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Abstract : E-optimality is studied for three treatments in an arbitrary n-way heterogeneity setting.

In some cases maximal trace designs cannot be E-optimal. When there is more than one E-optimal

design for a given setting, the best with respect to all reasonable criteria is determined.
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1 Introduction

Of the many settings with multiple blocking factors, by far the most common are those where

the arrangement of experimental units can be taken as an n-dimensional hyperrectangle for some

n ≥ 2. If bj is the number of levels of the jth blocking factor, then b1 × b2 × · · · × bn is the size

of the hypperrectangle, and there is no loss of generality in taking b1 ≤ b2 ≤ · · · ≤ bn. Each cell

corresponds to a single experimental unit, to be assigned one of v treatments. Denoting the total

number of experimental units by m = b1b2 . . . bn, the size of each block of factor j, that is, the

block size in direction j, is mb−1
j . The standard linear model is:

y = µ1 + Adτ +
n∑

j=1

Ljβj + ε, (1)

where y is the m × 1 vector of yields, 1 is a vector of ones, Lj is the m × bj plot-block incidence

matrix in direction j of the hyperrectangle with corresponding bj × 1 block effects vector βj , and ε

is a vector of uncorrelated random errors with zero means and equal variances. The design problem
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is to optimize comparisons of members of the v × 1 treatment effects vector τ , and the precision

with which these comparisons are made is controlled by the assignment pattern of treatments to

units, that is, by the choice of the m× v design matrix Ad.

Morgan and Bailey (2000) recently took a broad look at optimal allocations for multiple blocking

factors, allowing for various combinations of nesting, crossing, and other relationships in the block

factors structure. Readers are referred there for citations to past work as well as examples of

such designs in practice. Like virtually all available theory, Morgan and Bailey’s (2000) optimality

results for the hyperrectangle described above place restrictions as a function of v on the collection

of numbers (b1, . . . , bn) that can be quite severe. The same is seen, of course, in any design text:

if you wish to compare 5 treatments, say, with two crossed blocking factors, neither texts nor the

general literature will offer you much advice unless at least one of b1 and b2 is a multiple of 5. A

consequence is that many experiments get “forced” into a standard design category, changing v

and/or the bi’s according to the limited options available. Statistical theory does not serve science

well in these instances.

This paper takes a step towards resolving this situation, and in doing so helps illuminate the

considerable technical difficulties involved. The E-optimality question is attacked, and solved, for

v = 3 treatments and any (b1, . . . , bn). Sonnemann (1985) has previously solved the optimality

question for v = 2 in two-way heterogeneity settings, and those results are easily extended to

n-way. Here the extension is not simple.

2 Information matrix and other preliminaries

Comparisons of competing designs are made through the v× v information matrix, also referred to

as the C-matrix. Computation of the C-matrix for hyperrectangle block structure is simple using

Morgan and Bailey’s (2000) projection method. A mechanical derivation and explicit expression

can be found in Cheng (1978), who deals specifically with this structure. The notation adopted

here is also taken from Cheng (1978).

Let Nj = (nijl) be the v× bj incidence matrix between the v treatments and the bj levels of factor

2



j. By Theorem 2.1 in Cheng (1978), the C-matrix for design d is

Cd = Dr − 1
m

n∑

j=1

bjNjN
′
j +

n− 1
m

Dr11′D′
r, (2)

where Dr = diag(r1, . . . , rv) is the diagonal matrix of replication numbers for the treatments. It

follows that the ith diagonal element of Cd is

ci = ri − 1
m

n∑

j=1

(bj

bj∑

l=1

n2
ijl) +

n− 1
m

r2
i (3)

where nijl is the number of times treatment i occurs in block l of factor j. Each of ri and nijl,

and of course ci, is a function of the design choice d through Ad; this is taken to be understood, so

that the notational complexity can be eased by not subscripting these quantities with d. A useful

convention is to label the treatments so that the ri’s are in nonincreasing order: r1 ≥ r2 ≥ . . ..

This ordering will be maintained throughout this paper.

Any C-matrix is symmetric, non-negative definite, and has row and column sums of zero. Con-

sequently, the C-matrix for a design with three treatments can be written solely in terms of its

diagonal elements:

Cd =




c1
1
2(−c1 − c2 + c3) 1

2(−c1 + c2 − c3)
1
2(−c1 − c2 + c3) c2

1
2(c1 − c2 − c3)

1
2(−c1 + c2 − c3) 1

2(c1 − c2 − c3) c3


 , (4)

where c1, c2, and c3 correspond to treatments 1, 2, and 3, and are given in (3). The two non-

zero eigenvalues of the matrix given in (4) are 1
2

[∑
ci ±

√
2

∑
i<j(ci − cj)2

]
. E-optimal designs

maximize the quantity Zd, the smaller of the two eigenvalues:

Zd =
1
2


∑

ci −
√

2
∑

i<j

(ci − cj)2


 . (5)

The expression for Zd simplifies when some of the ci’s are equal. These will be used often:

c1 = c2 ≥ c3 ⇒ Zd =
3
2
c3 (6)

c1 ≥ c2 = c3 ⇒ Zd = c2 + c3 − 1
2
c1 (7)

In some cases there are multiple designs which are E-optimal. With three treatments, the weak

majorization order can always discriminate among them.
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Definition 2.1. A design for three treatments is said to be E-M-optimal if (i) it is E-optimal, and

(ii) it maximizes the largest eigenvalue of Cd amongst all E-optimal designs.

An E-M-optimal design is, for instance, A-best of all E-optimal designs. Indeed, it is best (amongst

all E-optimal designs) with respect to every criterion expressed as the sum of a decreasing function

of the eigenvalues. The “M” is chosen in accord with the usage by Bagchi and Bagchi (2001), as

weak majorization is implied.

Next stated are two useful, well-known bounds for the smallest eigenvalue of a C-matrix. These

bounds can be derived by the averaging technique described by Constantine (1981), or by other

methods as given by Jacroux (1980).

Lemma 2.1. For a design d with information matrix Cd = (cii′), the minimum non-zero eigenvalue

Zd satisfies

Zd ≤ v

v − 1
min

i
(cii).

Lemma 2.2. For a design d with information matrix Cd = (cii′), the minimum non-zero eigenvalue

Zd satisfies

Zd ≤ min
i6=i′

cii + ci′i′ − 2cii′

2
.

One more concept is integral to the optimality arguments to follow.

Definition 2.2. In a design with multiple blocking factors, the assignment of treatment i is said

to be uniform in direction j, if |nijl − nijl′ | ≤ 1 for all l and l′. The assignment of treatment i

is uniform if it is uniform in all directions. The design is said to be uniform if all treatments are

assigned uniformly in all directions.

“Treatment i is uniform” will be shorthand for “the assignment of treatment i is uniform.” If

treatment i is uniform in direction j, then
∑

l n
2
ijl is minimized for a given replication ri, and can

be written in terms of ri and bj as:

h(ri, bj) = ri + (2ri − bj)int(
ri

bj
)− bj [int(

ri

bj
)]2. (8)

In general, if treatment i is uniform in the entire design, then (3) becomes:

ci = ri − 1
m

n∑

j=1

(bjh(ri, bj)) +
n− 1

m
r2
i . (9)
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It is important to realize that neither uniformity of a treatment, nor of the entire design, demands

any particular values for the replication numbers ri. Obviously, if treatments i and i′ have the

same replication but i is uniform while i′ is not, then ci′ < ci. For three treatments, the maximin

replication is r = int(m
3 ). A design is as close as possible to having equal replication if r1 ≤ r3 + 1.

Simple manipulation of function h(r, b) defined in (8) gives

∆h(r, b) = h(r + 1, b)− h(r, b) = 1 +
2
b
(r − r(b)), (10)

where r(b) = r mod b (compare Morgan, 1997). For any design with treatment i uniform in

direction j,
∑bj

l=1 n2
ijl = h(ri, bj). The nonuniformity of treatment i in direction j is

NUi(j) =
bj

m




bj∑

l=1

n2
ijl − h(ri, bj)


 (11)

The total nonuniformity of treatment i is NUi =
∑n

j=1 NUi(j), which is zero if i is uniform.

Suppose that the number of experimental units is m ≡ 0 mod 3; this only occurs if at least one of

the bj is a multiple of three. For this setting, r = m
3 and one can easily construct a uniform design

d0 with r1 = r2 = r3 = r. For this design the information matrix Cd0 is completely symmetric, and

Zd0 = 3c0i
2 . Any design d with either r3 < r, or with nonuniformity in some treatment, will have Cd

with at least one diagonal element ci < c0
i . Then by lemma 2.1, Zd <

3c0i
2 = Zd0 , and d is E-inferior

to d0. In fact, d0 is a Youden hyperrectangle, or YHR, which is universally optimal (see Corollary

3.1.2 in Cheng (1978)).

Open are the cases where equal replication is not possible, that is, the cases for which no bj is a

multiple of 3. Section 3 lays the groundwork for the general problem by determining E-optimal

designs for an unstructured set of blocks (n = 1). Sections 4 and 5 solve the settings for n ≥ 2 for

m ≡ 1 mod 3 and m ≡ 2 mod 3, respectively. Concluding remarks are in section 6.

3 One blocking factor

In the one-way heterogeneity setting D(3, b, k), with three treatments to be compared in b blocks of

k experimental units each, the total number of units is m = bk. Let treatment i have replication ri,
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with block-wise replications nil, l = 1, 2, ..., b. For such a design d, the diagonal elements of Cd are

ci = ri− 1
k

∑b
l=1(nil)2. If treatment i is uniform, then c0

i = ri− 1
kh(ri, b), so that the nonuniformity

of treatment i is NUi ≡ NUi(1) = c0
i − ci ≥ 0 as given by (11).

3.1 Block designs with bk ≡ 1 mod 3

In this case the maximin replication is r = bk−1
3 . Consider a uniform design d0, with replications

r1 = r + 1 and r2 = r3 = r. By (7) the E-value for this design is

Zd0 = 2c0
2 −

c0
1

2
(12)

It will be first shown that d0 is E-superior to any design not as close as possible to equal replication.

Lemma 3.1. Block designs with r3 ≤ r − 1 cannot be E-optimal for bk ≡ 1 mod 3.

Proof. It will be shown that Zd0− 3
2c3 > 0, where c3 is the diagonal element of a uniform treatment

with replication r3 = r− 1. This implies Zd0 − 3
2c3 > 0 for any r3 ≤ r− 1, and thus by Lemma 2.1

the result.

Computing the values of the diagonal elements of Cd0 gives

c0
1 = r + 1− 1

k
h(r + 1, b) =





2
9k (bk2 − b + k − 1), when b ≡ 1 and k ≡ 1;

2
9k (bk2 − b + k + 1), when b ≡ 2 and k ≡ 2;

(13)

c0
2 = c0

3 = r − 1
k
h(r, b) =





1
9k (2bk2 − 2b− k + 1), when b ≡ 1 and k ≡ 1;

1
9k (2bk2 − 2b− k − 1), when b ≡ 2 and k ≡ 2.

(14)

Suppose a design d has treatment 3 uniform with r3 = r − 1. Then by (9):

c3 =





2
9k (bk2 − b− 2k + 2), when b ≡ 1 and k ≡ 1;

2
9k (bk2 − b− 2k − 2), when b ≡ 2 and k ≡ 2,

from which

Zd0 − 3
2
c3 = 2c0

2 −
c0
1

2
− 3

2
c3 =





k−1
3k , when b ≡ 1 and k ≡ 1;

k+1
3k , when b ≡ 2 and k ≡ 2,

and the proof is done.
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So all the E-optimal designs must have the same replication numbers as d0. Now uniformity of

the treatment assignment will be investigated . It will be seen that while treatments 2 and 3 must

be uniform, E-optimality can demand that treatment 1 not be uniform. Before embarking on the

proof, some relationships will be derived for designs uniform in treatments 2 and 3.

To begin, suppose b ≡ k ≡ 1 mod 3. With treatments 2 and 3 uniform, their block-wise replications

are n2l, n3l ∈ {int( r
b ), int( r

b ) + 1}, where int( r
b ) = bk−1

3k = k−1
3 . Treatment 1 will be nonuniform

in block l if and only if n2l = n3l = k+2
3 which would make n1l = k−4

3 . Thus (see (11)) the

nonuniformity NU1 of treatment 1 is 2
kx, where x is the number of blocks in which n1l = k−4

3 .

Similarly, when b ≡ k ≡ 2 mod 3 and treatments 2 and 3 are uniform, the nonuniformity NU1 of

treatment 1 is 2
kx, where x is the number of blocks in which n1l = k+4

3 .

Then for any design uniform in treatments 2 and 3, c1 = c0
1 −NU1. Establishing E-optimality will

require knowledge of the maximum nonuniformity of treatment 1, that is, the largest possible value

of NU1, given that treatments 2 and 3 are constrained to be uniform. This maximum is obtained

with the following block assignments:

b ≡ 1 and k ≡ 1 b ≡ 2 and k ≡ 2
n1j n2j n3j no. of blocks
k+2
3

k−1
3

k−1
3

2b+1
3

k−4
3

k+2
3

k+2
3

b−1
3 = xmax

n1j n2j n3j no. of blocks
k−2
3

k+1
3

k+1
3

2b−1
3

k+4
3

k−2
3

k−2
3

b+1
3 = xmax

(15)

where xmax denotes the maximum number of blocks in which treatment 1 is nonuniform.

Let D denote the difference between the diagonal elements of d0:

D = c0
1 − c0

2 =





k−1
3k , when b ≡ k ≡ 1;

k+1
3k , when b ≡ k ≡ 2

. (16)

The idea is to maintain uniformity in treatments 2 and 3, but to make treatment 1 nonuniform in

such a way that c1 is as close as possible to c0
2. Consider a design d∗ uniform in treatments 2 and

3 and with treatment 1 nonuniform in x∗ = min
[
xmax, int( D

2/k )
]

blocks. Note that

int(
D

2/k
) =





int(k−1
6 ), when b ≡ k ≡ 1;

int(k+1
6 ), when b ≡ k ≡ 2.

(17)

7



Theorem 3.1. In D(3, b, k) with bk ≡ 1 mod 3, design d∗ is E-M-optimal.

Proof. By (7), the E-value of d∗ is

Zd∗ = 2c0
2 −

1
2
c∗1 =

3
2
c0
2 −

1
2
(D − 2

k
x∗). (18)

First, consider settings where xmax ≥ int( D
2/k ) and so x∗ = int( D

2/k ). Designs which are nonuniform

in treatments 2 and 3 will be eliminated first, followed by designs which are nonuniform in treatment

1 in a different number of blocks than d∗.

By (16), D − 2
kx∗ ≤ 1

k , and so

Zd∗ ≥ 3
2
c0
2 −

1
2k

. (19)

Any design d nonuniform in treatment 2 will have c2 ≤ c0
2− 2

k , and by Lemma 2.1, Zd ≤ 3
2c2 < Zd∗ .

Therefore, any design nonuniform in treatment 2 will be E-inferior to d∗. By symmetry, the same

result holds for designs nonuniform in treatment 3.

Any design d uniform in treatments 2 and 3 and with treatment 1 nonuniform in less than x∗ blocks

will have c1 > c∗1. So by (7) and (19), Zd = 2c0
2 − c1

2 < Zd∗ . Any design d uniform in treatments 2

and 3 with treatment 1 nonuniform in more than x∗ = int( D
2/k ) blocks will have c1 ≤ c0

2 − 1
k (see

(16)). Then (6) and (19) ⇒ Zd = 3
2c3 < Zd∗ .

Now consider settings where xmax < int( D
2/k ), so x∗ = xmax. Using (12), (13), and (14),

Zd∗ = 2c0
2 −

1
2
(c0

1 − xmax
2
k
) = Zd0 +

xmax

k
=

bk − 1
3

.

By (4) and Lemma 2.2, it is known that for any d, an upper bound for Zd is ubd = c2 + c3− c1
2 . As

usual, let nil denote the number of times treatment i appears in block l. Now write n1l = n1 + el,

where n1 = int( r1
b ) = int( bk+2

3b ), and
∑b

l=1 el = r1 − bn1 = r + 1− bn1. The el’s are the deviations

from equal block-wise replications for treatment 1. For a given set of el’s, ubd is maximized when

c2 + c3 = 2r− 1
k

∑b
l=1(n

2
2l + n2

3l) is maximized. Thus the assignment pattern for the n2l’s and n3l’s

that maximizes c2 + c3 for given assignment of treatment 1 (and thus c1) is

n2l = n3l =
k − n1l

2
=

1
2
(k − n1 − el).

Note that when x∗ = xmax, d∗ is a special case of this assignment pattern (as shown by the block-

wise replications (15) for d∗). In general, call this assignment pattern d̄. Although a design with
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these block-wise replications does not exist if k−n1− el is odd for some l, the bound ubd̄ ≡ ub will

be useful in showing the optimality of d∗. Cd̄ has diagonal elements c1 = r + 1− 1
k

∑b
l=1(n1 + el)2

and c2 = c3 = r − 1
4k

∑b
l=1(k − n1 − el)2 so that

ub = 2c2 − c1

2
=

3
2
r − 1

2
− 1

2k

b∑

j=1

[(k − n1 − ej)2 − (n1 + ej)2]

=
3
2
r − 1

2
− 1

2

b∑

j=1

(k − 2n1 − 2ej) =
3
2
r − 1

2
− 1

2
[bk − 2(r + 1)]

= r =
bk − 1

3
.

A key observation is that the upper limit ub does not depend on the values of the el’s!

Now Zd∗ = ub, which means that d∗ is E-optimal. The only question remaining is whether there

are other E-optimal designs. Again, Zd ≤ ubd ≤ ub, and ubd does not attain ub for most designs.

For a given assignment of treatment 1, if n2l 6= n3l for some l, then ub < ub. But n2l = n3l for all

l ⇒ c2 = c3. If c1 < c2 = c3, then (6) gives Zd = 3c1
2 < ub. Therefore, for xmax < int(diff

2/k ), a

design can be E-optimal only if n2l = n3l for all l, and c1 ≥ c2.

If xmax < int(diff
2/k ) and other E-optimal designs exist, d∗ is E-M-optimal because it has higher

trace, and Cd has only two non-zero eigenvalues.

Example 3.1. As a simple example of a design, other than d∗, which is E-optimal, consider two

blocks of size 50. Here are the block assignments for designs d∗ and d′, both E-optimal with

minimum eigenvalue Zd∗ = Zd′ = r = 33. These designs are E-superior to the uniform design d0

which places treatment 1 on 17 units in each block.

d∗ :

j n1j n2j n3j

1 16 17 17

2 18 16 16

d′ :

j n1j n2j n3j

1 14 18 18

2 20 15 15
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3.2 Block designs with bk ≡ 2 mod 3

Theorem 3.2. In D(3, b, k) with bk ≡ 2 mod 3, the E-M-optimal designs are uniform with repli-

cations r1 = r2 = bk+1
3 , and r3 = bk−2

3 .

Proof. Here the maximin replication is r = bk−2
3 . Consider a uniform design d0 with r1 = r2 = r+1,

and r3 = r. Then c0
1 = c0

2 > c0
3, and the E-value for d0 is Zd0 = 3

2c0
3 by (6).

Any design d with r3 ≤ r will have c3 ≤ c0
3, and therefore Zd ≤ Zd0 , by Lemma 2.1. By the

same argument, any other design with ri = r and not uniform in treatment i is E-inferior to d0.

Therefore d0 is E-optimal.

Since d0 is uniform, Cd0 has maximum trace amongst all block designs. Since Cd has only two

non-zero eigenvalues, d0 is E-M-optimal. Any nonuniform design will have smaller trace, so no

nonuniform design can be E-M-optimal.

Uniform designs with ri < r are E-inferior to d0 by lemma 2.1, leaving only one possible competitor.

A uniform design d with r1 = r + 2, and r2 = r3 = r has c1 > c0
3 and c2 = c3 = c0

3. For these values

(7) gives Zd = 2c0
3 − 1

2c1 < Zd0 .

4 Experiment size m ≡ 1 mod 3

For this setting the maximin replication is r = m−1
3 . Consider a uniform design d0 with r1 = r + 1

and r2 = r3 = r, call it d0. By (7) the E-value for this design

Zd0 = 2c0
2 −

c0
1

2
(20)

Similar to lemma 3.1, it will be shown that d0 is E-superior to any design with r3 ≤ r− 1, reducing

the class of E-competitors.

Lemma 4.1. Designs for which r3 ≤ r − 1 cannot be E-optimal for m ≡ 1 mod 3 if n > 2, or if

n = 2 and (b1, b2) 6= (4, 4).

Proof. It will be shown that Zd0− 3
2c3 ≥ 0, where c3 is the diagonal element of a uniform treatment
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with replication r3 = r − 1 and Zd0 is given by (20). This implies that Zd0 − 3
2c3 ≥ 0 for any

r3 ≤ r − 1, and thus by Lemma 2.1, d0 is E-superior to any design which has r3 ≤ r − 1.

To do this, the following identities are required:

r mod bj = r(bj) =





bj−1
3 when bj ≡ 1 mod 3;

2bj−1
3 when bj ≡ 2 mod 3.

(21)

r − 1 mod bj = (r − 1)(bj) =





bj−4
3 when bj ≡ 1 mod 3;

2bj−4
3 when bj ≡ 2 mod 3.

(22)

Note that (r − 1)(bj) = r(bj) − 1, so

bj [2h(r, bj)− 1
2
h(r + 1, bj)− 3

2
h(r − 1, bj)] = −bj [

1
2
∆h(r, bj)− 3

2
∆h(r − 1, bj)]

= −bj [
1
2

+
1
bj

(r − r(bj))−
3
2
− 1

bj
(r − 1− (r − 1)(bj))]

= bj + 2(r − r(bj)) (23)

Now using (20) and (9):

Zd0 − 3
2
c3 = 2r − r + 1

2
− 3(r − 1)

2
+

n− 1
m

[2r2 − 1
2
(r + 1)2 − 3

2
(r − 1)2]

− 1
m

n∑

j=1

bj [2h(r, bj)− 1
2
h(r + 1, bj)− 3

2
h(r − 1, bj)]

(23)
= 1 +

2
m

(n− 1)(r − 1)− 1
m

n∑

j=1

(bj + 2r − 2− 2(r − 1)(bj))

=
1
m

(m + 2(n− 1)(r − 1)−
∑

bj − 2nr + 2n + 2
∑

(r − 1)(bj))

=
1
m

(m− 2r + 2−
∑

bj + 2
∑

(r − 1)(bj))

=
1

3m
(m + 8− 3

∑
bj + 6

∑
(r − 1)(bj)), (24)

since r = m−1
3 . Write y =

∏
bj +8− 3

∑
bj +6

∑
(r− 1)(bj); y ≥ 0 will be shown by induction. For

the first induction step, check inequality for n = 2, with the two cases:

1. b1 ≡ b2 ≡ 1 mod 3 ⇒ y
(22)
= (b1 − 1)(b2 − 1)− 9 ≥ 0 with equality if and only if b1 = b2 = 4.

2. b1 ≡ b2 ≡ 2 mod 3 ⇒ y
(22)
= (b1 + 1)(b2 + 1)− 9 ≥ 0 with equality if and only if b1 = b2 = 2

(in which case no connected design exists).
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By (22), (r − 1)(bj) ≥ bj−4
3 , with equality when bj ≡ 1 mod 3, so y ≥ ∏

bj −
∑

bj − 8(n− 1).

For the second induction step, assume for n ≥ 3 that y ≥ 0 for n − 1 factors, that is,
∏n−1

j=1 bj ≥
∑n−1

j=1 bj + 8(n − 2). This implies that
∏n

j=1 bj ≥ [
∑n−1

j=1 bj + 8(n − 2)]bn >
∑n

j=1 bj + 8(n − 1).

Therefore y ≥ 0 for any n ≥ 2, and y = 0 if and only if n = 2 and b1 = b2 = 4 or b1 = b2 = 2.

Lemma 4.1 leaves open the possibility of different replications for the 4 × 4 layout. This case is

easily disposed of by complete enumeration, which shows there are two E-optimal designs:

d1 :

1 2 3 1

2 3 1 2

3 1 2 3

1 2 3 1

d2 :

3 2 1 1

1 3 2 1

2 1 3 2

2 1 2 3

Both designs are uniform, with replication vectors (6, 5, 5) and (6, 6, 4), respectively.

Henceforth assume r1 = r + 1, r2 = r3 = r. Now uniformity of the treatment assignment will

be investigated. It will be seen that while treatments 2 and 3 must be uniform, E-optimality can

demand that treatment 1 not be uniform. Before embarking on the proof, some relationships will

be derived for the case of treatments 2 and 3 uniform.

To begin, suppose bj ≡ 1 mod 3, which means that mb−1
j ≡ 1 mod 3. Every block of factor j

has mb−1
j cells. With treatments 2 and 3 uniform, their block-wise replications are n2jl, n3jl ∈

{int( r
bj

), int( r
bj

) + 1}, and by (21) int( r
bj

) =
mb−1

j −1

3 . Treatment 1 will be nonuniform in block l of

factor j if and only if n2jl = n3jl =
mb−1

j +2

3 which would make n1jl =
mb−1

j −4

3 . Thus (see (11)) the

nonuniformity NU1(j) of treatment 1 due to factor j is 2
mb−1

j

xj , where xj is the number of blocks of

factor j in which n1jl =
mb−1

j −4

3 . Then for any design uniform in treatments 2 and 3, c1 = c0
1−NU1.

Establishing E-optimality will require knowledge of the maximum nonuniformity of treatment 1 in

factor j, that is, the largest possible value of NU1(j), given that treatments 2 and 3 are constrained

to be uniform. This maximum is obtained with the following block assignments:

bj ≡ 1 mod 3

n1jl n2jl n3jl no. of blocks
mb−1

j +2

3

mb−1
j −1

3

mb−1
j −1

3
2bj+1

3
mb−1

j −4

3

mb−1
j +2

3

mb−1
j +2

3
bj−1

3 = xmaxj

(25)

12



where xmaxj is the maximum number of blocks in which treatment 1 can be nonuniform in factor

j. Similarly, when bj ≡ 2 mod 3, NU1(j) = 2
mb−1

j

xj , where xj is the number of blocks of factor j

in which n1jl =
mb−1

j −4

3 . This is obtained with these block assignments:

bj ≡ 2 mod 3

n1jl n2jl n3jl no. of blocks
mb−1

j −2

3

mb−1
j +1

3

mb−1
j +1

3
2bj−1

3
mb−1

j +4

3

mb−1
j −2

3

mb−1
j −2

3
bj+1

3 = xmaxj

(26)

where now xmaxj = bj+1
3 .

Design d0 was defined above as the uniform design with replications r1 = r + 1, and r2 = r3 = r.

Let D denote the difference between c0
1 and c0

2.

D = c0
1 − c0

2 = 1− 1
m

n∑

j=1

bj∆h(r, bj) +
n− 1

m
(2r + 1) =

=
2mn + m + n− 1

3m
− 1

m

n∑

j=1

[bj + 2(r − r(bj))] (27)

Now competitors to d0 can be defined. The idea is to maintain uniformity in treatments 2 and

3, but to make treatment 1 nonuniform in such a way that c1 is as close as possible to c0
2. Thus

consider two designs, call them d∗ and d∗, where for d∗, c∗1 ≥ c0
2, and for d∗, c1∗ ≤ c0

2. To find the

number of blocks x∗j and xj∗ of factor j in which treatment 1 should be made nonuniform, solve

the following integer minimization/maximization problems:

maximize
2
m

n∑

j=1

(bjx
∗
j ), subject to 0 ≤ x∗j ≤ xmaxj and

2
m

n∑

j=1

(bjx
∗
j ) ≤ D (28)

minimize
2
m

n∑

j=1

(bjxj∗), subject to 0 ≤ xj∗ ≤ xmaxj and
2
m

n∑

j=1

(bjxj∗) ≥ D (29)

Note that (29) may not have a solution. This occurs exactly when 2
m

∑n
j=1(bj xmaxj) < D.

Theorem 4.1. For m ≡ 1 mod 3, if n > 2, or if n = 2 and (b1, b2) 6= (4, 4), E-M-optimal designs

have the same block assignments as either d∗ or d∗. Furthermore, d∗ is E-M-optimal if and only if
1
m

∑n
j=1 bj(3xj∗ − x∗j ) ≤ D or 2

m

∑n
j=1(bj xmaxj) < D.
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When n = 2 and b1 = b2 = 4, an E-M-optimal design different from d∗ and d∗ exists, as discussed

following lemma 4.1.

Proof. The E-values for the two proposed designs are

Z∗ = 2c0
2 −

c∗1
2

and Z∗ =
3
2
c1∗ (30)

where c∗1 = c0
2 + D − 2

m

∑n
j=1(bjx

∗
j ), and c1∗ = c0

2 + D − 2
m

∑n
j=1(bjxj∗). It can be easily seen that

Z∗ ≥ Z∗ if and only if D ≥ 1
m

∑n
j=1 bj(3xj∗ − x∗j ). In case of equality, design d∗ is E-M better

because c∗1 > c1∗.

By lemmas 2.1 and 2.2, the E-value of any design d with c2 = c3 = c0
2 is Zd =





2c0
2 − c1

2 if c1 ≥ c0
2

3
2c1 if c1 < c0

2

.

The conditions on d∗ and d∗ imply Z∗ > 2c0
2 − c1

2 if c1 ≥ c0
2, and Z∗ > 3

2c1 if c1 < c0
2. The goal is

to show that any design nonuniform in treatments 2 or 3 cannot have a higher E-value than both

d∗ and d∗, so that E-M-optimal designs must have c2 = c3 = c0
2.

First, note that by the definition of d∗, if c∗1 − c0
2 ≥ 2bj

m then x∗j = xmaxj , otherwise treatment 1

could have been made nonuniform in one more block of factor j. Also c∗1 − c0
2 ≥ 2bj

m implies one of

the following two statements are true:

1. xj∗ = 0, for otherwise making treatment 1 nonuniform in xj∗ − 1 blocks in direction j would

bring c1 closer to c0
2 than at least one of c∗1 or c1∗;

2. x∗j = xmaxj for all j and equation (29) has no solution.

In the latter situation, d∗ will be shown to be E-M-optimal (see the last paragraph of this proof).

Now suppose

c∗1 − c0
2 ≥ 2bj

m for all j < s

c∗1 − c0
2 <

2bj

m for all j ≥ s
(31)

for some s ≤ n. It follows that

x∗j = xmaxj and xj∗ = 0 for all j < s. (32)
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This implies that Z∗ = 2c0
2 − c∗1

2 > 3
2c0

2 − bj

m for all j ≥ s. Then any design which has treatment

2 nonuniform in any direction j ≥ s will have c2 ≤ c0
2 − 2bj

m , and so by Lemma 2.1, (30) and (31),

Zd ≤ 3
2c2 ≤ 3

2c0
2 − 3bj

m < Z∗; this also applies for any design that has treatment 3 nonuniform in

any direction j ≥ s.

Thus, E-optimal designs have treatments 2 and 3 uniform in any direction j ≥ s. Let NU1(≥s)

denote the nonuniformity of treatment 1 in directions j ≥ s.

NU1(≥s) =
n∑

j=s

NUi(j) =
1
m

n∑

j=s

bj




bj∑

l=1

n2
1jl − h(r + 1, bj)


 (33)

Similarly, define NU1(<s) as the nonuniformity of treatment 1 in directions j < s. Also let NU∗
1(≥s)

and NU1(≥s∗) represent treatment 1 nonuniformity in directions j ≥ s in designs d∗ and d∗. By

(28) and (29) there is no design d uniform in treatments 2 and 3 with c1∗ < cd1 < c∗1. Suppose there

exists a design d′ uniform in treatments 2 and 3 in directions j ≥ s which has NU∗
1(≥s) < NU ′

1(≥s) <

NU1(≥s∗). It is claimed that this is not possible because it would contradict the preceding statement:

1. If NU ′
1(≥s) ≥ D, arranging treatments 1, 2 and 3 uniformly in directions j < s of d′, will

result in c1∗ < c′1 ≤ c0
1 −D < c∗1 since NU<s∗ = 0 by (32).

2. If D − 2bs−1

m < NU ′
1(≥s) < D, arranging treatments 1, 2 and 3 uniformly in directions j < s

of d′, will result in c1∗ ≤ c0
1 −D < c′1 < c∗1, since by (31), c∗1 − c0

2 ≥ 2bj

m for all j < s

3. If NU ′
1(≥s) ≤ D − 2bs−1

m then c′1 − c0
2 ≥ 2bj

m for all j < s if all treatments of d′ are uniform in

all directions j < s. Note that c∗1 − c0
2 ≥ 2bj

m for all j < s, as well. Now, keeping treatments 2

and 3 uniform in all directions, take x′j = xmaxj = x∗j for all j < s, where treatment 1 of d′ is

nonuniform in x′j blocks of direction j < s. Then c′1 < c0
1−D by definition of c∗1 and the fact

that NU∗
1(≥s) < NU ′

1(≥s), and so c′1 < c1∗ by definition of c1∗. Now decrease x′1 one unit at a

time down to 0, then decrease x′2 one unit at a time down to 0, and so on, stopping as soon

as c′1 > c0
1−D is achieved. Due to the ordering on the bj ’s and consequently on the step sizes

this procedure takes in changing c′1, and since NU∗
1(≥s) < NU ′

1(≥s), the ending value must

satisfy c′1 < c∗1.

Each case says c1∗ < c′1 < c∗1 with a uniform arrangement of treatments 2 and 3 in d′, which

contradicts (28) and (29). Hence, there is no competitor design, uniform in treatments 2 and
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3 in directions j ≥ s, which has NU∗
1(≥s) < NU1(≥s) < NU1(≥s∗). Also, any design which has

NU1(≥s) > NU1(≥s∗), will have c1 < c1∗ by (32), and thus Zd < Z∗. Therefore any competitor

must have treatments 2 and 3 uniform in directions j ≥ s, and the nonuniformity of treatment 1

in directions j ≥ s must be NU1(≥s) ≤ NU∗
1(≥s).

By lemma 2.2, any design d satisfies Zd ≤ c2 + c3 − c1
2 . Call this upper bound ubd. Using (3) and

(9), for the competitors remaining, the bound can be computed as:

ubd = 2r − r + 1
2

+
n− 1

m
(2r2 − (r + 1)2

2
)− 1

m

n∑

j=1

[bj

bj∑

l=1

(n2
2jl + n2

3jl −
n2

1jl

2
)]

= const1 − 1
m

s−1∑

j=1

[bj

bj∑

l=1

(n2
2jl + n2

3jl −
n2

1jl

2
)]

− 1
m

n∑

j=s

[2bjh(r, bj)− bj
h(r + 1, bj)

2
] +

1
2
NU1(≥s)

= const2 − 1
m

s−1∑

j=1

[bj

bj∑

l=1

(n2
2jl + n2

3jl −
n2

1jl

2
)] +

1
2
NU1(≥s) (34)

where const1 and const2 are constants, depending only on s and the dimensions of the hyperrect-

angle. Expression (34) depends on the nonuniformity of treatment 1 in every direction, and of

treatments 2 and 3 in directions j < s. Note that d∗ reaches its bound since Z∗ = 2c0
2 − c∗1

2 = ub∗.

Next it is shown that ubd for any other design uniform in treatments 2 and 3 in directions j ≥ s,

and with NU1(≥s) ≤ NU∗
1(≥s), cannot be higher than ub∗. Since NU1(≥s) ≤ NU∗

1(≥s), it is sufficient

to show that d∗ minimizes the sum
∑bj

l=1(n
2
2jl +n2

3jl−
n2

1jl

2 ) for each j ≤ s− 1. Given a set of block

assignments for treatment 1, (n1j1, n1j2, ..., n1jbj ), this sum is minimized by setting n2jl = n3jl =
1
2(mb−1

j − n1jl) for all l, with value

bj∑

l=1

(n2
2jl + n2

3jl −
n2

1jl

2
) =

bj∑

l=1

1
2
[(mb−1

j − n1jl)2 − n2
1jl] =

m2

2bj
−mb−1

j

bj∑

l=1

n1jl =
m2

2bj
−mb−1

j (r + 1)

This value is the same for any (n1j1, n1j2, ..., n1jbj ), as long as n2jl = n3jl = 1
2(mb−1

j −n1jl) for all l.

For d∗ this is achieved (see (32) and the block assignments in direction j when x∗j = xmaxj given

by (25) and (26)). Thus ub is maximized by d∗.

This also proves that d∗ is E-optimal when (29) has no solution (i.e. when x∗j = xmaxj for all j).

In this case d∗ reaches the absolute maximum of (34) because n∗2jl = n∗3jl for any j and l.
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In some cases, E-optimal designs other than d∗ or d∗ might exist, having treatments 2 and 3

nonuniform. However, Cd∗ or Cd∗ will have higher trace, meaning these competitors are inferior

with respect to every criterion depending on both eigenvalues.

For a given hyperrectange of size b1×b2×· · ·×bn, equations (28) and (29) must be solved numerically.

A Mathematica program that computes x∗j and xj∗ for all j, and decides whether d∗ or d∗ is E-M-

optimal, is available from the first author.

For convenience, some E-M-optimal assignments for 2 and 3 blocking factors are given in Table 1

and Table 2, respectively. The 4-tuples in Table 1 are (b1, b2;x1, x2) for a b1×b2 row-column design

with x1 units of nonuniformity in rows and x2 in columns, b1 ≤ b2 ≤ 20. For example, a 5 × 8

E-M-optimal row-column design has treatment 1 nonuniform in 0 rows and 1 column. Here is one

such design, with treatment 1 nonuniform in the first column:

1 2 3 1 2 3 1 2

3 1 2 3 1 2 3 1

2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2

1 3 2 3 1 2 3 1

Similarly, Table 2 contains 6-tuples (b1, b2, b2; x1, x2, x3) for 3-dimensional hyperrectangles and b1 ≤
b2 ≤ b3 ≤ 10, where xj is the number of blocks of factor j where treatment 1 is nonuniform.

At least for two blocking factors, achievement of the required nonuniformity is usually accomplished

quickly by trial and error. The construction problem has been solved in its full generality, for any

number n of factors, in Parvu (2004).

5 Experiment size m ≡ 2 mod 3

For this setting the maximin replication is r = m−2
3 . Create a uniform design d0 with r1 = r2 = r+1,

and r3 = r. Then (6) says Zd0 = 3
2c0

3. Any design d must have some ri ≤ r, implying ci ≤ c0
3 and

hence Zd ≤ 3
2ci ≤ Zd0 . Therefore d0 is E-optimal, and since uniformity implies maximal trace of

the information matrix, it is E-M optimal. The main result of this section says that there are no
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other E-M-optimal designs. There are, however, other E-optimal designs.

Theorem 5.1. For m ≡ 2 (mod 3), E-M-optimal designs are uniform with replications r1 = r2 =
m+1

3 , r3 = m−2
3 .

Proof. Competitors with r3 < r have c3 < c0
3, and hence by lemma 2.1, Zd < Zd0 . For r3 ≥ r, the

only replication numbers different from those of d0 are r1 = r + 2, r2 = r3 = r. For such a design

d, if either treatment 2 or treatment 3 is nonuniform, then again lemma 2.1 says Zd < Zd0 . Thus

d must have c2 = c3 and so (7) ⇒ Zd = c2 + c3 − 1
2c1 = 2c0

3 − 1
2c1 ≤ 3

2c0
3 with equality if and only

if c1 = c2 = c3 = c0
3. But if this condition for E-optimality is met, trace of Cd is not maximal.

The proof says E-optimal (but not E-M-optimal) designs can be constructed whenever for replica-

tions (r+2, r, r) and treatments 2 and 3 both uniform, treatment 1 can be made nonuniform in such

a way that c1 = c2 = c3; this is only sometimes possible. E-optimality without trace maximization

can also be achieved with replications (r+1, r+1, r), as follows. First, as already shown, treatment

3 must be uniform and so c3 = c0
3. Now for fixed c1 + c2 and c3, it is easy to show that Zd in (5) is

decreasing in |c1 − c2|. So by (6), Zd ≤ 3
2c0

3 with equality if and only if c1 = c2 ≥ c3. Consequently

this d is E-optimal if and only if NU1 = NU2 and c1 − c3 ≥ 0.

6 Discussion

The E-optimality problem has been solved for three treatments and arbitrary numbers of levels

(b1, . . . , bn) of crossed blocking factors. The surprising results are those for settings with one more

experimental unit than needed for equal replication, for example, 5×5 or 7×7 row-column layouts.

While in all cases the best strategy is to replicate as equally as possible, in these cases the assignment

of the treatment with largest replication is made nonuniformly. In effect, E-efficiency increases as

trace of the information matrix decreases to the extent allowed by (28) and (29).

In results to be reported elsewhere, we have solved the A-problem for three treatments in row-

column layouts. The two criteria sometimes agree, and sometimes disagree, on what design is best.

The assignment conditions for A-optimality depend more crucially on the particular values of b1

and b2, and not just on the mod 3 value of their product. Common to the A- and E-problems is that
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maximal trace need not produce the best design. This phenomenon, now definitively established

for v = 3, is a chief reason that optimality theory for general v is difficult for row-column designs.

The statistical literature is sorely lacking in design results for settings where equal replication is

not possible. This work is a step towards addressing that shortcoming, so that design theory can

move closer to having a complete, flexible catalog of optimal designs available for experimenters.

Though as seen here, optimality investigations without “nice” divisibility conditions on the design

parameters can be both challenging and counterintuitive, progress can and should be made.
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Table 1: E-M-optimal assignments for 2 blocking factors

(2,2;0,0) (2,5;1,0) (2,8;1,0) (2,11;1,0) (2,14;1,0) (2,17;1,0) (2,20;1,0)

(4,4;0,0) (4,7;0,0) (4,10;1,0) (4,13;1,0) (4,16;1,0) (4,19;1,0) (5,5;0,1)

(5,8;0,1) (5,11;0,1) (5,14;0,1) (5,17;0,1) (5,20;0,1) (7,7;0,1) (7,10,1,0)

(7,13;0,1) (7,16;2,0) (7,19;0,1) (8,8;0,1) (8,11;2,0) (8,14;1,1) (8,17;1,1)

(8,20;1,1) (10,10;0,1) (10,13;0,1) (10,16;2,0) (10,19;1,1) (11,11;0,2) (11,14;0,2)

(11,17;0,2) (11,20;2,1) (13,13;0,2) (13,16;1,1) (13,19;1,1) (14,14;0,2) (14,17;2,1)

(14,20;2,1) (16,16;0,2) (16,19;0,2) (17,17;0,3) (17,20;0,3) (19,19;0,3) (20,20;0,3)

Table 2: E-M-optimal assignments for 3 blocking factors

(2,2,4;0,1,0) (2,2,7;1,1,0) (2,2,10;1,1,0) (2,4,5;1,0,1) (2,4,8;0,1,1) (2,5,7;0,1,1) (2,5,10;0,1,1)

(2,7,8;1,0,2) (2,8,10;0,2,1) (4,4,4;0,1,1) (4,4,7;1,1,1) (4,4,10;0,1,2) (4,5,5;0,1,2) (4,5,8;1,0,3)

(4,7,7;0,2,2) (4,7,10;0,2,3) (4,8,8;1,2,3) (4,10,10;0,3,3) (5,5,7;1,2,2) (5,5,10;0,2,3) (5,7,8;2,2,3)

(5,8,10;2,3,3) (7,7,7;2,2,2) (7,7,10;2,2,3) (7,8,8;2,3,3) (7,10,10;2,3,3) (8,8,10;3,3,3) (10,10,10;3,3,3)

20


