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1 Designs and matroids
Peter J. Cameron and M. Deza

1.1 Matroids

1.1 Definition A matroid is a pair (E, I), where E is a set and I a non-empty family of
subsets of E (called independent sets) satisfying the conditions

• if I ∈ I and J ⊆ I, the J ∈ I;
• (the Exchange Axiom) if I1, I2 ∈ I and |I2| > |I1|, then there exists e ∈ I2 \ I1

such that I1 ∪ {e} ∈ I.

1.2 Example

• E is the edge set of a graph G; a set of edges is independent if and only if it is
a forest. (Such a matroid is a graphic matroid.)

• E is a set of vectors in a vector space V ; a set of vectors is independent if and
only if it is linear independent. (Such a matroid is a vector matroid.)

• E is a set with a family (A = (Ai : i ∈ I) of subsets; a subset of E is independent
if and only if it is a partial transversal of A. (Such a matroid is a transversal
matroid.)

1.3 Definition In a matroid M = (E, I),
• a basis is a maximal element of I;
• a circuit is a minimal element of P(E) \ I;
• the rank ρ(A) of a subset A of E is the maximum cardinality of a member of I

contained in A;
• a flat is a subset F of E with the property that, for any e ∈ E, ρ(F ∪{e}) = ρ(F )

implies e ∈ F ;
• a hyperplane H is a maximal proper flat of M (a flat satisfying ρ(H) = ρ(E)−1).

1.4 Remark

• The Exchange Axiom shows that all bases of a matroid have the same cardinality;
more generally, all maximal independent subsets of A have rank ρ(A).

• Matroids can also be defined and axiomatised in terms of their bases, circuits,
rank function, flats, or hyperplanes.

• The set of flats of a matroid is closed under intersection. Also, if F is a flat and x
a point not in F , then there is a flat F ′ with F ∪{x} ∈ F ′ and ρ(F ′) = ρ(F )+1.

1.5 Definition A loop in a matroid M is an element e such that {e} /∈ I. Two non-loops
e1, e2 are parallel if {e1, e2 /∈ I. A matroid is geometric if it has no loops and no pairs
of parallel elements. A geometric matroid is also called a combinatorial geometry

1.6 Remark From any matroid M , we obtain a geometric matroid (the geometrisation of
M) by deleting loops and identifying parallel elements. The geometrisation of a vector
space is the corresponding projective space.
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1.7 Definition The truncation of M = (E, I) to rank r is the matroid on E whose family
of independent sets is {I ∈ I : |I| ≤ r}. Its flats are the flats of M of rank less than r,
together with E.

1.8 Example The free matroid Fn of rank n is the matroid with |E| = n and I = P(E).
Its truncation to rank r is the uniform matroid Un,r.

1.9 Remark For more information on matroids, see Oxley [Ox92] or Welsh [We76].

1.2 Perfect matroid designs

1.10 Definition A perfect matroid design, or PMD, is a matroid M , of rank r say, for which
there exist integers f0, f1, . . . , fr such that, for 0 ≤ i ≤ r, any flat of rank i has
cardinality fi. The tuple (f0, f1, . . . , fr) is the type of M .

1.11 Remark If M is a PMD of type (f0, fi, . . . , fr), then the geometrisation of M is a
PMD of type (f ′0, f

′
1, . . . , f

′
r), where f ′i = (fi − f0)/(f1 − f0). In particular, f ′0 = 0,

f1 = 1.

1.12 Theorem If there exists a PMD of type (0, 1, f2, . . . , fr), then

1.
∏

i≤k≤j−1

fl − fk

fj − fk
is a non-negative integer for 0 ≤ i < j ≤ l ≤ r;

2. fi − fi−1 divides fi+1 − fi for 2 ≤ i ≤ r − 1;
3. (fi − fi−1)2 ≤ (fi+1 − fi)(fi−1 − fi−2) for 1 ≤ i ≤ r − 1.

1.13 Remark The above necessary conditions are not sufficient; for example (R. M. Wilson),
no PMD of type (0, 1, 3, 7, 43) or (0, 1, 3, 19, 307) exists.

1.14 Example Not many PMDs are known. All known geometric PMDs are truncations of
examples on the following list:

• Free matroids, with fi = i for all i.
• Finite projective spaces over a field Fq, with fi = (qi − 1)/(q − 1).
• Finite affine spaces: the points are the vectors in a vector space of rank r

over Fq; the independent sets are those which are affine independent. (The
set {v1, . . . , vk} is affine independent if {v2−v1, . . . , vk−v1} is linearly indepen-
dent.) These have fi = qi.

• Steiner systems. (Given a Steiner system S(t, k, v) on the set E, we take the
independent sets to be all sets of cardinality at most t together with all (t + 1)-
sets not contained in a block. Then the hyperplanes are the blocks of S.) Note
that these PMDs have rank t + 1 and are characterised by the property that
fi = i for i < t; we have ft = k and ft+1 = v.

• Hall triple systems (see below): these have rank 4, f2 = 3, and f3 = 9, and the
number of points |E| is a power of 3.

1.15 Remark A line, resp. plane in a PMD is a flat of rank 2, resp. 3. The points and lines
of a geometric PMD form a Steiner system S(2, f2, fr); the flats form subsystems, so
that (for example) any three non-collinear points lie in a unique plane.

1.16 Theorem Let M be a geometric PMD of rank 4.
• If the planes in M are projective planes (that is, if f3 = f2

2 −f2 +1 with f2 > 2),
then M is a truncation of a projective space.



.1.3 Hall triple systems and their algebraic siblings 3

• If the planes in M are affine planes (that is, if f3 = f2
2 ), and if f2 > 3, then M

is a truncation of an affine space.

1.17 Remark There is a wide gap between the restrictions imposed by Theorem 1.12 and
the known examples. For example, it is not known whether there is a PMD of type
(0, 1, 3, 13, 183), (0, 1, 3, 13, 313), or (0, 1, 3, 15, 183).

1.3 Hall triple systems and their algebraic siblings

1.18 Remark Call a triffid any PMD of rank 4 with type (0, 1, 3, 9, 3n). There is an equiv-
alence between those PMDs and each of following structures:

1. Hall triple system, i.e. Steiner triple system S(2, 3, 3n) on E, |E| = 3n, such
that for any point a ∈ E there exist an involution which has a as unique fixed
point.

2. Finite exponent 3 commutative Moufang loop (exp3-CML, for short), i.e. a finite
commutative loop (L, ·), such that for any x, y, z ∈ L, (x·x)c(̇x·z) = (x·y)·(x·z)
and (x · x) · x = 1 hold.

3. Distributive Manin quasigroup, i.e. a groupoid (Q, ◦), such that for any x, y, z ∈
Q, x ◦ y = y ◦ x and x ◦ (x ◦ y) = y (i.e, any relation x ◦ y = z is preserved
under permutation of the variables; in particular, (Q, ◦) is a quasigroup) and all
translations are automorphisms.

4. Restricted Fischer pair (G, F ), i.e. a group G generated by a subset F , such that
x2 = 1 = (xy)3 and xyx ∈ F for any x, y ∈ F and such that the commutative
center of G is just {1}.

1.19 Remark A triffid is a truncation of an affine space over F3 if and only if corresponding
exp3-CML is a group; then the group is Zn

3 . The first (and smallest) example of a
non-associative exp3-CML was given in 1937 by Zassenhaus, by defining, on the set
of all 81 (0, 1, 2)-sequences x = (x1, x2, x3, x4), the product as

x · y = (x1 + y1, x2 + y2, x3 + y3, x4 + y4 + (x3 − y3)(x1y2 − x2y1))

(all above sums are modulo 3).
The number of non-associative exp3-CMLs of order 3n is 1, 1, 3, 12, > 41 for n =

4, 5, 6, 7, 8, respectively.

1.20 Remark The dimension d(L) of a exp3-CML L is the smallest number m such that
there exist a (m + 1)-set generating it; it is usual dimension of corresponding Steiner
triple system. Denote by Lm the free exp3-CML of dimension m, i.e. such that any
exp3-CML of dimension m is its homeomorhic image. One has |Lm| = 34, 312, 349,
3220, 31028, 34592 for m = 3, 4, 5, 6, 7, 8 (Smith [Sm82]). Moreover, d(L) ≤ log3 |L|, with
equality only if L is associative, i.e. an Abelian 3-group. The number of exp3-CMLs
L with |L| = 3n and d(L) = 4 is 1, 1, 1, 1, 4 for n = 4, 5, 6, 7, 8 (Bénéteau [Be80]).

1.21 Remark The associative center Z(L) of a exp3-CML L is the Abelian 3-group {z ∈
L : (x · y) · z = x · (y · z)}. The central quotient L(1) = L/Z(L) is again a exp3-CML;
define L(i) as L(i−1)/Z(L(i−1)). The nilpotency class k(L) of L is the smallest number
k such that L(k) is associative. Then k(L) ≤ d(L), with equality for the free loop Lm.
All exp3-CML’s L with k(L) = 2 are classified in [KeNe81] and [RoRC84].

1.22 Remark Infinite exp3-CMLs were connected by Manin with cubic hypersurfaces; see,
for example [Be99] for recent developments. For connections with differential geometry
(3-webs) and topological algebra, see, for example, [Na00].
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1.4 Designs in PMDs

1.23 Definition Let t, k, v, λ be integers with 0 ≤ t < k < v and λ > 0. Let M be a PMD
of rank v. A t-(v, k, λ) design in M is a family B of k-flats of M with the property
that every t-flat in M is contained in exactly λ members of B.

1.24 Remark

• A t-(v, k, λ) design in the free matroid Fv is just a t-(v, k, λ) design in the usual
sense.

• A t-(v, k, λ) design in a PMD M is also a s-(v, kλs) design in M for s < t, where

λs = λ ·
t∏

i=s+1

fv − fs

fk − fs
.

• A t-(v, k, λ) design in a PMD M of type (f0, f1, . . . , fv) is an ordinary s-design,
where s = min(t, max{i : fi = i}).

Apart (obviously) from ordinary t-designs, the only case to have been studied
is that of t-designs in projective spaces over Fq. To simplify the notation, we put
[n]q = (qn − 1)/(q − 1), so that the projective space has type ([0]q, [1]q, . . . , [v]q); and
define the Gaussian coefficient [

v

k

]
q

=
k−1∏
i=0

[v − i]q
[k − i]q

to be the number of k-flats.
In this case, some theory has been developed (for example, the analogue of the

theorem of Ray-Chaudhuri and Wilson holds: in a 2s-design in M , the number of

blocks is at least
[
v

s

]
q

. There are also a few known examples:

1.25 Example

• The first examples were due to Thomas [Th73]. They live in PG(n, 2), where
n+1 is coprime to 6; blocks are planes, and any line is contained in seven blocks.

• Ray-Chauduhri and Schram [RS94] gave a few more constructions.
• A recent investigation appears in Braun et al. [BKL05].

1.26 Remark It is unknown whether the analogue of Teirlinck’s Theorem holds: do t-designs
(without repeated blocks, and such that not every k-flat is a block) exist for all t?

1.5 Permutation groups

1.27 Definition A base in a permutation group G is a sequence of points whose pointwise
stabiliser in G is the identity. A base is irredundant if no point is fixed by the stabiliser
of its predecessors.

In general the bases of a permutation group do not satisfy the matroid basis axioms!

1.28 Definition An IBIS group is a permutation group satisfying the following three con-
ditions (shown to be equivalent by Cameron and Fon-Der-Flaass):

• all irredundant bases contain the same number of points;
• the irredundant bases are preserved by reordering;
• the irredundant bases are the bases of a matroid.
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The rank of an IBIS group is the rank of its associated matroid.

1.29 Definition A permutation group is base-transitive if it permutes its ordered bases tran-
sitively. Clearly every base-transitive group is an IBIS group; moreover, the associated
matroid is a PMD, and we define the type of the group to be the type of the PMD.
A permutation group is base-transitive if and only if the pointwise stabiliser of any
sequence of points is transitive on the points it doesn’t fix (if any).

1.30 Remark The base-transitive permutation groups with rank greater than 1 have been
classified by Maund [Ma89]: the list is too long to give here. Maund’s proof of this
theorem used the Classification of Finite Simple Groups (CFSG). An ‘elementary’
(but by no means easy) determination of base-transitive groups of rank at least 7, not
using CFSG, was given by Zil’ber [Zi83]

1.31 Remark A definition of permutation geometries, the analogue in the semilattice of
subpermutations (partial bijections) of a set, was given by Cameron and Deza. Fol-
lowing the matroid flat axioms they defined a permutation geometry to be a family F
of subpermutations, closed under intersections, and having the property that if F ∈ F
and x and y are points with x not in the domain, and y not in the range, of F , there is
a unique F ′ ∈ F with rank one greater than the rank of F , extending F and mapping
x to y.

A geometric set of permutations is a set which consists of the maximal elements
in a permutation geometry, and a geometric group is a geometric set which forms a
group. Now a geometric group is the same thing as a base-transitive group.

1.32 Theorem Let G be an IBIS group of rank r > 1 whose associated matroid is uniform.
Then G is (r − 1)-transitive (and the stabiliser of any r points is the identity).

1.33 Remark For r = 2, the groups in the conclusion of this theorem are precisely the
Frobenius groups; a lot of information about their structure is known (Frobenius,
Zassenhaus, Thompson). For r = 3, they are the Zassenhaus groups; these have been
determined (Zassenhaus, Feit, Ito, Suzuki) without the use of CFSG. For r > 3, they
were determined by Gorenstein and Hughes. In particular, the only ones with r ≥ 5
are symmetric and alternating groups and the Mathieu group M12.

1.6 Some generalizations of PMD

1.34 Remark

1. A matroid design is a matroid whose hyperplanes form a BIBD, i.e. a (b, v, r, k, λ)-
configuration on 1-flats. Any PMD is a MD. Any BIBD is a PMD of rank3
if λ = 1, but never a MD if λ = 2. Kantor [Ka69] showed that the point-
hyperplanes design of PG(n,q) is unique symmetric BIBD with λ > 1, which
is a MD. Welsh [We76] contain some necessary conditions for a BIBD to be a
MD and information of base designs, i.e. matroids whose bases are the blocks
of a BIBD, and circuit designs, i.e. matroids whose circuits are the blocks of a
BIBD.

2. An equicardinal matroid is a matroid, such that all its hyperplanes have the same
cardinality k; they are classified for |E|−k being prime or the square of a prime,
as well as for the case of rank 3 matroids (Kestenband and Young, 1978).

3. The following notion generalizes all known PMD of rank 4. A planar M -space
is a combinatorial geometry of rank 4, such that all its restictions on a 3-flat
are isomorphic to the given combinatorial geometry M of rank 3. An example
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of planar M -space (with at least two 2-flats) having two different 2-flat sizes is
known, but only one.

4. Brylawski [Br79] considered latticially uniform (or latticially homogeneous) ma-
troids, i.e. such that for all i-flats x, all upper intervals [x,E] (or, respectively,
all lower intervals [∅, x]), in the lattice of the flats) are equal.

5. PMDs are the extremal case for the families of k-subsets of given v-set intersect-
ing pairwisely in l0, l1 . . . , lt elements. It was shown in [De78] that for v > v0(k),
such family contains at most

∏
0 ≤ i ≤ t v−li

k−li
sets with equality if and only if it

the hyperplane family of a PMD with type (l0, l1, . . . , lt, k, v).
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