \ \infty_3   1_1 \ 1_4   1_2 \ 0_4   1_3 \ 2_4)$                                                                                                                                             |
| $\frac{(\infty_1 \ \infty_3) \times 2 \times 4 01 \ 04 02 \ 24 03 \ 14)(\infty_1 \ \infty_4 \times 2 \times 3 11 \ 14 12 \ 04 13 \ 24)}{39. \ (16, 24, 48, 15, 10, 5), See Example 36.2}$                                                                                                                    |
| 40. $(16, 20, 120, 15, 12, 2)$ , $(12 4 8 6 13 7 9 0 5 10 \infty)(6 7 9 13 11 3 12 14 5 10 0 \infty)$                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                              |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                       |
| 42. $(16, 20, 60, 15, 12, 4)$ , $[(1\ 2\ 4\ 8\  \ 6\ 7\ 9\ 13\  \ 0\ 5\ 10\ \infty)(6\ 7\ 9\ 13\  \ 11\ 12\ 14\ 3\  \ 5\ 10\ 0\ \infty)$                                                                                                                                                                     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                       |
| 43. $(16, 20, 40, 15, 12, 6)$ , $(0.5 1.4.7 13   2.6.8 10.9 \infty)(5.10.6.9 12.3   7.11.13.0 14.\infty)$                                                                                                                                                                                                    |
| $ (10\ 0\ 11\ 14\ 2\ 8\  \ 12\ 1\ 3\ 5\ 4\ \infty)(1\ 9\ 6\ 14\ 11\ 4\  \ 8\ 7\ 13\ 12\ 3\ 2)\ PC(5),\ mod\ 15 $                                                                                                                                                                                             |
| 44. (16, 16, 80, 15, 15, 3), (1 5 8   2 10 12   3 4 7   6 11 13   9 14 15) mod 16                                                                                                                                                                                                                            |
| 45. (16, 16, 48, 15, 15, 5), (3 14 10 2 1   12 5 8 6 11   9 15 4 7 13) mod 16                                                                                                                                                                                                                                |
| Some initial blocks taken through partial cycles, e.g. $PC(5) \Rightarrow$ subcycle of order 5                                                                                                                                                                                                               |

**36.6 Definition** An NBIBD is resolvable if the superblock component design  $(V, \mathcal{D}_1)$  is resolvable. An NBIBD is near-resolvable if the superblock component design  $(V, \mathcal{D}_1)$  is near-resolvable and  $k_1 < v - 1$ .

#### 36.7 Remarks

- 1. Table 36.5 contains resolvable and near-resolvable NBIBDs whenever the necessary conditions for those designs are met.
- 2. In Table 36.5, the following NBIBDs are resolvable: 4, 16, 17, 18, 33, 36, 37.
- 3. In Table 36.5, the following NBIBDs are near-resolvable: 5, 20, 21, 22.

#### 36.3 Relationships Between NBIBDs and Other Designs

- **36.8 Remark** An NBIBD with  $k_1 = v 1$  is a near-resolvable BIBD.
- **36.9 Remarks** A whist tournament design Wh(4n) is a resolvable NBIBD(4n, n(4n-1), 2n(4n-1), 4n-1, 4, 2). A whist tournament design Wh(4n+1) is for n > 1 a near-resolvable NBIBD(4n+1, n(4n+1), 2n(4n+1), 4n, 4, 2). Any NBIBD with  $k_1 = 2k_2 = 4$  is a balanced doubles schedule [4].
- **36.10 Remarks** Resolvable and near-resolvable NBIBDs have also been called *generalized* whist tournaments ([1]). A pitch tournament design is a resolvable or near-resolvable NBIBD(v, v(v-1)/8, v(v-1)/4, v-1, 8, 4).
- **36.11 Remarks** Table 36.5 contains these designs:
  - 1. Near-resolvable BIBDs: 1, 2, 3, 8, 9, 12, 14, 15, 23, 24, 25, 26, 31, 32, 44, 45.
  - 2. Whist tournaments: 1, 4, 5, 16, 20, 33.
  - 3. Other balanced doubles schedules: 13, 19
  - 4. Pitch tournaments: 9, 37.
- **36.12 Remark** A partition of the rows of a perpendicular array  $PA_{\lambda}(t, k_1, v)$  into  $\frac{k_1}{k_2}$  sets of size  $k_2$  is a  $NBIBD(v, \lambda\binom{v}{t}, \lambda\binom{v}{t}k_1/k_2, \lambda\binom{v}{t}k_1/v, k_1, k_2)$ .

#### 36.4 General nesting and other nested designs

- **36.13 Definition** Let  $\mathcal{D}_1$  and  $\mathcal{D}_2$  be two collections of equi-sized multisets (blocks) of elements from the same v-set  $\mathcal{V}$ . If there is a partition of each of the  $b_1$  blocks of  $\mathcal{D}_1$  into blocks of size  $k_2$ , so that the resulting collection of  $b_2 = b_1 k_1/k_2$  blocks is  $\mathcal{D}_2$ , then the blocks of  $\mathcal{D}_2$  are sub-blocks of the blocks of  $\mathcal{D}_1$  and the system  $(\mathcal{V}, \mathcal{D}_1, \mathcal{D}_2)$  is a nested block design.
- **36.14 Remarks** This definition of nested block design provides a general framework for the nesting concept. Excluded, among others, are notions of nesting for which sub-blocks do not fully partition blocks [7].
- **36.15 Remark** A resolvable BIBD (RBIBD)  $(V, \mathcal{D})$  is a nested block design  $(V, \mathcal{D}_1, \mathcal{D}_2)$  where the blocks of  $\mathcal{D}_1$ , of size  $k_1 = v$ , are the resolution classes of  $\mathcal{D}$ , and  $\mathcal{D}_2 = \mathcal{D}$ .
- **36.16 Remark** Nested block designs may have more than two blocking systems and consequently more than one level of nesting. A doubly nested block design is a system  $(\mathcal{V}, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3)$  where both  $(\mathcal{V}, \mathcal{D}_1, \mathcal{D}_2)$  and  $(\mathcal{V}, \mathcal{D}_2, \mathcal{D}_3)$  are nested block designs. This may be extended in the obvious fashion.

**36.17 Definition** A multiply nested BIBD (MNBIBD) is a nested block design  $(\mathcal{V}, \mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_s)$  with parameters  $(v, b_1, \dots, b_s, r, k_1, \dots, k_s)$  for which the systems  $(\mathcal{V}, \mathcal{D}_j, \mathcal{D}_{j+1})$  are NBIBDs for  $j = 1, \dots, s-1$ .

- **36.18 Remarks** A resolvable NBIBD is a doubly nested block design. A near-resolvable NBIBD $(v, b_1, b_2, r, k_1, k_2)$  is a MNBIBD $(v, b_1 k_1/(v-1), b_1, b_2, r, v-1, k_1, k_2)$ .
- **36.19 Example** (1 16, 13 4|9 8, 15 2||3 14, 5 12|10 7, 11 6) mod 17 is an initial block for a triply nested BIBD (17, 17, 34, 68, 136, 17, 16, 8, 4, 2).
- **36.20 Remark** For  $v \le 20$  and  $r \le 30$  there are 29 sets of parameters meeting the necessary conditions for existence of a doubly nested BIBD. At this writing designs are known for all of these except  $(v, b_1, b_2, b_3, r, k_1, k_2, k_3) = (16, 20, 40, 80, 15, 12, 6, 3)$  [11].
- **36.21 Construction** Let  $\mathcal{M}_1$  be an MNBIBD  $(\overline{v}, \overline{b}_1, \overline{b}_2, \dots, \overline{b}_s, \overline{r}, \overline{k}_1, \overline{k}_2, \dots, \overline{k}_s)$  with  $s \geq 1$  component designs (if s = 1 then  $\mathcal{M}_1$  is a BIBD; if s = 2 then an NBIBD; and if s > 2 then an MNBIBD). Let  $\mathcal{M}_2$  be an MNBIBD  $(\widehat{v}, \widehat{b}_1, \widehat{b}_2, \dots, \widehat{b}_t, \widehat{r}, \widehat{k}_1, \widehat{k}_2, \dots, \widehat{k}_t)$  with  $t \geq 2$  component designs, and with  $\widehat{k}_1/\widehat{k}_q = \overline{v}$  for some  $2 \leq q \leq t$ . Select one block of size  $\widehat{k}_1$  from  $\mathcal{M}_2$  and label its sub-blocks of size  $\widehat{k}_q$  with the symbols  $1, 2, \dots, \overline{v}$ , which are the treatment symbols of  $\mathcal{M}_1$ . Now replace each symbol in  $\mathcal{M}_1$  by the correspondingly labelled sub-block of the selected block from  $\mathcal{M}_2$ . Each large block of the so modified  $\mathcal{M}_1$  is now of size  $k_1 = \overline{k}_1 \widehat{k}_q$  and contains successively nested blocks of sizes  $k_2, k_3, \dots, k_{s+t-q+1}$  where  $k_j = \overline{k}_j \widehat{k}_q$  for  $j = 1, \dots, s$  and  $k_j = \widehat{k}_{q+j-s-1}$  for  $j = s + 1, \dots, s + t q + 1$ . Repeat this process  $\widehat{b}_1$  times, using a new copy of  $\mathcal{M}_1$  for each of the  $\widehat{b}_1$  blocks of  $\mathcal{M}_2$ . The resulting design  $\mathcal{M}$  is an MNBIBD  $(v, b_1, b_2, \dots, b_{s+t-q+1}, r, k_1, k_2, \dots, k_{s+t-q+1})$  with  $v = \widehat{v}, r = \overline{r}\widehat{r}$ , block sizes  $k_j$  as specified above, and  $b_j = \overline{b}_j \widehat{b}_1$  for  $j \leq s$ , and  $b_j = \overline{k}_s \overline{b}_s \widehat{b}_1 \widehat{k}_q / \widehat{k}_{q+j-s-1}$  for j > s.
- **36.22 Theorem** Let v be a prime power of the form  $v = a_0 a_1 a_2 \cdots a_n + 1$  ( $a_0 \ge 1$ ,  $a_n \ge 1$  and  $a_i \ge 2$  for  $1 \le i \le n-1$  are integers). Then there is an MNBIBD with n component designs having  $k_1 = u a_1 a_2 \cdots a_n$ ,  $k_2 = u a_2 a_3 \cdots a_n$ , ...,  $k_n = u a_n$ , and with  $a_0 v$  blocks of size  $k_1$ , for any integer u with  $1 \le u \le a_0$  and u > 1 if  $a_n = 1$ . If integer  $t \ge 2$  is chosen so that  $2 \le t u \le a_0$ , then there is an MNBIBD with n+1 component designs, with the same number of big blocks but of size  $k_0 = t k_1$ , and with its n other block sizes being  $k_1, \ldots, k_n$  as given above.
- **36.23 Theorem** With the conditions of Theorem 36.22, if  $a_0$  is even and  $a_i$  is odd for  $i \ge 1$ , then MNBIBDs can be constructed with the same block sizes but with  $a_0v/2$  blocks of size  $k_1$ .
- **36.24 Remarks** NBIBD constructions arise as special cases of 36.21, 36.22, and 36.23. An example for 36.21 is s=1, t=2. With mild abuse of terminology, Construction 36.21 also works if either  $\mathcal{M}_1$  or  $\mathcal{M}_2$  is taken as a RBIBD, for instance s=1, t=2 and  $\hat{v}=\hat{k}_1$  so that  $\mathcal{M}_2$  is RBIBD and  $\mathcal{M}$  is NBIBD.
- **36.25 Definition** A nested row-column design is a system  $(\mathcal{V}, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3)$  for which (i) each of  $(\mathcal{V}, \mathcal{D}_1, \mathcal{D}_2)$  and  $(\mathcal{V}, \mathcal{D}_1, \mathcal{D}_3)$  is a nested block design, (ii) each block of  $\mathcal{D}_1$  may be displayed as a  $k_2 \times k_3$  row-column array, one member of the block at each position in the array, so that the columns are the  $\mathcal{D}_2$  sub-blocks in that block, and the rows are the  $\mathcal{D}_3$  sub-blocks in that block.
- **36.26 Definition** A (completely balanced) balanced incomplete block design with nested rows and columns, BIBRC $(v, b_1, k_2, k_3)$ , is a nested row-column design  $(\mathcal{V}, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3)$  for which each of  $(\mathcal{V}, \mathcal{D}_1, \mathcal{D}_2)$  and  $(\mathcal{V}, \mathcal{D}_1, \mathcal{D}_3)$  is a NBIBD.

**36.27 Example** A BIBRC for five symbols in ten  $2 \times 2$  nesting blocks.

| 1 | 2 | 2 | ; ; | 3 | 3 | 4 | 4 | 5 | 5 | 1 | 1 | 3 | 2 | 4 | 3 | 5 | 4 | 1 | 5 | 2 |
|---|---|---|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3 | 4 | 4 | . ! | 5 | 5 | 1 | 1 | 2 | 2 | 3 | 2 | 4 | 3 | 5 | 4 | 1 | 5 | 2 | 1 | 3 |

**36.28 Example** A BIBRC for ten symbols in thirty  $2 \times 3$  nesting blocks. Initial blocks (mod 10) are

| 1 | 2 | 4 | 1 | 2 | 7 | 1 | 2 | 4 |
|---|---|---|---|---|---|---|---|---|
| 5 | 6 | 9 | 3 | 5 | 8 | 3 | 9 | 5 |

- **36.29 Remark** If  $k_2 = k_3$  then a nested row-column design is a BIBRC if  $(\mathcal{V}, \mathcal{D}_1)$  and  $(\mathcal{V}, \mathcal{D}_2 \cup \mathcal{D}_3)$  are BIBDs, loosening the complete balance requirement that  $(\mathcal{V}, \mathcal{D}_2)$  and  $(\mathcal{V}, \mathcal{D}_3)$  are individually BIBDs. An example is the first five blocks of Example 36.28. Further relaxations are explained in [8].
- **36.30 Theorem** If v = mpq + 1 is a prime power and p and q are relatively prime, then initial nesting blocks for a BIBRC(v, mv, sp, tq) are  $A_l = x^{l-1}L \otimes M$  for  $l = 1, \ldots, m$ , where  $L_{s \times t} = (x^{i+j-2})_{i,j}, \ M_{p \times q} = (x^{[(i-1)q+(j-1)p]m})_{i,j}, \ s$  and t are integers with  $st \leq m$ , and x is a primitive element of GF $_v$ . If m is even and pq is odd, then  $A_1, \ldots, A_{m/2}$  are initial nesting blocks for BIBRC(v, mv/2, sp, tq)
- **36.31 Theorem** Write  $x^{u_i} = 1 x^{2mi}$  where x is a primitive element of  $GF_v$  and v = 4tm + 1 is a prime power. Let A be the addition table with row margin  $(x^0, x^{2m}, \dots, x^{(4t-2)m})$  and column margin  $(x^m, x^{3m}, \dots, x^{(4t-1)m})$ , and set  $A_l = x^{l-1}A$ . If  $u_i u_j \not\equiv m$  (mod 2m) for  $i, j = 1, \dots, t$  then  $A_1, \dots, A_m$  are initial nesting blocks for BIBRC(v, mv, 2t, 2t). Including 0 in each margin for A, if further  $u_i \not\equiv m \pmod{2m}$  for  $i = 1, \dots, t$  then  $A_1, \dots, A_m$  are initial nesting blocks for BIBRC(v, mv, 2t + 1, 2t + 1).
- **36.32 Definition** A bottom-stratum universally optimal nested row-column design, BNRC( $v, b_1, k_2, k_3$ ), is a nested row-column design ( $\mathcal{V}, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3$ ) for which (i) ( $\mathcal{V}, \mathcal{D}_2$ ) is a BIBD or, more generally, a BBD, and (ii) the  $\mathcal{D}_3$  sub-blocks within any block of  $\mathcal{D}_1$  are identical as multi-sets.
- **36.33 Example** A BNRC with 4 symbols in nesting blocks of size  $2 \times 4$ .

| 1 | 1 | 2 | 2 | ſ | 3 | 3 | 4 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | 2 | 1 | 1 |   | 4 | 4 | 3 | 3 | 3 | 4 | 2 | 1 | 3 | 4 | 2 | 1 | 3 | 4 | 2 | 1 | 3 | 4 | 2 | 1 |

- **36.34 Theorem** The existence of BNRC $(v, b_1, k_2, k_{31})$  and BNRC $(v, b_1, k_2, k_{32})$  implies existence of BNRC $(v, b_1, k_2, k_{31} + k_{32})$ . The existence of BNRC $(v, b_1, k_2, k_3)$  for which  $b_1$  is a multiple of s implies existence of BNRC $(v, b_1/s, k_2, sk_3)$ . The column-wise juxtaposition of the nesting blocks of a BNRC into a  $k_2 \times b_1 k_3$  array is a row-regular GYD.
- **36.35 Theorem** If v = mq + 1 is a prime power and  $2 \le p \le q$ , initial nesting blocks for a BNRC(v, mv, p, q) are  $A_l = (x^{(i+j-2)m+l-1})_{ij}$  for  $l = 1, \ldots, m$  and x a primitive element of GF<sub>v</sub>. If m is even and q is odd,  $A_1, \ldots, A_{m/2}$  generate BIBRC(v, mv/2, p, q).

#### 36.36 Remarks

- 1. BIBRCs and BNRCs are statistically optimal for competing models ([8]).
- 2. The necessary conditions for existence of these designs are those of the component BIBDs. The necessary conditions are sufficient for  $k_1 = 4$  ([2],[13]).

3. Most work on BIBRCs and BNRCs has concentrated on constructing infinite series, often employing starter blocks and the finite fields ([6],[8],[2]) as illustrated in 36.30, 36.31, and 36.35.

#### 36.5 See Also

| §II.7     | General treatment of resolvable and near-resolvable BIBDs.           |
|-----------|----------------------------------------------------------------------|
| §VI.65.6  | Details on BBDs and Generalized Youden designs.                      |
| §VI.38    | Perpendicular arrays can be arranged into MNBIBDs and BIBRCs.        |
| §VI.54    | Many constructions for NBIBDs which are Whist tournaments.           |
| §VI.51    | Various tournament designs, some of which are NBIBDs.                |
| [10]      | Survey of NBIBDs; contains much of the information given here.       |
| [8]       | Survey of nested designs, including NBIBDs, BIBRCs, and BNRCs.       |
| [9]       | Exploration of nesting, crossing, and other relationships for block- |
|           | ing systems from an optimality perspective, with constructions.      |
| [1]       | Construction of resolvable and near-resolvable NBIBDs.               |
| [12], [3] | Uses of NBIBDs in constructing other combinatorial designs not       |
|           | discussed here.                                                      |

#### References

- [1] R. J. R. Abel, N. J. Finizio, M. Greig, and S. J. Lewis, *Generalized whist tournament designs*, Discrete Math., 268 (2003), pp. 1–19. [cited on pages]
- [2] S. BAGCHI, A. C. MUKHOPADHYAY, AND B. K. SINHA, A search for optimal nested row-column designs, Sankhyā Ser. B, 52 (1990), pp. 93–104. [cited on pages]
- [3] S. Gupta and S. Kageyama, *Optimal complete diallel crosses*, Biometrika, 81 (1994), pp. 420–424. [cited on pages]
- [4] P. Healey, Construction of balanced doubles schedules, J. Combin. Theory Ser. A, 29 (1980), pp. 280–286. [cited on pages]
- [5] T. HISHIDA, K. ISHIKAWA, M. JIMBO, S. KAGEYAMA, AND S. KURIKI, Non-existence of a nested bib design nb(10, 15, 2, 3), J. Combin. Math. Combin. Comput, 36 (2001), pp. 55–63. [cited on pages]
- [6] T. HISHIDA AND M. JIMBO, Constructions of balanced incomplete block designs with nested rows and columns, J. Statist. Plann. Inference, 106 (2002), pp. 47–56. [cited on pages]
- [7] J. LONGYEAR, A survey of nested designs, J. Statist. Plann. Inference, 2 (1981), pp. 181–187. [cited on pages]
- [8] J. P. Morgan, *Nested designs*, in Handbook of Statistics, Vol. 13, Elsevier Science, 1996, pp. 939–976. [cited on pages]
- [9] J. P. MORGAN AND R. A. BAILEY, Optimal design with many blocking factors, Annals of Statistics, 28 (2000), pp. 553–577. [cited on pages]
- [10] J. P. MORGAN, D. A. PREECE, AND D. H. REES, Nested balanced incomplete block designs, Discrete Math., 231 (2001), pp. 351–389. [cited on pages]
- [11] D. A. Preece, D. H. Rees, and J. P. Morgan, *Doubly nested balanced incomplete block designs*, Congr. Numer., 137 (1999), pp. 5–18. [cited on pages]
- [12] K. Sinha, R. K. Mitra, and G. M. Saha, Nested bib designs, balanced bipartite weighing designs and rectangular designs, Utilitas Math., 49 (1996), pp. 216–222. [cited on pages]
- [13] S. K. SRIVASTAV AND J. P. MORGAN, On the class of 2 × 2 balanced incomplete block designs with nested rows and columns, Comm. Statist. Theory Methods, 25 (1996), pp. 1859–1870. [cited on pages]