A hypergraph blow-up lemma

Peter Keevash *

Abstract

We obtain a hypergraph generalisation of the graph blow-up lemma proved by Komlós, Sarközy and Szemerédi, showing that hypergraphs with sufficient regularity and no atypical vertices behave as if they were complete for the purpose of embedding bounded degree hypergraphs.

1 Introduction

Szemerédi’s regularity lemma [44] has impressive applications in many areas of modern graph theory, including extremal graph theory, Ramsey theory and property testing. Roughly speaking, it says that any graph can be approximated by an average with respect to a partition of its vertex set into a bounded number of classes, the number of classes depending only on the accuracy of the desired approximation, and not on the number of vertices in the graph. A key property of this approximation is that it leads to a ‘counting lemma’, allowing an accurate prediction of the number of copies of any small fixed graph spanned by some specified classes of the partition. We refer the reader to [28] for a survey of the regularity lemma and its applications. An analogous theory for hypergraphs has only been developed very recently, with independent and rather different approaches given by Rödl et al. (e.g. [37, 41, 43]) and Gowers [13], subsequently reformulated and developed in [1, 7, 16, 38, 45, 46]. In a very short space of time the power of this hypergraph theory has already been amply demonstrated, e.g. by a multidimensional generalisation of Szemerédi’s theorem on arithmetic progressions [13] and a linear bound for the Ramsey number of hypergraphs with bounded maximum degree [4, 35].

The blow-up lemma is a powerful tool developed by Komlós, Sarközy and Szemerédi [24] for using the regularity lemma to embed spanning subgraphs of bounded degree. An informal statement is that graphs with sufficient regularity and no atypical vertices behave as if they were complete for the purpose of embedding bounded degree graphs. In [25, 26] they used it to prove Seymour’s conjecture on the minimum degree needed to embed the $k$th power of a Hamilton cycle, and the Alon-Yuster conjecture on the minimum degree needed for a graph to have an $H$-factor, for some fixed graph $H$ (a question finally resolved in [32]). There are many other applications to embedding spanning subgraphs, see the survey [33]. There are also several results on embedding spanning subhypergraphs, such as perfect matchings or (various definitions of) Hamilton cycles, see the survey [39]. For the most part, the proofs of the known hypergraph results have not needed any analogue of the blow-up lemma. An exception is an embedding lemma for some special spanning subhypergraphs proved in

*School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK. Email: p.keevash@qmul.ac.uk. Research supported in part by ERC grant 230696 and EPSRC grant EP/G056730/1.
for loose Hamilton cycles in 3-graphs, although the ‘absorbing’ method of Rödl, Ruciński and Szemerédi was subsequently shown to be a simpler method for Hamilton cycles [40, 15, 21]. Another partial hypergraph blow-up lemma is to embedding bounded degree subgraphs of linear size, obtained independently in [4] and in [35] (for 3-graphs). The application to linear Ramsey numbers of bounded degree hypergraphs was also subsequently proved by simpler means in [3]. However, one would not necessarily expect that embedding lemmas can always be avoided by using alternative methods, so a hypergraph blowup lemma would be a valuable tool.

In this paper we prove such a result that gives conditions for embedding any spanning hypergraph of bounded degree. We will not attempt a formal statement of our result in this introduction, as it will take us a considerable amount of work to set up the necessary notation and terminology, particularly for the key notion of super-regularity, which has some additional subtleties that do not appear in the graph case. The proof will be by means of a randomised greedy embedding algorithm, which is very similar that used in [24]. However the analysis is more involved, due both to the additional complications of hypergraph regularity theory, and the need to work with an approximating hypergraph rather than the true hypergraph (see Section 3 for further explanation). There are many potential applications of our theorem to hypergraph generalisations of results for graphs that were obtained with the graph blow-up lemma. We will illustrate the method by proving a hypergraph generalisation of a result of Kühn and Osthus [31, Theorem 2] on packing bipartite graphs.

The rest of this paper is organised as follows. In the next section we prove the blow-up lemma of Komlós, Sarközy and Szemerédi [24]. This is mostly for expository purposes, although there are some small differences in our proof, and it will be useful to refer back to the basic argument when discussing additional complications that arise for hypergraphs. We will prove our main result at first in the special case of 3-graphs (with some additional simplifications); this case is already sufficiently complex to illustrate the main ideas of our proofs. In section 3 we discuss hypergraph regularity theory (following the approach of Rödl et al.) and motivate and define super-regularity for 3-graphs. We prove the 3-graph blow-up lemma in section 4. In section 5 we develop some additional theory that is needed for applications of the 3-graph blow-up lemma, based on the Regular Approximation Lemma of Rödl and Schacht [41]. We also give a ‘black box’ reformulation of the blow-up lemma that will be more easily accessible for future applications. We illustrate this by generalising a result in [31] to packing tripartite 3-graphs. The final section concerns the general hypergraph blow-up lemma. As well as generalising from 3-graphs to k-graphs, we allow additional generalisations that will be needed in future applications, including restricted positions and complex-indexed complexes (defined in that section). The proof is mostly similar to that for 3-graphs, so we only give full details for those aspects that are different. We conclude with some remarks on potential developments and applications of the blow-up lemma.

Notation. We will introduce a substantial amount of terminology and notation throughout the paper, which is summarised in the index. Before starting our discussion we establish the following basic notation. We write \([n] = \{1, \ldots, n\}\). If \(X\) is a set and \(k\) is a number then \(\binom{X}{k}\) = \(\{Y \subseteq X : |Y| = k\}\), \(\binom{X}{\leq k}\) = \(\cup_{i \leq k} \binom{X}{i}\) and \(\binom{X}{\leq k}\) = \(\bigcup_{i \leq k} \binom{X}{i}\). \(a \pm b\) denotes an unspecified real number in the interval \([a - b, a + b]\). It is convenient to regard a finite set \(X\) as being equipped with the uniform probability measure \(P(\{x\}) = 1/|X|\), so that we can express the average of a function \(f\)
defined on $X$ as $\mathbb{E}_{x \in X} f(x)$. A $k$-graph $H$ consists of a vertex set $V(H)$ and an edge set $E(H)$, each edge being some $k$-tuple of vertices. We often identify $H$ with $E(H)$, so that $|H|$ is the number of edges in $H$. A $k$-complex $H$ consists of a vertex set $V(H)$ and an edge set $E(H)$, where each edge is a subset of the vertex set of size at most $k$, that is a simplicial complex, i.e. if $S \in E(H)$ and $T \subset S$ then $T \in E(H)$. For $S \subset V(H)$ the neighbourhood $(k - |S|)$-graph or $(k - |S|)$-complex is $H(S) = \{A \subset V(H) \setminus S : A \cup S \in E(H)\}$, and $|H(S)|$ is the degree of $S$. We also write $H^S = \{A \subset V(H) : S \subset A \in E(H)\}$. A walk in $H$ is a sequence of vertices for which each consecutive pair are contained in some edge of $H$, and the distance between two vertices is the length of the shortest walk connecting them. The vertex neighbourhood $VN_H(x)$ is the set of vertices at distance exactly 1 from $x$ (so $x$ itself is not included). We will often have to consider hierarchies involving many real parameters, and it will be useful to use the notation $0 < \alpha \ll \beta$ to mean that there is an increasing function $f(x)$ so that the following argument is valid for $0 < \alpha < f(\beta)$. The parameter $n$ will always be sufficiently large compared to all other parameters, and we use the phrase with high probability to refer to an event that has probability $1 - o_n(1)$, i.e. the probability tends to 1 as $n$ tends to infinity.

2 The graph blow-up lemma

This section is mostly expository. We introduce the basic notions of regularity and super-regularity for graphs and prove the blow-up lemma of Komlós, Sarközy and Szemerédi. This will serve as a warm-up to the hypergraph blow-up lemma, as our proof even in the graph case differs slightly from the original in a few details (although the general approach is the same). It will also be helpful to establish our notation in this simplified setting, and to refer back to the basic argument when explaining why certain extra complications arise for hypergraphs. To streamline the proof we focus on a slightly simplified setting, which still contains all the ideas needed for the general case. We hope that the general reader will find this section to be an accessible account of a proof that has a reputation for difficulty!

We start with a brief summary of the key notions in graph regularity, referring the reader to [28] for more details. Consider an $r$-partite graph $G$ with vertex set $V$ partitioned as $V = V_1 \cup \cdots \cup V_r$. Let $G_{ij}$ be the bipartite subgraph of $G$ with parts $V_i$ and $V_j$, for $1 \leq i \neq j \leq r$. The density of $G_{ij}$ is $d(G_{ij}) = \frac{|G_{ij}|}{|V_i||V_j|}$. Given $\epsilon > 0$, we say that $G_{ij}$ is $\epsilon$-regular if for all subsets $V'_i \subseteq V_i$ and $V'_j \subseteq V_j$ with $|V'_i| > \epsilon|V_i|$ and $|V'_j| > \epsilon|V_j|$, writing $G'_{ij}$ for the bipartite subgraph of $G$ with parts $V'_i$ and $V'_j$, we have $|d(G'_{ij}) - d(G_{ij})| < \epsilon$. Then we say that $G$ is $\epsilon$-regular if each $G_{ij}$ is $\epsilon$-regular. Informally, we may say that each $G_{ij}$ behaves like a random bipartite graph, up to accuracy $\epsilon$. This statement is justified by the counting lemma, which allows one to estimate the number of copies of any fixed graph $F$, up to accuracy $O(\epsilon)$, using a suitable product of densities. For now we just give an example: if we write $T_{123}(G)$ for the set of triangles formed by the graphs $G_{12}$, $G_{13}$, $G_{23}$, then

$$d(T_{123}(G)) := \frac{|T_{123}(G)|}{|V_1||V_2||V_3|} = d(G_{12})d(G_{13})d(G_{23}) \pm 8\epsilon. \tag{1}$$

Remarkably, this powerful property can be applied in any graph $G$, via Szemerédi’s Regularity Lemma, which can be informally stated as saying that we can decompose the vertex set of any graph
on $n$ vertices into $m(\epsilon)$ parts, such that all but at most $\epsilon n^2$ edges belong to bipartite subgraphs that are $\epsilon$-regular.

The blow-up lemma arises from the desire to embed spanning graphs in $G$, meaning that they use every vertex in $V$. Suppose that $|V_i| = n$ for $1 \leq i \leq r$. The argument used to prove the counting lemma can be generalised to embed any bounded degree graph $H$ provided that all components of $H$ have size $o(n)$, and $\Omega(n)$ vertices of $G$ are allowed to remain uncovered. However, one cannot guarantee an embedding of a spanning graph: the definition of $\epsilon$-regularity does not prevent the existence of isolated vertices, so we may not even be able to find a perfect matching. This observation naturally leads us to the stronger notion of super-regularity. We say that $G_{ij}$ is $(\epsilon, d_{ij})$-super-regular if it is $\epsilon$-regular and every vertex has degree at least $(d_{ij} - \epsilon)n$. It is well-known that one can delete a small number of vertices from a regular pair to make it super-regular (see Lemma 5.3). We say that $G$ is $(\epsilon, d)$-super-regular if each $G_{ij}$ is either empty or $(\epsilon, d_{ij})$-super-regular for some $d_{ij} \geq d$. Now we can state the graph blow-up lemma.

**Theorem 2.1. (Graph blow-up lemma)** Suppose $H$ is an $r$-partite graph on $X = X_1 \cup \cdots \cup X_r$ and $G$ is an $r$-partite graph on $V = V_1 \cup \cdots \cup V_r$, where $|V_i| = |X_i| = n$ for $1 \leq i \leq r$ and $H_{ij}$ is only non-empty when $G_{ij}$ is non-empty. If $H$ has maximum degree at most $D$ and $G$ is $(\epsilon, d)$-super-regular, where $0 \ll 1/n \ll \epsilon \ll d, 1/r, 1/D$, then $G$ contains a copy of $H$, in which for each $1 \leq i \leq r$ the vertices of $V_i$ correspond to the vertices of $X_i$.

Informally speaking, Theorem 2.1 embeds any bounded degree graph into any super-regular graph. Note that arbitrary part sizes are allowed in [24], but for simplicity we start by considering the case when they are all equal. The proof is via a random greedy algorithm for embedding $H$ in $G$, which considers the vertices of $X$ in some order and embeds them to $V$ one at a time. We start by giving an informal description of the algorithm.

**Initialisation.** List the vertices of $H$ in a certain order, as follows. Some vertices at mutual distance at least 4 are identified as buffer vertices and put at the end of the list. The neighbours of the buffer vertices are put at the start of the list. (The rationale for this order is that we hope to embed these neighbours in a nice manner while there is still plenty of room in the early stages of the algorithm, and then the buffer vertices still have many suitable places at the conclusion.) During the algorithm a queue of priority vertices may arise: it is initially empty.

**Iteration.** Choose the next vertex $x$ to be embedded, either from the queue if this is non-empty, or otherwise from the list. The image $\phi(x)$ of $x$ is chosen randomly in $V(G)$ among those free spots that do not unduly restrict the free spots for those unembedded neighbours of $x$. If some unembedded vertex has too few free spots it is added to the queue. Stop when all non-buffer vertices have been embedded. If the number of vertices that have ever been in the queue becomes too large before this point then abort the algorithm as a failure (this is an unlikely event).

**Conclusion.** Choose a system of distinct representatives among the free slots for the unembedded vertices to complete the embedding. (This will be possible with high probability.)
Now we will formally describe the random greedy algorithm to construct an embedding $\phi : V(H) \to V(G)$ such that $\phi(e) \in E(G)$ for every $e \in E(H)$. First we introduce more parameters with the hierarchy

$$0 \leq 1/n \leq \epsilon \leq \epsilon' \leq \epsilon_* \leq p_0 \leq \gamma \leq \delta_Q \leq p \leq d_u \leq \delta' \leq \delta_B \leq d, 1/r, 1/D.$$ 

To assist the reader we list here the role of each parameter for easy reference. Parameters $\epsilon, \epsilon'$ and $\epsilon_*$ are used to measure graph regularity. Parameter $\gamma$ plays the role of $\kappa$ in [24]: it is used to distinguish various cases at the conclusion of the algorithm when selecting the system of distinct representatives. Parameter $d_u$ plays the role of $\gamma$ in [24]: it is a universal lower bound on the proportion of vertices in a class of $G$ free to embed any given vertex of $H$. The queue threshold parameter $\delta_Q$ corresponds to $\delta''$ in [24]: the maximum proportional size for the queue before we will abort with failure. The buffer parameter $\delta_B$ corresponds to $\delta'$ in [24]: the proportional size of the buffer. We also introduce two probability parameters that are not explicitly named in [24], although they are key to the proof. Parameter $p_0$ appears in Lemma 2.6 in the upper bound for the probability that any given set $A$ will be significantly under-represented in the free images for a vertex. Parameter $p$ appears in Lemma 2.5 as a lower bound for the probability that a given unused vertex will be free as an image for a given buffer vertex at the construction of the algorithm. Note that the queue admission parameter $\delta'_Q$ is similar to but slightly different from the corresponding parameter $\delta''$ in [24]: for any vertex $z$ and time $t$ we will compare $F_z(t)$ to an earlier free set $F_z(t_z)$, where $t_z$ is the most recent time at which we embedded a neighbour of $z$.

**Initialisation and notation.** We choose a buffer set $B \subseteq X$ of vertices at mutual distance at least 4 in $H$ so that $|B \cap X_i| = \delta_B n$ for $1 \leq i \leq r$. The maximum degree property of $H$ implies that we can construct $B$ simply by selecting vertices one-by-one greedily. For any given vertex in $H$ there are fewer than $D^4$ vertices within distance 4, so at any point in the construction of $B$ we have excluded at most $D^4 \delta_B n$ vertices from any given $X_i$. Thus we can construct $B$ if we choose $\delta_B < 1/(r D^4)$.

Let $N = \cup_{x \in B} N_H(x)$ be the vertices with a neighbour in the buffer. Since $H$ has maximum degree $D$ we have $|N \cap X_i| \leq D r \delta_B n < \sqrt{\delta_B} n$ for $1 \leq i \leq r$, if we choose $\delta_B < 1/(r D^2)$.

We use $t$ to denote time during the algorithm, by which we mean the number of vertices of $H$ that have been embedded. At time $t$ we denote the queue by $q(t)$ and write $Q(t) = \cup_{u \leq t} q(u)$ for the vertices that have ever been in the queue by time $t$. Initially we set $q(0) = Q(0) = \emptyset$.

We order the vertices in a list $L = L(0)$ that starts with $N$ and ends with $B$. Within $N$, we arrange that $N_H(x)$ is consecutive for each $x \in B$. This is possible by the mutual distance property in $B$, which implies that the neighbourhoods $N_H(x), x \in B$ are mutually disjoint. We denote the vertex of $H$ selected for embedding at time $t$ by $s(t)$. This will be the first vertex of $L(t - 1)$, unless the queue is non-empty, when this takes priority.

We write $F_x(t)$ for the vertices that are free to embed a given vertex $x$ of $H$. Initially we set $F_x(0) = V_x$, where we write $V_x$ for that part $V_i$ of $G$ corresponding to the part $X_i$ of $H$ that contains $x$. We also write $X_i(t) = X_i \setminus \{s(u) : u \leq t\}$ for the unembedded vertices of $X_i$ and $V_i(t) = V_i \setminus \{\phi(s(u)) : u \leq t\}$ for the available positions in $V_i$. We let $X(t) = \cup_{i=1}^r X_i(t)$ and $V(t) = \cup_{i=1}^r V_i(t)$. Initially we set $X_i(0) = X_i$ and $V_i(0) = V_i$. 


Iteration. At time \( t \), while there are still some unembedded non-buffer vertices, we select a vertex to embed \( x = s(t) \) according to the following selection rule. If the queue \( q(t) \) is non-empty then we let \( x \) be any member of the queue; otherwise we let \( x \) be the first vertex of the list \( L(t-1) \). (A First In First Out rule for the queue is used in [24], but this is not essential to the proof.) We choose the image \( \phi(x) \) of \( x \) uniformly at random among all elements \( y \in F_x(t-1) \) that are ‘good’, a property that can be informally stated as saying that if we set \( \phi(x) = y \) then the free sets at time \( t \) for the unembedded neighbours of \( x \) will have roughly their ‘expected’ size.

To define this formally, we first need to describe the update rule for the free sets when we embed \( x \) to some vertex \( y \). First we set \( F_x(t) = \{ y \} \). We will have \( F_x(t') = \{ y \} \) at all subsequent times \( t' \geq t \). Then for any unembedded \( z \) that is not a neighbour of \( x \) we set \( F_z(t) = F_z(t-1) \setminus \{ y \} \). Thus the size of \( F_z(t) \) decreases by 1 if \( z \) belongs to the same part of \( X \) as \( x \), but otherwise is unchanged. Finally, for any unembedded \( z \in N_H(x) \) we set \( F_z(t) = F_z(t-1) \cap N_G(y) \). Now we say that \( y \in F_x(t-1) \) belongs to the good set \( OK_x(t-1) \) if for every unembedded \( z \in N_H(x) \) we have \( |F_z(t)| = (1 \pm 2\epsilon) d_{xz} |F_z(t-1)| \). Here \( d_{xz} \) denotes that density \( d(G_{ij}) \) for which \( x \in V_i \) and \( z \in V_j \).

Having chosen the image \( \phi(x) \) of \( x \) as a random good element \( y \), we conclude the iteration by updating the list \( L(t-1) \) and the queue \( q(t-1) \). First we remove \( x \) from whichever of these sets it was taken. Then we add to the queue any unembedded vertex \( z \) for which \( F_z(t) \) has become ‘too small’. To make this precise, suppose \( z \in L(t-1) \setminus \{ x \} \), and let \( t_z \) be the most recent time at which we embedded a vertex in \( N_H(z) \), or 0 if there is no such time. (Note that if \( z \in N_H(x) \) then \( t_z = t \).) We add \( z \) to \( q(t) \) if \( |F_z(t)| < \delta_Q |F_z(t_z)| \). This defines \( L(t) \) and \( q(t) \).

Repeat this iteration until the only unembedded vertices are buffer vertices, but abort with failure if at any time we have \( |Q(t) \cap X_i| > \delta_Q |X_i| \) for some \( 1 \leq i \leq r \). Let \( T \) denote the time at which the iterative phase terminates (whether with success or failure).

Conclusion. When all non-buffer vertices have been embedded, we choose a system of distinct representatives among the free slots \( F_x(T) \) for the unembedded vertices \( x \in X(T) \) to complete the embedding, ending with success if this is possible, otherwise aborting with failure.

Now we analyse the algorithm described above and show that it is successful with high probability. We start by recording two standard facts concerning graph regularity. The first fact states that most vertices in a regular pair have ‘typical’ degree, and the second that regularity is preserved by restriction to induced subgraphs. We maintain our notation that \( G \) is an \( r \)-partite graph on \( V = V_1 \cup \cdots \cup V_r \). We fix any pair \( (i,j) \), write \( G_{ij} \) for the bipartite subgraph spanned by \( V_i \) and \( V_j \) and denote its density by \( d_{ij} \). We give the short proofs of these facts here, both for completeness and as preparation for similar hypergraph arguments later.

Lemma 2.2. (Typical degrees) Suppose \( G_{ij} \) is \( \epsilon \)-regular. Then all but at most \( 2\epsilon |V_i| \) vertices in \( V_i \) have degree \( (d_{ij} \pm \epsilon)|V_j| \) in \( V_j \).

Proof. We claim that there is no set \( X \subseteq V_i \) of size \( |X| > \epsilon |V_i| \) such that every \( x \in X \) has degree less than \( (d_{ij} - \epsilon)|V_j| \) in \( V_j \). For the pair \( (X,V_j) \) would then induce a subgraph of density less than \( d_{ij} - \epsilon \), contradicting the definition of \( \epsilon \)-regularity. Similarly, there is no set \( X \subseteq V_i \) of size \( |X| > \epsilon |V_i| \) such that every \( x \in X \) has degree greater than \( (d_{ij} + \epsilon)|V_j| \) in \( V_j \). \( \square \)
Lemma 2.3. (Regular restriction) Suppose $G_{ij}$ is $\epsilon$-regular, and we have sets $V'_i \subseteq V_i$ and $V'_j \subseteq V_j$ with $|V'_i| \geq \sqrt{\epsilon}|V_i|$ and $|V'_j| \geq \sqrt{\epsilon}|V_j|$. Then the bipartite subgraph $G'_{ij}$ of $G_{ij}$ induced by $V'_i$ and $V'_j$ is $\sqrt{\epsilon}$-regular of density $d'_{ij} = d_{ij} \pm \epsilon$.

Proof. Since $G_{ij}$ is $\epsilon$-regular we have $d'_{ij} = d_{ij} \pm \epsilon$. Now consider any sets $V''_i \subseteq V'_i$ and $V''_j \subseteq V'_j$ with $|V''_i| \geq \sqrt{\epsilon}|V'_i|$ and $|V''_j| \geq \sqrt{\epsilon}|V'_j|$. Then $|V''_i| \geq \epsilon|V_i|$ and $|V''_j| \geq \epsilon|V_j|$, so $V''_i$ and $V''_j$ induce a bipartite subgraph of $G_{ij}$ with density $d_{ij} \pm \epsilon \subseteq d'_{ij} \pm \sqrt{\epsilon}$. Therefore $G'_{ij}$ is $\sqrt{\epsilon}$-regular. □

Our next lemma shows that the definition of good vertices for the algorithm is sensible, in that most free vertices are good. Before giving the lemma, we observe that the number of free vertices in any given class does not become too small at any point during the algorithm. We can quantify this as $|V_i(t)| \geq |B \cap V_i| - |Q(t) \cap V_i| \geq (\delta_B - \delta_Q)n \geq \delta_B n/2$, for any $1 \leq i \leq r$ and time $t$. To see this, note that we stop the iterative procedure when the only unembedded vertices are buffer vertices, and during the procedure a buffer vertex is only embedded if it joins the queue.

Lemma 2.4. (Good vertices) Suppose we embed a vertex $x = s(t)$ of $H$ at time $t$. Then $|OK_x(t - 1)| \geq (1 - \epsilon_s)|F_x(t - 1)|$, and for every unembedded vertex $z$ we have $|F_z(t)| \geq d_un$. 

Proof. We argue by induction on $t$. At time $t = 0$ the first statement is vacuous, as we do not embed any vertex at time 0, and the second statement follows from the fact that $F_z(0) = V_z$ has size $n$ for all $z$. Now suppose $t \geq 1$. By induction we have $|F_x(t - 1)| \geq d_un$ for every unembedded vertex $z$. Then by Lemma 2.3, for any unembedded $z \in N_H(x)$, the bipartite subgraph of $G$ induced by $F_x(t - 1)$ and $F_z(t - 1)$ is $\epsilon'$-regular of density $(1 \pm \epsilon)d_{xz}$. Applying Lemma 2.2, we see that there are at most $2\epsilon'|F_x(t - 1)|$ vertices $y \in F_x(t - 1)$ that do not satisfy $|N_G(y) \cap F_z(t - 1)| = (1 \pm 2\epsilon')d_{xz}|F_x(t - 1)|$. Summing over at most $D$ neighbours of $x$ and applying the definition of good vertices in the algorithm we obtain the first statement that $|OK_x(t - 1)| \geq (1 - 2D\epsilon')|F_x(t - 1)| \geq (1 - \epsilon_s)|F_x(t - 1)|$.

Next we prove the second statement. Consider any unembedded vertex $z$. Let $t_z$ be the most recent time at which we embedded a neighbour of $z$, or 0 if there is no such time. If $t_z > 0$ then we embedded some neighbour $w = s(t_z)$ of $z$ at time $t_z$. Since we chose the image $\phi(w)$ of $w$ to be a good vertex, by definition we have $|F_x(t_z)| = (1 \pm 2\epsilon')d_{xz}|F_x(t_z - 1)| > \frac{1}{2}d|F_x(t_z - 1)|$ if $z$ is not in the queue then the rule for updating the queue in the algorithm gives $|F_z(t_z)| \geq \delta'_Q|F_x(t_z)|$. On the other hand, suppose $z$ is in the queue, and that it joined the queue at some time $t' < t$. Since $z$ did not join the queue at time $t' - 1$ we have $|F_z(t' - 1)| \geq \delta'_Q|F_x(t_z)|$. Also, between times $t'$ and $t$ we only embed vertices that are in the queue: the queue cannot become empty during this time, as then we would have embedded $z$ before $x$. During this time we embed at most $\delta_Q n$ vertices in $V_z$, as we abort the algorithm if the number of vertices in $X_z$ that have ever been queued exceeds this.

Thus we have catalogued all possible ways in which the number of vertices free for $z$ can decrease. It may decrease by a factor no worse than $d/2$ when a neighbour of $z$ is embedded, and by a factor no worse than $\delta'_Q$ before the next neighbour of $z$ is embedded, unless $z$ joins the queue. Also, if $z$ joins the queue we may subtract at most $\delta_Q n$ from the number of vertices free for $z$. Define $i$ to be the number of neighbours of $z$ that are embedded before $z$ joins the queue if it does, or let $i = d(z)$ be the degree of $z$ if $z$ does not join the queue. Now $z$ has at most $D$ neighbours, and $|F_z(0)| = |V_z| = n$, so $|F_z(t)| \geq (\delta'_Q d/2)^{D-i}((\delta'_Q d/2)\delta_Q n - \delta_Q n) \geq (\delta'_Q d/2)^D \delta''_Q n - \delta_Q n > d_un$. □
Next we turn our attention to the time period during which we are embedding $N$, which we will refer to as the initial phase of the algorithm. We start by observing that the queue remains empty during the initial phase, and so $N$ is embedded consecutively in the order given by the list $L$. To see this, we use a similar argument to that used for the second statement in Lemma 2.4. Consider any unembedded vertex $z$ and suppose that the queue has remained empty up to the current time $t$. Then we have embedded at most $|N \cap X_x| < \sqrt{\delta_B n}$ vertices in $V_z$. Also, if we embed a neighbour $w$ of $z$ the algorithm chooses a good image for it, so by definition of good, the number of free images for $z$ decreases by a factor no worse than $(1 - 2\epsilon')d_{zw} > d/2$ when we embed $w$. Since $z$ has at most $D$ neighbours we get $|F_z(t)| \geq (d/2)^2 n - \sqrt{\delta_B n} > \delta_Q n$. This shows that no unembedded vertex $z$ is added to the queue during the initial phase.

Now we want to show that for any buffer vertex $x \in B$ there will be many free positions for $x$ at the end of the algorithm. This is the point in the argument where super-regularity is essential. A vertex $v \in V_x$ will be free for $x$ if it is not used for another vertex and we embed $N_H(x)$ in $N_G(v)$ during the initial phase. Our next lemma gives a lower bound on this probability, conditional on any embedding of the previous vertices not using $v$. We fix some $x \in B$ and write $N_H(x) = \{z_1, \cdots, z_g\}$, with vertices listed in the order that they are embedded. We let $T_j$ be the time at which $z_j$ is embedded. Since $N$ is embedded consecutively we have $T_{j+1} = T_j + 1$ for $1 \leq j \leq g - 1$. We also define $T_0 = T_1 - 1$. Since vertices in $B$ are at mutual distance at least 4 in $H$, at time $T_0$, when we have only embedded vertices from $N$, no vertices within distance 2 of $x$ have been embedded. (This is the only place at which mutual distance 4 is important.)

**Lemma 2.5. (Initial phase)** For any $v \in V_x$, conditional on any embedding of the vertices $\{s(u) : u < T_1\}$ that does not use $v$, with probability at least $p$ we have $\phi(N_H(x)) \subseteq N_G(v)$.

**Proof.** We estimate the probability that $\phi(N_H(x)) \subseteq N_G(v)$ using arguments similar to those we are using to embed $H$ in $G$. We want to track the free positions within $N_G(v)$ for each unembedded vertex in $N_H(x)$, so we hope to not only embed each vertex of $N_H(x)$ in $N_G(v)$ but also to do so in a ‘good’ way, a property that can be informally stated as saying that the free positions within $N_G(v)$ will have roughly their expected size. To define this formally, suppose $1 \leq j \leq g$ and we are considering the embedding of $z_j$. We interpret quantities at time $T_j$ with the embedding $\phi(z_j) = y$, for some unspecified $y \in F_{z_j}(T_j - 1)$. We say that $y \in F_{z_j}(T_j - 1) \cap N_G(v)$ is good for $v$, and write $y \in OK^v_{z_j}(T_j - 1)$, if for every unembedded $z \in N_H(x)$ we have $|F_z(T_j) \cap N_G(v)| = (1 \pm 2\epsilon')d_{zz_j}|F_z(T_j - 1) \cap N_G(v)|$. We let $A_j$ denote the event that $y = \phi(z_j)$ is chosen in $OK^v_{z_j}(T_j - 1)$.

We claim that conditional on the events $A_{j'}$ for $j' < j$ and the embedding up to time $T_j - 1$, the probability that $A_j$ holds is at least $d_u/2$. To see this we argue as in Lemma 2.4. First we show that $|F_z(T_j - 1) \cap N_G(v)| \geq d_u n$ for every unembedded neighbour $z$ of $x$. Note that initially $F_z(0) \cap N_G(v) = V_x \cap N_G(v)$ has size at least $(d - \epsilon)n$ by super-regularity of $G$. Up to time $T_0$ we embed at most $|N \cap X_x| \leq \sqrt{\delta_B n}$ vertices in $X_z$, and do not embed any neighbours of $z$ by the distance property mentioned before the lemma. At time $T_j$, with $j' < j$, we are conditioning on the event that the algorithm chooses an image for $z_{j'}$ that is good for $v$, so the number of free images for $z$ within $N_G(v)$ decreases by a factor no worse than $(1 - 2\epsilon')d_{zz_{j'}} > d/2$. Thus we indeed have $|F_z(T_j - 1) \cap N_G(v)| \geq (d/2)^2 |V_x \cap N_G(v)| - |N \cap X_x| \geq (d/2)^2 (d - \epsilon)n - \sqrt{\delta_B n} \geq d_u n$.

Next, by Lemma 2.3, for any unembedded $z \in N_H(x)$, the bipartite subgraph of $G$ induced by $F_{z_j}(T_j - 1) \cap N_G(v)$ and $F_z(T_j - 1) \cap N_G(v)$ is $\epsilon'$-regular of density $(1 \pm \epsilon) d_{zz_j}$. Applying Lemma 2.2,
we see that there are at most $2c'|F_{z_j}(T_j - 1) \cap N_G(v)|$ vertices $y \in F_{z_j}(T_j - 1) \cap N_G(v)$ that do not satisfy $|F_z(T_j) \cap N_G(v)| = |N_G(y) \cap F_z(T_j - 1) \cap N_G(v)| = (1 \pm 2c')d_{z_j}|F_z(T_j - 1) \cap N_G(v)|$. Summing over at most $D$ neighbours of $z_j$ we see that $|OK_{z_j}(T_j - 1)| \geq (1 - 2Dc')|F_z(T_j - 1) \cap N_G(v)|$. Also, by Lemma 2.4 we have $|OK_{z_j}(T_j - 1)| \geq (1 - \epsilon_s)|F_{z_j}(T_j - 1)|$, so

$$|OK_{z_j}(T_j - 1) \cap OK_{z_j}(T_j - 1)| \geq |F_{z_j}(T_j - 1) \cap N_G(v)| - 2\epsilon_sn \geq d_un/2.$$ 

Since $\phi(z_j) = y$ is chosen uniformly at random from $OK_{z_j}(T_j - 1)$, we see that $A_j$ holds with probability at least $d_un/2$, as claimed.

To finish the proof, note that if all the events $A_j$ hold then we have $\phi(N_H(x)) \subseteq N_G(v)$. Multiplying the conditional probabilities, this holds with probability at least $(d_un/2)^D > p$. □

Our next lemma is similar to the ‘main lemma’ of [24]. An informal statement is as follows. Consider any subset $Y$ of a given class $X_i$, and any ‘not too small’ subset $A$ of vertices of $V_i$ that could potentially be used for $Y$. Then it is very unlikely that no vertices in $A$ will be used and yet only a small fraction of the free positions for every vertex in $Y$ will belong to $A$.

**Lemma 2.6. (Main lemma)** Suppose $1 \leq i \leq r$, $Y \subseteq X_i$ and $A \subseteq V_i$ with $|A| > \epsilon_sn$. Let $E_{A,Y}$ be the event that (i) no vertices are embedded in $A$ before the conclusion of the algorithm, and (ii) for every $z \in Y$ there is some time $t_z$ such that $|A \cap F_z(t_z)|/|F_z(t_z)| < 2^{-D}|A|/n$. Then $\mathbb{P}(E_{A,Y}) < p_0^{\lvert Y\rvert}$.

**Proof.** We start by choosing $Y' \subseteq Y$ with $|Y'| > |Y|/D^2$ so that vertices in $Y'$ are mutually at distance at least 3 (this can be done greedily, using the fact that $H$ has maximum degree $D$). It suffices to bound the probability of $E_{A,Y}$. Note that initially we have $|A \cap F_z(0)|/|F_z(0)| = |A|/n$ for any $z \in X_i$. Also, if no vertices are embedded in $A$, then $|A \cap F_z(t)|/|F_z(t)|$ can only be less than $|A \cap F_z(t - 1)|/|F_z(t - 1)|$ for some $z$ and $t$ if we embed a neighbour of $z$ at time $t$. It follows that if $E_{A,Y}$ occurs, then for every $z \in Y'$ there is a first time $t_z$ when we embed a neighbour $w$ of $z$ and have $|A \cap F_z(t_z)|/|F_z(t_z)| < |A \cap F_z(t - 1)|/2|F_z(t - 1)|$.

By Lemma 2.4 we have $|F_w(t_z - 1)| \geq d_un$, and by choice of $t_z$ we have $|A \cap F_z(t_z - 1)|/|F_z(t_z - 1)| \geq 2^{-D}|A|/n$, so $|A \cap F_z(t_z - 1)| \geq 2^{-D}\epsilon_sdn \geq \epsilon_s^2n$. Then by Lemma 2.3, the bipartite subgraph of $G$ induced by $A \cap F_z(t_z - 1)$ and $F_z(t_z - 1)$ is $\epsilon'$-regular of density $(1 \pm \epsilon)d_{zw}$. Applying Lemma 2.2, we see that there are at most $2c'|F_w(t_z - 1)|$ ‘exceptional’ vertices $y \in F_w(t_z - 1)$ that do not satisfy $|A \cap F_z(t_z)| = |N_G(y) \cap A \cap F_z(t_z - 1)| = (1 \pm 2c')d_{zw}|A \cap F_z(t_z - 1)|$. On the other hand, the algorithm chooses $\phi(w) = y$ to be good, in that $|F_z(t_z)| = (1 \pm 2c')d_{zw}|F_z(t_z - 1)|$, so we can only have $|A \cap F_z(t_z)|/|F_z(t_z)| < |A \cap F_z(t_z - 1)|/2|F_z(t_z - 1)|$ by choosing an exceptional vertex $y$. But $y$ is chosen uniformly at random from $|OK_w(t_z - 1)| \geq (1 - \epsilon_s)|F_w(t_z - 1)|$ possibilities (by Lemma 2.4). It follows that, conditional on the prior embedding, the probability of choosing an exceptional vertex for $y$ is at most $2c'|F_w(t_z - 1)|/|OK_w(t_z - 1)| < 3c'$.

Since vertices of $Y'$ have disjoint neighbourhoods, we can multiply the conditional probabilities over $z \in Y'$ to obtain an upper bound of $(3c')^{\lvert Y'\rvert}$. Recall that this bound is for a subset of $E_{A,Y}$ in which we have specified a certain neighbour $w$ for every vertex $z \in Y'$. Taking a union bound over at most $D|Y'|$ choices for these neighbours gives $\mathbb{P}(E_{A,Y}) \leq \mathbb{P}(E_{A,Y}) \leq (3c'D)^{\lvert Y'\rvert} < p_0^{\lvert Y'\rvert}$. □

Now we can prove the following theorem, which implies Theorem 2.1.

**Theorem 2.7.** With high probability the algorithm embeds $H$ in $G$. 

9
Proof. First we estimate the probability of the iteration phase aborting with failure, which happens when the number of vertices that have ever been queued is too large. We can take a union bound over all $1 \leq i \leq r$ and $Y \subseteq X_i$ with $|Y| = \delta_Q |X_i|$ of $\mathbb{P}(Y \subseteq Q(T))$. Suppose that the event $Y \subseteq Q(T)$ occurs. Then $A = V_i(T)$ is a large set of unused vertices, yet it makes up very little of what is free to any vertex in $Y$. To formalise this, note that by definition, for every $z \in Y$ there is some time $t$ such that $|F_z(t)| < \delta_Q |F_z(t)|$, where $t_z$ is the most recent time at which we embedded a neighbour of $z$. Since $A$ is unused we have $A \cap F_z(t) = A \cap F_z(t_z)$, so $|A \cap F_z(t)|/|F_z(t_z)| = |A \cap F_z(t)|/|F_z(t_z)| \leq |F_z(t)|/|F_z(t_z)| < \delta_Q$. However, we noted before Lemma 2.4 that $|A| \geq \delta_B n/2$, so since $\delta_Q \leq \delta_B$ we have $|A \cap F_z(t)|/|F_z(t_z)| < 2^{-D}|A|/n$. Taking a union bound over all possibilities for $i$, $Y$ and $A$, Lemma 2.6 implies that the failure probability is at most $r \cdot 4^n \cdot p_0 2 \gamma < o(1)$, since $p_0 \ll \delta_Q$.

Now we estimate the probability of the conclusion of the algorithm aborting with failure. Recall that buffer vertices have disjoint neighbourhoods, the iterative phase finishes at time $T$, and $|X_i(T)| \geq \delta_B n/2$. By Hall’s criterion for finding a system of distinct representatives, the conclusion fails if and only if there is some $1 \leq i \leq r$ and $S \subseteq X_i(T)$ such that $|\cup_{z \in S} F_z(T)| < |S|$. We divide into cases according to the size of $S$.

0 \leq |S|/|X_i(T)| \leq \gamma$. By Lemma 2.4 we have $|F_z(T)| \geq d_a n > \gamma n$ for every unembedded $z$, so this case cannot occur.

$\gamma \leq |S|/|X_i(T)| \leq 1 - \gamma$. In this case we use the fact that $A := V_i(T) \setminus \cup_{z \in S} F_z(T)$ is a large set of unused vertices which is completely unavailable to any vertex $z$ in $S$: we have $|A| \geq |V_i(T)| - |S| \geq \gamma |X_i(T)| \geq \gamma \delta_B n/2 \geq \gamma^2 n$, yet $A \cap F_z(T) = \emptyset$, so $|A \cap F_z(T)|/|F_z(T)| = 0 < 2^{-D}|A|/n$.

As above, taking a union bound over all possibilities for $i$, $S$ and $A$, Lemma 2.6 implies that the failure probability is at most $r \cdot 4^n \cdot p_0 2 \gamma \ll o(1)$, since $p_0 \ll \gamma$.

$1 - \gamma \leq |S|/|X_i(T)| \leq 1$. In this case we claim that with high probability $\cup_{z \in S} F_z(T) = V_i(T)$, so in fact Hall’s criterion holds. It suffices to consider sets $S \subseteq X_i(T)$ of size exactly $(1 - \gamma)|X_i(T)|$. The claim fails if there is some $v \in V_i(T)$ such that $v \notin F_z(T)$ for every $z \in S$. Since $v$ is unused, it must be that we failed to embed $N_H(z)$ in $N_G(v)$ for each $z \in S$. By Lemma 2.5, these events have probability at most $1 - p$ conditional on the prior embedding. Multiplying the conditional probabilities and taking a union bound over all $1 \leq i \leq r$, $v \in V_i$ and $S \subseteq X_i(T)$ of size $(1 - \gamma)|X_i(T)|$, the failure probability is at most $r n \left(1 - \gamma\right)^n (1 - p)^{1 - \gamma}|X_i(T)| < o(1)$. This estimate uses the bounds $\binom{n}{(1 - \gamma)n} \leq 2\sqrt{n}$, $(1 - p)^{1 - \gamma}|X_i(T)| < e^{-p \delta_B n/4} < 2 - p^2 n$ and $\gamma \ll p$.

In all cases we see that the failure probability is $o(1)$.

\box

3 Regularity and super-regularity of 3-graphs

When considering how to generalise regularity to 3-graphs, a natural first attempt is to mirror the definitions used for graphs. Consider an $r$-partite 3-graph $H$ with vertex set $V$ partitioned as $V = V_1 \cup \cdots \cup V_r$. Let $H_{ijk}$ be the tripartite sub-3-graph of $H$ with parts $V_i$, $V_j$ and $V_k$, for any $i, j, k$. The density of $H_{ijk}$ is $d(H_{ijk}) = \frac{|H_{ijk}|}{|V_i||V_j||V_k|}$. Given $\epsilon > 0$, we say that $H_{ijk}$ is $\epsilon$-vertex-regular if for all subsets $V'_i \subseteq V_i$, $V'_j \subseteq V_j$ and $V'_k \subseteq V_k$ with $|V'_i| > \epsilon |V_i|$, $|V'_j| > \epsilon |V_j|$ and $|V'_k| > \epsilon |V_k|$, writing $H'_{ijk}$ for
the tripartite sub-3-graph of $H$ with parts $V'_1, V'_j$ and $V'_k$, we have $|d(H'_{ijk}) - d(H_{ijk})| < \epsilon$. There is a decomposition theorem for this definition analogous to the Szemerédi Regularity Lemma. This is often known as the 'weak hypergraph regularity lemma', as although it does have some applications, the property of vertex-regularity is not strong enough to prove a counting lemma.

To obtain a counting lemma one needs to take account of densities of triples of $H$ with respect to sets of pairs of vertices, as well as densities of pairs with respect to sets of vertices. Thus we are led to define regularity for simplicial complexes. We make the following definitions.

**Definition 3.1.** Suppose $X$ is a set partitioned as $X = X_1 \cup \cdots \cup X_r$. We say $S \subseteq X$ is $r$-partite if $|S \cap X_i| \leq 1$ for $1 \leq i \leq r$. Write $K(X)$ for the complete collection of all $r$-partite subsets of $X$. We say that $H$ is an $r$-partite 3-complex on $X = X_1 \cup \cdots \cup X_r$ if $H$ consists of $r$-partite sets of size at most 3 and is a simplicial complex, i.e. if $T \subseteq S \in H$ then $T \in H$. The index of an $r$-partite set $S$ is $i(S) = \{1 \leq i \leq r : S \cap X_i \neq \emptyset\}$. For $I \subseteq [r]$ we write $H_I$ for the set of $S \in H$ with index $i(S) = I$, when this set is non-empty. If there are no sets $S \in H$ with $i(S) = I$ we can choose to either set $H_I = \emptyset$ or let $H_I$ be undefined, provided that if $H_I$ is defined then $H_J$ is defined for all $J \subseteq I$. When not explicitly stated, the default is that $H_I$ is undefined when there are no sets of index $I$. For any $S \in H$ we write $H_S = H_{i(S)}$ for the naturally defined $|S|$-partite $|S|$-graph in $H$ containing $S$.

To put this definition in concrete terms, whenever the following sets are defined, $H_{\{i\}}$ is a subset of $X_i$, $H_{\{i,j\}}$ is a bipartite graph with parts $H_{\{i\}}$ and $H_{\{j\}}$, and $H_{\{i,j,k\}}$ is a 3-graph contained in the set of triangles spanned by $H_{\{i,j\}}, H_{\{i,k\}}$ and $H_{\{j,k\}}$. Of course, the interesting part of this structure is the 3-graph together with its underlying graphs. We also have $H_{\emptyset}$, which is usually equal to $\{\emptyset\}$, i.e. the set of size 1 whose element is the empty set, although it could be empty if all other parts are empty. It is most natural to take $H_{\{i\}} = X_i$ for $1 \leq i \leq r$. We often allow $H_{\{i\}}$ to be a strict subset of $X_i$, but note that if desired we can make such a complex 'spanning' by changing the ground set to $X' = X'_1 \cup \cdots \cup X'_r$, where $X'_i = H_{\{i\}}, 1 \leq i \leq r$. When unspecified, our default notation is that $H$ is an $r$-partite 3-complex on $X = X_1 \cup \cdots \cup X_r$. We will see later in Definitions 3.5 and 4.4 why we have been so careful to distinguish the cases $H_I$ empty and $H_I$ undefined in Definition 3.1.

**Definition 3.2.** To avoid clumsy notation we will henceforth frequently identify a set with a sequence of its vertices, e.g. writing $H_i = H_{\{i\}}$ and $H_{ijk} = H_{\{i,j,k\}}$. We also use concatenation for set union, e.g. if $S = ij = \{i, j\}$ then $Sk = ijk = \{i, j, k\}$. For any $I \subseteq [r]$ we write $H_{I^=} = \cup_{I' \subseteq I} H_{I'}$ for the subcomplex of $H$ consisting of all defined $H_{I'}$ with $I' \subseteq I$. We also write $H_{I^<} = H_{I^=} \backslash H_I = \cup_{I' \subset I} H_{I'}$. Similarly, for any $S \subseteq X$ we write $H_{S^{\leq}} = \cup_{S' \subseteq S} H_{S'}$ and $H_{S^{<}} = \cup_{S' \subset S} H_{S'}$. For any set system $A$ we let $A^{\leq}$ be the complex generated by $A$, which consists of all subsets of all sets in $A$.

It is clear that intersections and unions of complexes are complexes. We clarify exactly what these constructions are with the following definition.

**Definition 3.3.** Suppose $H$ and $H'$ are $r$-partite 3-complexes on $X = X_1 \cup \cdots \cup X_r$. The union $H \cup H'$ is the $r$-partite 3-complex where $(H \cup H')_S = H_S \cup H'_S$ is defined whenever $H_S$ or $H'_S$ is defined. The intersection $H \cap H'$ is the $r$-partite 3-complex where $(H \cap H')_S = H_S \cap H'_S$ is defined whenever $H_S$ and $H'_S$ are defined.

We often specify complexes as a sequence of sets, e.g. $(G_{12}, (G_i : 1 \leq i \leq 4), \{\emptyset\})$ has parts $G_{12}, G_i$ for $1 \leq i \leq 4, \{\emptyset\}$ and is otherwise undefined. Now we come to a key definition.
Definition 3.4. We let $T_{ijk}(H)$ be the set of triangles formed by $H_{ij}$, $H_{jk}$, and $H_{ik}$. We say that a defined triple $H_{ijk}$ is $\epsilon$-regular if for every subgraph $G$ of $H$ with $|T_{ijk}(G)| > \epsilon|T_{ijk}(H)|$ we have

$$\frac{|H \cap T_{ijk}(G)|}{|T_{ijk}(G)|} = \frac{|H_{ijk}|}{|T_{ijk}(H)|} \pm \epsilon.$$ 

We also say that the entire 3-complex $H$ is $\epsilon$-regular if every defined triple $H_{ijk}$ is $\epsilon$-regular and every defined graph $H_{ij}$ is $\epsilon$-regular.

Thus $H_{ijk}$ is $\epsilon$-regular if for any subgraph $G$ with ‘not too few’ triangles of index $ijk$, the proportion of these triangles in $G$ of index $ijk$ that are triples in $H_{ijk}$ is approximately equal to the proportion of triangles in $H$ of index $ijk$ that are triples in $H_{ijk}$. Note that we never divide by zero in Definition 3.4, as $\emptyset \neq T_{ijk}(G) \subseteq T_{ijk}(H)$. The definition applies even if every $H_{ijk}$ is undefined, in which case we can think of $H$ as a 2-complex with every graph $H_{ij}$ being $\epsilon$-regular. It also applies even if every $H_{ij}$ is undefined, in which case we can think of $H$ as a 1-complex (with no regularity restriction).\(^1\)

This concept of regularity in 3-complexes is more powerful than vertex regularity, in that it does admit a counting lemma. In order to apply it we also need an analogue of the Szemerédi Regularity Lemma, stating that a general 3-complex can be decomposed into a bounded number of pieces, most of which are regular. Such a result does hold, but there is an important technical proviso that one cannot use the same parameter $\epsilon$ to measure regularity for both graphs and triples in the complex. In general, one needs to allow the densities of the graphs $H_{ij}$ to be much smaller than the parameter used to measure the regularity of triples. This is known as a sparse setting, as contrasted with a situation when all densities are much larger than $\epsilon$, which is known as a dense setting.

In the sparse setting, a counting lemma does hold, but we couldn’t find any way to generalise the proof of the blow-up lemma. To circumvent this difficulty we will instead apply the Regular Approximation Lemma of Rödl and Schacht. Informally stated, this allows us to closely approximate any 3-graph $G^0$ by another 3-graph $G$, so that the 3-complex $G^{\leq}$ generated by $G$ can be decomposed (in a certain sense) into $\epsilon$-regular complexes. We will come to the formal statement later in the paper, but we mention it here to motivate the form of the blow-up lemma that we will prove. We will allow ourselves to work in the dense setting of $\epsilon$-regular complexes, but we have to take account of the approximation of $G^0$ by $G$ by ‘marking’ the edges $M = G \setminus G^0$ as forbidden. If we succeed in embedding a given 3-graph $H$ in $G$ without using $M$ then we have succeeded in embedding $H$ in $G^0$. (A similar set-up is used for the embedding lemma in [35].) We will refer to the pair $(G^{\leq}, M)$ as a marked complex.

In the remainder of this section we first motivate and then explain the definition of super-regularity for 3-graphs. It turns out that this needs to be significantly more complicated than for ordinary graphs. It is not sufficient to just forbid vertices of small degree. To see this, consider as an example a 4-partite 3-complex $G$ on $X = X_1 \cup X_2 \cup X_3 \cup X_4$, with $|X_i| = n$, $1 \leq i \leq 4$ that is almost complete: say there are complete bipartite graphs on every pair of classes and complete

\(^1\)Technically one should say that $H_{ijk}$ is $\epsilon$-regular in the complex $H$, as the definition depends on the graphs $H_{ij}$, $H_{jk}$ and $H_{ik}$. For the sake of brevity we will omit this qualification, as it is not hard to see that when sufficiently regular these graphs are ‘almost’ determined by $H_{ijk}$: if say $H_{ij}$ had many pairs not contained in triples of $H_{ijk}$ then $T_{ijk}$ would have many triangles none of which are triples of $H_{ijk}$, contradicting the definition of $\epsilon$-regularity.
3-graphs on every triple of classes, except for one vertex $x$ in $X_4$ for which the neighbourhood $G(x)$ is triangle-free. We can easily choose each $G(x)_{ij}$ to have size $n^2/4$ by dividing each class $X_i$, $1 \leq i \leq 3$ into two parts. Then $H$ is $O(1/n)$-regular with densities $1 - O(1/n)$ and has minimum degrees at least $n^2/4$ in each triple, but $x$ is not contained in any tetrahedron $K_4^3$, so we cannot embed a perfect $K_4^3$-packing.

Another complication is that the definition of super-regularity for 3-graphs is not ‘local’, in the sense that super-regularity of a graph $G$ was defined by a condition for each of its bipartite subgraphs $G_{ij}$. Instead, we need to define super-regularity for the entire structure $(G, M)$, where $G$ is an $r$-partite 3-complex and $M$ is a set of marked edges. To explain this point we need to look ahead to the analysis of the algorithm that we will use to prove the blow-up lemma. First we need an important definition that generalises the process of restricting a graph to a subset of its vertex set: we may also consider restricting a complex to a subcomplex in the following manner.

**Definition 3.5.** Suppose $H$ and $G$ are $r$-partite 3-complexes on $X = X_1 \cup \cdots \cup X_r$ and $G$ is a subcomplex of $H$. The restriction $H[G]$ is the $r$-partite 3-complex on $X = X_1 \cup \cdots \cup X_r$, where $H[G]_I$ is defined if and only if $H_I$ is defined, and $H[G]_I$ consists of all $S \in H_I$ such that $A \in G$ for every $A \subseteq S$ such that $G_A$ is defined.

To put this in words, a given set $S$ in $H$ belongs to the restriction $H[G]$ if every subset $A$ of $S$ belongs to $G$, provided that the part of $G$ corresponding to $A$ is defined. At this point we will give some examples to illustrate Definition 3.5 and clarify the distinction between parts being empty or undefined in Definition 3.1. Consider a 3-partite 2-complex $H$ on $X = X_1 \cup X_2 \cup X_3$ such that $H_{12}$, $H_{13}$ and $H_{23}$ are non-empty graphs. Suppose $G$ is a 3-partite 1-complex on $X = X_1 \cup X_2 \cup X_3$. If $G_1$, $G_2$ and $G_3$ are defined then $H[G]$ is the 3-partite 2-complex on $X = X_1 \cup X_2 \cup X_3$ with $H[G]_I = G_I$ and $H[G]_{ij}$ equal to the bipartite subgraph of $H_{ij}$ spanned by $G_i$ and $G_j$. This corresponds to the usual notion of restriction for graphs. Note that all of the sets $H[G]_I$ and graphs $H[G]_{ij}$ are defined and some may be empty. However, if any of the $G_i$ is undefined then it behaves as if it were equal to $H_i$. For example, if $G_1$ is undefined and $G_2$ is defined then $H[G]_1 = H_1$ and $H[G]_{12}$ is the bipartite subgraph of $H_{12}$ spanned by $H_1$ and $G_2$. This highlights the importance of distinguishing between $G_1$ being empty or $G_1$ being undefined. Note that Definition 3.5 is monotone, in the sense that adding sets to any given defined part $G_I$ of $G$ does not remove any sets from any given part $H[G]_I$ of the restriction $H[G]$. We record the following obvious property for future reference:

$$H[G]_I = G_I$$\hspace{1cm}(2)\hspace{1cm}when \hspace{0.5cm}G_I \hspace{0.5cm}is \hspace{0.5cm}defined.

Another obvious property used later concerns the empty complex ($\{\emptyset\}$), which satisfies $H[\{\emptyset\}] = H$ for any complex $H$. Next we will reformulate the definition of regularity for 3-complexes using the restriction notation. First we make the following definitions.

**Definition 3.6.** Suppose $H$ is an $r$-partite 3-complex on $X = X_1 \cup \cdots \cup X_r$. For any $I \subseteq [r]$ we let $H^*_I$ denote the set of $S \in K(X)_I$ such that any strict subset $T \subsetneq S$ belongs to $H_T$ when defined. When $H_I$ is defined and $H^*_I \neq \emptyset$, we define the relative density (at $I$) of $H$ as $d_I(H) = |H_I|/|H_I^*|$. We also call $d_I(H)$ the $I$-density of $H$. We define the absolute density of $H_I$ as $d(H_I) = |H_I|/\prod_{i \in I} |X_i|$.

To illustrate Definition 3.6, note that $H^*_I = X_i$ and $d_I(H) = d(H_i) = |H_i|/|X_i|$ when defined. If $H_{ij}$ is defined then $H^*_{ij} = H_i \times H_j$ and $d_{ij}(H) = |H_{ij}|/|H^*_{ij}|$ is the density of the bipartite graph
\( H_{ij} \) with parts \( H_i \) and \( H_j \). We have \( d(H_{ij}) = d_{ij}(H)d_i(H)d_j(H) \), so \( d(H_{ij}) = d_{ij}(H) \) in the case when \( H_i = X_i \) and \( H_j = X_j \). Also, if \( H_{ij}, H_{ik} \) and \( H_{jk} \) are defined then \( H_{ijk}^* = T_{ijk}(H) \) is the set of triangles in \( H \) of index \( ijk \). We also note that if any of the \( H_{ij} \) is undefined it behaves as if it were equal to \( H_{ij}^* \), e.g. if \( H_{ij} \) is undefined and \( H_{ik} \) and \( H_{jk} \) are defined then \( H_{ijk}^* \) is the set of triangles in \((H_{ij}, H_{ik}, H_{jk})\). As an illustration of Definition 3.5, we note that \( H_{i}^* = K(X)[H_{i}]_{1}, \) recalling that \( K(X) \) is the complex of \( r \)-partite sets and \( H_{i} < = \cup_{P \in K} H_{P} \).

Now suppose \( H \) is a 3-partite 3-complex on \( X = X_1 \cup X_2 \cup X_3 \) such that \( H_{123} \) is defined and \( H_{123}' \neq \emptyset \). Suppose \( G \subseteq H \) is a 2-complex such that \( G_{12}, G_{13} \) and \( G_{23} \) are defined. Then

\[
G_{123}^* = T_{123}(G) \text{ and } H_{123}^* = T_{123}(H).
\]

By Definition 3.5 we have \( H[G]_{123} = H_{123} \cap G_{123}^* \) and

\[
H[G]_{123}^* = G_{123}^*.
\]

Therefore \( H_{123} \) is \( \epsilon \)-regular if whenever \( |G_{123}| > \epsilon |H_{123}| \) we have \( d_{123}(H[G]) = d_{123}(H) \pm \epsilon \).

For the remainder of this section we let \( H \) be an \( r \)-partite 3-complex on \( X = X_1 \cup \cdots \cup X_r \), and \( G \) be an \( r \)-partite 3-complex on \( V = V_1 \cup \cdots \cup V_r \), with \( |V_i| = |X_i| \) for \( 1 \leq i \leq r \). We want to find an embedding \( \phi \) of \( H \) in \( G \). Our algorithm will consider the vertices of \( X \) in some order and embed them one at a time. At some time \( t \) in the algorithm, for each \( S \in H \) there will be some \( |S| \)-graph \( F_S(t) \subseteq G_S \) consisting of those sets \( P \in G_S \) that are free for \( S \), in that mapping \( S \) to \( P \) is locally consistent with the embedding so far. These free sets will be mutually consistent, in that

\[
F_{S \subseteq}(t) = \cup_{S \subseteq S} F_S(t)
\]

is a complex for every \( S \in H \). We use the convention that \( F_S(t) \) is undefined for any \( S \not\in H \). Note that (3) applies even for \( S \notin H \).

Initially we define \( F_S(0) = G_S \) for all \( S \in H \). Now suppose we have defined \( F_S(t - 1) \) for all \( S \in H \) and then at time \( t \) we embed some vertex \( x \in X \) to some vertex \( y \in F_y(t - 1) \). We will use this notation consistently throughout the paper. Then for any \( S \in H \) containing \( x \) we can only allow sets in \( F_S(t) \) that correspond to mapping \( x \) to \( y \), i.e. \( F_S(t) = F_S(t - 1)^{\#} \), which is our notation for \( \{ P \in F_S(t - 1) : y \in P \} \). Also, for any \( S \) in the neighbourhood complex \( H(x) \), i.e. a set \( S \) not containing \( x \) such that \( Sx = S \cup \{ x \} \in H \), in order for \( F_S(t) \) to be mutually consistent with \( F_{Sx}(t) = \{ P \in F_{Sx}(t - 1) : y \in P \} \), we can only allow sets in \( F_S(t) \) that are in the neighbourhood of \( y \), i.e. \( F_S(t) = F_{Sx}(t - 1)|y \), which is our notation for \( \{ P : P \cup \{ y \} \in F_{S \cup \{ x \}}(t - 1) \} \). Finally, we need to consider the effect that embedding \( x \) has for sets \( S \) that do not contain \( x \) and are not even in the neighbourhood complex \( H(x) \). Such a set \( S \) may contain a set \( S' \) in \( H(x) \), so that \( F_{S'}(t) \) is affected by the embedding of \( x \). Then mutual consistency requires that for any set \( P \in F_S(t) \), the subset of \( P \) corresponding to \( S' \) must belong to \( F_{S'}(t) \). We need to include these restrictions for all subsets \( S' \) of \( S \). Also, as we are using the vertex \( y \) to embed \( x \) we have to remove it from any future free sets. Thus we are led to the following definition. (Lemma 3.10 will show that it is well-defined.)

**Definition 3.7. (Update rule)** Suppose \( x \) is embedded to \( y \) at time \( t \) and \( S \in H \).

If \( x \in S \) we define \( F_S(t) = F_S(t - 1)^{\#} = \{ P \in F_S(t - 1) : y \in P \} \). If \( x \notin S \) we define

\[
Sx = (S \setminus X_x) \cup \{ x \}, \quad C_{S \leq}(t) = F_{S \leq}(t - 1)(y) \quad \text{and} \quad F_S(t) = F_{S \leq}(t - 1)[C_{S \leq}(t)]S \setminus y.
\]

Note that \( S \cdot x \) is either \( Sx = S \cup \{ x \} \) if \( i(x) \notin i(S) \) or obtained from \( Sx \) by deleting the element in \( S \) of index \( i(x) \) if \( i(x) \in i(S) \). Thus \( S \cdot x \subseteq X \) is \( r \)-partite. Also, the notation ‘\( \setminus y \)’ means that we
delete all sets containing $y$; this can have an effect only when $i(x) \in i(S)$. We will show below in Lemma 3.10 that Definition 3.7 makes sense, but first we will give an example to illustrate how it works.

**Example 3.8.** Suppose that $H$ and $G$ are 4-partite 3-complexes, and that we have 4 vertices $x_i \in X_i$, $1 \leq i \leq 4$ that span a tetrahedron $K^3_4$ in $H$, i.e. $H$ contains every subset of $\{x_1, x_2, x_3, x_4\}$. Suppose also that we have the edges $x'_i x'_3 x_3$ and $x'_i x'_4 x'_4$ and all their subsets for some other 4 vertices $x'_i \in X_i$, $1 \leq i \leq 4$, and that there are no other edges of $H$ containing any $x_i$ or $x'_i$, $1 \leq i \leq 4$. Initially we have $F_S(0) = G_S$ for every $S \subset H$. Suppose we start the embedding by mapping $x_1$ to some $v_1 \in V_1$ at time 1. Applying Definition 3.7 to sets $S$ containing $x_1$ gives $F_{x_1}(1) = \{v_1\}$, $F_{x_1x_1}(1) = \{P \in G_i : v_1 \in P\}$ for $2 \leq i \leq 4$, and $F_{x_1x_1x_1}(1) = \{P \in G_11j : v_1 \in P\}$ for $2 \leq i < j \leq 4$.

Next we consider some examples of Definition 3.7 for sets not containing $x_1$. We have $C_{x_i}^1(1) = (F_{x_1x_1}(0)(v_1), \{\emptyset\}) = (G(v_1)i, \{\emptyset\})$ for $2 \leq i \leq 4$. Then $F_{x_i}(1) = F_{x_i}^c(0)[C_{x_i}^1(1)]_i \setminus v_1 = G(v_1)i$. Similarly, we have $F_{x_1x_1}(1) = G(v_1)ij$ for $2 \leq i < j \leq 4$. For $x_2x_3x_4$ we have

$$C_{x_2x_3x_4}^1(1) = \bigcup_{S \subset x_2x_3x_4} F_{Sx_1}(0)(v_1) = G(v_1)_{23} \cup G(v_1)_{24} \cup G(v_1)_{34}.$$

Therefore $F_{x_2x_3x_4}(1) = F_{x_2x_3x_4}^c(0)[C_{x_2x_3x_4}^1(1)]_{234} \setminus v_1$ consists of all triples in $G_{234}$ that also form a triangle in the neighbourhood of $v_1$, and so complete $v_1$ to a tetrahedron in $G$.

For $x'_2x_3$, we have $C_{x'_2x_3}^1(1) = G(v_1)_{35}$, so $F_{x'_2x_3}^c(1) = F_{x'_2x_3}^c(0)[C_{x'_2x_3}^1(1)]_{23} \setminus v_1$ consists of all pairs in $G_{23}$ that contain a $G_{13}$-neighbour of $v_1$. For $x'_2, C_{x'_2}^1(1) = (\emptyset)$ is the empty complex, so $F_{x'_2}(1) = F_{x'_2}^c(0)[C_{x'_2}^1(1)]_2 \setminus v_1 = F_{x'_2}^c(0)$ is unaffected. (Recall that $J([\emptyset]) = J$ for any complex $J$.) Finally we give two examples in which the deletion of $v_1$ has some effect. For $x'_1x'_2x_3$, we have $x'_1x'_2x_3x_1 = x_1x'_2x_3$, $F_{x'_1x'_2x_3}^c(0) = F_{x'_1x'_2}^c(0) \cup F_{x'_2x_3}^c(0) = G_{13} \cup G_{23}$, and $C_{x'_1x'_2x_3}^1(1) = F_{x'_1x'_2x_3}^c(0)(v_1) = (G(v_1)_{35}, \{\emptyset\}) = G(v_1)_{35}$. Then $F_{x'_1x'_2x_3}^c(1) = G_{123} \cup G(v_1)_{35} \setminus v_1$, so $F_{x'_1x'_2x_3}^c(1)$ consists of all triples $T$ in $G_{123}$ not containing $v_1$ such that $T \cap V_3$ is a neighbour of $v_1$. For $x'_1x'_3$, $C_{x'_1x'_3}^1(1)$ is the empty complex, so $F_{x'_1x'_3}^c(1) = F_{x'_1x'_3}^c(0) \setminus v_1$ consists of all pairs in $G_{13}$ that do not contain $v_1$.

Now we prove a lemma which justifies Definition 3.7 and establishes the ‘mutual consistency’ mentioned above, i.e. that $F_S^c(t)$ is a complex. First we need a definition.

**Definition 3.9.** Suppose $S \subseteq X$ is $r$-partite and $I \subseteq i(S)$. We write $S_I = S \cap \bigcup_{i \in I} X_i$. We also write $S_T = S_{i(T)}$ for any $r$-partite set $T$ with $i(T) \subseteq i(S).

**Lemma 3.10.** Suppose $S \subseteq X$ is $r$-partite and $t \geq 1$. If $x \notin S$ then $C_{S^c}^c(t)$ is a subcomplex of $F_{S^c}(t-1)$ and $F_{S^c}(t) = F_{S^c}(t-1)\{C_{S^c}^c(t)\} \setminus y$ is a complex. If $x \in S$ then $F_S(t) = F_S(t-1)^y$, $F_{S\setminus x}(t) = F_S(t-1)(y)$ and $F_{S^c}(t) = F_{S^c}(t-1)^y \cup F_{S^c}(t-1)(y)$ is a complex.

**Proof.** Note that $F_{S^c}(0) = G_{S^c}$ is a complex. We prove the statement of the lemma by induction on $t$. The argument uses the simple observation that if $J$ is any complex and $v$ is a vertex of $J$ then $J(v)$ and $J^y \cup J(v)$ are subcomplexes of $J$.

First suppose that $x \notin S$. Since $F_{S^c}(t-1)$ is a complex by induction hypothesis, $C_{S^c}^c(t) = F_{S\setminus x}(t-1)(y)$ is a subcomplex of $F_{S\setminus x}(t-1)$, and so of $F_{S^c}(t-1)$. For any $S' \subseteq S$ write
$J(S') = F_{S'\leq}(t - 1)[C_{S'\leq}(t)] \setminus y$. Then $J(S')$ is a complex, since restriction to a complex gives a complex, and removing all sets containing $y$ preserves the property of being a complex. Furthermore, $J(S')_{S'} = F_{S'}(t)$ by Definition 3.7. We also have $J(S)_{S'} = J(S')_{S'}$, since a set $A'$ of index $S'$ belongs to $F_{S'\leq}(t - 1)$ if and only if it belongs to $F_{S'\leq}(t-1)$, and any $B \subseteq A'$ belongs to $C_{S'\leq}(t)$ if and only if it belongs to $C_{S'\leq}(t)$. Therefore $F_{S'\leq}(t) = J(S) = F_{S'\leq}(t-1)[C_{S'\leq}(t)] \setminus y$ is a complex.

Now suppose that $x \in S$. Then $F_S(t) = F_S(t-1)^y$ by definition. Next, note that $C_{S'\leq}(t) = F_{S'\leq}(t-1)(y)$ is a complex, and $F_{S'\leq}(t-1)[C_{S'\leq}(t)]_{S' \setminus x} = F_S(t-1)(y)$ by equation (2). Since $S$ is $r$-partite, deleting $y$ has no effect, and we also have $F_{S'\leq}(t) = F_S(t-1)(y)$. Therefore $F_{S'\leq}(t) = \bigcup_{x \in S' \subseteq S}(F_{S'}(t-1)^y \cup F_{S'}(t-1)(y)) = F_{S'\leq}(t-1)^y \cup F_{S'\leq}(t-1)(y)$ is a complex. □

We will also use the following lemma to construct $F_{S}(t)$ iteratively from $\{F_{S'}(t) : S' \not\subseteq S\}$.

**Lemma 3.11.** Suppose that $S \in H$, $\lvert S \rvert \geq 2$, $x \notin S$ and $S \notin H(x)$. Write $F_{S'\leq}(t) = \bigcup_{S' \subset S}F_{S'}(t)$. Then $F_{S'\leq}(t) = F_{S'\leq}(t-1)[F_{S'\leq}(t)]$.

**Proof.** First note that for any $A$ with $\lvert A \rvert < \lvert S \rvert$ we have $A \in F_{S'\leq}(t) \iff A \in F_{S'\leq}(t) \iff A \in F_{S'\leq}(t-1)[F_{S'\leq}(t)]$. Now suppose $A \in F_{S'\leq}(t)$. Then $A \in F_{S'\leq}(t-1)$ and $A' \in F_{S'\leq}(t)$ for every $A' \not\subseteq A$, so $A \in F_{S'\leq}(t-1)[F_{S'\leq}(t)]$. Conversely, suppose that $A \in F_{S'\leq}(t-1)[F_{S'\leq}(t)]$. For any $S' \not\subseteq S$ with $S' \in H(x)$ we have $F_{S'}(t) = F_{S'\leq}(t-1)(y)$, so $A_{S'} \in F_{S'\leq}(t-1)(y) \subseteq C_{S'\leq}(t)$. Also $C_{S'\leq}(t)_{S'}$ is undefined for $S' \not\in H(x)$; in particular, our assumption that $S \notin H(x)$ means that $C_{S'\leq}(t)_{S'}$ is undefined. Therefore $A_{S'} \subseteq C_{S'\leq}(t)$ for every $S' \subseteq S$ such that $C_{S'\leq}(t)_{S'}$ is defined, i.e. $A \in F_{S'\leq}(t-1)[C_{S'\leq}(t)]_{S'}$. Also, if $i(x) \in i(S)$, then writing $z = S_x = S \cap x \subseteq S'$, we have $A \cap V_x \in F_{x}(t) = F_{x}(t-1) \setminus y$, so $y \notin A$. Therefore $A \in F_{S'\leq}(t-1)[C_{S'\leq}(t)]_{S} \setminus y = F_{S}(t)$. □

We referred to ‘local consistency’ when describing the update rule because it only incorporates the effect that embedding $x$ has on sets containing at least one neighbour of $x$. To illustrate this, recall that in Example 3.8 above we have $F_{x'}(1) = F_{x'}(0) = G_2$. Now $H$ contains $x_1x_3$ and $x_1$ is embedded to $v_1$, so $x_3$ must be embedded to a vertex in $G(v_1)$. Also, $H$ contains $x'_2x_3$, so any image of $x'_2$ must have a neighbour in $G(v_1)$. This may not be the case for every vertex in $G_2$, so there is some non-local information regarding the embedding that has not yet been incorporated into the free sets at time 1. In light of this, we should admit that our description of sets in $F_S(t)$ as ‘free’ is a slight misnomer, as there may be a small number of sets in $F_S(t)$ that cannot be images of $S$ under the embedding. This was the case even for the graph blow-up lemma, in which we described vertices in $F_x(t)$ as ‘free’ images for $x$ but then only allowed the use of $OK_x(t) \subseteq F_x(t)$. On the other hand, our definition of free sets is relatively simple, and does contain enough information for the embedding. To see this, note that by definition of restriction $F_{S'\leq}(t)$ is a subcomplex of $G_{S'\leq}$ at every time $t$, and when all vertices of $S$ are embedded by $\phi$ we have $F_S(t) = \{\phi(S)\}$ with $\phi(S) \in G_S$. Furthermore, by removing all sets that contain $y$ in the definition of $F_S(t)$ we ensure that no vertex is used more than once by $\phi$. Therefore it does suffice to only consider local consistency in constructing the embedding, provided that the sets $F_S(t)$ remain non-empty throughout. The advantage is that we have the following simple update rule for sets $S$ that are not local to $x$.

**Lemma 3.12.** If $S$ does not contain any vertex in $\{x\} \cup VN_H(x)$ then $F_S(t) = F_S(t-1) \setminus y$.

**Proof.** Note that $C_{S'\leq}(t) = F_{S'\leq}(t-1)(y) = (\{\emptyset\})$ is the empty complex. □
We will also need to keep track of the marked triples $M$ during the embedding algorithm. Initially, we just have some triples in $G$ that are marked as forbidden for any triple of $H$. Then, as the algorithm proceeds, each pair of $H$ is forbidden certain pairs of $G$, and each vertex of $H$ is forbidden certain vertices of $G$. We adopt the following notation.

**Definition 3.13.** For any triple $E \in H$ we write $E^t$ for the subset of $E$ that is unembedded at time $t$. We define the marked subset of $F_{E^t}(t)$ corresponding to $E$ as

$$M_{E^t,E}(t) = \{ P \in F_{E^t}(t) : P \cup \phi(E \setminus E^t) \in M_E \}.$$  

In words, $M_{E^t,E}(t)$ consists of all sets $P$ in $F_{E^t}(t)$ that cannot be used as images for $E^t$ in the embedding, because when we add the images of the embedded part $E \setminus E^t$ of $E$ we obtain a marked triple. To illustrate this, suppose that in Example 3.8 we have some marked triples $M$. At time $t = 1$ we map $x_1$ to $v_1$, and then the free set for $x_2x_3$ is $F_{x_2x_3}(1) = G(v_1)_{23}$. Since the edges $M_{123}$ are marked as forbidden, we will mark $M(v_1)_{23} \subseteq G(v_1)_{23}$ as forbidden by defining $M_{x_2x_3,x_1x_2x_3}(1) = M(v_1)_{23}$. As another illustration, recall that $F_{x_2x_3x_4}(1)$ consists of all triples in $G_{234}$ that also form a triangle in the neighbourhood of $v_1$. Then $M_{x_2x_3x_4,x_2x_3x_4}(1) = M \cap F_{x_2x_3x_4}(1)$ consists of all triples in $M_{234}$ that also form a triangle in the neighbourhood of $v_1$.

For any triple $E$ containing $x$ such that $E^{t-1} = x$ we will choose $y = \phi(x) \notin M_{x,E}(t-1)$. This will ensure that $\phi(E) \notin M$. The following lemma will enable us to track marked subsets. The proof is obvious, so we omit it.

**Lemma 3.14.**

(i) If $x \in E$ then $E^t = E^{t-1} \setminus x$ and $M_{E^t,E}(t) = M_{E^{t-1},E}(t-1)(y)$.

(ii) If $x \notin E$ then $E^t = E^{t-1}$ and $M_{E^t,E}(t) = M_{E^{t-1},E}(t-1) \cap F_{E^t}(t)$.

We need one more definition before we can define super-regularity. It provides some alternative notation for describing the update rule, but it has the advantage of not referring explicitly to any embedding or to another complex $H$.

**Definition 3.15.** Suppose $G$ is an $r$-partite $3$-complex on $V = V_1 \cup \cdots \cup V_r$, $1 \leq i \leq r$, $v \in G_i$ and $I$ is a subcomplex of $\binom{[r]}{\leq 2}$. We define $G^{I_v} = G[\cup_{S \in I} G(v)_S]$. 

We will now explain the meaning of Definition 3.15 and illustrate it using our running Example 3.8. To put it in words, $G^{I_v}$ is the restriction of $G$ obtained by only taking those sets $A \in G$ such that any subset of $A$ indexed by a set $S$ in $I$ belongs to the neighbourhood $G(v)$, provided that the corresponding part $G(v)_S$ is defined. In Example 3.8 we have $C_{x_2} \leq 1 = (G(v)_2, \{\emptyset\})$ and $F_{x_2}(1) = G_{x_2} \leq [C_{x_2} \leq 1]_2 = G(v)_2$. Choosing $I = 2 \leq \{\emptyset\}$ we have $C_{x_2} \leq 1 = \cup_{S \in I} G(v)_S$ and so $F_{x_2}(1) = G^{I_1}_{x_2}$. Similarly, choosing $I = 23 \leq \{\emptyset\}$ we have $C_{x_2x_3} \leq 1 = \cup_{S \in I} G(v)_S$ and $F_{x_2x_3}(1) = G_{23} \leq [C_{x_2x_3} \leq 1]_2 = G(v)_{23} = G^{I_1}_{x_2x_3}$. Also, choosing $I = 23 \leq \cup 24 \leq \cup 34 \leq \emptyset$ we see that $F_{x_2x_3x_4}(1) = G^{I_1}_{x_2x_3x_4}$ consists of all triples in $G_{234}$ that also form a triangle in the neighbourhood of $v_1$. In general, we can use this notation to describe the update rule for any complex $H$ if we embed some vertex $x$ of
$H$ to some vertex $v$ of $G$ at time 1. If $x \in S \in H$ we have $F_S(1) = G^v$ as before. If $x \notin S$ we let $I = \{ i(S') : S' \subseteq S, S'x \in H \}$ and then $F_S(1) = G^I_S \setminus v$.

Finally, we can give the definition of super-regularity.

**Definition 3.16.** (Super-regularity) Suppose $G$ is an $r$-partite 3-complex on $V = V_1 \cup \cdots \cup V_r$ and $M \subseteq G_n := \{ S \in G : |S| = 3 \}$. We say that the marked complex $(G, M)$ is $(\epsilon, \epsilon', d_2, \theta, d_3)$-super-regular if

(i) $G$ is $\epsilon$-regular, and $d_S(G) \geq d_{|S|}$ if $|S| = 2, 3$ and $G_S$ is defined,

(ii) for every $1 \leq i \leq r$, $v \in G_i$ and $S$ such that $G_{S_i}$ is defined, $|M(v)_S| \leq \theta |G(v)_S|$ if $|S| = 2$ and $G(v)$ is an $\epsilon'$-regular 2-complex with $d_S(G(v)) = (1 \pm \epsilon') d_S(G) d_{S_i}(G)$ for $S \neq \emptyset$,

(iii) for every vertex $v$ and subcomplex $I$ of $\left( \frac{v_i}{v} \right)_S$, $|(M \cap G^I_v)_S| \leq \theta |G^I_v|$ if $|S| = 3$, and $G^I_v$ is an $\epsilon'$-regular 3-complex with densities (when defined)

$$d_S(G^I_v) = \begin{cases} (1 \pm \epsilon')d_S(G) & \text{if } S \notin I, \\ (1 \pm \epsilon')d_S(G)d_{S_i}(G) & \text{if } \emptyset \neq S \in I \text{ and } G_{S_i} \text{ is defined.} \end{cases}$$

Just as one can delete a small number of vertices from an $\epsilon$-regular graph to make it super-regular, we will see later (Lemma 5.9) that one can delete a small number of vertices from an $\epsilon$-regular marked 3-complex to make it super-regular. For now we will just explain the meaning of Definition 3.16 with reference to our running example. First we remark that the parameters in the definition are listed according to their order in the hierarchy, in that $\epsilon \ll \epsilon' \ll d_2 \ll \theta \ll d_3$. Thus we consider a dense setting, in which the regularity parameters $\epsilon$ and $\epsilon'$ are much smaller than the density parameters $d_2$ and $d_3$. However, one should note that the marking parameter $\theta$ has to be larger than the density parameter $d_2$, which is the source of some technical difficulties in our arguments. We will bound the marked sets by an increasing sequence of parameters that remain small throughout the embedding. For now we just see what the definition of super-regularity tells us about the first step.

Condition (i) just says that $G$ is a regular complex and gives lower bounds for the relative densities of its parts. Condition (ii) is analogous to the minimum degree condition in the definition of super-regularity for graphs. The second part of the condition says that the neighbourhood is a regular complex, and that its relative densities are approximately what one would expect (we will explain the formulae later). The first part says that the proportion of marked edges through any vertex is not too great. We need this to control the proportion of free sets that we have to mark as forbidden during the embedding algorithm. To illustrate this, suppose that in Example 3.8 we have some marked triples $M$. At time $t = 1$ we map $x_1$ to $v_1$, and then the free set for $x_2x_3$ is $F_{x_2x_3}(1) = G(v_1)_{23}$. Since the edges $M_{123}$ are marked as forbidden, we will mark $M_{x_2x_3,x_1x_2x_3}(1) = M(v_1)_{23} \subseteq G(v_1)_{23}$ as forbidden. Condition (ii) ensures that not too great a proportion is forbidden. Note that the density of the neighbourhood complex $G(v_1)$ will be much smaller than the marking parameter $\theta$, so this does not follow if we only make the global assumption that $M$ is a small proportion of $G$.

Condition (iii) is the analogue to condition (ii) for the restrictions that embedding some vertex can place on the embeddings of sets not containing that vertex. A very simple illustration is the case $I = \{ \emptyset \}$, which gives $|M_S| \leq \theta |G_S|$ when defined. (This could also be obtained from condition (ii) by summing over vertices $v$.) For a more substantial illustration, consider Example 3.8 and the
subcomplex $I = 23^\le \cup 24^\le \cup 34^\le$. We noted before the definition that $F_{x_1x_3x_4}(1) = G_{234}^{I_{v_1}}$ consists of all triples in $G_{234}$ that also form a triangle in the neighbourhood of $v_1$. The second part of condition (iii) ensures that $F_{x_1x_3x_4}(1) = G_{234}^{I_{v_1}}$ is a regular complex, and that its relative densities are approximately what one would expect (again, we will explain the formulae later). The first part of condition (iii) again is needed to control the proportion of free sets that are marked. We will mark $M_{x_1x_3x_4,x_2x_3x_4}(1) = M \cap F_{x_1x_3x_4}(1) = (M \cap G_{v_1}^{I_{v_1}})_{234}$ as forbidden in $F_{x_1x_3x_4}(1)$, and the condition says that this is a small proportion. Again, since the neighbourhood of $v_1$ is sparse relative to $G$, this does not follow only from a global assumption that $M$ is a small proportion of $G$.

As another illustration of condition (iii), suppose that we modify Example 3.8 by deleting the edge $x_1x_2x_3$ from $H$. Then $C_{x_1x_2x_3}(1) = G(v_1)_{24} \cup G(v_1)_{34}$ and $F_{x_1x_3x_4}(1) = F_{x_1x_3x_4}(1) | C_{x_1x_2x_3}(1)_{234}$ $v_1$ consists of all triples $S \in G_{234}$ such that $S_{24}$ and $S_{34}$ are edges in the neighbourhood of $v_1$. Taking $I = 24^\le \cup 34^\le$ we have $F_{x_1x_3x_4}(1) = G_{234}^{I_{v_1}}$. So condition (iii) tells us that also with this modified $H$, after embedding $x_1$ to $v_1$ the complex $F_{x_1x_3x_4}(1)$ is regular and we do not mark too much of $F_{x_1x_3x_4}(1)$ as forbidden.

4 The 3-graph blow-up lemma

In this section we prove the following blow-up lemma for 3-graphs.

**Theorem 4.1. (3-graph blow-up lemma)** Suppose $H$ is an $r$-partite 3-complex on $X = X_1 \cup \cdots \cup X_r$ of maximum degree at most $D$, $(G, M)$ is an $(\epsilon, \epsilon', d_2, \theta, d_3)$-super-regular $r$-partite marked 3-complex on $V = V_1 \cup \cdots \cup V_r$, where $n \leq |X_i| = |V_i| = |G_i| \leq Cn$ for $1 \leq i \leq r$, $G_S$ is defined whenever $H_S$ is defined, and $0 \ll 1/n \ll \epsilon \ll \epsilon' \ll d_2 \ll \theta \ll d_3, 1/r, 1/D, 1/C$. Then $G \setminus M$ contains a copy of $H$, in which for each $1 \leq i \leq r$ the vertices of $V_i$ correspond to the vertices of $X_i$.

Theorem 4.1 is similar in spirit to Theorem 2.1: informally speaking, we can embed any bounded degree 3-graph in any super-regular marked 3-complex. (The parallel would perhaps be stronger if we had also introduced marked edges in the graph statement; this can be done, but there is no need for it, so we preferred the simpler form.) We remark that we used the assumption $|V_i| = |X_i| = n$ in Theorem 2.1 for simplicity, but the assumption $n \leq |V_i| = |X_i| \leq Cn$ works with essentially the same proof, and is more useful in applications. (Arbitrary part sizes are permitted in [24], but this adds complications to the proof, and it is not clear why one would need them, so we will not pursue this option here.) There are various other generalisations that are useful in applications, but we will postpone discussion of them until we give the general hypergraph blow-up lemma. Theorem 4.1 is already sufficiently complex to illustrate the main ideas of our approach, so we prove it first so as not to distract the reader with additional complications.

The section contains six subsections, organised as follows. In the first subsection we present the algorithm that we will use to prove Theorem 4.1, and also establish some basic properties of the algorithm. Over the next two subsections we develop some theory: the second subsection contains some useful properties of restriction (Definition 3.5); the third contains some properties of regularity for 3-graphs, which are similar to but subtly different from known results in the literature. Then we start on the analysis of the algorithm, following the template established in the proof of Theorem 2.1.
The fourth subsection concerns good vertices, and is analogous to Lemma 2.4. The fifth subsection concerning the initial phase is the most technical, containing three lemmas that play the role of Lemma 2.5 for 3-graphs. The final subsection concerns the conclusion of the algorithm, and is analogous to Lemma 2.6 and Theorem 2.7.

### 4.1 The embedding algorithm

As for the graph blow-up lemma, we will prove Theorem 4.1 via a random greedy algorithm to construct an embedding $\phi : V(H) \to V(G)$ such that $\phi(e) \in G \setminus M$ for every edge $e$ of $H$. In outline, it is quite similar to the algorithm used for graphs, but when it comes to details the marked edges create significant complications. We introduce more parameters with the hierarchy

$$0 \leq 1/n \ll \epsilon \ll \epsilon' \ll \epsilon_{0,0} \ll \cdots \ll \epsilon_{12D,2} \ll \epsilon_* \ll p_0 \ll \gamma \ll \delta_Q \ll p \ll d_u \ll d_2 \ll \theta \ll \theta_0 \ll \theta'_0 \ll \cdots \ll \theta_{12D} \ll \theta'_i \ll \delta'_Q \ll \delta_B \ll d_3, 1/r, 1/D.$$  

Most of these parameters do not require any further comment, as we explained their role in the graph blow-up lemma, and they will play the same role here. We need many more ‘annotated $\epsilon$’ parameters to measure regularity here, but this is merely a technical inconvenience. The parameters $\epsilon_{i,j}$ with $0 \leq i \leq 12D$ and $0 \leq j \leq 3$ satisfy $\epsilon_{i,j} \ll \epsilon_{i',j'}$ when $i < i'$ or $i = i'$ and $j < j'$. Because of the marked edges, we also have new ‘annotated $\theta$’ parameters, which are used to bound the proportion of free sets that are marked. It is important to note that the buffer parameter $\delta_Q$ and queue admission parameter $\delta'_Q$ are larger than the marking parameter $\theta$, which in turn is larger than the density parameter $d_2$. The result is that the queue may become non-empty during the initial phase, and then the set $N$ of neighbours of the buffer $B$ will not be embedded consecutively in the order given by the original list $L$. To cope with this, we need a modified selection rule that allows vertices in $N$ to jump the queue.

**Initialisation and notation.** We choose a buffer set $B \subset X$ of vertices at mutual distance at least 9 in $H$ so that $|B \cap X_i| = \delta_B |X_i|$ for $1 \leq i \leq r$. Since $n \leq |X_i| \leq Cn$ for $1 \leq i \leq r$ and $H$ has maximum degree $D$ we can construct $B$ simply by selecting vertices one-by-one greedily. For any given vertex there are at most $(2D)^8$ vertices at distance less than 9, so at any point in the construction we have excluded at most $(2D)^8 r \delta_B C n$ vertices from any given $X_i$. Thus we can construct $B$ provided that $(2D)^8 r \delta_B C < 1$.

Let $N = \cup_{x \in B} V N_H(x)$ be the set of vertices with a neighbour in the buffer. Then $|N \cap X_i| \leq 2D r \delta_B C n < \sqrt{\delta_B n}$ for $1 \leq i \leq r$.

We order the vertices in a list $L = L(0)$ that starts with $N$ and ends with $B$. Within $N$, we arrange that $V N_H(x)$ is consecutive for each $x \in B$. We denote the vertex of $H$ selected for embedding at time $t$ by $s(t)$. This will usually be the first vertex of $L(t-1)$, but we will describe some exceptions to this principle in the selection rule below.

We denote the queue by $q(t)$ and write $Q(t) = \cup_{u \leq t} q(u)$. We denote the vertices jumping the queue by $j(t)$ and write $J(t) = \cup_{u \leq t} j(u)$. Initially we set $q(0) = Q(0) = j(0) = J(0) = \emptyset$.

We write $F_S(t)$ for the sets of $G_S$ that are free to embed a given set $S$ of $H$. We also use the convention that $F_S(t)$ is undefined if $S \notin H$. Initially we set $F_S(0) = G_S$ for $S \in H$. We also
write $X_i(t) = X_i \setminus \{s(u) : u \leq t\}$ for the unembedded vertices of $X_i$ and $V_i(t) = V_i \setminus \{\phi(s(u)) : u \leq t\}$ for the free positions in $V_i$. We let $X(t) = \bigcup_{i=1}^{r} X_i(t)$ and $V(t) = \bigcup_{i=1}^{r} V_i(t)$.

**Iteration.** At time $t$, while there are still some unembedded non-buffer vertices, we select a vertex to embed $x = s(t)$ according to the following selection rule. Informally, the rule is that our top priority is to embed any vertex neighbourhood $VN_H(x)$ with $x \in B$ as a consecutive sequence before embedding $x$ itself or any other vertex with distance at most 4 from $x$, and our second priority is to embed vertices in the queue. Formally, the rule is:

- If $j(t-1) \neq \emptyset$ we select $x = s(t)$ to be any element of $j(t-1)$,
- If $j(t-1) = \emptyset$ and $q(t-1) \neq \emptyset$ we consider any element $x'$ of $q(t-1)$.
  - If the distance from $x'$ to all vertices in the buffer $B$ is at least 5 then we select $x = x' = s(t)$.
  - Otherwise, there is a vertex $x'' \in B$ at distance at most 4 from $x'$, and $x''$ is unique by the mutual distance property of $B$. If there are any unembedded elements of $VN_H(x'')$, we choose one of them to be $x = s(t)$, choosing $x'$ itself if $x' \in VN_H(x'')$, and put all other unembedded vertices of $VN_H(x'')$ in $j(t)$. If all of $VN_H(x'')$ has been embedded we choose $x = x' = s(t)$.
- If $j(t-1) = q(t-1) = \emptyset$ we let $x = s(t)$ be the first vertex of $L(t-1)$.

We choose the image $\phi(x)$ of $x$ uniformly at random among all elements $y \in F_x(t-1)$ that are ‘good’, a property that can be informally stated as saying that if we set $\phi(x) = y$ then the free sets $F_S(t)$ will be regular, have the correct density, and not create too much danger of using an edge marked as forbidden. Now we will describe the formal definition. Note that all expressions at time $t$ are to be understood with the embedding $\phi(x) = y$, for some unspecified vertex $y$.

**Definitions.**

1. For a vertex $x$ we write $\nu_x(t)$ for the number of elements in $VN_H(x)$ that have been embedded at time $t$. For a set $S$ we write $\nu_S(t) = \sum_{y \in S} \nu_y(t)$. We also define $\nu_S'(t)$ as follows. When $|S| = 3$ we let $\nu_S'(t) = \nu_S(t)$. When $|S| = 1, 2$ we let $\nu_S'(t) = \nu_S(t) + K$, where $K$ is the maximum value of $\nu_{S_x'}(t')$ over vertices $x'$ embedded at time $t' \leq t$ with $S \in H(x')$; if there is no such vertex $x'$ we let $\nu_S'(t) = \nu_S(t)$.

2. As in Definition 3.7, for any $r$-partite set $S$ we define $F_S(t) = F_S(t-1)^y$ if $x \in S$ or $F_S(t) = F_{S \setminus \{x\} \cup \{y\}}(t-1)(y) \setminus S \setminus y$ if $x \notin S$. For any sets $S' \subseteq S$ we write $d_{S'}(F(t)) = d_{S'}(F_{S \setminus \{x\}}(t-1))$; there is no ambiguity, as the density is the same for any $S$ containing $S'$.

3. We say that $S$ is unembedded if every vertex of $S$ is unembedded, i.e. $s(u) \notin S$ for $u \leq t$. We define an exceptional set $E_x(t-1) \subseteq F_x(t-1)$ by saying $y$ is in $E_x(t-1) \setminus E_x(t-1)$ if and only if for every unembedded $\emptyset \neq S \subseteq H(x)$,

$$d_S(F(t)) = (1 \pm \epsilon_{\nu_S(t), 0})d_S(F(t-1))d_{S_x}(F(t-1))$$

and $F_S(t)$ is $\epsilon_{\nu_S(t), 0}$-regular when $|S| = 2$.

Lemma 4.13 will imply that $E_x(t-1)$ is small compared to $F_x(t-1)$.
4. As in Definition 3.13, for any triple $E \in H$ we write $E^t$ for the subset of $E$ that is unembedded at time $t$ and $M_{E^t,E}(t) = \{ P \in F_{E^t}(t) : P \cup \phi(E \setminus E^t) \in M_E \}$. We define

$$D_{x,E}(t-1) = \{ y \in F_x(t-1) : |M_{E^t,E}(t)| > \theta_{\nu_E(t)}|F_{E^t}(t)| \}.$$ 

Intuitively, these sets consist of vertices $y$ to which it is dangerous to embed $x$. Lemma 4.15 will show that only a small proportion of free vertices are dangerous.

5. Let $U(x)$ be the set of all triples $E \in H$ with $E^t \setminus (VN_H(x) \cup x) \neq \emptyset$. We obtain the set of good elements $OK_x(t-1)$ from $F_x(t-1)$ by deleting $E_x(t-1)$ and $D_{x,E}(t-1)$ for every $E \in U(x)$.

We embed $x$ as $\phi(x) = y$ where $y$ is chosen uniformly at random from the good elements of $F_x(t-1)$. We conclude the iteration by updating $L(t-1), q(t-1)$ and $j(t-1)$. First we remove $x$ from whichever of these sets it was taken. Then we add to the queue any unembedded vertex $z$ for which $F_z(t)$ has become ‘too small’. To make this precise, suppose $z \in L(t-1) \setminus \{x\}$, and let $t_z$ be the most recent time at which we embedded a vertex in $VN_H(z)$, or $0$ if there is no such time. (Note that if $z \in VN_H(x)$ then $t_z = t$.) We add $z$ to $q(t)$ if $|F_z(t)| < \delta_Q|F_x(t_z)|$.

This defines $L(t), q(t)$ and $j(t)$.

Repeat this iteration until the only unembedded vertices are buffer vertices, but abort with failure if at any time we have $|Q(t) \cap X_i| > \delta_Q|X_i|$ for some $1 \leq i \leq r$. Let $T$ denote the time at which the iterative phase terminates (whether with success or failure).

**Conclusion.** Suppose $x \in X(T)$ is unembedded at time $T$ and we embed the last vertex of $VN_H(x)$ at time $t^N_x$. We define the following available sets for $x$. We let $A_x$ be obtained from $F_x(t^N_x)$ by removing all sets $M_{x,E}(t^N_x)$ for triples $E$ containing $x$. We let $A'_x = A_x \cap V_x(T)$. We choose a system of distinct representatives for $\{A'_x : x \in X(T)\}$ to complete the embedding, either ending with success if this is possible, or aborting with failure if it is not possible.

To justify this algorithm, we need to show that if it does not abort with failure then it does embed $H$ in $G \setminus M$. We explained in the previous section why the ‘local consistency’ of the update rule implies that it embeds $H$ in $G$, so we just need to show that no marked edge is used. This follows from the following lemma.

**Lemma 4.2.** Suppose $x$ is the last unembedded vertex of some triple $E$ at time $t-1$.

Then $D_{x,E}(t-1) = M_{x,E}(t-1).$ If $\phi(x) \notin M_{x,E}(t-1)$ then $\phi(E) \in G \setminus M$.

**Proof.** Note that $E^{t-1} = x$, $E^t = \emptyset$ and $F_0(t) = \{\emptyset\}$ is a set of size 1. If we were to choose $y \in M_{x,E}(t-1)$ then we would get $M_{\emptyset,E}(t) = \{\emptyset\}$ and so $|M_{\emptyset,E}(t)| > \theta_{\nu_E(t)}|F_0(t)|$.

On the other hand, if we choose $y \notin M_{x,E}(t-1)$ then we get $M_{\emptyset,E}(t) = \emptyset$ and so $|M_{\emptyset,E}(t)| \leq \theta_{\nu_E(t)}|F_0(t)|$. Therefore $D_{x,E}(t-1) = M_{x,E}(t-1)$. The second statement is now clear. □

It will often be helpful to use the following terminology pertaining to increments of $\nu_x(t)$. We think of time as being divided into $x$-regimes, defined by the property that vertices of $VN_H(x)$ are embedded at the beginning and end of $x$-regimes, but not during $x$-regimes. Thus the condition for adding a vertex $z$ to the queue is that the free set for $z$ has shrunk by a factor of $\delta_Q$ during the
current $z$-regime. Note that each vertex $x$ defines its own regimes, and regimes for different vertices can intersect in a complicated manner.

Note that any vertex neighbourhood contains at most $2D$ vertices. Thus in the selection rule, any element of the queue can cause at most $2D$ vertices to jump the queue. Note also that when a vertex neighbourhood jumps the queue, its vertices are immediately embedded at consecutive times before any other vertices are embedded.

We collect here a few more simple observations on the algorithm.

**Lemma 4.3.**

(i) For any $1 \leq i \leq r$ and time $t$ we have $|V_i(t)| \geq \delta_B n/2$.

(ii) For any $t$ we have $|J(t)| \leq 2D|Q(t)| \leq \sqrt{\delta_Q n}$.

(iii) We have $\nu_S(t) \leq 2D$ for any vertex, $\nu'_S(t) \leq 6D$ when $|S| = 3$, $\nu'_S(t) \leq 10D$ when $|S| = 2$, and $\nu'_S(t) \leq 12D$ when $|S| = 1$. Thus the $\epsilon$-subscripts are always defined in $(*4.1)$.

(iv) For any $z \in VN_H(x)$ we have $\nu_z(t) = \nu_z(t - 1) + 1$, so for any $S \in H$ that intersects $VN_H(x)$ we have $\nu_S(t) > \nu_S(t - 1)$.

(v) If $\nu_S(t) > \nu_S(t - 1)$ then $\nu'_S(t) > \nu'_S(t - 1)$.

(vi) If $z$ is embedded at time $t' \leq t$ and $S \in H(z)$ then $\nu'_S(t) \geq \nu'_S(t - 1) > \nu'_S(t' - 1)$.

**Proof.** As in the graph blow-up lemma, we stop the iterative procedure when the only unembedded vertices are buffer vertices, and during the procedure a buffer vertex is only embedded if it joins the queue. Therefore $|V_i(t)| \geq |B \cap V_i| - |Q(t) \cap V_i| \geq \delta_B n - \delta_Q C n \geq \delta_B n/2$, so (i) holds. The fact that an element of the queue can cause at most $2D$ vertices to jump the queue gives (ii). Statements (iii) and (iv) are clear from the definitions. Statement (v) follows because $\nu'_S(t)$ and $\nu'_S(t - 1)$ are obtained from $\nu_S(t)$ and $\nu_S(t - 1)$ by adding constants that are maxima of certain sets, and the set at time $t$ includes the set at time $t - 1$. For (vi) note that $\nu'_S(t) = \nu_S(t) + K$, with $K \geq \nu'_S(t')$ and $\nu'_S(t) > \nu'_S(t' - 1)$ by (iv) and (v).

**4.2 Restrictions of complexes**

Before analysing the algorithm in the previous subsection, we need to develop some more theory. In this subsection we prove a lemma that justifies various manipulations involving restrictions (Definition 3.5). We often consider situations when several restrictions are placed on a complex, and then it is useful to rearrange them. We define composition of complexes as follows.

**Definition 4.4.** We write $x \in^* S$ to mean that $x \in S$ or $S$ is undefined. Suppose $G$ and $G'$ are $r$-partite 3-complexes on $X = X_1 \cup \cdots \cup X_r$. We define $(G * G')_{S}$ if $G_S$ or $G'_S$ is defined and say that $S \in (G * G')_{S}$ if $A \in^* G_A$ and $A \in^* G'_A$ for any $A \subseteq S$. We say that $G, G'$ are separate if there is no $S \neq \emptyset$ with $G_S$ and $G'_S$ both defined. Given complexes $G^1, \cdots, G^t$ we write $\bigodot_{i=1}^t J_i = J_1 * \cdots * J_t$. Similarly we write $\bigodot_{i \in I} J_i$ for the composition of a collection of complexes $\{J_i : i \in I\}$.
Note that $G \cap G' \subseteq G \ast G' \subseteq G \cup G'$. To illustrate the relation $\in^*$, we note that if $G$ is a subcomplex of $H$ then $H[G]$ is the set of all $S \in H$ such that $A \in^* G_A$ for all $A \subseteq S$. It follows that $H \ast G = H[G]$, see (vi) in the following lemma. More generally, the composition $G \ast G'$ describes ‘mutual restrictions’, i.e. restrictions that $G$ places on $G'$ and restrictions that $G'$ places on $G$. We record some basic properties of Definition 4.4 in the following lemma. Since the statement and proof are heavy in notation, we first make a few remarks to indicate that the properties are intuitive. Property (i) says that mutual restrictions can be calculated in any order. Property (ii) says that a neighbourhood in a mutual restriction is given by the mutual restriction of the neighbourhoods and the original complexes. Property (iii) says that separate restrictions act independently. The remaining properties give rules for rearranging repeated restrictions. The most useful cases are (v) and the second statement in (vi), which convert a repeated restriction into a single restriction (the other cases are also used, but their statements are perhaps less intuitive). One should note that the distinction made earlier between ‘empty’ and ‘undefined’ is important here; e.g. $(G \ast G')_S$ undefined implies that $G_S$ and $G'_S$ are undefined, but this is not true with ‘undefined’ replaced by ‘empty’.

**Lemma 4.5.** Suppose $H$ is an $r$-partite 3-complex and $G, G', G''$ are subcomplexes of $H$.

(i) $^*$ is a commutative and associative operation on complexes,

(ii) $(G \ast G')_S \leq (v) = G_{S \setminus v} \ast G'_{S \setminus v} \ast G_S(v) \ast G'_{S \setminus v}(v)$ for any $v \in S \in G \cup G'$,

(iii) If $G, G'$ are separate then $G \ast G' = G \cup G'$ and $H[G][G'] = H[G'][G] = H[G \cup G']$,

(iv) $H[G])[G \ast G'] = H[G']][G \ast G']$,

(v) If $G'$ is a subcomplex of $H[G]$ then $H[G][G'] = H[G \ast G']$.

(vi) If $G'$ is a subcomplex of $G$ then $G \ast G' = G[G']$ and $H[G][G'] = H[G'][G'] = H[G][G']$. If also $G'_S$ is defined whenever $G_S$ is defined then $H[G][G'] = H[G']$.

**Proof.** (i) By symmetry of the definition we have commutativity $G \ast G' = G' \ast G$. Next we show that $G \ast G'$ is a complex. Suppose $A \subseteq S' \subseteq S \in G \ast G'$. Since $S' \subseteq S \in G \cup G'$ we have $S' \in G \cup G'$. Since $A \subseteq S \in G \ast G'$ we have $A \in^* G_A$ and $A \in^* G'_A$. Therefore $S' \in G \ast G'$, so $G \ast G'$ is a complex. Now we show associativity, i.e. $(G \ast G') \ast G'' = G \ast (G' \ast G'')$. Suppose $S \in (G \ast G') \ast G''$. We claim that for any $A \subseteq S$ we have $A \in^* G_A$, $A \in^* G'_A$ and $A \in^* G''_A$. To see this, we apply the definition of $(G \ast G') \ast G''$ to get $A \in^* (G \ast G')_A$ and $A \in^* G''_A$. If $A \in (G \ast G')_A$ we have $A \in^* G_A$ and $A \in^* G'_A$. Otherwise, $(G \ast G')_A$ is undefined, so $G_A$ and $G'_A$ are undefined. This proves the claim. Now $S \in (G \ast G') \ast G''$ implies that $S \in G \cup G' \cup G''$, so $S \in G$ or $S \in G' \cup G''$. If $S \in G' \cup G''$ then by the claim we have $A \in^* G'_A$ and $A \in^* G''_A$ for $A \subseteq S$, so $S \in G' \ast G''$. Therefore $S \in G \cup (G' \ast G'')$. Also, if $A \subseteq S$ with $(G' \ast G'')_A$ defined then, for any $A' \subseteq A$, the claim gives $A' \in^* G'_{A'}$ and $A' \in^* G''_{A'}$. Therefore $A \in (G' \ast G'')_A$. This shows that $S \in G \ast (G' \ast G'')$, so $(G \ast G') \ast G'' \subseteq G \ast (G' \ast G'')$. Also, $G \ast (G' \ast G'') = (G' \ast G') \ast G \subseteq G'' \ast (G' \ast G) = (G \ast G') \ast G''$, so $(G \ast G') \ast G'' = G \ast (G' \ast G'')$.

(ii) Suppose $v \in S \in G \ast G'$. Then $A \in^* G_A$ and $A \in^* G'_A$ for any $A \subseteq S$. Applying this to $A = A'v$ for any $A' \subseteq S \setminus v$ gives $A' \in^* G_A(v)$ and $A' \in^* G'_A(v)$. Thus $S \setminus v \in G \ast G$ and $G \ast G'$. Therefore, we have $S \setminus v \in G \ast G'$. Now suppose $S \setminus v \in G \ast G'$. Then $A \in^* G_A$ and $A \in^* G'_A$ for any $A \subseteq S$. Applying this to $A = A'v$ for any $A' \subseteq S \setminus v$ gives $A' \in^* G_A(v)$ and $A' \in^* G'_A(v)$. Thus $S \setminus v \in G \ast G'$. Therefore, we have $S \setminus v \in G \ast G'$.
Conversely, suppose that \( v \in S \subseteq G \cup G' \) and \( S \setminus v \subseteq G_i' \) for any \( A \subseteq S \setminus v \), so \( S \subseteq G \ast G' \).

(iii) Suppose \( \emptyset \neq A \subseteq S \subseteq G \). Then \( A \subseteq G_A \) and \( G_A' \) is undefined, since \( G, G' \) are separate. Therefore \( S \subseteq G \ast G' \). Similarly \( G' \subseteq G \ast G' \), so \( G \ast G' = G \cup G' \). Next we note that \( G' \subseteq H[G] \); if \( S \subseteq G \) then \( G_A \) is undefined for any \( \emptyset \neq A \subseteq S \). Similarly \( G \subseteq H[G] \), so \( H[G][G'] \) and \( H[G']\bar{G} \) are well-defined. Now suppose \( S \subseteq H[G][G'] \). Since \( S \subseteq H[G] \), for any \( A \subseteq S \) we have \( A \subseteq G_A \). Since \( S \subseteq H[G][G'] \), for any \( A \subseteq S \) we have \( A \subseteq G_A' \). This shows that \( S \subseteq H[G']\bar{G} = H[G'] \subseteq H[G \cup G'] \). Applying the same argument to any \( S \subseteq H[G][G'] \) we deduce that \( H[G][G'] = H[G']\bar{G} \subseteq H[G \cup G'] \). Conversely, if \( S \subseteq H[G \cup G'] \) then for any \( A \subseteq S \) we have \( A \subseteq G_A \) and \( A \subseteq G_A' \). Therefore \( S \subseteq H[G][G'] = H[G']\bar{G} = H[G \cup G'] \). It follows that \( H[G][G'] = H[G']\bar{G} = H[G \cup G] \).

(iv) We first show that \( H[G][G \ast G'] \subseteq H[G']\bar{G} \). Suppose \( S \subseteq H[G][G \ast G'] \). Then \( S \subseteq H[G] \subseteq H \). Since \( S \subseteq H[G][G \ast G'] \), for any \( A \subseteq S \) we have \( A \subseteq (G \ast G')_A \). Consider any \( A \subseteq S \) such that \( G_A' \) is defined. Then \( (G \ast G')_A \subseteq (G \ast G')_A \). Therefore \( S \subseteq H[G'] \subseteq H[G \cup G'] \). Now consider any \( A \subseteq S \) such that \( (G \ast G')_A \) is defined. Since \( S \subseteq H[G][G \ast G'] \), we have \( A \subseteq (G \ast G')_A \). Then \( S \subseteq H[G'] \subseteq H[G \cup G'] \).

(v) First we show that \( H[G \ast G'] \subseteq H[G'][G'] \). Suppose \( S \subseteq H[G \ast G'] \). Then \( S \subseteq H \). Also, for any \( A \subseteq S \) we have \( A \subseteq (G \ast G')_A \), and so \( A \subseteq G_A A \ast G_A' \). This implies that \( S \subseteq H[G] \). Then \( S \subseteq H[G][G'] \), for any \( A \subseteq S \) we have \( A \subseteq G_A \). Since \( S \subseteq H[G][G'] \), for any \( A \subseteq S \) we have \( A \subseteq G_A' \). Thus for any \( A' \subseteq A \subseteq S \) we have \( A' \subseteq G_A \) and \( A' \subseteq G_A' \), so \( A \subseteq G_A \subseteq G_A' \). Therefore \( S \subseteq H[G \ast G'] \).

(vi) We first note that \( G \ast G' = G[G'] \) is immediate from Definitions 4.4 and 3.5. Then \( H[G][G[G']] = H[G'][G[G']] \) follows from (v). Now we show that \( H[G][G[G']] = H[G[G']] \). Suppose that \( S \subseteq H[G][G[G']] \). Then \( S \subseteq H[G] \). Consider any \( A \subseteq S \) such that \( G_A' \) is defined. Since \( S \subseteq H[G][G[G']] \), we have \( A \subseteq G[G']_A \), and so \( A \subseteq G_A' \). Therefore \( S \subseteq H[G[G']] \). Conversely, suppose that \( S \subseteq H[G[G']] \). Consider any \( A \subseteq S \) such that \( G[A[G']]_A \) is defined. Then \( G_A \) is defined, so \( A \subseteq G_A \). Since \( S \subseteq H[G] \). Also, for any \( A' \subseteq A \) with \( G_A' \) defined we have \( A' \subseteq G_A' \), since \( S \subseteq H[G[G']] \). Therefore \( A \subseteq G[G']_A \). This shows that \( S \subseteq H[G][G[G']] \). The second statement is immediate.

4.3 Hypergraph regularity properties

In this subsection we record some useful properties of hypergraph regularity, analogous to the standard facts we mentioned earlier for graph regularity. Similar results can be found e.g. in [6, 9], but with stronger assumptions on the hierarchy of parameters. However, with the same proof, we obtain Lemma 4.6 under weaker assumptions on the parameters, which will be crucial to the proof of Lemma 4.13. We start with two analogues to Lemma 2.2, the first concerning graphs that are neighbourhoods of a vertex, and the second sets that are neighbourhood of a pair of vertices.

Lemma 4.6. (Vertex neighbourhoods) Suppose \( 0 < \epsilon \ll d \) and \( 0 < \eta \ll \eta' \ll d \) and \( G \) is a 3-partite 3-complex on \( V = V_1 \cup V_2 \cup V_3 \) with all densities \( d_v(G) \). Suppose also that \( G_{13}, G_{12} \)
are $\epsilon$-regular, and $G_{23}$, $G_{123}$ are $\eta$-regular. Then for all but at most $(4\epsilon + 2\eta')|G_1|$ vertices $v \in G_1$ we have $|G(v)_j| = (1 \pm \epsilon)d_{1j}(G)|G_i|$ for $j = 2, 3$ and $G(v)_{23}$ is an $\eta'$-regular graph of relative density $\delta'_{23}(G(v)) = (1 \pm \eta'\delta_{d23}(G))d_{23}(G)$.

**Proof.** First we apply Lemma 2.2 to see that all but at most $4\epsilon|G_1|$ vertices in $G_1$ have degree $(d_{1j}(G) \pm \epsilon)|G_j|$ in $G_{1j}$, for $j = 2, 3$. Let $G'_1$ be the set of such vertices. It suffices to show the claim that all but at most $2\eta'\delta_{d23}(G)$ vertices $v \in G'_1$ have the following property: if $A^v_2 \subseteq G(v)_2$ and $A^v_3 \subseteq G(v)_3$ are sets with $|A^v_2| > \eta'|G(v)_2|$ and $|A^v_3| > \eta'|G(v)_3|$, then the bipartite subgraph $A^v_{23} \subseteq G_{23}$ spanned by $A^v_2$ and $A^v_3$ has $|A^v_{23}| = (d_{23}(G) \pm \eta)|A^v_2||A^v_3|$ edges, and the bipartite subgraph $A(v)_{23} \subseteq G(v)_{23}$ spanned by $A^v_2$ and $A^v_3$ has $|A(v)_{23}| = (1 \pm \eta'/2)d_{23}(G)|A^v_{23}|$ edges.

Suppose for a contradiction that this claim is false. Note that for any $v \in G'_1$ and sets $A^v_2 \subseteq G(v)_2$, $A^v_3 \subseteq G(v)_3$ with $|A^v_2| > \eta'|G(v)_2|$, $|A^v_3| > \eta'|G(v)_3|$ we have $|A^v_2| > \eta'(d_{1j}(G) - \epsilon)|G_j| > \eta|G_j|$ for $j = 2, 3$ so $|A^v_{23}| = (d_{23}(G) \pm \eta)|A^v_2||A^v_3|$ since $G_{23}$ is $\eta$-regular. Then without loss of generality, we can assume that we have vertices $v_1, \ldots, v_t \in G'_1$ with $t > \eta'|G_1|$, and sets $A^v_i \subseteq G(v)_i$, $A^v_3 \subseteq G(v)_3$ with $|A^v_i| > \eta'|G(v)_i|$ and $|A^v_3| > \eta'|G(v)_3|$, such that $|A(v)_i| < (1 - \eta'/2)d_{23}(G)|A_{23}^v|$ for $1 \leq i \leq t$. Define tripartite graphs $A^i = A_{23}^v \cup \{v_i : a \in A^v_2 \cup A^v_3\}$ and $A = \bigcup_{i=1}^t A_i$.

We can count the number of triangles in these graphs as $T_{123}(A) = \sum_{i=1}^t T_{123}(A^i) = \sum_{i=1}^t |A^v_{23}|$. Now $t \geq \eta'|G_1|$, $|A^v_{23}| > (d_{23}(G) - \eta)|A^v_2||A^v_3|$, $d_{23}(G) > d$, $|A^v_i| > \eta'|G(v)_i|$ and $|G(v)_i| > (d - \epsilon)|G_j|$ for $1 \leq i \leq t$, $j = 2, 3$, so

$$T_{123}(A) > \eta'|G_1| \cdot (d - \eta) \cdot \eta'(d - \epsilon)|G_2| \cdot \eta'(d - \epsilon)|G_3| > \eta|G_1||G_2||G_3| \geq \eta T_{123}(G).$$

Since $G_{123}$ is $\eta$-regular we have $\frac{|G \cap T_{123}(A)|}{|T_{123}(A)|} = d_{123}(G) \pm \eta$. Therefore

$$|G \cap T_{123}(A)| > (d_{123}(G) - \eta)|T_{123}(A)| = (d_{123}(G) - \eta)\sum_{i=1}^t |A^v_{23}|.$$

But we also have

$$|G \cap T_{123}(A)| = \sum_{i=1}^t |A(v)_i|_{23} < \sum_{i=1}^t (1 - \eta'/2)d_{123}(G)|A^v_{23}| < (d_{123}(G) - \eta)\sum_{i=1}^t |A^v_{23}|,$$

contradiction. This proves the required claim. \qed

**Lemma 4.7. (Pair neighbourhoods)** Suppose $0 < \epsilon \ll \epsilon' \ll d$ and $G$ is an $\epsilon$-regular $3$-partite $3$-complex on $V = V_1 \cup V_2 \cup V_3$ with all densities $d_S(G) > d$. Then for all but at most $\epsilon'|G_1|$ pairs $uv \in G_{12}$ we have $|G(uv)_3| = (1 \pm \epsilon)d_{13}(G)d_{23}(G)d_{23}(G)|G_3|$. 

**Proof.** Introduce another parameter $\eta$ with $\epsilon \ll \epsilon \ll \epsilon'$. By Lemma 4.6, for all but at most $6\epsilon|G_1|$ vertices $v \in G_1$ we have $|G(v)_i| = (1 \pm \epsilon)d_{1i}(G)|G_i|$ for $i = 2, 3$ and $G(v)_{23}$ is an $\eta$-regular graph of relative density $\delta_{23}(G(v)) = (1 \pm \eta)d_{23}(G)d_{23}(G)$. Let $G'_1$ be the set of such vertices $v \in G_1$. Then for any $v \in G'_1$, applying Lemma 2.2 to $G(v)_{23}$, we see that for all but at most $2\eta|G(v)_2| \leq 2\eta|G_2|$ vertices in $u \in G(v)_2$, the degree of $u$ in $G(v)_{23}$ satisfies

$$|G(uv)_3| = (d_{23}(G(v)) \pm \eta)|G(v)_3| = ((1 \pm \eta)d_{13}(G)d_{23}(G) \pm \eta)(d_{13}(G) \pm \epsilon)|G_3| = (1 \pm \epsilon)d_{13}(G)d_{13}(G)d_{23}(G)|G_3|. $$
Since $|G_{12}| = d_{12}(G)|G_1||G_2| > d|G_1||G_2|$, this estimate holds for all pairs $uv \in G_{12}$ except for at most $6\varepsilon|G_1| \cdot |G_2| + |G_1| \cdot 2\eta|G_2| < \varepsilon'|G_{12}|$.

Next we give an analogue of Lemma 2.3, showing that regularity is preserved by restriction.

**Lemma 4.8. (Regular restriction)** Suppose $0 < \epsilon \ll d$, $G$ is a 3-partite 3-complex on $V = V_1 \cup V_2 \cup V_3$ with all densities $d_S(G) > d$, and $G_{123}$ is $\epsilon$-regular, and $J \subseteq G$ is a 2-complex with $|J_{123}| > \sqrt{\epsilon}|G_{123}|$. Then $G[J]_{123}$ is $\sqrt{\epsilon}$-regular and $d_{123}(G[J]) = (1 \pm \sqrt{\epsilon})d_{123}(G)$.

**Proof.** Since $G_{123}$ is $\epsilon$-regular, $|G[J]_{123}| = |G \cap J_{123}| = (d_{123}(G) \pm \epsilon)|J_{123}|$ and $d_{123}(G[J]) = |G[J]_{123}|/|G[J]_{123}| = (G[J]_{123})/|J_{123}| = d_{123}(G) \pm \epsilon$. Now consider any subcomplex $A$ of $J$ with $|A_{123}| > \sqrt{\epsilon}|J_{123}|$. Then $|A_{123}^*| > \epsilon|G_{123}^*|$, so since $G_{123}$ is $\epsilon$-regular, $|G[J] \cap A^*_{123}| = |G \cap A^*_{123}| = (d_{123}(G) \pm \epsilon)|A^*_{123}| = (d_{123}(J[G]) \pm \sqrt{\epsilon})|A^*_{123}|$, i.e. $G[J]_{123}$ is $\sqrt{\epsilon}$-regular.

It is worth noting the special case of Lemma 4.8 when $J$ is a 1-complex. Then $G[J]$ is obtained from $G$ by discarding some vertices, i.e. a restriction according to the traditional definition. In particular, we see that regularity implies vertex regularity (the weak property mentioned at the beginning of Section 3). We also record the following consequence of Lemma 4.8.

**Corollary 4.9.** Suppose $0 < \epsilon \ll d$, $G$ is a 3-partite 3-complex on $V = V_1 \cup V_2 \cup V_3$ with all densities $d_S(G) > d$ and $G_{123}$ is $\epsilon$-regular. Suppose also $0 < \eta \ll d$, $J \subseteq G$ is a 2-complex with all densities $d_S(J) > d$ and $J_{12}, J_{13}, J_{23}$ are $\eta$-regular.

Then $G[J]_{123}$ is $\sqrt{\epsilon}$-regular and $d_{123}(G[J]) = (1 \pm \sqrt{\epsilon})d_{123}(G)$.

**Proof.** We have $|J_{123}| = |T_{123}(J)| = (1 \pm 8\eta)d_{12}(J)d_{13}(J)d_{23}(J)J_1||J_2||J_3| > \frac{1}{2}d^6|V_1||V_2||V_3| > \sqrt{\epsilon}|G_{123}^*|$ by the triangle counting lemma (1). The result now follows from Lemma 4.8.

Next we note a simple relationship between relative and absolute densities.

**Lemma 4.10.** Suppose $0 < \epsilon \ll d$, $G$ is a 3-partite 3-complex on $V = V_1 \cup V_2 \cup V_3$ with all densities $d_S(G) > d$ and $G$ is $\epsilon$-regular. Then $d(G_{123}) = (1 \pm 8\epsilon)\prod_{S \subseteq 123} d_S(G)$.

**Proof.** $d(G_{123}) = \frac{|G_{123}|}{|V_1||V_2||V_3|} = \frac{|G_{123}|}{|T_{123}(G)|} \cdot \frac{|T_{123}(G)|}{|V_1||V_2||V_3|} = d_{123}(G) \cdot (1 \pm 8\epsilon)\prod_{S \subseteq 123} d_S(G)$ by (1).

The following more technical lemma will be useful in the proof of Lemma 4.15. Later we will give a more general proof that is slicker, but conceptually more difficult, as it uses the ‘plus complex’ of Definition 6.8. For the convenience of the reader, in the 3-graph case we will use a proof that is somewhat pedestrian, but perhaps easier to follow.

**Lemma 4.11.** Suppose $0 < \epsilon \ll \epsilon' \ll d$, $G$ is a 4-partite 3-complex on $V = V_1 \cup V_2 \cup V_3 \cup V_4$ with all densities $d_S(G) > d$ and $G$ is $\epsilon$-regular.

(i) For any $P \in G_{123}$ and subcomplex $I$ of $123^\mathbf{<}$, let $G_{P,I}$ be the set of vertices $v \in G_{4}$ such that $P_S \cup v \in G_{S \cup I}$ for all $S \in I$. Let $B_I$ be the set of $P \in G_{123}$ such that we do not have $|G_{P,I}| = (1 \pm \epsilon')|V_4|\prod_{\emptyset \neq S \subseteq I} d_{S \cup I}(G)$. Then $|B_I| < \epsilon' |G_{123}|$.

(ii) For any $P' \in G_{12}$ and subcomplex $I'$ of $12^\mathbf{<}$ let $G'_{P',I'}$ be the set of vertices $v \in G_4$ such that $P'_S \cup v \in G_{S \cup I'}$ for all $S' \in I'$. Let $B'_{I'}$ be the set of $P' \in G_{12}$ such that we do not have $|G'_{P',I'}| = (1 \pm \epsilon')|V_4|\prod_{\emptyset \neq S' \subseteq I'} d_{S \cup I'}(G)$. Then $|B'_{I'}| < \epsilon' |G_{12}|$.
Proof. Introduce auxiliary constants with a hierarchy \( \epsilon \ll \epsilon_1 \ll \epsilon_2 \ll \epsilon_3 \ll \epsilon' \). We consider selecting the vertices \( P_1, P_2, P_3 \) of \( P \) in turn, at each step identifying some exceptional sets \( P \) for which the stated estimate on \( G_{P,i} \) might fail. First we choose \( P_1 \) so that \( |G(P_1)| = (1 \pm \epsilon_1)d_{ij}(G)/G_i \) and \( G(P_1)ij \) is an \( \epsilon_1 \)-regular graph of relative density \( d_{ij}(G(P_1)) = (1 \pm \epsilon_1)d_{ij}(G)d_{ij}(G) \) for distinct \( i, j \) in \( \{2, 3, 4\} \). Applying Lemma 4.6 with \( \eta = \epsilon \) and \( \eta' = \epsilon_1/4 \), we see that this holds for all but at most \( \epsilon_1|G_1| \) vertices \( P_1 \in G_1 \). Then the number of exceptional sets \( P \) at this stage is at most \( \epsilon_1|G_1||V_2||V_3| = \epsilon_1d_1(G)d_{(G_123)}^{-1}|V_2||V_3| < \sqrt{\epsilon_1}|G_{123}| \).

Now let \( J^1 \subseteq G_{234} \) be the 2-complex defined as follows. We define the singleton parts by \( J^1_i \) equals \( G(P_1)i \) if \( 1 \in I \) or \( G_4i \) if \( 1 \notin I \), \( J^1_2 \) equals \( G(P_1)2 \) if \( 12 \in I \) or \( G_22 \) if \( 12 \notin I \), and \( J^1_3 \) equals \( G(P_1)3 \) if \( 13 \in I \) or \( G_33 \) if \( 13 \notin I \). We define the graphs by restriction to the singleton parts of the following: \( G(P_1)24 \) if \( 12 \in I \) or \( G_224 \) if \( 12 \notin I \), \( G(P_1)34 \) if \( 13 \in I \) or \( G_334 \) if \( 13 \notin I \), \( G(P_1)23 \) if \( 123 \in I \) or \( G_223 \) if \( 123 \notin I \). Then \( J^1 \) is \( \sqrt{\epsilon_1} \)-regular by Lemma 2.3. The graph densities \( d_{ij}(J^1) \) are either \((1 \pm \epsilon_1)d_{ij}(G)d_{ij}(G) \) or \((1 \pm \epsilon_1)d_{ij}(G) \), according as we restrict \( G(P_1)ij \) or \( G_{ij} \).

Let \( G^1 = G_{243}J^1 \). Then \( G^1_{234} \) is \( \epsilon_1 \)-regular with \( d_{234}(G^1) = (1 \pm \epsilon_1)d_{234}(G) \) by Corollary 4.9. Next we choose \( P_2 \) so that \( |G(P_2)| = (1 \pm \epsilon_2)d_{234}(G^1) \) for \( i = 3, 4 \) and \( G(P_2)34 \) is an \( \epsilon_2 \)-regular graph of relative density \( d_{34}(G(P_2)) = (1 \pm \epsilon_2)d_{34}(G^1) \) by Lemma 4.6 this holds for all but at most \( \epsilon_2|G_3| \) vertices \( P_2 \in G_3 \), so similarly to above, the number of exceptional sets \( P \) at this stage is at most \( \sqrt{\epsilon_2}|G_{123}| \). Let \( J^2 \subseteq G_{145}^2 \) be the 2-complex in which \( J^2ij \) equals \( G(P_2)i \) if \( 2 \in I \) or \( G_4i \) if \( 2 \notin I \), \( J^23 \) equals \( G(P_2)3 \) if \( 23 \in I \) or \( G_33 \) if \( 23 \notin I \), and \( J^24 \) equals \( G(P_2)4 \) if \( 24 \in I \) or \( G_44 \) if \( 24 \notin I \). Then \( J^2_{34} \) is \( \sqrt{\epsilon_2} \)-regular by Lemma 2.3, with \( d_{34}(J^2) \) either \((1 \pm \epsilon_2)d_{234}(G^1) \) or \((1 \pm \epsilon_2)d_{34}(G^1) \), according as we restrict \( G(P_2)34 \) or \( G_{34} \).

Now we choose \( P_3 \) so that \( |G(P_3)| = (1 \pm \epsilon_3)d_{34}(J^2) \) by Lemma 2.2 this holds for all but at most \( \epsilon_3|J^2| \) vertices \( P_3 \in J^2 \), giving at most \( \sqrt{\epsilon_3}|G_{123}| \) exceptional sets \( P \) here. In total, the number of exceptional sets at any stage is fewer than \( \epsilon' |G_{123}| \). By construction, \( G_{P,i} \) equals \( J^2P_3 \) if \( 3 \in I \) or \( J^2_3 \) if \( 3 \notin I \). If \( P \) is not exceptional then we can estimate \( |G_{P,i}| \) by tracing back through the stages. At stage 3 we multiply \( |J^2_3| \) by \( (1 \pm \epsilon_3)d_{34}(J^2) \) if \( 3 \in I \), where \( d_{34}(J^2) = (1 \pm \epsilon_2)d_{234}(G^1)d_{34}(G^1) \) if \( 23 \in I \) or \((1 \pm \epsilon_2)d_{34}(G^1) \) if \( 23 \notin I \), where \( d_{234}(G^1) = (1 \pm \epsilon_1)d_{234}(G) \) and \( d_{34}(G^1) = (1 \pm \epsilon_1)d_{34}(G) \) if \( 13 \in I \) or \((1 \pm \epsilon_1)d_{34}(G) \) if \( 13 \notin I \). Thus we obtain a factor of \( d_{34}(G) \) whenever \( 3 \in S \in I \). At stage 2, we obtain \( |J^2_3| \) from \( |G^1_3| \) by multiplying by \( (1 \pm \epsilon_2)d_{234}(G^1) \) if \( 2 \in I \), where \( d_{234}(G^1) = (1 \pm \epsilon_1)d_{234}(G) \) if \( 1 \in I \) or \((1 \pm \epsilon_1)d_{234}(G) \) if \( 1 \notin I \). Thus we obtain a factor of \( d_{34}(G) \) whenever \( 2 \in S \in I \). Finally, at stage 1, we obtain \( |G_4| \) from \( |G_4| \) by multiplying by \( (1 \pm \epsilon_1)d_{14}(G^1) \) if \( 1 \in I \). Combining all factors we obtain \( |G_{P,i}| = (1 \pm \epsilon')|V_4| \prod_{\emptyset \neq S \subseteq I} d_{S,i}d_{S} \).

This proves (i). The proof of (ii) is similar and much simpler (alternatively it could be deduced from (i)). We consider selecting the vertices \( P'_1 \) and \( P'_2 \) of \( P' \) in turn. We choose \( P'_1 \) so that \( |G(P'_1)| = (1 \pm \epsilon)d_{14}(G) |G_4| \). We let \( G'_4 \) be \( G_4 \) if \( 1 \notin I \) or \( G(P'_1)|I \) if \( 1 \in I \), and \( G'_2 \) be the restriction of \( G_{24} \) to \( G_2 \) and \( G'_4 \). Then \( G'_24 \) is \( \epsilon_1 \)-regular with \( d_{24}(G') = (1 \pm \epsilon_2)d_{24}(G) \). We choose \( P'_2 \) so that \( |G'_24(P'_2)| = (1 \pm \epsilon_2)d_{24}(G') |G'_4| \). Then \( G'_{P',i} \) is \( G'_24(P'_2) \) if \( 2 \in I \) or \( G'_4 \) if \( 2 \notin I \). Now \( |G'_{P',i}| \) is obtained from \( |G'_4| \) by multiplying by \( (1 \pm \epsilon_2)d_{24}(G) \) if \( 1 \in I \) and \( (1 \pm \epsilon_1)(1 \pm \epsilon_2)d_{24}(G) \) if \( 2 \in I \), so \( |G'_{P',i}| = (1 \pm \epsilon')|V_4| \prod_{\emptyset \neq S \subseteq I} d_{S,i}d_{S} \).

Finally we give another formulation of the neighbourhood Lemmas 4.6 and 4.7, showing that most vertices and pairs are close to ‘average’.

28
Lemma 4.12. (Averaging) Suppose $0 < \epsilon \ll \epsilon' \ll d$, $G$ is a 3-partite 3-complex on $V = V_1 \cup V_2 \cup V_3$ with all densities $d_S(G) > d$ and $G$ is $\epsilon$-regular. Then

(i) for all but at most $\epsilon' |G_1|$ vertices $v \in G_1$ we have $|G(v)_{23}| = (1 \pm \epsilon')|G_{123}|/|G_1|$, 
(ii) for all but at most $\epsilon' |G_{12}|$ pairs $uv \in G_{12}$ we have $|G(uv)_3| = (1 \pm \epsilon')|G_{123}|/|G_{12}|$.

Proof. By Lemma 4.6 with $\eta = \epsilon$ and $\eta' = \epsilon'/4$, for all but at most $\epsilon' |G_1|$ vertices $v \in G_1$, $|G(v)_i| = (1 \pm \epsilon) d_{1i}(G)/|G_1|$ for $i = 2, 3$ and $d_{23}(G) = (1 \pm \epsilon'/2) d_{123}(G)$. For such $v$ we have $|G(v)_{23}| = d_{23}(G(v))/|G(v)| = (1 \pm \epsilon'/2)|G(v)|$. For every $G(v)_{23}$, the number of vertices in $G(v)$ is $|G(v)| = (1 \pm \epsilon'/2)|G(v)|$. This implies that $|G(v)_{23}| = (1 \pm \epsilon')|G_{123}|/|G_1|$, giving (i).

For (ii), Lemma 4.10 gives $|G_{123}|/|G_{12}| = (1 \pm \epsilon')|G_{123}|/|G_{12}|$. Then by Lemma 4.7, replacing $\epsilon'$ with $\epsilon'/2$, for all but at most $\epsilon' |G_{12}|$ pairs $uv \in G_{12}$, $|G(uv)_3| = (1 \pm \epsilon'/2)|G_{123}|/|G_{12}|$. □

4.4 Good vertices

We start the analysis of the algorithm by showing that most free vertices are good. Our first lemma handles the definitions for regularity and density in the algorithm.

Lemma 4.13. The exceptional set $E_x(t-1)$ defined by $(*)_{4.1}$ satisfies $|E_x(t-1)| < \epsilon_s |F_x(t-1)|$, and $F_S(t)$ is $\epsilon_{v'_S(t),1}$-regular with $d_S(F(t)) \geq d_u$ for every $S \in H$.

Proof. We argue by induction on $t$. At time $t = 0$ the first statement is vacuous. The second statement at time 0 follows from the fact that $F_S(0) = G_S$ and our assumption that $(G, M)$ is $(\epsilon, \epsilon', d_2, \theta, d_3)$-super-regular: condition (i) in Definition 3.16 tells us that $G_S$ is $\epsilon$-regular, with $d_S(G) \geq d_{|S|}$ if $|S| = 2, 3$. Also $d_S(G) = 1$ if $|S| = 0, 1$, as we assumed that $G_i = V_i$ in the hypotheses of Theorem 4.1. Now suppose $t \geq 1$ and $\emptyset \neq S \in H$ is unembedded, so $x \notin S$. We consider various cases for $S$ to establish the bound on the exceptional set and the regularity property, postponing the density bound until later in the proof.

We start with the case when $S \in H(x)$. Suppose first that $S = vw$ with $xvw \in H$. By induction $F_{S'}(t-1)$ is $\epsilon_{v'_S(t-1),1}$-regular and $d_{S'}(F(t-1)) \geq d_u$ for every $S' \subseteq xvw$. Write $\nu = \max\{\nu_{xv}(t-1), \nu'_{xv}(t-1)\}$ and $\nu^* = \max\{\nu_{vw}(t-1), \nu'_{xvw}(t-1)\}$. We claim that $\nu'_{vw}(t) > \nu^*$.

This holds by Lemma 4.3: (iv) gives $\nu_{vw}(t) > \nu_{vw}(t-1)$, (v) gives $\nu_{vw}(t) > \nu_{vw}(t-1)$, and (vi) gives $\nu'_{vw}(t) > \nu'_{xvw}(t-1)$. Now applying Lemma 4.6, for all but at most $(4\epsilon_{\nu,1} + 2\epsilon_{\nu^*,2})|F_x(t-1)|$ vertices $y \in F_x(t-1)$ we have $|F_v(t)| = |F_{xv}(t-1)(y)| = (1 \pm \epsilon_{\nu,1})d_{xv}(F(t-1))$, $|F_w(t)| = |F_{xw}(t-1)(y)| = (1 \pm \epsilon_{\nu,1})d_{xw}(F(t-1))$, and $|F_{vw}(t)| = |F_{xvw}(t-1)(y)| = (1 \pm \epsilon_{\nu^*,2})d_{xvw}(F(t-1))$. Since $\nu'_{vw}(t) > \nu^*$ we have $(*)_{4.1}$ at $w$ and $v$ for such $x$. Note that it is important for this argument that Lemma 4.6 makes no assumption of any relationship between $\nu$ and $\nu^*$. For future reference we also note that the density bounds at time $t-1$ imply that $d_{vw}(F(t)) \geq d_u^2/2$; we will show a lower bound of $d_u$ later, but this interim bound will be useful then.

The argument when $S = \{v\} \in H(x)$ has size 1 is similar and more straightforward. By Lemma 2.2, for all but at most $2\epsilon_{\nu'_{xv}(t-1),1}|F_x(t-1)|$ vertices $y \in F_x(t-1)$ we have $|F_v(t)| = |F_{xv}(t-1)(y)| =
deleting all sets containing any vertices that are embedded between time vertex $S$. So by Lemma 2.3, $F_{nu} |\nu$ property just mentioned above. Since $F_{nu}$ regular, this stronger regularity property will be useful for the case when $F_{nu}$ $|\nu$ $F_{nu}$ $|\nu$. This gives the required regularity property for $F_{nu}(t)$, when we have $\nu_{nu}'(t) > \nu_{nu}'(t - 1)$ by Lemma 4.3(v). In fact, we are only required to show that $F_{nu}(t)$ is $\nu_{nu}'(t)$-regular, but this stronger regularity property will be useful for the case when $nu$ and $VNH(x)$ are disjoint. Now consider the case that $nu$ and $VNH(x)$ are disjoint. Let $t'$ be the most recent time at which we embedded a vertex $x'$ with a neighbour in $nu$. Then by Lemma 3.12, $F_{nu}(t)$ is obtained from $F_{nu}(t')$ just by deleting all sets containing any vertices that are embedded between time $t' + 1$ and $t$. Thus $F_{nu}(t)$ is the bipartite subgraph of $F_{nu}(t')$ spanned by $F_{nu}(t)$ and $F_{nu}(t)$. Now $F_{nu}(t')$ is $\nu_{nu}'(t' - 1)$-regular, by the stronger regularity property just mentioned above. Since $\nu_{nu}'(t) \geq \nu_{nu}'(t') > \nu_{nu}'(t' - 1)$, Lemma 2.3 gives the required regularity property for $F_{nu}(t')$. For future reference, we note that in either case the bound $d_{nu}(F(t - 1)) > d_u$ implies that $d_{nu}(F(t)) > d_u/2$. 

Continuing with the case when $S \in H$ and $S \notin H(x)$, we now suppose that $|S| = 3$. Again we use $F_{S}'(t) = F_{S}(t)\setminus\{v\}$. If $S' \subseteq S$, whether $S' \in H(x)$ or $S' \notin H(x)$, we have shown above that $d_{S'}(F(t)) > d_u/2$, and if $|S'| = 2$ that $F_{S'}(t)$ is $\nu_{S'}(t)$-regular. Since $F_{S}(t - 1)$ is $\nu_{S}(t - 1)$-regular, Corollary 4.9 implies that $F_{S}(t)$ is $\nu_{S}(t - 1)$-regular and $d_{S}(F(t)) = (1 \pm \nu_{S}(t - 1))d_{S}(F(t - 1))$. This gives the required regularity property for $F_{S}(t)$ in the case that $S$ intersects $VNH(x)$, when we have $\nu_{S}'(t) > \nu_{S}'(t - 1)$. As above, although we are only required to show that $F_{S}(t)$ is $\nu_{S}(t)$-regular, this stronger regularity property will be useful for the case when $S$ and $VNH(x)$ are disjoint. Suppose $S$ and $VNH(x)$ are disjoint. Let $t'$ be the most recent time at which we embedded a vertex $x'$ with a neighbour in $S$. Then by Lemma 3.12, $F_{S}(t)$ is obtained from $F_{S}(t')$ just by deleting all sets containing any vertices that are embedded between time $t' + 1$ and $t$. Equivalently, $F_{S}(t) = F_{S}(t')\setminus\{v : v \in S, \emptyset\}$. Now $F_{S}(t')$ is $\nu_{S}'(t' - 1)$-regular, by the stronger regularity property just mentioned above. Since $\nu_{S}'(t) \geq \nu_{S}'(t') > \nu_{S}'(t' - 1)$, Corollary 4.9 gives the required regularity property for $F_{S}(t)$. 

Now we have established the bound on $E_{x}(t - 1)$ and the regularity properties, so it remains to show the density bounds. First we consider any unembedded $S \in H$ with $|S| = 3$. We claim that 

$$F_{S}(t) = G_{S} \setminus F_{S}(t) |S.$$  

To see this we use induction. In the base case $t = 0$ we have $F_{S}(0) = G_{S}$ and $G_{S} |F_{S}(0)| = G_{S} |G_{S}| = G_{S}$, so $G_{S} |F_{S}(0)| = G_{S}$. For $t > 0$, Lemma 3.11 gives $F_{S}(t) = F_{S}(t - 1) |F_{S}(t)|$,
i.e. \( F_S(t) \) consists of all triples in \( F_S(t-1) \) that form triangles in \( F_S(t) \). The induction hypothesis gives \( F_S(t-1) = G_S \leq [F_S(t-1)]_S \), and so we can write \( F_S(t) = G_S \leq [F_S(t-1)][F_S(t)]_S \). Now \( F_S(t) \subseteq F_S(t-1) \), so Lemma 4.5(vi) gives \( G_S \leq [F_S(t-1)][F_S(t)] = G_S \leq [F_S(t-1)][F_S(t)] = G_S \leq [F_S(t)] \). This proves (4). Also, we showed above that for every \( S' \subseteq S \), we have \( d_{S'}(F(t)) > d_u^2/2 \), and if \( |S'| = 2 \) then \( F_{S'}(t) \) is \( \epsilon_{\nu_{S'}(t),1} \)-regular. Since \( G_S \) is \( \epsilon \)-regular, Corollary 4.9 shows that \( F_S(t) \) is \( \sqrt{\epsilon} \)-regular and \( d_S(F(t)) = (1 \pm \sqrt{\epsilon})d_S(G) > d_3/2 \). This gives the required bound \( d_S(F(t)) > d_u \), although we will also use the stronger bound of \( d_3/2 \) below.

Next consider any unembedded pair \( vw \in H \). Let \( t' \leq t \) be the most recent time at which we embedded a vertex \( x' \) with \( x'vw \in H \), or let \( t' = 0 \) if there is no such vertex \( x' \). Note that we have \( t' = t \) if \( xvw \in H \). For \( t' \leq t \), let \( J(t') \) be the 1-complex \( (F_0(t'), F_0(t'), \emptyset) \). We claim that \( F_{vw}(t') = F_{vw \leq (t')}[J(t')]_{vw} \) for \( t' \leq t \). This follows by induction, similarly to the argument when \( |S| = 3 \). When \( t' = t \) the claim follows from \( F_{vw \leq (t')}[J(t')] = F_{vw \leq (t')} \). For \( t' > t \), we have \( vw \notin H(x) \), so Lemma 3.11 gives \( F_{vw}(t') = F_{vw \leq (t'-1)}[J(t')]_{vw} \). Since \( F_{vw}(t'-1) = F_{vw \leq (t'-1)}[J(t'-1)]_{vw} \) by induction, Lemma 4.5(vi) gives \( F_{vw}(t') = F_{vw \leq (t')}[J(t'-1)]_{vw} = F_{vw \leq (t')}[J(t')]_{vw} \), as claimed. Now we claim that \( d_{vw}(F(t)) > (d_3/4)^i d_2/2 \), where we temporarily use \( i_t \) to denote the number of embedded vertices \( x' \) at time \( t \) with \( x'vw \in H \). To see this, we argue by induction, noting that initially \( d_{vw}(F(0)) = d_{vw}(G) > d_2 \). Also, if \( i_t = 0 \) then \( F_{vw}(t) = G_{vw \leq (t)}_{vw} \), so \( d_{vw}(F(t)) > d_2/2 \) by Lemma 2.3. Now suppose that \( i_t > 0 \), so that \( t' \) and \( x' \) are defined above. By induction we have \( d_{vw}(F(t'-1)) > (d_3/4)^{i_t-1}d_2/2 \). Also \( d_{x'vw}(F(t'-1)) > d_3/2 \) by the lower bound just proved for relative densities of triples, so \( (s_{4,1}) \) gives \( d_{vw}(F(t')) = (1 \pm \epsilon_{vw}(t'),\emptyset)d_{vw}(F(t'-1))d_{x'vw}(F(t'-1)) > (d_3/4)^{i_t-1}d_2/2 \). Since \( F_{vw}(t) = F_{vw \leq (t)}_{vw} \), Lemma 2.3 gives \( d_{vw}(F(t)) > d_{vw}(F(t'))/2 > (d_3/4)^{i_t}d_2/2 \), as claimed. Since \( i_t \leq D \) we have \( d_{vw}(F(t)) > 2d_3^D d_2 \), say. In particular we have the required bound of \( d_{vw}(F(t)) > d_u \).

Finally we consider any unembedded vertex \( z \). Let \( t_z \leq t \) be the most recent time at which we embedded a neighbour \( w = s(t_z) \) of \( z \), or \( t_z = 0 \) if there is no such time. If \( t_z > 0 \) then by \( (s_{4,1}) \) and the above bound for pair densities we have \( d_z(F(t_z)) > d_{zz}(F(z-1))d_z(F(z-1))/2 > d_3^2 d_2 d_z(F(z-1)) \). Now we consider cases according to whether \( z \) is in the list \( L(t-1) \), the queue \( q(t-1) \) or the queue jumpers \( j(t-1) \). Suppose first that \( z \in L(t-1) \). Then the rule for updating the queue in the algorithm gives \( |F_z(t)| \geq \delta_Q |F_z(t_z)| \). Next suppose that \( z \in j(t-1) \cup q(t-1) \), and \( z \) first joined \( j(t') \cup q(t') \) at some time \( t' < t \). Since \( z \) did not join the queue at time \( t' \) - \( 1 \) we have \( |F_z(t'-1)| \geq \delta_Q |F_z(t_z)| \). Also, between times \( t' \) and \( t \) we only embed vertices that are in the queue or jumping the queue, or otherwise we would have embedded \( z \) before \( x \). Now \( |Q(t) \cap X_z| \leq \delta_Q C \), otherwise we abort the algorithm, and \( |J(t) \cap X_z| \leq \sqrt{\delta_Q n} \) by Lemma 4.3(ii), so we embed at most \( 2\sqrt{\delta_Q n} \) vertices in \( V_z \) between times \( t' \) and \( t \). Thus we have catalogued all possible ways in which the number of vertices free for \( z \) can decrease. It may decrease by a factor of \( d_3^D d_2 \) when a new \( z \)-regime starts, and by a factor \( \delta_Q' \) during a \( z \)-regime before \( z \) joins the queue. Also, if \( z \) joins the queue or jumps the queue it may decrease by at most \( 2\sqrt{\delta_Q n} \) in absolute size. Since \( z \) has at most \( 2D \) neighbours, and \( |F_z(0)| = |V_z| > n \), we have \( |F_z(t)| \geq (\delta_Q d_3^D d_2)^{2D} \delta_Q |V_z| - 2\sqrt{\delta_Q n} > d_u |V_z| \). □

In the preceding proof we needed to track the \( \epsilon \)-subscripts in great detail to be sure that they always fall in the range allowed by our hierarchy. From now on it will often suffice and be more convenient to use a crude upper bound of \( \epsilon_s \) for any epsilon parameter. We summarise some useful estimates in the following lemma.

31

(i) If $\emptyset \neq S \in H(x)$ then $d_S(F(t)) = (1 + \epsilon_s)d_S(F(t-1))d_{Sx}(F(t-1))$
and $|F_S(t)| = (1 + \epsilon_s)|F_{Sx}(t-1)/|F_x(t-1)|$.

(ii) If $S \notin H(x)$ then $d_S(F(t)) = (1 + \epsilon_s)d_S(F(t-1))$.

(iii) If $S \in H$ then $d(F_S(t)) = (1 + \epsilon_s)\prod_{T \subseteq S} d_T(F(t))$.

(iv) If $S' \subseteq S \in H$ then
\[
\frac{|F_S(t)|}{|F_{S'}(t)||F_{S',S}(t)|} = \frac{d(F_S(t))}{d(F_{S'}(t))d(F_{S',S}(t))} = (1 + 4\epsilon_s)\prod_{T : T \subseteq S, T \not\subseteq S', T \not\subseteq S \setminus S'} d_T(F(t)).
\]

(v) If $S' \subseteq S \in H$ then $|F_S(t)(P)| = (1 + \epsilon_s)|F_S(t)|/|F_{S'}(t)|$ for all but at most $\epsilon_s|F_{S'}(t)|$ sets $P \in F_{S'}(t)$.

(vi) Statements (iii-v) hold replacing $F_{S \leq}(t)$ by $F_{S \leq}(t)[\Gamma]$ for any $\epsilon_{12D,3}$-regular subcomplex $\Gamma$ of $F_{S \leq}(t)$, such that $d_T(\Gamma) \geq \epsilon_s^2$ when defined.

**Proof.** The first formula in (i) is a weaker form of (*4.1*). For the second formula, suppose first that $S = v$ has size 1. Then $|F_v(t)| = d_v(F(t))|V_v| = (1 + \epsilon_s)d_{xv}(F(t))\prod_{v} (1 + \epsilon_s)|F_{xv}(t-1)/|F_x(t-1)|$. In the case when $S = uv$ has size 2 we have $d_S(F(t)) = (1 + \epsilon_{12D,1})d_{S'}(F(t-1))d_{Sx}(F(t-1))$ for $S'$ equal to $u$, $v$ or $uv$. Since $\epsilon_{12D,1} \ll \epsilon_s$, the formula follows from the same calculations as in Lemma 4.12(i). This proves (i). For (ii), note that if $|S| = 1$ then $F_S(t) = F_S(t) \setminus y$ has size $|F_S(t-1)|$ or $|F_S(t-1)| - 1$. Also, if $|S| = 2, 3$ we have $F_S(t) = F_{S \leq}(t-1)[F_{S <}(t)]_{S}$ by Lemma 3.11. Statement (ii) then follows from Lemma 2.3 if $|S| = 2$ or Lemma 4.8 if $|S| = 3$. For (iii) we apply Lemma 4.10 when $|S| = 3$ or the identity $d(F_S(t)) = \prod_{T \subseteq S} d_T(F(t))$ when $|S| \leq 2$. Statement (iv) follows by definition of absolute density and (iii). For (v) we apply Lemma 4.12. For (vi) we apply regular restriction to see that $F_{S \leq}(t)[\Gamma]$ is $\epsilon_{12D,3}$-regular and then the same proofs. \qed

Our next lemma concerns the definitions for marked edges in the algorithm.

Lemma 4.15.

(i) For every triple $E \in H$ we have $|M_{E',E}(t)| < \theta_{\nu_{E'}(t)}^{\nu_E}(t)|F_{E'}(t)|$, and in fact
\[
|M_{E',E}(t)| \leq \theta_{\nu_{E'}(t)}^{\nu_E}(t)|F_{E'}(t)| \text{ for } E \in U(x).
\]

(ii) For every $x$ and triple $E \in U(x)$ we have $|D_{x,E}(t-1)| < \theta_{\nu_{E'}(t)}^{\nu_E}(t)|F_{x}(t-1)|$.

**Proof.** Throughout we use the notation $E = E^t$, $\nu = \nu_{E'}^{\nu_E}(t-1)$, $\nu^* = \nu_{E'}^{\nu_E}(t)$.

(i) To verify the bound for $t = 0$ we use our assumption that $(G, M)$ is $(\epsilon, \epsilon', d_2, \theta, d_3)$-super-regular. We take $I = \{\emptyset\}$, when for any $v$ we have $G^I_v = G$ by Definition 3.15. Then condition (iii) in Definition 3.16 gives $|M_E| \leq \theta|G_E|$. Since $E^0 = E$, $M_{E,E}(0) = M_E$ and $F_E(0) = G_E$ we have the required bound. Now suppose $t > 0$. When $E \in U(x)$ we have $|M_{E',E}(t)| \leq \theta_{\nu^*}|F_{E'}(t)|$
by definition, since the algorithm chooses \( y = \phi(x) \notin D_{x,E}(t - 1) \). Now suppose \( E \notin U(x) \), and let \( t' < t \) be the most recent time at which we embedded a vertex \( x' \) with \( E \in U(x') \). Then \( E^{t'} = E' \), \\
\( \nu'_{E^{t'}}(t') = \nu^* \), and \( |M_{E^{t'},E}(t')| \leq \theta_{\nu'_{E^{t'}}(t')}|F_{E^{t'}}(t')| \) by the previous case. For any \( z \in E' \), we can bound \\
|\( F_z(t) \)| using the same argument as that used at the end of the proof of Lemma 4.13. We do not embed any neighbour of \( z \) between time \( t' + 1 \) and \( t \), so the size of the free set for \( z \) can only decrease by a factor of \( \delta_Q^* \) and an absolute term of \( 2\sqrt{\delta_Q}n \). Since \( d_z(F(t')) \geq d_u \gg \delta_Q \) we have \\
|\( F_z(t) | \geq \delta_Q^*|F_z(t')| - 2\sqrt{\delta_Q}n \geq \frac{1}{2}\delta_Q^*|F_z(t')| \). By Lemma 3.11, for every \( \emptyset \neq S \subseteq E' \), \( F_S(t) \) is obtained \\
from \( F_S(t') \) by restricting to the 1-complex \((|F_z(t) : z \in S, \emptyset|) \). If \( |S| = 2, 3 \) then regular restriction \\
(Lemmas 2.3 and 4.8) gives \( d_S(F(t)) = (1 \pm \epsilon_* d_S(F(t')) \). Now \( d(F_{E^{t'}}(t)) = (1 \pm \epsilon_*) \prod_{S \subseteq E'} d_S(F(t)), \) \\
by Lemma 4.14(iii), and similarly \( d(F_{E^{t'}}(t')) = (1 \pm \epsilon_*) \prod_{S \subseteq E'} d_S(F(t')) \). This gives \\
\[
\frac{|F_{E^{t'}}(t)|}{|F_{E^{t'}}(t')|} = (1 \pm 3\epsilon_*) \prod_{S \subseteq E'} \frac{d_S(F(t))}{d_S(F(t'))} = (1 \pm 10\epsilon_*) \prod_{S \subseteq E'} \frac{d_S(F(t))}{d_S(F(t'))} > \left( \frac{\delta_Q^*}{2} \right)^3/2.
\]

Therefore \( |M_{E^{t'},E}(t)| \leq |M_{E^{t'},E}(t')| \leq \theta_{\nu^*}|F_{E^{t'}}(t')| < 2(\delta_Q^*/2)^3 \theta_{\nu^*}|F_{E^{t'}}(t)| < \theta_{\nu^*}|F_{E^{t'}}(t)|. \)

(ii) First we consider the case \( x \in E \). Then \( E^t = \overline{E} \setminus x \) and \( \nu < \nu^* \) by Lemma 4.3(vi). Also \( F_{E^t}(t) = F_{E^t}(t - 1)(y) \) and \( M_{E^{t},E}(t) = M_{E^t,E}(t - 1)(y) \) (see Lemma 3.14), so \\
\( D_{x,E}(t - 1) = \{ y \in F_x(t - 1) : |M_{E^t,E}(t - 1)(y)| > \theta_{\nu^*}|F_{E^t}(t - 1)(y)| \}. \)

If \( \overline{E} = \{ x \} \) has size 1 then \( D_{x,E}(t - 1) = M_{x,E}(t - 1) \) by Lemma 4.2, so \( |D_{x,E}(t - 1)| < \theta_{\nu^*}|F_x(t - 1)| < \theta_{\nu^*}|F_{E^t}(t - 1)| \) by (i). If \( |\overline{E}| \geq 2 \) then \( |F_{E^t}(t)| = |F_{E^t}(t - 1)(y)| = (1 \pm \epsilon_*)|F_{E^t}(t - 1)|/|F_{E^t}(t - 1)| \) by \\
Lemma 4.14 when \( y \notin E_x(t - 1) \). Now \\
\[
\sum_{y \in D_{x,E}(t - 1)} |M_{E^t,E}(t - 1)(y)| = \theta_{\nu^*} \sum_{y \in D_{x,E}(t - 1)\setminus E_x(t - 1)} |F_{E^t}(t - 1)(y)|
\]
\[
> (1 - \epsilon_*)\theta_{\nu^*}(|D_{x,E}(t - 1)| - \epsilon_*|F_{x}(t - 1)|)|F_{E^t}(t - 1)|/|F_{x}(t - 1)|.
\]

We also have an upper bound \\
\[
\sum_{y \in D_{x,E}(t - 1)} |M_{E^t,E}(t - 1)(y)| \leq \sum_{y \in F_{E^t}(t - 1)} |M_{E^t,E}(t - 1)(y)| = |M_{E^t,E}(t - 1)| < \theta_{\nu^*}|F_{E^t}(t - 1)|,
\]
where the last inequality holds by (i). Therefore \\
\[
\frac{|D_{x,E}(t - 1)|}{|F_{x}(t - 1)|} < \frac{\theta_{\nu^*}}{(1 - \epsilon_*)\theta_{\nu^*} + \epsilon_*} < \theta_{\nu^*}.
\]

Now we consider the case when \( x \notin E \). Then \( E^t = E^{t - 1} = \overline{E} \). Note that when \( E \in U(x) \) we have \\
\( \overline{E} \cap VN_H(x) = \emptyset \), so \( \nu^* > \nu \). Suppose first that \( \overline{E} \in H(x) \). Then \( F_{\overline{E}}(t) = F_{\overline{E}}(t - 1)(y) \) and \( M_{\overline{E},E}(t) = M_{\overline{E},E}(t - 1) \cap F_{\overline{E}}(t) \) (see Lemma 3.14), so \\
\( D_{x,E}(t - 1) = \{ y \in F_x(t - 1) : |M_{E^t,E}(t - 1) \cap F_{\overline{E}}(t - 1)(y)| > \theta_{\nu^*}|F_{\overline{E}}(t - 1)(y)| \}. \)

Similarly to the previous case, by Lemma 4.14 we have \\
\[
\Sigma := \sum_{y \in D_{x,E}(t - 1)} |M_{E^t,E}(t - 1) \cap F_{\overline{E}}(t - 1)(y)| > \theta_{\nu^*} \sum_{y \in D_{x,E}(t - 1)\setminus E_x(t - 1)} |F_{\overline{E}}(t - 1)(y)|
\]
\[
> (1 - \epsilon_*)\theta_{\nu^*}(|D_{x,E}(t - 1)| - \epsilon_*|F_{x}(t - 1)|)|F_{\overline{E}}(t - 1)|/|F_{x}(t - 1)|.
\]

33
We also have \( \Sigma \leq \sum_{y \in F_x(t-1)} |M_{E,E}(t-1) \cap F_{Ex}(t-1)(y)| \). This sum counts all pairs \((y,P)\) with \( P \in M_{E,E}(t-1), y \in F_x(t-1) \) and \( Py \in F_{Ex}(t-1) \), so we can rewrite it as

\[
\Sigma \leq \sum_{P \in M_{E,E}(t-1)} |F_{Ex}(t-1)(P)|.
\]

By Lemma 4.14(v) we have \( |F_{Ex}(t-1)(P)| = (1 + \epsilon_s) \frac{|F_{Ex}(t-1)|}{|F_{Ex}(t-1)|} \) for all but at most \( \epsilon_s|F_{Ex}(t-1)| \) sets \( P \in F_{E}(t-1) \). Therefore

\[
\Sigma \leq |M_{E,E}(t-1)|(1 + \epsilon_s) \frac{|F_{Ex}(t-1)|}{|F_{Ex}(t-1)|} + \epsilon_s|F_{Ex}(t-1)||F_{x}(t-1)|.
\]

Combining this with the lower bound on \( \Sigma \) we obtain

\[
(1 - \epsilon_s) \theta_{\nu^*} \left( \frac{|D_{E,E}(t-1)|}{|F_{x}(t-1)|} - \epsilon_s \right) < (1 + \epsilon_s) \frac{|M_{E,E}(t-1)|}{|F_{Ex}(t-1)|} + \epsilon_s \frac{|F_{Ex}(t-1)||F_{x}(t-1)|}{|F_{Ex}(t-1)|}.
\]

Now \( |M_{E,E}(t-1)| < \theta_{\nu^*}|F_{Ex}(t-1)| \) by (i), and \( \frac{|F_{Ex}(t-1)||F_{x}(t-1)|}{|F_{Ex}(t-1)|} \leq 2d_u^{-1} \ll \epsilon_s^{-1} \) by Lemma 4.14(iv), so

\[
\frac{|D_{E,E}(t-1)|}{|F_{x}(t-1)|} < (1 + \epsilon_s) \theta_{\nu^*} + \sqrt{\epsilon_s} + \epsilon_s < \theta_{\nu^*}.
\]

It remains to consider the case when \( x \notin E \) and \( \overline{E} = E^t \notin H(x) \). Since \( \overline{E} \cap VNH(x) \neq \emptyset \) we have \( |\overline{E}| \geq 2 \). Then \( F_{E}(t) = F_{E}(t-1)|F_{Ex}(t)| \) by Lemma 3.11 and \( M_{E,E}(t) = M_{E,E}(t-1) \cap F_{Ex}(t) \), so

\[
D_{x,E}(t-1) = \left\{ y \in F_x(t-1) : \frac{|M_{E,E}(t-1) \cap F_{Ex}(t-1)|F_{Ex}(t)|}{|F_{Ex}(t-1)|} > \theta_{\nu^*} \right\}.
\]

Let \( I \) be the subcomplex of \( \overline{E} \) consisting of all \( S \subseteq \overline{E} \) with \( S \in H(x) \). Then \( P \in F_{E}(t-1)|F_{Ex}(t)| \) if and only if \( P \in F_{E}(t-1) \) and \( P_S y \in F_{Ex}(t-1) \) for all \( S \in I \). When we choose \( y \notin E_x(t-1) \), Lemma 4.14 gives \( d_{S}(F(t)) = (1 + \epsilon_s) d_{S}(F(t-1)) d_{S_x}(F(t-1)) \) for \( \emptyset \neq S \in I \) by (i), \( d_{S}(F(t)) = (1 + \epsilon_s) d_{S}(F(t-1)) \) for \( \emptyset \neq S \subseteq \overline{E} \) with \( S \notin I \) by (ii), and

\[
d(F_{E}(t-1)|F_{Ex}(t)|) = (1 + \epsilon_s) \prod_{S \subseteq \overline{E}} d_{S}(F(t-1)) \prod_{\emptyset \neq S \in I} d_{S_x}(F(t-1))
\]

by (vi), so

\[
|F_{E}(t-1)|F_{Ex}(t)|) = (1 + 20\epsilon_s)|F_{E}(t-1)| \prod_{\emptyset \neq S \in I} d_{S_x}(F(t-1)).
\]

As in the previous cases we have

\[
\begin{align*}
\Sigma &:= \sum_{y \in D_{x,E}(t-1)} |M_{E,E}(t-1) \cap F_{Ex}(t-1)|F_{Ex}(t)|) \\
&> \theta_{\nu^*} \sum_{y \in D_{x,E}(t-1) \setminus E_x(t-1)} |F_{Ex}(t-1)|F_{Ex}(t)|) \\
&> (1 - 20\epsilon_s)\theta_{\nu^*}(|D_{x,E}(t-1)| - \epsilon_s|F_x(t-1)|) |F_{Ex}(t-1)| \prod_{\emptyset \neq S \in I} d_{S_x}(F(t-1)).
\end{align*}
\]
For any $P \in F_E(t - 1)$, let $F_{P,I}$ be the set of $y \in F_x(t - 1)$ such that $PSy \in FS_x(t - 1)$ for all $S \in I$. Let $B_I$ be the set of $P \in F_E(t - 1)$ such that we do not have

$$|F_{P,I}| = (1 + \epsilon_*)|F_x(t - 1)| \prod_{\emptyset \neq S \in I} d_Sx(F(t - 1)).$$

Then $|B_I| \leq \epsilon_*|F_E(t - 1)|$ by Lemma 4.11. Now $\Sigma \leq \sum_{y \in F_x(t - 1)} |M_{E,E}(t - 1) \cap F_{E,E}^\leq(t - 1)[F_{E,E}(t)]|$, which counts all pairs $(y, P)$ with $P \in M_{E,E}(t - 1)$ and $y \in F_{P,I}$, so

$$\Sigma \leq |M_{E,E}(t - 1)|(1 + \epsilon_*)|F_x(t - 1)| \prod_{\emptyset \neq S \in I} d_Sx(F(t - 1)) + \epsilon_*|F_E(t - 1)||F_x(t - 1)|.$$

Combining this with the lower bound on $\Sigma$ we obtain

$$(1 - 20\epsilon_*)\theta \nu^* \left( \frac{|D_{x,E}(t - 1)|}{|F_x(t - 1)|} - \epsilon_* \right) < (1 + \epsilon_*) \frac{|M_{E,E}(t - 1)|}{|F_E(t - 1)|} + \epsilon_* \prod_{\emptyset \neq S \in I} d_Sx(F(t - 1))^{-1}.$$

Now $|M_{E,E}(t - 1)| < \theta^1|F_E(t - 1)|$ by (i) and all densities are at least $d_u \gg \epsilon_*$, so again we have

$$\frac{|D_{x,E}(t - 1)|}{|F_x(t - 1)|} < \frac{(1 + \epsilon_*)\theta + \sqrt{\epsilon_*}}{(1 - 20\epsilon_*)\theta^*} + \epsilon_* < \theta^*$$. \hfill \Box

The following corollary is now immediate from Lemmas 4.13 and 4.15. Recall that $OK_x(t - 1)$ is obtained from $F_x(t - 1)$ by deleting $E_x(t - 1)$ and $D_{x,E}(t - 1)$ for $E \in U(x)$, and note that since $H$ has maximum degree at most $D$ we have $|U(x)| \leq 2D^2$.

**Corollary 4.16.** $|OK_x(t - 1)| > (1 - \theta_*)|F_x(t - 1)|$.

### 4.5 The initial phase

This subsection concerns the initial phase of the algorithm, during which we embed the neighbourhood $N$ of the buffer $B$. There are several issues that make the analysis of this phase significantly more complicated than that of the graph blow-up lemma (which was given in Lemma 2.5). As we mentioned earlier, the buffer $B$ is larger than before, so we embed many more vertices during the initial phase, and the queue may open. One potential problem is that there may be some vertex $v$ and class $V_i$ such that $G(v) \cap V_i$ is used excessively by the embedding – this is a concern, since $d_u \ll \delta_B$. The first lemma in this subsection shows that with high probability this does not happen.

Our goal is to show that for any vertex $x \in B$ there will be many available vertices $v \in V_x$ such that we embed $H(x)$ in $(G \setminus M)(v)$ during the initial phase. Then if $v$ is not used before the conclusion of the algorithm we will be able to embed $x$ as $\phi(x) = v$. We need to ensure that for every neighbour $z$ of $x$ and for every triple $E$ of $H$ containing a neighbour of $z$, the choice of image for $z$ is good, in that the subcomplex of the free sets for $E^\leq$ that is consistent with mapping $x$ to $v$ is suitably regular and does not have too many marked edges. As in Lemma 2.5, we aim to give a lower bound on the probability of this event, conditional on the previous embedding. The third lemma in this subsection achieves this.
The marked edges also add a complication to the conclusion of the algorithm, in which we need to verify Hall’s condition for a system of distinct representatives of the available images for the unembedded buffer vertices. We need to show that for that any $W \subseteq V_x$ that is not too small, the probability that $W$ does not contain a vertex available for $x$ is quite small. This is achieved by the second lemma in this subsection. We present it before the lemma on mapping $x$ to $v$ because its proof is similar in spirit and somewhat simpler.

First we recall the key properties of the selection rule during the initial phase. Although the queue may become non-empty, jumping ensures that we embed all vertex neighbourhoods $VN_H(x)$, $x \in B$ at consecutive times, and before $x$ or any other vertices at distance at most 4 from $x$. Then Lemma 3.12 implies that if we start embedding $VN_H(x)$ just after some time $T_0$ then $F_z(T_0) = V_z(T_0)$ consists of all vertices in $V_z$ that have not yet been used by the embedding, for every $z$ at distance at most 3 from $x$. We also recall that $|B \cap V_z| = \delta_B|V_z|$, $|N \cap V_z| < \sqrt{\delta_B}|V_z|$, $|Q(T_0) \cap V_z| \leq \delta_Q|V_z|$ and $|J(T_0) \cap V_z| \leq \sqrt{\delta_Q}|V_z|$ by Lemma 4.3(ii). Thus for any $z$ at distance at most 3 from $x$ we have

$$|F_z(T_0)| = |V_z(T_0)| > (1 - 2\sqrt{\delta_B})|V_z|.$$  \hfill (5)

We need the following supermartingale formulation of the Azuma-Hoeffding inequality, which can be easily derived from the martingale formulation quoted later as Theorem 5.16.

**Theorem 4.17.** Suppose $Z_0, \ldots, Z_n$ is a supermartingale, i.e. a sequence of random variables satisfying $\mathbb{E}(Z_{i+1}|Z_0, \ldots, Z_i) \leq Z_i$, and that $|Z_i - Z_{i-1}| \leq c_i$, $1 \leq i \leq n$, for some constants $c_i$. Then for any $t \geq 0$,

$$\mathbb{P}(Z_n - Z_0 \geq t) \leq 2 \exp\left(-\frac{t^2}{2 \sum_{i=1}^n c_i^2}\right).$$

Let $T_I$ be the time at which we embed the last vertex of $N$, ending the initial phase. Then $T_I \leq \sum_{i=1}^r 2\sqrt{\delta_B}|V_i| < \delta_B^{1/3}n$ by (5). Our first lemma shows that there are many available vertices in all neighbourhoods at time $T_I$. Note that by super-regularity the assumption $|G(v)_j| \geq d_u|V_j|$ in the lemma holds for every $j$ such that $G_i(v_j)$ is defined.

**Lemma 4.18.** With high probability, for every vertex $v \in G$ and $1 \leq j \leq r$ with $|G(v)_j| \geq d_u|V_j|$ we have

$$|G(v)_j \cap V_j(T_I)| > (1 - \delta_B^{1/3})|G(v)_j|.$$

**Proof.** Suppose $|G(v)_j| \geq d_u|V_j|$. The ratio $|G(v)_j \cap V_j(t)|/|G(v)_j|$ only decreases when we embed a vertex in $G(v)_j$. We separate the analysis according to two effects. One effect is that we embed a vertex $z \in N \cap X_j$ to an image $\phi(z) \in G(v)_j$, where $G(v)_j$ is not too large a fraction of the free images for $z$. The other effect is that we embed a vertex $z \in N \cap X_j$ to an image $\phi(z) \in G(v)_j$, and the embedding of some neighbour $w$ of $z$ previously caused the fraction of $G(v)_j$ in the free images for $z$ to increase significantly. To analyse these effects we write $T_z$ for the time at which a vertex $z$ is embedded and define the following sets:

- Let $A_j(t)$ be the set of embedded vertices $z \in N \cap X_j$ such that $\phi(z) \in G(v)_j$ and

$$|G(v)_j \cap F_z(T_z - 1)|/|F_z(T_z - 1)| < 2^2D|G(v)_j|/|V_j|.$$
• Let $\Pi_{\ell,j}(t)$ be the set of embedded vertices $w \in N \cap X_{\ell}$ such that
\[
|G(v)_j \cap F_z(T_w)|/|F_z(T_w)| \geq 2|G(v)_j \cap F_z(T_w - 1)|/|F_z(T_w - 1)| \geq d_u^2
\]
for some $z \in VN_H(w) \cap N \cap X_j$.

We claim that any vertex embedded in $G(v)_j$ up to time $T_I$ is either in the queue, or in $\Lambda_j(T_I)$, or an $H$-neighbour of some $w \in \Pi_{\ell,j}(T_I)$ for some $\ell$. To see this, suppose $z$ is embedded in $G(v)_j$ and is neither in the queue nor in $\Lambda_j(T_I)$. Since $z \in N$ we have $z \in VN_H(x)$ for some $x \in B$. Suppose we start embedding $VN_H(x)$ just after time $T_0$. Then $F_z(T_0) = V_N(T_0)$ has size at least $(1 - 2\sqrt{\delta_B})|V_N|$ by (5), so $|G(v)_j \cap F_z(T_0)|/|F_z(T_0)| \leq |G(v)_j|/(1 - 2\sqrt{\delta_B})|V_N|$. We also have $|G(v)_j \cap F_z(T_0 - 1)|/|F_z(T_0 - 1)| \geq 2D|G(v)_j|/|V_N|$, since $z \notin \Lambda_j(T_I)$. Since $|VN_H(x) \setminus z| \leq 2D - 1$, there must be some $g$, $1 \leq g \leq T_z - T_0$ so that at time $T_0 + g$ we embed some $w \in VN_H(z)$ and get $|G(v)_j \cap F_z(T_w)|/|F_z(T_w)| \geq 2|G(v)_j \cap F_z(T_w - 1)|/|F_z(T_w - 1)|$. Here we recall that we embed $VN_H(x)$ consecutively and so $w \in VN_H(x) \subseteq N$. Now for any $g'$, $1 \leq g' < T_z - T_0$, since $|F_z(T_z - 1)| \geq d_u|V_N| \geq d_u|F_z(T_0 + g')|$ we have
\[
\frac{|G(v)_j \cap F_z(T_0 + g')|}{|F_z(T_0 + g')|} \geq \frac{|G(v)_j \cap F_z(T_0 - 1)|}{d_u^2|F_z(T_0 - 1)|} \geq 2^{2D}d_u|G(v)_j|/|V_N| > 2^{2D}d_u^2 = d_u^2.
\]
Therefore $w \in \Pi_{\ell,j}(T_I)$, where $\ell = i(w)$, which proves the claim. Since any $w$ has at most $2D$ neighbours we deduce that
\[
|G(v)_j \cap V_j(T_I)| \geq |G(v)_j| - |Q(T_I) \cap V_j| - |\Lambda_j(T_I)| - 2D \sum_{\ell=1}^r |\Pi_{\ell,j}(T_I)|.
\]

Consider $Z_j(t) = |\Lambda_j(t)| - 2^{2D+1}d_j(G(v)|V_N \setminus V_j(t)|$. We claim that $Z_j(0), \cdots, Z_j(T_I)$ is a supermartingale. To see this, suppose we embed some vertex $z \in X_{\ell}$ at time $T_z$. We can assume that $z \in N$ and $|G(v)_j \cap F_z(T_z - 1)|/|F_z(T_z - 1)| \geq 2^{2D}d_j(G(v))$, or otherwise $z \notin \Lambda_j(T_z)$ by definition, so $|\Lambda_j(T_z)| = |\Lambda_j(T_z - 1)|$ and $Z_j(T_z) < Z_j(T_z - 1)$. Since $\phi(z)$ is chosen randomly in $OK_z(T_z - 1) \subseteq F_z(T_z - 1)$ of size at least $|F_z(T_z - 1)|/2$ (by Corollary 4.16), we have
\[
E[|\Lambda_j(T_z)| - |\Lambda_j(T_z - 1)|] = P(\phi(z) \in G(v)_j) = \frac{|G(v)_j \cap OK_z(T_z - 1)|}{|OK_z(T_z - 1)|} < 2^{2D+1}d_j(G(v)).
\]

We also have $|V_N \setminus V_j(T_z)| = |V_N \setminus V_j(T_z - 1)| + 1$, so the decrease in the second term of $Z_j(t)$ more than compensates for the increase in the first, i.e. $E[Z_j(T_z) - Z_j(T_z - 1)] < 0$. Thus we have a supermartingale. Since $|Z_j(t) - Z_j(t - 1)| \leq 1$, $|V_N \setminus V_j(T_I)| \leq 2\sqrt{\delta_B}|V_N|$ by (5), and $T_I < \delta_{1/6}^3 n$, Theorem 4.17 gives
\[
\Pr[|\Lambda_j(T_I)| > 2^{2D+3}d_j(G(v))\sqrt{\delta_B}|V_N|] \leq \Pr[Z_j(m) > 2^{2D+2}d_j(G(v))\sqrt{\delta_B}|V_N|]
\]
\[
< 2 \exp \left[- (2^{2D}d_j(G(v))\sqrt{\delta_B}|V_N|)^2/2T_I \right] < e^{-\sqrt{n}}, \quad \text{(say, for sufficiently large } n).\]

Next consider $Y_{\ell,j}(t) = |\Pi_{\ell,j}(t)| - \epsilon_\ell|\Pi'_{\ell,j}(t)|$, where $\Pi'_{\ell,j}(t)$ consists of all vertices in $X_{\ell}$ with at least one $H$-neighbour in $X_j$ that have been embedded at time $t$. We claim that $Y_{\ell,j}(0), \cdots, Y_{\ell,j}(T_I)$
is a supermartingale. To see this, suppose we embed some vertex \( w \in X_1 \) at time \( T_w \). Consider \( z \in V N_H(w) \cap N \cap X_j \): we can assume this set is non-empty, otherwise \( w \notin \Pi_{\ell,j}(T_w) \cup \Pi'_{\ell,j}(t) \), so \( Y_{\ell,j}(T_w) = Y_{\ell,j}(T_w - 1) \). We can also assume that \( w \in N \) and \( |G(v)_j \cap F_z(T_w)|/|F_z(T_w)| \geq 2|G(v)_j \cap F_z(T_w - 1)|/|F_z(T_w - 1)| \geq d_w^2 \) for some \( z \in V N_H(w) \cap N \cap X_j \), otherwise \( w \notin \Pi_{\ell,j}(T_w) \) by definition, so \( |\Pi_{\ell,j}(T_w)| = |\Pi_{\ell,j}(T_w - 1)| \) and \( Y_{\ell,j}(T_w) < Y_{\ell,j}(T_w - 1) \).

By Lemmas 4.13 and Lemma 2.3, \( F_{wz}(T_w - 1)|G(v)_j \cap F_z(T_w - 1)| \) is \( \epsilon_{12D,2} \)-regular. Applying Lemma 2.2, we see that there are at most \( 2\epsilon_{12D,2}|F_{wz}(T_w - 1)| \) `exceptional' vertices \( y \in F_{wz}(T_w - 1) \) such that embedding \( \phi(w) = y \) will not satisfy

\[
|G(v)_j \cap F_z(T_w)| = |F_{wz}(T_w - 1)(y) \cap G(v)_j \cap F_z(T_w - 1)| = (1 + \epsilon_s)d_{zw}(F(T_w - 1))|G(v)_j \cap F_z(T_w - 1)|.
\]

On the other hand, the algorithm chooses \( \phi(w) = y \) to satisfy \((\ast_{+1})\), so \( |F_{z}(T_w)| = (1 + \epsilon_s)d_{zw}(F(T_w - 1))|F_z(T_w - 1)| \). Thus we have \( |G(v)_j \cap F_{z}(T_w)|/|F_z(T_w)| < 2|G(v)_j \cap F_z(T_w - 1)|/|F_z(T_w - 1)| \), unless we choose an exceptional vertex \( y \). But \( y \) is chosen uniformly at random from \( |OK_{wz}(T_w - 1)| \geq (1 - \theta_s)|F_{wz}(T_w - 1)| \) possibilities (by Corollary 4.16), so \( y \) is exceptional with probability at most \( 3\epsilon_{12D,2} \). Therefore \( \mathbb{E}[|\Pi_{\ell,j}(T_w)| - |\Pi_{\ell,j}(T_w - 1)|] < 3\epsilon_{12D,2} \).

We also have \( |\Pi'_{\ell,j}(T_w)| = |\Pi_{\ell,j}(T_w - 1)| + 1 \), so the decrease in the second term of \( Y_{\ell,j}(t) \) more than compensates for the increase in the first, i.e. \( \mathbb{E}[Y_{\ell,j}(T_w) - Y_{\ell,j}(T_w - 1)] < 0 \). Thus we have a supermartingale. We also have \( |Y_{\ell,j}(t) - Y_{\ell,j}(t - 1)| \leq 1 \). Also, \( |V_j \setminus V_j(T_f)| \leq 2\sqrt{\delta_B}|V_j| \) by (5), so \( |\Pi'_{\ell,j}(T_f)| \leq 2D\sqrt{\delta_B}|V_j| \), since \( H \) has maximum degree \( D \). Then Theorem 4.17 gives

\[
\mathbb{P}[|\Pi_{\ell,j}(T_f)| > 2d_u\sqrt{\delta_B}|V_j|] < \mathbb{P}[Y_{\ell,j}(t) > d_u\sqrt{\delta_B}|V_j|]
\]

\[
< 2\exp[-(d_u\sqrt{\delta_B}|V_j|)^2/2T_1] < e^{-\sqrt{\alpha}}, \quad \text{(say, for sufficiently large } n)\text{.}
\]

Taking a union bound over \( v \in V \) and \( 1 \leq j, \ell \leq r \), with high probability we have \( |A_j(T_f)| \leq 2^{2^D+3d_j(G(v))}\sqrt{\delta_B}|V_j| = 2^{2^D+3}\sqrt{\delta_B}|G(v)_j| \) and \( |\Pi'_{\ell,j}(T_f)| \leq 2d_u\sqrt{\delta_B}|V_j| \leq 2\sqrt{\delta_B}|G(v)_j| \). Therefore (6) gives

\[
|G(v)_j \cap V_j(T_f)| \geq |G(v)_j| - |Q(T_f) \cap V_j| - |A_j(T_f)| - 2D \sum_{\ell=1}^r |\Pi_{\ell,j}(T_f)|.
\]

\[
\geq |G(v)_j| - \delta_Q|V_j| - 2^{2^D+3}\sqrt{\delta_B}|G(v)_j| - 4Dr\sqrt{\delta_B}|G(v)_j| > (1 - \delta_B^{1/3})|G(v)_j|,
\]

since \( |G(v)_j| \geq d_u|V_j| \) and \( \epsilon_s \ll \delta_Q \ll d_u \ll \delta_B \ll 1/r, 1/D \).

For the remainder of this subsection we fix a vertex \( x \in B \) and write \( V N_H(x) = \{ z_1, \cdots, z_q \} \), with vertices listed in the order that they are embedded. Since \( H \) has maximum degree \( D \) we have \( g \leq 2D \). We let \( T_j \) be the time at which \( z_j \) is embedded. By the selection rule, \( V N_H(x) \) jumps the queue and is embedded at consecutive times: \( T_{j+1} = T_j + 1 \) for \( 1 \leq j \leq g - 1 \). For convenience we also define \( T_0 = T_1 - 1 \). Note that since \( H \) is an \( r \)-partite complex, no vertex of \( V N_H(x) \) lies in \( X_x \). The selection rule also ensures that at time \( T_0 \) no vertices at distance at most 4 from \( x \) have been embedded, so for any \( z \) with distance at most 3 from \( x \) we have \( F_z(T_0) = V_z(T_0) \). (The need for this property in Lemma 4.21 explains why we needed to choose the buffer vertices at mutual distance at least 9.)

38
Remark 4.19. Note that the argument of the Lemma 4.18 can be applied replacing the sets $G(v)_j$ by any sufficiently large subsets of $G_j$, provided that they are sufficiently few in number to use a union bound. For example, we can define a complex $G(S) = \cap_{v \in S} G(v)$ for any $S \subseteq V$, and show that with high probability, for every $S \subseteq V$ with $|S| \leq 2D$ and $1 \leq j \leq r$ with $|G(S)_j| \geq d_u |V_j|$ we have $|G(S)_j \cap V_j(T_j)| > (1 - \delta^{1/3}_B)|G(S)_j|$. It follows that with high probability every $z \in VN_H(x)$ would have many available vertices in $G(v)_z$ throughout the initial phase, even if we did not use queue jumping in the selection rule. However, the analysis is simpler if we do use queue jumping, and then we only need the version of Lemma 4.18 stated above.

Recall that the available set $A_x$ is obtained from $F_x(t^N_x)$ by removing all sets $M_{x,E}(t^N_x)$ for triples $E$ containing $x$. Here $t^N_x = T_g$. If $x$ is unembedded at the conclusion of the algorithm at time $T$ we will embed $x$ in $A'_x = A_x \cap V_x(T)$. Our second lemma shows that for that any $W \subseteq V_x$ that is not too small, the probability that $W$ does not contain a vertex available for $x$ is quite small.

Lemma 4.20. For any $W \subseteq V_x$ with $|W| > \epsilon_* |V_x|$, conditional on any embedding of the vertices \{s(u) : u < T_1\} that does not use any vertex of $W$, we have $P[A_x \cap W = \emptyset] < \theta_*$. 

Proof. We apply similar arguments to those we are using for the entire embedding, defining variants of various structures that incorporate restriction to $W$. Suppose $1 \leq j \leq g$ and that we are considering the embedding of $z_j$. We interpret quantities at time $T_j$ with the embedding $\phi(z_j) = y$, for some as yet unspecified $y \in F_{z_j}(T_j - 1)$. Write $W_j = W \cap F_x(T_j)$. At time $T_0$ we have $W \subseteq F_x(T_0) = V_x(T_0)$, so $W_0 = F_x(T_0) \cap W = W$. Since $z_j \in H(x)$ we have $F_x(T_j) = F_{x,z_j}(T_j - 1)(y)$, so

$$W_j = W_{j-1} \cap F_{x,z_j}(T_j - 1)(y).$$

For convenient notation we will use $[W_j]$ to denote restriction of hypergraphs and complexes to $W_j$, in that for $x \in S \in H$ we write $F_{S\subseteq}(T_j)[[W_j]$ for $F_{S\subseteq}(T_j)[(W_j, \emptyset)]$ and $F_S(T_j)[W_j]$ for $F_{S\subseteq}(T_j)[(W_j, \emptyset)]$. 

We define exceptional sets $E^W_{z_j}(T_j - 1) \subseteq F_{z_j}(T_j - 1)$ by the property that $y$ is in $F_{z_j}(T_j - 1) \setminus E^W_{z_j}(T_j - 1)$ if and only if

$$|W_j| = (1 \pm \epsilon_{f4}(T_j), 1)|W||F_x(T_j)||F_x(T_0)|. \quad (\ast_{4.20})$$

Thus if we embed $z_j$ to $y \notin E^W_{z_j}(T_j - 1)$, then the intersection of the free set for $x$ with $W$ is roughly what would be ‘expected’. Next, to control marked edges, we define dangerous vertices similarly to before, except that here we incorporate the restriction to $W_j$. For any triple $E$ containing $x$ we define

$$D^W_{E,z}(T_j - 1) = \{y \in F_{z_j}(T_j - 1) : |M_{E,T_j}(T_j)[W_j]| > \theta^E_{E,z}(T_j)|F_{E,T_j}(T_j)[W_j]|\}.$$

Now we define events as follows:

- $A_{1,j}$, $j \geq 0$ is the event that property $\ast_{4.20}$ above holds.
- $A_{2,j}$, $j \geq 0$ is the event that for every triple $E$ containing $x$ we have

$$|M_{E,T_j}(T_j)[W_j]| \leq \theta^E_{E,z}(T_j)|F_{E,T_j}(T_j)[W_j]|.$$
• $A_{3,j}$, $j \geq 1$ is the event that $y = \phi(z_j)$ is chosen in $OK_z(T_j - 1)$, defined to be the subset of $F_z(T_j - 1)$ obtained by deleting the sets $E_z(T_j - 1)$ and $D_z(T_j - 1)$ for $E$ containing $x$. 

For convenient notation we also define $A_{3,0}$ to be the event that holds with probability 1.

We divide the remainder of the proof into a series of claims.

**Claim A.** The events $A_{1,0}$, $A_{2,0}$ and $A_{3,0}$ hold.

**Proof.** As noted above, we have $W_0 = W$, so $A_{1,0}$ holds. Also, $A_{3,0}$ holds by definition, so it remains to show $A_{2,0}$. Consider any triple $E = xzz'$ containing $x$. Recall that all vertices at distance at most 4 from $x$ are unembedded. Then $E^{T_0} = E$, and by Lemma 3.12, $F_{E^z}(T_0)$ is the restriction of $G_{E^z}$ to the 1-complex $((F_u(T_0) : u \in E), \{\emptyset\})$, so $F_{E^z}(T_0)[W]$ is the restriction of $G_{E^z}$ to $(W, F_z(T_0), F_z'(T_0), \{\emptyset\})$. Since $G$ is $\epsilon$-regular, $F_{E^z}(T_0)[W]$ is $\epsilon'$-regular by regular restriction and $d_S(F_{E^z}(T_0)[W]) = (1 + \epsilon')d_S(G)$ for $S \subseteq E$, $|S| \geq 2$. Then

$$|F_{E}(T_0)[W]| = (1 + 20\epsilon')|W||F_z(T_0)||F_z'(T_0)| \prod_{S \subseteq E, |S| \geq 2} d_S(G)$$

by Lemma 4.10. Now

$$|M_{E,E}(T_0)[W]| = \sum_{v \in W} |M_{E,E}(T_0)(v)| \leq \sum_{v \in W} |M_{E}(v)| \leq \theta \sum_{v \in W} |G_{E}(v)|$$

by condition (ii) of super-regularity (Definition 3.16). This condition also says for any $v \in G_x$ that $G_{E}(v)$ is $\epsilon'$-regular and $d_S(G(v)) = (1 + \epsilon')d_S(G)d_Sx(G)$ for $\emptyset \neq S \subseteq E \setminus x$, so

$$|G_{E}(v)| = d_{zz'}(G(v))|G(v)_{zz'}|G(v)_{zz'} = (1 + 5\epsilon')|V_z||V_z'| \prod_{\emptyset \neq S \subseteq zz'} d_S(G)d_Sx(G).$$

Here we note that $d_z(G) = d_{zz'}(G) = 1$, as our hypotheses for Theorem 4.1 include the assumption $G_i = V_i$ for $1 \leq i \leq r$. Equation (5) gives $|F_z(T_0)| > (1 - 2\sqrt{\delta_B})|V_z(T_0)|$ and $|F_z'(T_0)| > (1 - 2\sqrt{\delta_B})|V_z'(T_0)|$, so

$$\frac{|M_{E,E}(T_0)[W]|}{|F_{E}(T_0)[W]|} < \frac{(1 + 5\epsilon')\theta|V_z||V_z'|}{(1 - 20\epsilon')|F_z(T_0)||F_z'(T_0)|} < (1 + 30\epsilon')(1 - 2\sqrt{\delta_B})^{-2}\theta < \theta_0.$$

**Claim B.** If $A_{3,j}$ holds then $A_{1,j}$ and $A_{2,j}$ hold.

**Proof.** This follows directly from the definitions: if $y \notin E_z^{T_0}(T_j - 1)$ then ($\ast_{4.20}$) holds, and if $y \notin D_z^{T_0}(T_j - 1)$ then $|E_{z_{j},E}(T_j)[W_{j}]| \leq \theta_{E_{z_{j},E}(T_j)}|F_{E_{z_j}}(T_j)[W_{j}]|$. 

**Claim C.** If $A_{1,j-1}$ holds then $|E_z^{T_0}(T_j - 1) \setminus E_z^{T_0}(T_j - 1)| < \epsilon_z F_z(T_j - 1)$. 

**Proof.** By Lemma 4.13, $F_{zz'}(T_j - 1)$ is $\epsilon_{zz'}(T_j - 1)$-regular, so by Lemma 2.3, $F_{zz'}(T_j - 1)[W_j]$ is $\epsilon_{zz'}(T_j - 1)$-regular. Then by Lemma 2.2, for all but at most $\epsilon_{zz'}(T_j - 1,2)|F_z(T_j - 1)|$ vertices $y \in F_z(T_j - 1)$ we have $|W_j| = |W_j - 1 \cap F_{zz'}(T_j - 1)(y)| = (1 + \epsilon_{zz'}(T_j - 1,2))d_{zz'}(F(T_j - 1))[W_j - 1]$. 

Since $A_{1,j-1}$ holds, $|W_{j - 1}| = (1 + \epsilon_{zz'}(T_j - 1,1))|W||F_z(T_j - 1)||F_z'(T_j)|$. Also, by ($\ast_{4.1}$), for $y \notin E_z(T_j - 1)$ we have $|F_z(T_j)| = (1 + \epsilon_{zz'}(T_j - 1,0))d_{zz'}(F(T_j - 1))$. Now $z_j \in V_{NH}(x)$, so
$\nu_x(T_j) = \nu_x(T_j - 1) + 1$, and $\nu'_x(T_j) > \max\{\nu'_x(T_j - 1), \nu'_x(T_j - 1)\}$. Combining all estimates, for all but at most $\epsilon_*|F_{z_j}(T_j - 1)|$ vertices $y \in F_{z_j}(T_j - 1) \setminus E_{z_j}(T_j - 1)$ we have

$$|W_j| = (1 \pm \epsilon_{z_j}(T_j - 1, 2))d_{z_j}(F(T_j - 1))|W_j - 1|$$

$$= (1 \pm \epsilon_{z_j}(T_j - 1, 2))(1 \pm \epsilon_{z_j}(T_j - 1, 1))d_{z_j}(F(T_j - 1))|W||F_x(T_j - 1)|/|F_x(T_0)|$$

$$= (1 \pm \epsilon_{z_j}(T_j - 1, 1))|W||F_x(T_j)|/|F_x(T_0)|, \quad \text{i.e. (4.20)}.$$ 

**Claim D.** If $A_{1,j-1}$ and $A_{2,j-1}$ hold then for any $E$ containing $x$ we have

$$|D_{z_j,E}^W(T_j - 1)| < \theta_{\nu'_E}(T_j)|F_{z_j}(T_j - 1)|.$$ 

**Proof.** Denote $E = E_{T_j - 1}^T$, $\nu = \nu'_{E}(T_j - 1)$ and $\nu^* = \nu'_{E,T_j}(T_j)$. Suppose $A_{1,j-1}$ and $A_{2,j-1}$ hold. By $A_{1,j-1}$ we have $|W_{j-1}| > \frac{1}{2}d_w|W| > \epsilon_*^2|V_x|$. Consider any triple $E$ containing $x$. We bound $D_{z_j,E}^W(T_j - 1)$ with a similar argument to that used in Lemma 4.15.

**Case D.1.** First consider the case $z_j \in E$. Then $E_{T_j} = E \setminus z_j$ and $\nu^* > \nu$. Since $W_j = W_{j-1} \cap F_{z_j}(T_j - 1)(y)$, Lemma 3.10 gives $F_{E_{T_j}}(T_j)[W_j] = F_{E}(T_j - 1)(y)[W_j] = F_{E}(T_j - 1)[W_{j-1}](y)$. Similarly, $M_{E_{T_j},E}(T_j)[W_j] = M_{E,E}(T_j - 1)(y)[W_j] = M_{E,E}(T_j - 1)[W_{j-1}](y)$, so

$$D_{z_j,E}^W(T_j - 1) = \{y \in F_{z_j}(T_j - 1) : |M_{E,E}(T_j - 1)[W_{j-1}](y)| > \theta_{\nu^*}|F_E(T_j - 1)[W_{j-1}](y)|\}.$$ 

Let $B_{z_j}'$ be the set of $y \in F_{z_j}(T_j - 1) \setminus E_{z_j}(T_j - 1)$ such that we do not have

$$|F_E(T_j - 1)[W_{j-1}](y)| = (1 \pm \epsilon_*)|F_E(T_j - 1)[W_{j-1}]|/|F_{z_j}(T_j - 1)|.$$ 

Applying Lemma 4.14(vi) with $\Gamma = (W_{j-1}, \{0\})$ gives $|B_{z_j}'| < \epsilon_*|F_{z_j}(T_j - 1)|$. (Note that we need $y \notin E_{z_j}(T_j - 1)$ as this is implicitly assumed to apply Lemma 4.14.) Let $B_{z_j} = B_{z_j}' \cup E_{z_j}(T_j - 1)$. Then $|B_{z_j}| \leq 2\epsilon_*|F_{z_j}(T_j - 1)|$ by Lemma 4.13. Now

$$\sum_{y \in D_{z_j,E}^W(T_j - 1)} |M_{E,E}(T_j - 1)[W_{j-1}](y)| > \theta_{\nu^*} \sum_{y \in D_{z_j,E}^W(T_j - 1) \setminus B_{z_j}} |F_E(T_j - 1)[W_{j-1}](y)|$$

$$> (1 - \epsilon_*)\theta_{\nu^*}(|D_{z_j,E}^W(T_j - 1)| - 2\epsilon_*|F_{z_j}(T_j - 1)|)|F_E(T_j - 1)[W_{j-1}]|/|F_{z_j}(T_j - 1)|.$$ 

We also have an upper bound

$$\sum_{y \in D_{z_j,E}^W(T_j - 1)} |M_{E,E}(T_j - 1)[W_{j-1}](y)| \leq \sum_{y \in F_{z_j}(T_j - 1)} |M_{E,E}(T_j - 1)[W_{j-1}](y)|$$

$$= |M_{E,E}(T_j - 1)[W_{j-1}]| \leq \theta_{\nu}|F_E(T_j - 1)[W_{j-1}]|$$

where the last inequality holds by $A_{2,j-1}$. Therefore

$$\frac{|D_{z_j,E}^W(T_j - 1)|}{|F_{z_j}(T_j - 1)|} < \frac{\theta_{\nu}}{(1 - \epsilon_*)\theta_{\nu^*}} + 2\epsilon_* \leq \theta_{\nu^*}.$$
Case D.2. Next consider the case \( z_j \notin E \). Then \( E^T_j = E^{T_j-1} = T \). Also \( x \in E \cap V N_H(z_j) \), so \( \nu^* > \nu \). Suppose first that \( E \in H(z_j) \). Then \( F_{E^2}(T_j)[W_j] = F_{E^2_j}(T_j - 1)[W_{j-1}](y) \) and \( M_{E,E}(T_j)[W_j] = M_{E,E}(T_j - 1) \cap F_{E^2}(T_j)[W_j] \), so

\[
D_{z_j,E}^W(T_j - 1) = \left\{ y \in F_{z_j}(T_j - 1) : \frac{|M_{E,E}(T_j - 1) \cap F_{E_z^j}(T_j - 1)[W_{j-1}](y)|}{|F_{E_z^j}(T_j - 1)[W_{j-1}](y)|} > \theta_{\nu^*} \right\}.
\]

Similarly to the previous case, letting \( B'_z \) be the set of \( y \in F_{z_j}(T_j - 1) \setminus E_z^j(T_j - 1) \) such that we do not have

\[
|F_{E_z^j}(T_j - 1)[W_{j-1}](y)| = (1 \pm \epsilon_*)|F_{E_z^j}(T_j - 1)[W_{j-1}]|/|F_{z_j}(T_j - 1)|,
\]

we have \( |B'_z| < \epsilon_*|F_{z_j}(T_j - 1)| \). With \( B_z = B'_z \cup E_z^j(T_j - 1) \) we have

\[
\Sigma := \sum_{y \in D_{z_j,E}^W(T_j - 1)} |M_{E,E}(T_j - 1) \cap F_{E_z^j}(T_j - 1)[W_{j-1}](y)| - \theta_{\nu^*} \sum_{y \in D_{z_j,E}^W(T_j - 1) \setminus B_z} |F_{E_z^j}(T_j - 1)[W_{j-1}](y)|
\]

\[
\geq (1 - \epsilon_*)\theta_{\nu^*}(|D_{z_j,E}^W(T_j - 1)| - 2\epsilon_*|F_{z_j}(T_j - 1)|) \frac{|F_{E_z^j}(T_j - 1)[W_{j-1}]|}{|F_{z_j}(T_j - 1)|}.
\]

We also have \( \Sigma \leq \sum_{y \in F_{z_j}(T_j - 1)} |M_{E,E}(T_j - 1) \cap F_{E_z^j}(T_j - 1)[W_{j-1}](y)| \). This last sum counts all pairs \((y, P)\) with \( P \in M_{E,E}(T_j - 1)[W_{j-1}], y \in F_{z_j}(T_j - 1) \) and \( P y \in F_{E_z^j}(T_j - 1)[W_{j-1}], \) so we can rewrite it as \( \Sigma \leq \sum_{P \in M_{E,E}(T_j - 1)[W_{j-1}]} |F_{E_z^j}(T_j - 1)[W_{j-1}](P)| \). Then Lemma 4.14 gives

\[
|F_{E_z^j}(T_j - 1)[W_{j-1}](P)| = (1 \pm \epsilon_*)\frac{|F_{E_z^j}(T_j - 1)[W_{j-1}]|}{|F_{E}(T_j - 1)[W_{j-1}]|}
\]

for all but at most \( \epsilon_*|F_{E}(T_j - 1)[W_{j-1}]| \) sets \( P \in F_{E}(T_j - 1)[W_{j-1}] \). Therefore

\[
\Sigma \leq |M_{E,E}(T_j - 1)[W_{j-1}]|(1 + \epsilon_*) \frac{|F_{E_z^j}(T_j - 1)[W_{j-1}]|}{|F_{E}(T_j - 1)[W_{j-1}]|} + \epsilon_*|F_{E}(T_j - 1)[W_{j-1}]||F_{z_j}(T_j - 1)|.
\]

Combining this with the lower bound on \( \Sigma \) we obtain

\[
(1 - \epsilon_*)\theta_{\nu^*}(|D_{z_j,E}^W(T_j - 1)|/|F_{z_j}(T_j - 1)| - 2\epsilon_* |F_{z_j}(T_j - 1)|)
\]

\[
< (1 + \epsilon_*) \frac{|M_{E,E}(T_j - 1)[W_{j-1}]|}{|F_{E}(T_j - 1)[W_{j-1}]|} + \epsilon_* \frac{|F_{E}(T_j - 1)[W_{j-1}]||F_{z_j}(T_j - 1)|}{|F_{E_z^j}(T_j - 1)[W_{j-1}]|}.
\]

Now \( |M_{E,E}(T_j - 1)[W_{j-1}]| \leq \theta_{\nu}|F_{E}(T_j - 1)[W_{j-1}]| \) by \( A_{2,j-1} \). Also, since \( x \in E \), and since \( F_{z_j}(T_j - 1)[W_{j-1}] = F_{z_j}(T_j - 1) \), we can apply Lemma 4.14(vi) with \( \Gamma = \{W_{j-1}, \{\theta\}\} \) to get

\[
\frac{|F_{E}(T_j - 1)[W_{j-1}]||F_{z_j}(T_j - 1)|}{|F_{E_z^j}(T_j - 1)[W_{j-1}]|} \leq 2d_u^{-1} \ll \epsilon_*^{-1},
\]

so

\[
\frac{|D_{z_j,E}^W(T_j - 1)|}{|F_{z_j}(T_j - 1)|} < (1 + \epsilon_*)\theta_{\nu} + \sqrt{\epsilon_*} \frac{1}{(1 - \epsilon_*)\theta_{\nu^*}} + 2\epsilon_* < \theta_{\nu^*}.
\]
Case D.3. It remains to consider the case when \( z_j \notin E \) and \( E \notin H(z_j) \). Since \( x \in E \cap VN_H(z_j) \) we have \(|E| \geq 2 \) (otherwise we are in Case D.2). Now \( F_{\overline{E}}^{-}(T_j) = F_{\overline{E}}^{-}(T_j - 1)|F_{\overline{E}}^{-}(T_j)| \) by Lemma 3.11, so \( F_{\overline{E}}^{-}(T_j)|W_j| = F_{\overline{E}}^{-}(T_j - 1)|F_{\overline{E}}^{-}(T_j)|W_j \) by Lemma 4.5. Also, \( M_{E,E}(T_j)|W_j| = M_{E,E}(T_j - 1) \cap F_{\overline{E}}^{-}(T_j)|W_j| \) by Lemma 3.14, so
\[
D_{z_j,E}(T_j - 1) = \left\{ y \in F_{z_j}(T_j - 1) : \frac{|M_{E,E}(T_j - 1) \cap F_{\overline{E}}^{-}(T_j - 1)|F_{\overline{E}}^{-}(T_j)|W_j|}{|F_{\overline{E}}^{-}(T_j - 1)|F_{\overline{E}}^{-}(T_j)|W_j|} > \theta_{\nu^*} \right\}.
\]
Let \( I = \{ S \subseteq \overline{E} : S \in H(z_j) \} \). Then \( P \in F_{\overline{E}}^{-}(T_j - 1)|F_{\overline{E}}^{-}(T_j)|W_j| \) if and only if \( P \in F_{\overline{E}}^{-}(T_j - 1), \) for \( x \notin S \in I \) we have \( P_S \in F_S(T_j), \) i.e. \( P_Sy \in F_{S_z}(T_j - 1), \) and for \( x \notin S \in I \) we have \( P_S \in F_S(T_j)|W_j|, \) i.e. \( P_Sy \in F_{S_z}(T_j - 1)|W_j| \). When we choose \( y \notin E_{z_j}(T_j - 1), \) Lemma 4.14 gives \( d_s(F(T_j)) = (1 + \epsilon_s)d_s(F(T_j - 1)) \) for \( S \subseteq \overline{E} \) with \( S \notin I \) and \( d_s(F(T_j)) = (1 + \epsilon_s)d_s(F(T_j - 1))d_{S_{z_j}}(F(T_j - 1)) \) for \( \emptyset \neq S \in I \). Let \( d'_s \) denote \( d_s(F(T_j)|W_j|) \) if \( x \in S \) or \( d_s(F(T_j)) \) if \( x \notin S \). If \( y \notin E_{z_j}(T_j - 1) \) then \( |W_j| > \frac{1}{d} \) and \( |y| > \epsilon_s^2 |W_j| \), so regular restriction gives \( d'_s = (1 + \epsilon_s)d_s(F(T_j)) \) for \( S \subseteq \overline{E}, S \neq x \) and \( d'_x = d(W_j) = |W_j|/|x| \). Applying Lemma 4.14 we have
\[
d(F_{\overline{E}}^{-}(T_j - 1)|F_{\overline{E}}^{-}(T_j)|W_j|) = (1 + \epsilon_s) \prod_{S \subseteq \overline{E}} d'_s
\]
\[
= (1 + 30\epsilon_s) \prod_{S \subseteq \overline{E}} d_s(F(T_j - 1)) \prod_{\emptyset \neq S \in I} d_{S_{z_j}}(F(T_j - 1)).
\]
Also, \( |F_{\overline{E}}^{-}(T_j - 1)|W_j| = (1 + \epsilon_s)|F_{\overline{E}}^{-}(T_j - 1)| |F_{\overline{E}}^{-}(T_j)|W_j| \) by Lemma 4.14. If \( y \notin E_{z_j}(T_j - 1) \) then \( |W_j| = (1 + \epsilon_s)|W_j| \), so
\[
|F_{\overline{E}}^{-}(T_j - 1)|F_{\overline{E}}^{-}(T_j)|W_j| = (1 + 40\epsilon_s)|F_{\overline{E}}^{-}(T_j - 1)|W_j| \prod_{\emptyset \neq S \in I} d_{S_{z_j}}(F(T_j - 1)).
\]
Similarly to the previous cases, now with \( B_{z_j} = E_{z_j}(T_j - 1) \cup E_{z_j}(T_j - 1), \) we have
\[
\Sigma := \sum_{y \in D_{z_j,E}(T_j - 1)} |M_{E,E}(T_j - 1) \cap F_{\overline{E}}^{-}(T_j - 1)|F_{\overline{E}}^{-}(T_j)|W_j|}| > \theta_{\nu^*} \sum_{y \in D_{z_j,E}(T_j - 1) \setminus B_{z_j}} |F_{\overline{E}}^{-}(T_j - 1)|F_{\overline{E}}^{-}(T_j)|W_j|}| |F_{\overline{E}}^{-}(T_j - 1)|W_j| - 2\epsilon_s|F_{\overline{E}}^{-}(T_j - 1)|
\]
\[
\times |F_{\overline{E}}^{-}(T_j - 1)|W_j| |F_{\overline{E}}^{-}(T_j - 1)| \prod_{\emptyset \neq S \in I} d_{S_{z_j}}(F(T_j - 1)).
\]
For any \( P \in F_{\overline{E}}^{-}(T_j - 1), \) let \( P_{S,I} \) be the set of \( y \in F_{z_j}(T_j - 1) \) such that \( P_Sy \in F_{S_z}(T_j - 1) \) for all \( S \in I \). Let \( B_I \) be the set of \( P \in F_{\overline{E}}^{-}(T_j - 1) \) such that we do not have
\[
|P_{S,I}| = (1 + \epsilon_s)|F_{z_j}(T_j - 1)| \prod_{\emptyset \neq S \in I} d_{S_{z_j}}(F(T_j - 1)).
\]
Then Lemma 4.11 gives \( |B_I| \leq \epsilon_s|F_{\overline{E}}^{-}(T_j - 1)|. \) Also, since \( F_{\overline{E}}^{-}(T_j)|W_j| * W_j - 1 = F_{\overline{E}}^{-}(T_j)|W_j|, \) Lemma 4.5(iv) gives
\[
F_{\overline{E}}^{-}(T_j - 1)|F_{\overline{E}}^{-}(T_j)|W_j| = F_{\overline{E}}^{-}(T_j - 1)|W_j - 1|F_{\overline{E}}^{-}(T_j)|W_j|.
\]
Now $\Sigma \leq \sum_{y \in F_{z,j}(T_j - 1)} |M_{E,E}(T_j - 1) \cap F_{E,E}(T_j - 1)| [W_{j - 1}] [F_{E,E}(T_j)[W_j]] \Sigma'$, which counts all pairs $(y, P)$ with $P \in M_{E,E}(T_j - 1)[W_{j - 1}]$ and $y \in F_{P,I}$, so

$$\Sigma \leq |M_{E,E}(T_j - 1)[W_{j - 1}]|(1 + \epsilon_*)|F_{z,j}(T_j - 1)| \prod_{\emptyset \neq S \in I} d_S \sum_j (F(T_j - 1))$$

$$+ \epsilon_* |M_{E}(T_j - 1)[W_{j - 1}]||F_{z,j}(T_j - 1)|.$$ 

Combining this with the lower bound on $\Sigma$ we obtain

$$(1 - 40\epsilon_*)^\nu \left( \frac{|D_{z,j,E}(T_j - 1)|}{|F_{z,j}(T_j - 1)|} - 2\epsilon_* \right)$$

< $$(1 + \epsilon_*) \frac{|M_{E,E}(T_j - 1)[W_{j - 1}]|}{|F_{E,E}(T_j - 1)[W_{j - 1}]|} + \epsilon_* \prod_{\emptyset \neq S \in I} d_S \sum_j (F(T_j - 1))^{-1}.$$ 

Now $|M_{E,E}(T_j - 1)[W_{j - 1}]| < \theta_\nu |M_{E,E}(T_j - 1)[W_{j - 1}]| by A_{j-1}$, and all densities are at least $d_\alpha \gg \epsilon_*$, so again we have

$$\frac{|D_{z,j,E}(T_j - 1)|}{|F_{z,j}(T_j - 1)|} < \frac{(1 + \epsilon_*)\theta_\nu + \sqrt{\epsilon_*}}{(1 - 40\epsilon_*)\theta_\nu^*} + 2\epsilon_* < \theta_\nu^*.$$ 

This proves Claim D.

**Claim E.** Conditional on the events $\mathbf{A}_{i,j'}$, $1 \leq i \leq 3$, $0 \leq j' < j$ and the embedding up to time $T_j - 1$, the probability that $A_{3,j}$ does not hold is at most $\theta_{12D}'$.

**Proof.** Since $A_{1,j-1}$ and $A_{2,j-1}$ hold, Claim C gives $|E_{z,j}^W(T_j - 1) \backslash E_{z,j}(T_j - 1)| < \epsilon_* |F_{z,j}(T_j - 1)|$ and Claim D gives $|D_{z,j,E}(T_j - 1)| < \theta_{12D}|F_{z,j}(T_j - 1)|$ for any $E$ containing $x$. We also have $|OK_{z,j}(T_j - 1)| > (1 - \theta_*)|F_{z,j}(T_j - 1)|$ by Corollary 4.16. Since $y = \phi(z_j)$ is chosen uniformly at random in $OK_{z,j}(T_j - 1)$, the probability that $y \in E_{z,j}^W(T_j - 1)$ or $y \in D_{z,j,E}(T_j - 1)$ for any $E$ containing $x$ is at most $(\epsilon_* + D\theta_{12D})/(1 - \theta_*) < \theta_{12D}'. This proves Claim E.

To finish the proof of the lemma, suppose that all the events $A_{i,j}$, $1 \leq i \leq 3$, $1 \leq j \leq g$ hold. Then $A_{1,g}$ gives $|F_{z,j}(T_g) \cap W| = |W_g| = (1 + \epsilon_*)|W||F_{z,j}(T_g)|/|F_{z,j}(T_0)| > \frac{1}{2}d_\alpha|W| > \epsilon_*^2|W|$. Also, since all of $V \cup H(x) = \{z_1, \ldots, z_g\}$ has been embedded at time $T_g$, for every triple $E$ containing $x$ we have $E^I = x$, and $|M_{x,E}(T_g) \cap W| < \theta_{12D}'|F_{x}(T_g)| \cap W|$ by $A_{2,g}$. Now $A_x \cap W$ is obtained from $F_{x}(T_g) \cap W$ by deleting all $M_{x,E}(T_g) \cap W$ for triples $E$ containing $x$, so $|A_x \cap W| > (1 - D\theta_{12D}')|F_{x}(T_g)| \cap W|$. In particular, $A_x \cap W$ is non-empty. If any event $A_{i,j}$ fails then $A_{3,j}$ fails (by Claim B) and so by Claim E and a union bound over $1 \leq j \leq g \leq 2D$ we can bound the failure probability by $\theta_*$. 

Our final lemma in this subsection is similar to the previous one, but instead of asking for a set $W$ of vertices to contain an available vertex for $x$, we ask for some particular vertex $v$ to be available for $x$. Recall that $x \in B$ and we start embedding $V \cup H(x)$ at time $T_1$.

**Lemma 4.21.** For any $v \in V_x$, conditional on any embedding of the vertices $\{s(u) : u < T_1\}$ that does not use $v$, with probability at least $p$ we have $\phi(H(x)) \subseteq (G \setminus M)(v)$, so $v \in A_x$.

**Proof.** We estimate the probability that $\phi(H(x)) \subseteq (G \setminus M)(v)$ using arguments similar to those we are using to embed $H$ in $G \setminus M$. The structure of the proof is very similar to that of Lemma 4.20.
Here we will see the purpose of properties (ii) and (iii) in the definition of super-regularity, which ensure that every \( v \in V_z \) is a potential image of \( x \). For \( z \in VN_H(x) \) we write

\[
\alpha_z = \frac{|F_{xz}(T_0)(v)|}{d_{xz}(F(T_0))|F_z(T_0)|} = \frac{d_z(F(T_0)(v))}{d_{xz}(F(T_0))d_z(F(T_0))}.
\]

We consider a vertex \( z \) to be allocated if \( z \) is embedded or \( z = x \). For \( \emptyset \neq S \subset H \) unembedded we define \( \nu'^a(t) \) as follows. When \( |S| = 3 \) we let \( \nu'^a(t) = \nu_S(t) \). When \( |S| = 1,2 \) we let \( \nu'^a(t) = \nu_S(t) + K \), where \( K \) is the maximum value of \( \nu''_{S',\nu}(t') \) over allocated vertices \( x' \) with \( S \in H(x') \); if there is no such vertex \( x' \) we let \( \nu'^a(t) = \nu_S(t) \). Thus \( \nu'^a(t) \) is defined similarly to \( \nu_S(t) \), replacing 'embedded' with 'allocated'. We have \( \nu'^a(t) \geq \nu_S(t) \) and Lemma 4.3(iii-vi) hold replacing \( \nu' \) with \( \nu'' \).

Suppose \( 1 \leq j \leq g \) and that we are considering the embedding of \( z_j \). We interpret quantities at time \( T_j \) with the embedding \( \phi(z_j) = y \), for some as yet unspecified \( y \in F_{z_j}(T_j - 1) \).

We define exceptional sets \( E_{z_j}^v(T_j - 1) \subset F_{x_{z_j}}(T_j - 1)(v) \) by \( y \in F_{z_j}(T_j - 1) \setminus E_{z_j}^v(T_j - 1) \) if and only if for every unembedded \( \emptyset \neq S \subset H(x) \cap H(z_j) \),

\[
F_{Sx}(T_j)(v) = \epsilon_{\nu'^a(T_j),1}\text{-regular if } |S| = 2,
\]

\[
d_S(F(T_j)(v)) = (1 \pm \epsilon_{\nu'^a(T_j),1})d_S(F(T_j))d_{Sx}(F(T_j)) \text{ if } |S| = 2,
\]

\[
ds_S(F(T_j)(v)) = (1 \pm \epsilon_{\nu'^a(T_j),1})d_S(F(T_j))d_{Sx}(F(T_j))\alpha_S \text{ if } |S| = 1.
\]

Here we use the notation \( d_S(F(T_j)(v)) = d_S(F_{Sx \leq}(T_j)(v)) \). Let \( Y \) be the set of vertices at distance at most 3 from \( x \) in \( H \) and let \( H' = \{ S \subset H : S \subset Y \} \). For any \( Z \subset Y \) and unembedded \( S \subset H \) we define

\[
F(T_j)_{S \leq}^{Z_{wv}} = F_{S \leq}(T_j) \left[ \bigcup_{S' \subset Z \cap S, S' \subset H(x)} F_{S'x}(T_j)(v) \right].
\]

Thus \( F(T_j)_{S \leq}^{Z_{wv}} \) consists of all sets \( P \in F_S(T_j) \) such that \( P_{S \leq} \subset F_{S'x}(T_j) \) for all \( S' \subset Z \cap S \) with \( S' \subset H(x) \). For any triple \( E \), we use the notation \( \overline{E} = E^{T_j - 1} \), \( \nu = \nu''_{E^{T_j},(T_j - 1)} \) and \( \nu^a = \nu''_{E^{T_j},(T_j)} \) similarly to the previous lemma, replacing \( \nu' \) with \( \nu'' \). For \( Z \subset Y \) and \( E \in U(z_j) \) we define sets of dangerous vertices by

\[
D_{z_j,E}(T_j - 1) = \left\{ y \in F(T_j - 1)_{z_j}^{Z_{wv}} : |M_{E_{T_j},E}(T_j) \cap F(T_j)_{E^{T_j}}^{Z_{wv}}| > \theta_{\nu^a} \right\}.
\]

The strategy of the proof is to analyse the event that all the complexes \( F(T_j)_{E^{T_j}}^{Z_{wv}} \) are well-behaved, meaning informally that they are regular, have roughly expected densities and do not have too many marked edges. The regularity and density properties will hold if we choose \( y = \phi(z_j) \notin E_{z_j}(T_j - 1) \), and the marked edges will be controlled if we choose \( y = \phi(z_j) \notin D_{z_j,E}(T_j - 1) \).

We think of \( Z \) as the sphere of influence, as it defines the sets which we restrict to be in the neighbourhood of \( v \). Our eventual goal is that all sets in \( H(x) \) should be embedded in \( G(v) \), but to achieve this we need to consider arbitrary choices of \( Z \subset Y \). For later use in the proof we record here some properties of \( Z \) that follow directly from the definitions.

(i) \( F(T_j)_{S \leq}^{Z_{wv}} = F(T_j)_{S \leq}^{(Z \cap S)_{wv}} \).
(ii) \( F(T_j - 1)_{Z_{j_{1}}} \) is \( F_{Z_{j_{1}}}(T_j - 1) \) if \( z_j \notin Z \) or \( F_{xxz_j}(T_j - 1)(v) \) if \( z_j \in Z \).

(iii) \( F(T_j)_{S_{j}} = F(T_j)_{S_{j}} \) so \( D^0_{z_j}E(T_j - 1) = D_{z_j}E(T_j - 1) = \{ y \in F_{z_j}(T_j - 1) : |M_{E_{T_j},E}(T_j)| \geq \theta_{\mu} \} \), as defined in the description of the algorithm.

(iv) If \( Z' = Z \cup z_j \) then \( F(T_j)_{Z'}^v = F(T_j)_{E'_{T_j}}^v \) by (i), since \( z_j \notin E_{T_j} \), so \( D^0_{z_j}E(T_j - 1) = D^0_{z_j}E(T_j - 1) \cap F_{x_{z_j}}(T_j - 1)(v) \).

(v) If \( S \subseteq Z \) and \( S \in H(x) \) then \( F(T_j)_{S_{z}}^v = F_{Sx}(T_j)(v) \).

Write \( B_{z_{j_{1}}} = E_{z_{j_{1}}}(T_j - 1) \cap B_{z_{j_{1}}}(T_j - 1) \). Recall that \( U(z_j) \) is the set of triples \( E \) with \( E \cap V_{N_H(z_j)} z_j \neq \emptyset \). We consider the following events:

- \( A_{1,j}, \; j \geq 1 \) is the event that property \((*,4.21)\) above holds. We also define \( A_{1,0} \) to be the event that \( |G(v)_{z \cap V_z(T_0)}| > (1 - \delta_B^{1/3})|G(v)_{z}| \) for every \( z \in V_{N_H}(x) \).

- \( A_{2,j}, \; j \geq 0 \) is the event that for every triple \( E \in H' \) and \( Z \subseteq E \) we have

\[
\left| M_{E_{T_j},E}(T_j) \cap F_{E'_{T_j}}^v \right| \leq \theta_{\mu} \left| F_{E'_{T_j}}^v \right| .
\]

- \( A_{3,j}, \; j \geq 0 \) is the event that for every triple \( E \in H' \), \( Z \subseteq E \) and \( \emptyset \neq S \subseteq E_{T_j} \),

\[
F(T_j)_{S_{z}}^v \text{ is } \epsilon_{\nu}^0(T_j), \text{2-regular for } |S| \geq 2 , \text{ with }
\]

\[
d_S(F(T_j)_{z}) = \begin{cases} 
(1 \pm \epsilon_{\nu}^0(T_j), \text{2})d_{S}(F(T_j))d_{S_z}(F(T_j)) & \text{if } S \subseteq Z, S \in H(x), |S| = 2 \\
(1 \pm \epsilon_{\nu}^0(T_j), \text{2})d_{S}(F(T_j))d_{S_z}(F(T_j)) & \text{if } S \subseteq Z, S \in H(x), |S| = 1 \\
(1 \pm \epsilon_{\nu}^0(T_j), \text{2})d_{S}(F(T_j)) & \text{otherwise.}
\end{cases}
\]

- \( A_{4,j}, \; j \geq 1 \) is the event that \( y = \phi(z_j) \) is chosen in \( O K_{z_{j_{1}}}^v (T_j - 1) \), defined to be the subset of \( F_{x_{z_j}}(T_j - 1)(v) \) obtained by deleting the sets \( B_{z_{j_{1}}} \) and \( D^0_{z_{j_{1}}}E(T_j - 1) \) for all \( E \in U(z_j) \), \( Z \subseteq E \), \( Z' = Z \cup z_j \). We also define \( A_{4,0} \) to be the event that holds with probability 1.

By property (iv) above, an equivalent definition of \( OK_{z_{j_{1}}}^v (T_j - 1) \) is the subset of \( F_{x_{z_j}}(T_j - 1)(v) \) obtained by deleting the sets \( B_{z_{j_{1}}} \) and \( D^0_{z_{j_{1}}}E(T_j - 1) \) for all \( E \in U(z_j) \) and \( Z' \subseteq E \cup z_j \). Also, since \( OK_{z_j}(T_j - 1) \) is obtained from \( F_{z_j}(T_j - 1) \) by deleting \( E_{z_j}(T_j - 1) \) and \( D_{z_j,E}(T_j - 1) = D^0_{z_j,E}(T_j - 1) \) for \( E \in U(z_j) \) we have \( OK_{z_j}(T_j - 1) \subseteq OK_{z_j}(T_j - 1) \).

We will use the following notation throughout: \( Z \) is a subset of \( Y, \; Z' = Z \cup z_j, \; I = \{ S \subseteq Z : S \in H(x)\} \), \( I' = \{ S \subseteq Z' : S \in H(x)\} \). We divide the remainder of the proof into a series of claims.

**Claim A.** The events \( A_{1,0}, A_{2,0}, A_{3,0} \) and \( A_{4,0} \) hold with high probability.

**Proof.** \( A_{4,0} \) holds by definition. For any \( z \in V_{N_H}(x) \), \( d_z(G(v)) = (1 + \epsilon') d_{z_{z_{z}}} (G) d_z(G) > d_u \) by condition (ii) of super-regularity, so \( A_{1,0} \) holds with high probability by Lemma 4.18. Next recall that no vertex at distance within 4 of \( x \) has been embedded at time \( T_0 \), so \( F_z(T_0) = V_z(T_0) \) for any \( z \) within distance 3 of \( x \). (This is why we choose the buffer vertices to be at mutual distance at least 9.) We have \( |F_z(T_0)| > (1 - 2\sqrt{\delta_B})|V_z| \) by (5) and \( |F_z(T_0) \cap G(v)| > (1 - \delta_B^{1/3})|G(v)| \) by \( A_{1,0} \). For
any $S \in H'$ with $|S| \geq 2$, $F_S(T_0)$ is the restriction of $G_S$ to $((F_z(T_0) : z \in S), \{\emptyset\})$. Since $G_S$ is $\epsilon$-regular, $F_S(T_0)$ is $\epsilon'$-regular with $d_S(F(T_0)) = (1 \pm \epsilon')d_S(G)$. It also follows that $\alpha_z > 1 - 2\delta_B^{1/3}$.

Now we show that $A_{3,0}$ holds. Consider any triple $E \in H'$ and $Z \subseteq E$. Suppose $\emptyset \neq S \subseteq E$. There are two cases according to whether $S \in I$. Suppose first that $S \in I$. By property (v) above, $F(T_0)^{\leq S} = F_{\leq S}(T_0)(v)$ is the restriction of $G_{\leq S}(v)$ to $((F_z(T_0) \cap G(v) : z \in S), \{\emptyset\})$. If $|S| = 2$ then $G_{\leq S}(v)$ is $\epsilon'$-regular and $d_S(G(v)) = (1 \pm \epsilon')d_S(G)d_{\leq S}(G)$ by condition (ii) of super-regularity. Then by regular restriction $F_{\leq S}(T_0)(v)$ is $e_{0,0}$-regular and $d_S(F(T_0)(v)) = (1 \pm e_{0,0})d_S(G)d_{\leq S}(G) = (1 \pm 2e_{0,0})d_S(F(T_0))d_{\leq S}(F(T_0))$. Also, if $|S| = 1$ then $d_S(F(T_0))d_{\leq S}(F(T_0))\alpha_S = d_S(F(T_0)(v))$ by definition. This gives the properties required by $A_{3,0}$ when $S \in I$. In fact, we have the stronger statements in which $e_{0,0}(T_0,2)$ is replaced by $e_{0,1},$ say. On the other hand, if $S \notin I$ then $F(T_0)^{\leq S} = F_{\leq S}(T_0)(v)$ is the restriction of $F_{\leq S}(T_0)$ to $\cup_{S' \subseteq S \cap Z, S' \in H(x)} F_{S'}(T_0)(v)$. Since $F_{\leq S}(T_0)$ is $\epsilon'$-regular and $F_{S'}(T_0)(v)$ is $e_{0,1}$-regular for $S' \in I$, by regular restriction $F(T_0)^{\leq S} = e_{0,0}$-regular with $d_S(F(T_0)^{\leq S}) = (1 \pm \epsilon')d_S(F(T_0))$. Thus $A_{3,0}$ holds.

It remains to show that $A_{2,0}$ holds. We will abuse notation and let $I$ also denote the subcomplex $\{i(S) : S \in I\}$ of $(r| < 3/4)$. Then $F(0)^{Z,v} = G_{E}^{I}$ as defined in Definition 3.15. By property (iii) of super-regularity $|M_E \cap G_{E}^{I}| \leq \theta|G_{E}^{I}|$, and $G_{E}^{I}$ is $\epsilon'$-regular with $S$-density (for $S \subseteq E$) equal to $(1 \pm \epsilon')d_S(G)$ if $S \subseteq I$ or $(1 \pm \epsilon')d_S(G)$ otherwise. Now $F(T_0)^{Z,v} = F_{z}(T_0)\cap G(v)$, if $z \in Z \cap H(x)$ or $F_{z}(T_0)$ otherwise, and similarly $G_{E}^{I}$ is $G(v)$ if $z \in Z \cap H(x)$ or $G(z)$ otherwise. Either way we have $|F(T_0)^{Z,v}| > (1 - \delta_B^{1/3})|G_{E}^{I}|$ by the estimates recalled above. For $|S| \geq 2$ we showed above that $d_S(F(T_0)^{Z,v}) = (1 \pm 2e_{0,0})d_S(F(T_0))d_{\leq S}(F(T_0))$ if $S \in I$ or $d_S(F(T_0)^{Z,v}) = (1 \pm \epsilon')d_S(F(T_0))$ if $S \notin I$. Recalling that $d_S(F(T_0)) = (1 \pm \epsilon')d_S(G)$ for $S' \in H'$ with $|S'| \geq 2$, Lemma 4.10 gives

$$\frac{|F(T_0)^{Z,v}|}{|G_{E}^{I}|} = \frac{d(F(T_0)^{Z,v})}{d(G_{E}^{I})} = \frac{(1 \pm 9e_{0,0})\prod_{z \in E}|F(T_0)^{Z,v}|}{(1 \pm 8\epsilon')\prod_{z \in E}|G_{E}^{I}|} > (1 - 10e_{0,2})(1 - \delta_B^{1/3})^3 > 1/2.$$

Now $|M_{E,E}(T_0) \cap F(T_0)^{Z,v}| \leq |M_{E} \cap G_{E}^{I}| \leq \theta|G_{E}^{I}| \leq 2\theta|F(T_0)^{Z,v}|$, giving even a stronger bound on the marked edges than is needed. Thus $A_{2,0}$ holds.

**Claim B.** Suppose $A_{3,j-1}$ holds. If $y \notin E_{z,E}^{s}(T_j - 1)$ then $A_{2,j}$ and $A_{3,j}$ hold, and if $y \notin D_{z,j,E}^{s}(T_j - 1)$ then $A_{2,j}$ holds. Thus $A_{3,j-1}$ and $A_{4,j}$ imply $A_{1,j}$, $A_{2,j}$ and $A_{3,j}$.

**Proof.** Suppose $y \notin E_{z,E}^{s}(T_j - 1)$. Then $A_{1,j}$ holds by definition. $A_{3,j}$ follows from $A_{1,j}$ similarly to the case $j = 0$ considered in Claim A. To see this, consider any triple $E \in H'$ and $Z \subseteq E$. Suppose $\emptyset \neq S \subseteq E$ is unembdedded. If $S \subseteq Z$ and $S \in H(x) \cap H(z_j)$ then $F(T_j)^{Z,v} = F_{S}(T_j)(v)$ satisfies $(s,4,21)$ by $A_{1,j}$, so we have the properties required by $A_{3,j}$. In fact, we have the stronger statements in which $e_{0,0}(T_j,2)$ is replaced by $e_{0,0}(T_j,1)$. For any other $S$ we use the definition of $F(T_j)^{Z,v}$ as the restriction of $F_{S}(T_j)$ to $\cup_{S' \subseteq S \cap Z, S' \in H(x)} F_{S'}(T_j)(v)$. Note that by Lemmas 3.11 and 4.5 we get the same result if we replace $F_{S}(T_j)(v)$ by $F_{S'}(T_j - 1)(v)$ for those $S' \notin H(z_j)$. Now $F_{S}(T_j)$ is $e_{0,2}(T_j,1)$-regular for $S' \subseteq S \cap Z$ by Lemma 4.13, $F_{S}(T_j)(v)$ is $e_{0,2}(T_j,1)$-regular for $S' \subseteq S \cap Z, S' \in H(x) \cap H(z_j)$ and $F_{S'}(T_j - 1)(v)$ is $e_{0,2}(T_j - 1,2)$-regular for $S' \in I$ by $A_{3,j-1}$. So by regular restriction $F(T_j)^{Z,v} = e_{0,2}(T_j,2)$-regular with $d_S(F(T_j)^{Z,v}) = (1 \pm e_{0,2}(T_j,2))d_S(F(T_j))$. Thus $A_{3,j}$ holds.

Next consider any triple $E \in H'$ and $Z \subseteq E$. Suppose $y \notin D_{z,j,E}^{s}(T_j - 1)$. If $E \in U(z_j)$ then by definition we have $|M_{E,T_j,E}(T_j) \cap F(T_j)^{Z,v}| \leq \theta|F(T_j)^{Z,v}|$, which is a stronger bound than required. On the other hand, if $E \notin U(z_j)$ then consider the most recent time $T_{j'} < T_j$ when we
embedded $z_j'$ with $E \in U(z_j')$, setting $j' = 0$ if there is no such time. Then $E^{T,j'} = E^{T,j}$, and by the stronger bound at time $j'$ we have $|M_{E^{T,j}, E}(T_j') \cap F(T_j')|^Z_{uv} \leq \theta_{\nu^*}|F(T_j')|^Z_{uv}$. (Recall that we also obtained a stronger bound for $A_{2,0}$ in Claim A.) Now $F(T_j')_{E^{T,j}}$ is obtained from $F(T_j')_{E^{T,j}}$ by deleting at most $2D$ vertices $\phi(z_j')$, $j' + 1 \leq j^* \leq j$ and the sets containing them, so $|F(T_j')|^Z_{uv} \geq (1 - \frac{\epsilon}{\nu^*})|F(T_j')|^Z_{uv}$; this can be seen by regular restriction and Lemma 4.10, or simply from the fact that a trivial bound for the number of deleted sets has a lower order of magnitude for large $n$. Therefore $|M_{E^{T,j}, E}(T_j') \cap F(T_j')|^Z_{uv} \leq |M_{E^{T,j}, E}(T_j') \cap F(T_j')|^Z_{uv} \leq \theta_{\nu^*}|F(T_j')|^Z_{uv} < \theta_{\nu^*}|F(T_j')|^Z_{uv}$, so $A_{2,j}$ holds.

Claim C. If $A_{1,j-1}$ and $A_{3,j-1}$ hold then $|E^u_{t_j}(T_j - 1) \setminus E_{t_j}(T_j - 1)| < \epsilon_s|F_{xz}(T_j - 1)(v)|$.

Proof. For any $S \in H$ we write $\nu^*_S = \nu^*_S(T_j - 1)$ and $\nu_S^* = \nu_S^*(T_j)$. Consider any unembedded $\emptyset \neq S \in H(x) \cap H(z_j)$.

Case C.1. Suppose first that $S = z$ has size 1. Note that $\nu^*_z = \max\{\nu^*_u, \nu^*_v, \nu^*_x\}$ by the analogue of Lemma 4.3 for $\nu^*_u$. We consider two cases according to whether $xz_jz \in H$.

Case C.1.i. Suppose that $xz_jz \in H$. Then $F_{xz}(T_j)(v) = F_{xz_jz}(T_j - 1)(yv)$. Since $F_{xz_jz}(T_j - 1)(v) = F(T_j - 1)^{z_jz^u}$, using $A_{3,j-1}$ we have $d_{xz_jz}(F(T_j - 1)(v)) = (1 \pm \epsilon_{\nu^*_u,2})d_{xz_jz}(F(T_j - 1))(d_{xz}(F(T_j - 1)) > d^u_2/2$ and $F_{xz_jz}(T_j - 1)(v)$ is $\epsilon_{\nu^*_u,2}$-regular. We also have $d_{xz}(F(T_j - 1)(v)) = (1 \pm \epsilon_{\nu^*_u,2})d_{xz}(F(T_j - 1))d_{xz}(F(T_j - 1))d_{xz}(F(T_j - 1))\alpha_z$. By Lemma 2.2, for all but at most $\epsilon_{\nu^*_u,2}|F_{xz_jz}(T_j - 1)(v)|$ vertices $y \in F_{xz_jz}(T_j - 1)(v)$ we have $|F_{xz}(T_j)(v)| = |F_{xz_jz}(T_j - 1)(v)(y)| = (1 \pm \epsilon_{\nu^*_u,3})d_{xz}(F(T_j - 1))(d_{xz}(F(T_j - 1))\alpha_z)$.

Also if $y \not\in E_{t_j}(T_j - 1)$ then $(*)_{4.1.1}$ gives

$$d_{xz_jz}(F(T_j))(v) = (1 \pm \epsilon_{\nu^*_u,3})d_{xz_jz}(F(T_j - 1)(v))d_{xz}(F(T_j - 1)(v))$$

$$= (1 \pm \epsilon_{\nu^*_u,3})(1 \pm \epsilon_{\nu^*_v,2})(1 \pm \epsilon_{\nu^*_u,2}) \times d_{xz_jz}(F(T_j - 1))d_{xz_jz}(F(T_j - 1))d_{xz}(F(T_j - 1))d_{xz}(F(T_j - 1))\alpha_z.$$
We also have $d_z(F(T_j)) = (1 + \epsilon_{\nu^{y}_{z},0})d_z(F(T_j - 1))d_{xz}(F(T_j - 1))$ if $y \notin E_z(T_j - 1)$ by \((**),1\) and $d_{xz}(F(T_j)) = (1 + \epsilon_{\nu^{y}_{z},0})^2d_{xz}(F(T_j - 1))$ by Lemma 2.3, and using $xzj \notin H$. Thus for such $y$ we have the required estimate $d_z(F(T_j)(v)) = (1 + \epsilon_{\nu^{y}_{z},1})d_{xz}(F(T_j))d_z(F(T_j))\alpha_z$.

**Case C.2.** The remaining case is when $S = z'z$ has size 2. Note that $xzjz'z$ is $r$-partite, as $z'z \in H(x) \cap H(zj)$ and $xzj \in H$. Note also that $\nu^{y}_{z,z'} > \max\{\nu^{y}_{z,z'},\nu^{y}_{z,z'},\nu^{y}_{z'z}\}$. Consider the complex

$$J = F_{z'z \leq j}(T_j - 1) \left[ \bigcup_{S' \subseteq z'z', S' \in H(x)} F_{S'T}(T_j - 1)(v) \right].$$

We claim that $F_{z'z}(T_j)(v) = J(y)$. To see this, note first that $F_{z'z}(T_j) = F_{z'z}(T_j - 1)|F_{z'z}(T_j)]$ by Lemma 3.11. Then by Lemma 4.5 we can write $F_{z'z}(T_j) = F_{z'z}(T_j - 1) * F_{z'z}(T_j)$ and so

$$F_{z'z}(T_j)(v) = F_{z'z}(T_j - 1) * F_{z'z}(T_j) * F_{z'z}(T_j - 1)(v) * F_{z'z}(T_j)(v) = F_{z'z}(T_j)(v) \cup F_{z'z}(T_j)(v) = F_{z'z}(T_j)(v) - T_j \cup F_{z'z}(T_j)(v) \cup F_{z'z}(T_j)(v).$$

Here we used $F_{z'z}(T_j - 1) * F_{z'z}(T_j) = F_{z'z}(T_j - 1)|F_{z'z}(T_j)] = F_{z'z}(T_j)$ and $F_{z'z}(T_j)(v) = F_{z'z}(T_j)(v) \cup F_{z'z}(T_j)(v) = F_{z'z}(T_j)(v)$. To put the above identity in words: $F_{z'z}(T_j)(v)$ is the bipartite subgraph of $F_{z'z}(T_j) \cap F_{z'z}(T_j - 1)(v)$ induced by $F_{z'z}(T_j)(v)$ and $F_{z'z}(T_j)(v)$. Also,

$$J = F_{z'z \leq j}(T_j - 1) * \bigcup_{S' \subseteq z'z', S' \in H(x)} F_{S'T}(T_j - 1)(v), \text{ so by Lemma 4.5(ii)}$$

$$J(y) = F_{z'z}(T_j - 1) * \bigcup_{S' \subseteq z'z', S' \in H(x)} F_{S'T}(T_j - 1)(v)$$

$$* F_{z'z \leq j}(T_j - 1)(y) * \bigcup_{S' \subseteq z'z', S' \in H(x)} F_{S'T}(T_j - 1)(vy)$$

$$= F_{z'z}(T_j - 1)(v) * \bigcup_{S' \subseteq z'z', S' \in H(x)} F_{S'T}(T_j - 1)(vy).$$

Here we used $F_{z'z \leq j}(T_j - 1)(y) = F_{z'z}(T_j)$ and $F_{z'z}(T_j - 1) * F_{z'z}(T_j) = F_{z'z}(T_j - 1)|F_{z'z}(T_j)] = F_{z'z}(T_j)$. We also recall that $S = z'z \in H(x)$, so $S' \in H(x)$ for any $S' \subseteq z'z$. Note that $\bigcup_{S' \subseteq z'z', S' \in H(x)} F_{S'T}(T_j - 1)(vy)$ is a 1-complex containing $\{\emptyset, F_{z'z}(T_j - 1)(vy) \}$ if $xzj \in H$ and $F_{z'z}(T_j - 1)(vy)$ if $xzjz' \in H$. As in Case C.1, we have $F_{z'z}(T_j)(v) = F_{z'z}(T_j - 1)(vy)$ if $xzj \in H$ or $F_{z'z}(T_j)(v) = F_{z'z}(T_j - 1)(vy) \cap F_{z'}(T_j)$ if $xzj \notin H$, and similarly $F_{z'z}(T_j)(v) = F_{z'z}(T_j - 1)(vy)$ if $xzjz' \in H$ or $F_{z'z}(T_j)(v) = F_{z'z}(T_j - 1)(vy) \cap F_{z'}(T_j)$ if $xzjz' \notin H$. Thus $J(y)$ is also equal to $F_{z'z}(T_j - 1)(v) * F_{z'z}(T_j - 1)(vy) * F_{z'z}(T_j)(v) * F_{z'z}(T_j)(v)$, which proves that $F_{z'z}(T_j)(v) = J(y)$.

For any $S' \subseteq z'z, F_{S'T}(T_j - 1)$ is $\epsilon_{\nu_{z',0}}$-regular by Lemma 4.13 if $S' \in H$ and, using property (v) above, $F_{S'T}(T_j - 1)(v)$ is $\epsilon_{\nu_{z',2}}$-regular by $A_{\nu_{z',2}}$ if $S' \in H(x)$. By Lemma 4.8, $J_{z'z}$ is $\epsilon_{\nu_{z',0}}$-regular with

$$d_{z'z}(J) = (1 + \epsilon_{\nu_{z',0}})d_{z'z}(F(T_j - 1)).$$

Similarly, by Lemma 2.3, if $S' \subseteq z'z$, $|S'| = 2, S' \notin H(x)$ then $J_{S'}$ is $\epsilon_{\nu_{z',2}}$-regular with $d_{S'}(J) = (1 + \epsilon_{\nu_{z',2}})d_{S'}(F(T_j - 1))$. On the other hand, if $S' \subseteq z'z$, $|S'| = 2, S' \in H(x)$ then $J_{S'} = F_{S'T}(T_j - 1)(v)$.
is $\epsilon_{y',z'}$-regular with $d_{S'}(J) = (1 \pm \epsilon_{y',z'})d_{S'x}(F(T_j - 1))d_{S'}(F(T_j - 1))$ by $A_{3,j-1}$. In particular,

$$d_{z'}(J) = (1 \pm \epsilon_{y',z'})d_{z'x}(F(T_j - 1))d_{z'}(F(T_j - 1)).$$

Now by Lemma 4.6, for all but at most $6\epsilon_{12D,3} |F_{xz_j}(T_j - 1)(v)|$ vertices $y \in F_{xz_j}(T_j - 1)(v)$, $F_{xz_j}(T_j)(v) = J(y)$ is $\epsilon_{y',z'}$-regular and $d_{z'}(F(T_j)(v)) = d_{z'}(J(y)) = (1 \pm \epsilon_{y',z'})d_{z'x}(J)d_{z'}(J)$.

Also, $d_{z'}(F(T_j)) = (1 \pm \epsilon_{y',z'})d_{z'x}(F(T_j - 1))d_{z'}(F(T_j - 1))$ if $y \notin E_{z_j}(T_j - 1)$ by (*4.1), and $d_{z'x}(F(T_j)) = (1 \pm \epsilon_{y',z'})d_{z'x}(F(T_j - 1))$ by Lemmas 4.13 and 4.8. Thus

$$d_{z'}(F(T_j)(v)) = (1 \pm \epsilon_{y',z'})d_{z'x}(J)d_{z'}(J) = (1 \pm \epsilon_{y',z'})d_{z'x}(F(T_j))(v) = (1 \pm \epsilon_{y',z'})d_{z'x}(F(T_j - 1))d_{z'}(F(T_j - 1))$$

Combining the estimates for all cases we have at most $\epsilon_{\ast}|F_{xz_j}(T_j - 1)(v)|$ exceptional vertices $y$, so this proves Claim C.

**Claim D.** If $A_{1,j-1}$, $A_{2,j-1}$ and $A_{3,j-1}$ hold then for any $E \in U(z_j)$, $Z \subseteq E$, $Z' = Z \cup z_j$ we have

$$|D_{z_j,E}(T_j - 1)| < \theta_{\ast}|F_{xz_j}(T_j - 1)(v)|.$$

**Proof.** Note that $\nu^\ast > \nu$ by Lemma 4.3, since $E \in U(z_j)$.

**Case D.1.** First consider the case $z_j \in E$. Then $E_{T_j} = \overline{E} \setminus z_j$ and $F_{E_{T_j} \subseteq}(T_j) = F_{\overline{E}}(T_j - 1)(y)$. We will show that

$$F(T_j)_{E_{T_j} \subseteq}^{z^\ast v} = F(T_j - 1)^{z^\ast v}(y). \quad (+4.21)$$

Before proving this in general we will illustrate a few cases of this statement. Suppose that $x \in E$, say $E = xz_jz$ for some $z$. If $z$ is embedded then $\overline{E} = xz_j$ and $E_{T_j} = x$, so $F(T_j)^{z^\ast v} = F_x(T_j) = F_{xz_j}(T_j - 1)(y) = F(T_j - 1)^{z^\ast v}(y)$. If $z$ is not embedded then $\overline{E} = E$ and $E_{T_j} = xz$, $F(T_j)^{z^\ast v}$ is the bipartite subgraph of $F(T_j)_{xz} = F(T_j - 1)(y)$ spanned by $F(T_j)^{z^\ast v}$, i.e. $F_y = F(T_j - 1)^{z^\ast v}(y)$ if $y \in F(T_j - 1)^{z^\ast v}(y)$.

We have $P \in F(T_j - 1)^{z^\ast v}(y)$ if $P \in F(T_j - 1)^{z^\ast v}(y)$ if $y \in F(T_j - 1)^{z^\ast v}(y)$, i.e. $P \in F(T_j - 1)^{z^\ast v}(y)$ if $y \in F(T_j - 1)^{z^\ast v}(y)$.

On the other hand, suppose that $x \notin E$ and consider the case that $E$ is unembedded, i.e. $\overline{E} = E = z_jz'$. Then $F(T_j)^{z^\ast v}$ is the bipartite subgraph of $F(T_j)_{z'z}$ spanned by $F(T_j)_{z'}$ and $F(T_j)_{z}$, where we write $F(T_j)^{z^\ast v}$ for $F(T_j)_{z'z}$ if $z'z \in I$ or $F(T_j)_{z'}z$ otherwise, $F(T_j)^{z^\ast v}$ for $F(T_j)_{z}z$ if $z \in I$ or $F(T_j)_{z}$ otherwise, and $F(T_j)^{z^\ast v}$ for $F(T_j)_{z'z}$ if $z' \in I$ or $F(T_j)_{z'}$ otherwise. Recall that $F(T_j)_{z'z}(v)$ is $F_{xz_j}(T_j - 1)(v)$ if $xz_j \in H$ (see Case C.1.i) or $F_{xz_j}(T_j - 1)(v) \cap F_{z_j}(T_j - 1)(y)$ if $z_j \notin H$ (see Case C.1.ii). Similar statements hold for $F_{xz_j}(T_j)(v)$. The case $z'z \subseteq Z$ then $F(T_j - 1)^{z^\ast v}$ is the complex $J$ defined in Case C.2, so as shown there $F(T_j)^{z^\ast v}(v) = F(T_j - 1)^{z^\ast v}(y)$.

We deduce (+4.21) from the case $A = E_{T_j}^{\ast}$ of the following more general statement, which will also be used in Cases D.2 and D.3:

$$F(T_j)^{z^\ast v}_{A \subseteq} = F(T_j - 1)^{z^\ast v}_{A \subseteq}(y) \quad \text{for } A \in H(z_j). \quad (\dagger4.21)$$
To see this, note that $F_{S_z}(T_j) = F_{S_z}(T_j - 1)[F_{S_{zz_z}}(T_j - 1)(y)]$ for any $z_j \notin S \in I$ by Definition 3.7 (deleting $y$ has no effect), so by Lemma 4.5 we have

$$F_{S_z}(T_j)(v) = (F_{S_z}(T_j - 1) * F_{S_{zz_z}}(T_j - 1)(y))(v)$$

$$= F_{S_z}(T_j - 1) * F_{S_{zz_z}}(T_j - 1)(y)$$

$$* F_{S_z}(T_j - 1)(v) * F_{S_{zz_z}}(T_j - 1)(y)v$$

$$= F_{S_z}(T_j - 1)(v) * F_{S_{zz_z}}(T_j - 1)(y) * F_{S_{zz_z}}(T_j - 1)(yv),$$

since $F_{S_{zz_z}}(T_j - 1)(y) * F_{S_z}(T_j - 1) = F_{S_{zz_z}}(T_j - 1)(y)$. Now by definition and Lemma 4.5 we have

$$F(T_j - 1)Z^{*v}_{A_z} = F_{A_z}(T_j - 1)\left(\cup_{S \in I} F_{S_z}(T_j - 1)(v)\right) = F_{A_z}(T_j - 1) * \bigotimes_{S \in I'} F_{S_z}(T_j - 1)(v),$$

so

$$F(T_j - 1)Z^{*v}(y)_{A_z} = F_{A_z}(T_j - 1) * \bigotimes_{S \in I} F_{S_z}(T_j - 1)(v)$$

$$* F_{A_z}(T_j - 1)(y) * \bigotimes_{S \in I'} F_{S_z}(T_j - 1)(vy)$$

$$= F_{A_z}(T_j - 1)(y) * \bigotimes_{S \in I} F_{S_z}(T_j - 1)(v) * \bigotimes_{S \in I'} F_{S_z}(T_j - 1)(vy).$$

Here we used $F_{A_z}(T_j - 1) * F_{A_z}(T_j - 1)(y) = F_{A_z}(T_j - 1)(y)$. On the other hand,

$$F^{Z^{*v}}_{A_z}(T_j) = F_{A_z}(T_j)\left(\cup_{S \in I} F_{S_z}(T_j)(v)\right) = F_{A_z}(T_j) * \bigotimes_{S \in I} F_{S_z}(T_j)(v)$$

$$= F_{A_z}(T_j) * \bigotimes_{S \in I} \left( F_{S_z}(T_j - 1)(v) * F_{S_{zz_z}}(T_j - 1)(y) * F_{S_{zz_z}}(T_j - 1)(yv) \right)$$

$$= F_{A_z}(T_j - 1)(y) * \bigotimes_{S \in I} F_{S_z}(T_j - 1)(v) * \bigotimes_{S \in I'} F_{S_z}(T_j - 1)(vy) = F(T_j - 1)Z^{*v}(y)_{A_z}. $$

In the second equality above we substituted for $F_{S_z}(T_j)(v)$, and in the third we set $S' = S_{zz_z}$ and used $F_{S_{zz_z}}(T_j - 1)(y) * F_{A_z}(T_j - 1)(y) = F_{A_z}(T_j - 1)(y)$. This proves (4.21), and so (+4.21).

Now $M_{E^T_j,E}(T_j) = M_{E_j,E}(T_j - 1)(y)$ by Lemma 3.14, so we have $M_{E^T_j,E}(T_j) \cap F(T_j - 1)Z^{*v}_{E_j} = M_{E_j,E}(T_j - 1)(y) \cap F(T_j - 1)Z^{*v}_{E_j}(y)$. Recalling that $F(T_j - 1)Z^{*v} = F_{S_{zz_z}}(T_j - 1)(v)$, we have

$$D^{Z^{*v}}_{zz_z,E}(T_j - 1) = \left\{ y \in F_{S_{zz_z}}(T_j - 1)(v) : \left| \frac{M_{E_j,E}(T_j - 1) \cap F(T_j - 1)Z^{*v}_{E_j}}{F(T_j - 1)Z^{*v}_{E_j}(y)} \right| > \theta_{v^*} \right\}. $$

Also, $F(T_j - 1)Z^{*v}_{E_j}$ is $\epsilon_{12D,2}$-regular by $A_{3,j-1}$, so writing $B^I_{zz_z}$ for the set of vertices $y \in F(T_j - 1)Z^{*v}_{E_j}$ for which we do not have $|F(T_j - 1)Z^{*v}_{E_j}(y)| = (1 \pm \epsilon_*)|F(T_j - 1)Z^{*v}_{E_j}| / |F(T_j - 1)Z^{*v}_{E_j}|$, we have
\[|B'_{z_j}| < \epsilon_*|F(T_j - 1)^{Z*_{E^s}}|\] by Lemma 4.12. Now
\[
\sum_{y \in D^{Z*_{E^s}}_{z_j,E}(T_j - 1)} \left| \left( M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z*_{E^s}} \right)(y) \right|
\geq \theta_{\nu^*} \sum_{y \in D^{Z*_{E^s}}_{z_j,E}(T_j - 1) \setminus B'_{z_j}} \left| F(T_j - 1)^{Z*_{E^s}}(y) \right|
\geq (1 - \epsilon_*) \theta_{\nu^*} \left( |D^{Z*_{E^s}}_{z_j,E}(T_j - 1)| - \epsilon_* |F_{xz_j}(T_j - 1)(v)| \right) \left| F(T_j - 1)^{Z*_{E^s}} / |F_{xz_j}(T_j - 1)(v)| \right|.
\]
We also have an upper bound
\[
\sum_{y \in F_{xz_j}(T_j - 1)(v)} \left| \left( M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z*_{E^s}} \right)(y) \right|
\leq |M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z*_{E^s}}| < \theta_{\nu^*} |F(T_j - 1)^{Z*_{E^s}}|,
\]
where the last inequality holds by \(A_{2,j-1}\). Therefore
\[
\frac{|D^{Z*_{E^s}}_{z_j,E}(T_j - 1)|}{|F_{xz_j}(T_j - 1)(v)|} < \frac{\theta_{\nu^*}}{(1 - \epsilon_*) \theta_{\nu^*}} + \epsilon_* < \theta_{\nu^*}.
\]

**Case D.2.** Next consider the case \(z_j \notin E\) and \(E \in H(z_j)\). Then \(E^0 = E^{T_j - 1} = \overline{E}\) and \(F_{z_j,E}(T_j) = F_{z_j,E}(T_j - 1)(y)\). Also, by (4.21) we have \(F(T_j)^{Z_{E^s}} = F(T_j - 1)^{Z*_{E^s}}(y)\). Now \(M_{E,E}(T_j) = M_{E,E}(T_j - 1) \cap F_{z_j,E}(T_j)\) by Lemma 3.14 and \(F(T_j)^{Z_{E^s}} \subseteq F_{z_j,E}(T_j)\), so \(M_{E,E}(T_j) \cap F(T_j)^{Z_{E^s}} = M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z*_{E^s}}(y)\). Since \(F(T_j - 1)^{Z*_{E^s}} = F_{xz_j}(T_j - 1)(v)\), we have
\[
D^{Z*_{E^s}}_{z_j,E}(T_j - 1) = \left\{ y \in F_{xz_j}(T_j - 1)(v) : \frac{|M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z*_{E^s}}|}{|F(T_j - 1)^{Z*_{E^s}}(y)|} > \theta_{\nu^*} \right\}.
\]
Also, since \(E \in H(z_j)\) we have \(E_{z_j,E} \subseteq E_0^{T_j - 1}\) for some triple \(E_0 \in H'\), so applying \(A_{3,j-1}\) to \(E_0\) we see that \(F(T_j - 1)^{Z*_{E^s}}\) is \(e_{12D,D,2}\)-regular. Then writing \(B'_{z_j}\) for the set of vertices \(y \in F(T_j - 1)^{Z*_{E^s}}\) for which we do not have \(|F(T_j - 1)^{Z*_{E^s}}(y)| = (1 \pm \epsilon_*) |F(T_j - 1)^{Z*_{E^s}} / |F(T_j - 1)^{Z*_{E^s}}|\), we have \(|B'_{z_j}| < \epsilon_* |F(T_j - 1)^{Z*_{E^s}}|\) by Lemma 4.12. Now
\[
\sum_{y \in D^{Z*_{E^s}}_{z_j,E}(T_j - 1)} \left| M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z*_{E^s}}(y) \right| > \theta_{\nu^*} \sum_{y \in D^{Z*_{E^s}}_{z_j,E}(T_j - 1) \setminus B'_{z_j}} \left| F(T_j - 1)^{Z*_{E^s}}(y) \right|
\geq (1 - \epsilon_*) \theta_{\nu^*} \left( |D^{Z*_{E^s}}_{z_j,E}(T_j - 1)| - \epsilon_* |F_{xz_j}(T_j - 1)(v)| \right) \left| F(T_j - 1)^{Z*_{E^s}} / |F_{xz_j}(T_j - 1)(v)| \right|.
\]
We also have \(\Sigma \leq \sum_{y \in F_{xz_j}(T_j - 1)(v)} \left| M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z*_{E^s}}(y) \right|\). This sum counts all pairs \((y, P)\) with \(P \in M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z*_{E^s}}, y \in F_{xz_j}(T_j - 1)(v)\) and \(P_{xy} \in F(T_j - 1)^{Z*_{E^s}}\), so \(\Sigma \leq \sum_{P \in M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z*_{E^s}} |F(T_j - 1)^{Z*_{E^s}}(P)|}\). By Lemma 4.14(vi) we have
\[
|F(T_j - 1)^{Z*_{E^s}}(P)| = (1 \pm \epsilon_*) \frac{|F(T_j - 1)^{Z*_{E^s}}|}{|F(T_j - 1)^{Z*_{E^s}}|}.
\]
for all but at most \( \epsilon\) \(|F(T_j-1)Z^{*v}\)| sets \( P \in F(T_j-1)Z^{*v}\). Therefore

\[
\Sigma \leq |M_{E,E}(T_j-1) \cap F(T_j-1)Z^{*v}| + (1+\epsilon) \frac{|F(T_j-1)Z^{*v}|}{|F(T_j-1)|} \epsilon + \epsilon |F(T_j-1)Z^{*v}| |F_{x_{x_{z_j}}}(T_j-1)\rangle|v\rangle|.
\]

Combining this with the lower bound on \( \Sigma \) gives

\[
(1-\epsilon)\theta_{\nu^*} |D_{z_j,E}(T_j-1)|/|F_{x_{x_{z_j}}}(T_j-1)\rangle|v\rangle| - \epsilon\)

\[
< (1+\epsilon) \frac{|M_{E,E}(T_j-1) \cap F(T_j-1)Z^{*v}|}{|F(T_j-1)|} + \epsilon |F(T_j-1)Z^{*v}| |F_{x_{x_{z_j}}}(T_j-1)\rangle|v\rangle|.
\]

Now \( F(T_j-1)Z^{*v} = F(T_j-1)Z^{*v} \), \( M_{E,E}(T_j-1) \cap F(T_j-1)Z^{*v} < \theta_{\nu^*} \) \(|F(T_j-1)Z^{*v}|\) by \( A_{2,j-1} \), and

\[
|F(T_j-1)Z^{*v}| |F_{x_{x_{z_j}}}(T_j-1)\rangle|v\rangle| \leq 2d_{u^4} \ll \epsilon_{u^1} \text{ by Lemma 4.14 and } A_{3,j-1},
\]

\[
\frac{|D_{z_j,E}(T_j-1)|}{|F_{x_{x_{z_j}}}(T_j-1)\rangle|v\rangle|} < (1+\epsilon)\theta_{\nu^*} + \sqrt{\epsilon} + \epsilon < \theta_{\nu^*}.
\]

**Case D.3.** It remains to consider the case when \( z_j \notin E \) and \( E \notin H(z_j) \). Since \( E \in U(z_j) \) and \( E \notin H(z_j) \) we have \(|E| \geq 2 \). Then \( F_{E^x}(T_j) = F_{E^x}(T_j-1)|F_{E^x}(T_j)| \) by Lemma 3.11. Also, we claim that

\[
F(T_j)Z^{*v} = F(T_j-1)Z^{*v}|F(T_j)Z^{*v}|. \tag{\( \triangleleft 4.21 \)}
\]

To see this, consider \( S \subseteq E \) and \( P \in F(T_j)Z^{*v} \). Then by definition \( P \in F_{S}(T_j) \) and \( P_{S'} \in F_{S'}(T_j)\rangle|v\rangle| \) for all \( S' \subseteq S \cap Z \). Since \( F_{S}(T_j) \subseteq F_{S}(T_j-1) \) it follows that \( P \in F(T_j-1)E^{*v} \). Also, for any \( S'' \subseteq S' \subseteq S \) with \( S' \subseteq E \), \( S'' \subseteq Z \) and \( S'' \in H(x) \) we have \( P_{S''} \in F_{S''}(T_j)\rangle|v\rangle| \) and \( P_{S''} \in F_{S''}(T_j)\rangle|v\rangle| \). Conversely, suppose that \( S \subseteq E \) and \( P \in F(T_j-1)E^{*v}|F(T_j)Z^{*v}| \). If \( S \neq E \) then \( P \in F(T_j)Z^{*v} \). Now suppose \( S = E \). Then \( P \in F_{E^x}(T_j-1)\rangle|v\rangle| \) and \( P_{S'} \in F_{S'}(T_j)\rangle|v\rangle| \) for all \( S' \subseteq S \cap Z \). Therefore \( P \in F(T_j)Z^{*v} \). This proves \( \triangleleft 4.21 \). Note also that since \( z \notin E \) we can replace \( Z \) by \( Z' \) in \( \triangleleft 4.21 \).

Since \( M_{E,E}(T_j) = M_{E,E}(T_j-1) \cap F_{E^x}(T_j) \) and \( F(T_j)Z^{*v} \subseteq F_{E^x}(T_j) \) we have \( M_{E,E}(T_j) \cap F(T_j)Z^{*v} = M_{E,E}(T_j-1) \cap F(T_j)Z^{*v}|F(T_j)Z^{*v}| \). Then

\[
D_{z_j,E}(T_j-1) = \left\{ y \in F_{x_{x_{z_j}}}(T_j-1)\rangle|v\rangle| : \frac{|M_{E,E}(T_j-1) \cap F(T_j-1)Z^{*v}|F(T_j)Z^{*v}|E^x|}{|F(T_j-1)Z^{*v}|F(T_j)Z^{*v}|E^x|} > \theta_{\nu^*} \right\}.
\]

Next note that by \( A_{3,j-1} \) and Lemma 4.10 we have

\[
d(F(T_j-1)Z^{*v}) = (1+8\epsilon) \prod_{S \subseteq E} d_S(F(T_j-1)) \prod_{S \subseteq I} d_{S_E}(F(T_j-1)) \prod_{s \in I,S} \alpha_s.
\]

Now consider \( y \notin E_{z_j}^v(T_j-1) \). By Claim B we can apply the properties in \( A_{3,j} \) with this choice of \( y \), so we also have

\[
d(F(T_j)Z^{*v}) = (1+8\epsilon) \prod_{S \subseteq E} d_S(F(T_j)) \prod_{S \subseteq I} d_{S_E}(F(T_j)) \prod_{s \in I,S} \alpha_s.
\]

53
Now \( d_S(F(T_j)) \) is \((1 + \epsilon_*)d_S(F(T_j - 1))d_{S_z}(F(T_j - 1))\) for \( S \in H(z_j) \) by \((\ast_{4.1})\) or \((1 + \epsilon_*)d_S(F(T_j - 1))\) for \( S \not\in H(z_j) \) by Lemma 4.14. Therefore \( d(F(T_j)^{Z'rv}) = (1 + 40\epsilon_*)d(F(T_j - 1)^{Z'rv}) \times d^* \), where

\[
d^* = \prod_{S \subseteq \overline{E}, S \in H(z_j)} d_{S_z}(F(T_j - 1)) \prod_{S \subseteq I, S \in H(z_j)} d_{S_z}(F(T_j - 1))^{Z'rv}.
\]

For \( S \subseteq \overline{E}, S \in H(z_j) \), we do not have the same expression if we replace the restriction to \( F \) counts all pairs \((|E,E|)\) by Lemma 4.14. Therefore

\[
\left| F(T_j - 1)^{Z'rv}_E \right| = (1 + 50\epsilon_*) \left| F(T_j - 1)^{Z'rv}_E \right| d^*
\]

for such \( y \not\in E_z(T_j - 1) \). Now

\[
\Sigma := \sum_{y \in D_{z,j}^E(T_j - 1)} |M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z'rv}_E| [F(T_j - 1)^{Z'rv}_E]|d^* > \theta_{\nu^*} \sum_{y \in D^E(T_j - 1)\setminus B_{z_j}} \left| F(T_j - 1)^{Z'rv}_E \right| [F(T_j - 1)^{Z'rv}_E]|d^*.
\]

(Note that we used the estimate \(|B_{z_j}| < 2\epsilon|F_{z_j}(T_j - 1)\| < \sqrt{\epsilon_*}|F_{x_{z_j}}(T_j - 1)(v)|\), by Lemma 4.13 and Claim C.) We also have \( \Sigma \leq \sum_{y \in F_{x_{z_j}}(T_j - 1)(v)} |M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z'rv}_E| [F(T_j - 1)^{Z'rv}_E]|d^* \). This sum counts all pairs \((y, P)\) with \( P \in M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z'rv}_E, y \in F_{x_{z_j}}(T_j - 1)(v)\) and \( P_S \in F(T_j - 1)^{Z'rv}_S \) for all \( S \subseteq \overline{E}, S \in H(z_j) \); there is no need to consider \( S \not\in H(z_j) \), as by Lemma 3.11 we get the same expression if we replace the restriction to \( F(T_j - 1)^{Z'rv}_S \) by \( F(T_j - 1)^{Z'rv}_S \) for such \( S \). Note that \( F(T_j - 1)^{Z'rv}_S = F(T_j)^{Z'rv}_S \) and \( P_S \in F(T_j - 1)^{Z'rv}_S \) \( \iff \) \( P_S y \in F(T_j - 1)^{Z'rv}_S \) by \((\ast_{4.21})\). Given \( P \), let \( F_{P,Z}^v \) be the set of \( y \in F_{x_{z_j}}(T_j - 1)(v) \) satisfying this condition, and let \( B_z^v \) be the set of \( P \in F(T_j - 1)^{Z'rv}_E \) such that we do not have

\[
|F_{P,Z}^v| = (1 + \epsilon_*)|F_{x_{z_j}}(T_j - 1)(v)|d^* > (1 + \epsilon_*)|F(T_j - 1)^{Z'rv}_E|d^*.
\]

Lemma 4.11 applied with \( G = F(T_j - 1)^{Z'rv}_E \) and \( I = \{i(S) : S \subseteq \overline{E}, S \in H(z_j)\} \) gives \(|B_z^v| < \epsilon_*|F(T_j - 1)^{Z'rv}_E|\). Then

\[
\Sigma \leq |M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z'rv}_E|(1 + \epsilon_*)|F_{x_{z_j}}(T_j - 1)(v)|d^* + \epsilon_*|F(T_j - 1)^{Z'rv}_E||F_{x_{z_j}}(T_j - 1)(v)|.
\]

Combining this with the lower bound on \( \Sigma \) we obtain

\[
(1 - 50\epsilon_*)\theta_{\nu^*}\left(\frac{|D_{z,j}^E(T_j - 1)|}{|F_{x_{z_j}}(T_j - 1)(v)|} - \sqrt{\epsilon_*}\right) < (1 + \epsilon_*)|M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z'rv}_E|d^* + \epsilon_*|F(T_j - 1)^{Z'rv}_E|d^*.
\]

54
Now \( d^* \gg \epsilon_*, \) and \( |M_{E,E}(T_j - 1) \cap F(T_j - 1)^{Z^*_{E,E}}| < \theta'_v |F(T_j - 1)^{Z^*_{E,E}}| \) by \( A_{2,j-1} \) (since \( F(T_j - 1)^{Z^*_{E,E}} = F(T_j - 1)^{Z^*_{E,E}} \)). Then

\[
\frac{|D_{zz, E}^{Z^*_{E,E}}(T_j - 1)|}{|F_{xz}(T_j - 1)(v)|} < \frac{(1 + \epsilon_*) \theta'_{v} + \sqrt{\epsilon_*}}{(1 - 50 \epsilon_*) \theta'_{v}} + \sqrt{\epsilon_*} < \theta'_{v}.
\]

This completes the proof of Claim D.

**Claim E.** Conditional on the events \( A_{i,j'} \), \( 1 \leq i \leq 4, \ 0 \leq j' < j \) and the embedding up to time \( T_j - 1 \) we have \( \mathbb{P}(A_{4,j}) > d_u/2 \).

**Proof.** Suppose \( A_{1,j-1}, A_{2,j-1} \) and \( A_{3,j-1} \) hold. Then Claim D gives \( |D_{zz, E}^{Z^*_{E,E}}(T_j - 1)| < \theta_{12D} |F_{xz}(T_j - 1)(v)| \) for any \( E \in U(z_j), Z \subseteq E, Z' = Z \cup z_j \). Also \( F_{xz}(T_j - 1)(v) > (1 - \delta_B^{1/4}) d_u |F_{xz}(T_j - 1)| \) by \( A_{3,j-1} \) and since \( \alpha_{z_j} > 1 - 2 \delta_B^{1/3} \). As \( |E_{z_j}(T_j - 1)| \leq \epsilon_*/|F_{z_j}(T_j - 1)| \) by Lemma 4.13, \( B_{z_j} = E_{z_j}(T_j - 1) \cup E_{z_j}'(T_j - 1) \) has size \( |B_{z_j}| < \sqrt{\epsilon_*} |F_{z_j}(T_j - 1)(v)| \) by Claim C. Since \( H \) has maximum degree at most \( D \) we have at most \( 2D^2 \) choices for \( E \in U(z_j) \) then \( 8 \) choices for \( Z \subseteq E \), so \( |OK_{z_j}^{v}(T_j - 1)|/|F_{z_j}(T_j - 1)| > 1 - \sqrt{\epsilon_*} - 16D^2 \theta_{12D} > 1 - \theta_* \). Now \( y = \phi(z_j) \) is chosen uniformly at random in \( OK_{z_j}^{v}(T_j - 1) \subseteq F_{z_j}(T_j - 1) \), and \( OK_{z_j}^{v}(T_j - 1) \subseteq OK_{z_j}(T_j - 1) \). Then Claim E follows from

\[
\mathbb{P}(y \in OK_{z_j}^{v}(T_j - 1)) = \frac{OK_{z_j}^{v}(T_j - 1)}{OK_{z_j}(T_j - 1)} > \frac{(1 - \theta_*) |F_{z_j}(T_j - 1)(v)|}{|F_{z_j}(T_j - 1)|} > (1 - \theta_*)(1 - \delta_B^{1/4}) d_u > d_u/2.
\]

To finish the proof of the lemma, note that if all the events \( A_{i,j} \), \( 1 \leq i \leq 4, \ 1 \leq j \leq g \) hold, then the events \( A_{4,j} \) imply that \( \phi(H(x)) \subseteq (G \setminus M)(v) \). Multiplying the conditional probabilities given by Claim E over at most \( 2D \) vertices of \( VN_H(x) \) gives probability at least \((d_u/2)^{2D} > p \). \( \square \)

### 4.6 The conclusion of the algorithm

The algorithm will be successful if the following two conditions hold. Firstly, it must not abort during the iterative phase because of the queue becoming too large. Secondly, there must be a system of distinct representatives for the available images of the unembedded vertices, which all belong to the buffer \( B \). Recall that \( A_x = F_x(t_x^N) \setminus \cup_{E \in M_x} M_x,E(t_x^N) \) is the available set for \( x \in B \) at the time \( t_x^N \) when the last vertex of \( VN_H(x) \) is embedded. Since \( VN_H(x) \) has been embedded, until the conclusion of the algorithm at time \( T \), no further vertices will be marked as forbidden for the image \( x \), and no further neighbourhood conditions will be imposed on the image of \( x \), although some vertices in \( A_x \) may be used to embed other vertices in \( X_x \). Thus the set of vertices available to embed \( x \) at time \( T \) is \( A_x' = A_x \cap V_x(T) = F_x(T) \setminus \cup_{E \in M_x} M_x,E(T) \). Therefore we seek a system of distinct representatives for \( \{A_x' : x \in X(T)\} \).

We start with the ‘main lemma’, which is almost identical to Lemma 2.6. For completeness we repeat the proof, giving the necessary modifications.

**Lemma 4.22.** Suppose \( 1 \leq i \leq r, Y \subseteq X_i \) and \( A \subseteq V_i \) with \( |A| > \epsilon_* n \). Let \( E_{A,Y} \) be the event that (i) no vertices are embedded in \( A \) before the conclusion of the algorithm, and (ii) for every \( z \in Y \) there is some time \( t_z \) such that \( |A \cap F_z(t_z)|/|F_z(t_z)| < 2^{-2D} |A|/|V_i| \). Then \( \mathbb{P}(E_{A,Y}) < p_0 |Y| \).
Proof. We start by choosing $Y' \subseteq Y$ with $|Y'| > |Y|/(2D)^2$ so that vertices in $Y'$ are mutually at distance at least 3 (this can be done greedily, using the fact that $H$ has maximum degree $D$). It suffices to bound the probability of $E_{A,Y'}$. Note that initially we have $|A \cap F_z(0)||/|F_x(0)| = |A|/|V_i|$ for all $z \in X_i$. Also, if no vertices are embedded in $A$, then $|A \cap F_z(t)||/|F_x(t)|$ can only be less than $|A \cap F_z(t-1)||/|F_x(t-1)|$ for some $z$ and $t$ if we embed a neighbour of $z$ at time $t$. It follows that if $E_{A,Y'}$ occurs, then for every $z \in Y'$ there is a first time $t_z$ when we embed a neighbour $w$ of $z$ and have $|A \cap F_z(t_z)||/|F_x(t_z)| < |A \cap F_z(t_z-1)||/|F_x(t_z-1)||/2|F_x(t_z-1)|$. By Lemma 4.13, the densities $d_z(F_z(t-1))$, $d_z(F_z(t-1))$ and $d_{zw}(F_z(t-1))$ are all at least $d_u$ and $F_{zw}(t-1)$ is $\epsilon_*$-regular. Applying Lemma 2.2, we see that there are at most $\epsilon_*|F_z(t-1)|$ ‘exceptional’ vertices $y \in F_z(t-1)$ that do not satisfy $|A \cap F_z(t_z)| = |F_z(t_z)| (y) \cap A \cap F_z(t_z-1)| = (1 \pm \epsilon_*)d_{zw}(F_z(t_z-1))|A \cap F_z(t_z-1)|$. On the other hand, the algorithm chooses $\phi(w) = y$ to satisfy $(\ast_{4.1})$, so $|F_z(t_z)| = (1 \pm \epsilon_*)d_{zw}(F_z(t_z-1))|F_z(t_z-1)|$. Thus we can only have $|A \cap F_z(t_z)||/|F_z(t_z)| < |A \cap F_z(t_z)|/2|F_z(t_z-1)|$ by choosing an exceptional vertex $y$. But $y$ is chosen uniformly at random from $|OK_{zw}(t_z-1)| \geq (1 - \theta_*)|F_z(t_z-1)|$ possibilities (by Corollary 4.16). It follows that, conditional on the prior embedding, the probability of choosing an exceptional vertex for $y$ is at most $\epsilon_*|F_z(t_z-1)|/|OK_{zw}(t_z-1)| < 2\epsilon_*$.

Since vertices of $Y'$ have disjoint neighbourhoods, we can multiply the conditional probabilities over $z \in Y'$ to obtain an upper bound of $(2\epsilon_*)^{|Y'|}$. Recall that this bound is for a subset of $E_{A,Y'}$ in which we have specified a certain neighbour $w$ for every vertex $z \in Y'$. Taking a union bound over at most $(2D)^{|Y'|}$ choices for these neighbours gives $\mathbb{P}(E_{A,Y}) \leq \mathbb{P}(E_{A,Y'}) < (4\epsilon_*D)^{|Y'|} < p_0^{|Y'|}$. \hfill \Box

Now we can prove the following theorem, which implies Theorem 4.1. The proof is quite similar to the graph case, except that the marked edges create an additional case when verifying Hall’s criterion, which is covered by Lemma 4.20.

**Theorem 4.23.** With high probability the algorithm embeds $H$ in $G \setminus M$.

Proof. First we estimate the probability of the iteration phase aborting with failure, which happens when the number of vertices that have ever been queued is too large. We can take a union bound over all $1 \leq i \leq r$ and $Y \subseteq X_i$ with $|Y| = \delta_Q|X_i|$ of $\mathbb{P}(Y \subseteq Q(T))$. Suppose that the event $Y \subseteq Q(T)$ occurs. Then for every $z \in Y$ there is some time $t$ such that $|F_z(t)| < \delta_Q|F_z(t)|$, where $t < t$ is the most recent time at which we embedded a neighbour of $z$. Since $A = V_i(T)$ is unused we have $A \cap F_z(t) = A \cap F_z(t)$, so $|A \cap F_z(t)||/|F_z(t)| = |A \cap F_z(t)||/|F_z(t)| \leq |F_z(t)||/|F_z(t)| < \delta_Q$. However, we have $|A| \geq \delta_Bn/2$ by Lemma 4.3(i), so since $\delta_Q < \delta_B$ we have $|A \cap F_z(t)||/|F_z(t)| < 2^{-2D}|A||/|V_i|$. Taking a union bound over all possibilities for $i$, $Y$ and $A$, Lemma 4.22 implies that the failure probability is at most $r \cdot 4^{C_n} \cdot p_0^{\delta_Q n} < o(1)$, since $p_0 \ll \delta_Q$.

Now we estimate the probability of the conclusion of the algorithm aborting with failure. By Hall’s criterion for finding a system of distinct representatives, the conclusion fails if and only if there is $1 \leq i \leq r$ and $S \subseteq X_i(T)$ such that $|\cup_{z \in S} A_z'| < |S|$. Recall that $|X_i(T)| \geq \delta_Bn/2$ by Lemma 4.3(i) and buffer vertices have disjoint neighbourhoods. We divide into cases according to the size of $S$.

$0 \leq |S|/|X_i(T)| \leq \gamma$. For every unembedded $z$ and triple $E$ containing $z$ we have $|F_z(T)| \geq d_u n$ by Lemma 4.13 and $|M_{z,E}(T)| \leq \theta_*|F_z(T)|$ by Lemma 4.15. Since $z$ has degree at most $D$ we have $|A_z'| \geq (1 - D\theta_*)d_u n > \gamma n$, so this case cannot occur.
\( \gamma \leq |S|/|X_i(T)| \leq 1/2 \). We use the fact that \( A := V_i(T) \setminus \bigcup_{z \in S} A'_z \) is a large set of unused vertices which cannot be used by any vertex \( z \in S \): we have \(|A| \geq |V_i(T)| - |S| \geq |X_i(T)|/2 \geq \delta_B n/4 \), yet \( A \cap F_z(T) \subseteq \bigcup_{E \in E^z} M_{z,E}(T) \) has size at most \( D \theta_* |F_z(T)| \) by Lemma 4.15, so \(|A \cap F_z(T)|/|F_z(T)| \leq D \theta_* < 2^{-2D} |A|/|V_i| \). As above, taking a union bound over all possibilities for \( i, S \) and \( A \), Lemma 4.22 implies that the failure probability is at most \( r \cdot 4^{Cn} \cdot p_0^{\gamma \delta_B n/2} < o(1) \), since \( p_0 \ll \gamma, \delta_B \).

\[ 1/2 \leq |S|/|X_i(T)| \leq 1 - \gamma. \]

We use the fact that \( W := V_i(T) \setminus \bigcup_{z \in S} A'_z \) satisfies \( W \cap A_z = W \cap A'_z = \emptyset \) for every \( z \in S \). Now \(|W| \geq |V_i(T)| - |S| \geq \gamma |X_i(T)| \geq \gamma \delta_B n/2 \), so by Lemma 4.20, for each \( z \) the event \( W \cap A_z = \emptyset \) has probability at most \( \theta_* \) when we embed \( V_N H(z) \), conditional on the prior embedding. Multiplying the conditional probabilities and taking a union bound over all possibilities for \( i, S \) and \( W \), the failure probability is at most \( r \cdot 4^{Cn} \cdot \theta_*^{\delta_B n/4} < o(1) \), since \( \theta_* \ll \delta_B \).

\[ 1 - \gamma \leq |S|/|X_i(T)| \leq 1. \]

We claim that with high probability \( \bigcup_{z \in S} A'_z = V_i(T) \), so in fact Hall’s criterion holds. It suffices to consider sets \( S \subseteq X_i(T) \) of size exactly \((1 - \gamma)|X_i(T)|\). The claim fails if there is some \( v \in V_i(T) \) such that \( v \notin A'_z \) for every \( z \in S \). Since \( v \) is unused we have \( v \notin A_z \), and by Lemma 4.21, for each \( z \) the event \( v \notin A_z \) has probability at most \( 1 - p \) when we embed \( V_N H(z) \), conditional on the prior embedding. Multiplying the conditional probabilities and taking a union bound over all \( 1 \leq i \leq r, v \in V_i \) and \( S \subseteq X_i(T) \) of size \((1 - \gamma)|X_i(T)|\), the failure probability is at most \( r Cn ((1 - \gamma)Cn) (1 - p)^{(1 - \gamma)|X_i(T)|} < o(1) \). This estimate uses the bounds \( Cn \leq 2 \sqrt{n} \), \((1 - p)^{(1 - \gamma)|X_i(T)|} < e^{-p \delta_B n/4} < 2^{-2n} \) and \( \gamma \ll p \).

In all cases we see that the failure probability is \( o(1) \).

\[ \square \]

5 Applying the blow-up lemma

To demonstrate the utility of the blow-up lemma we will work through an application in this section. To warm up, we sketch the proof of Kühn and Osthus [31, Theorem 2] on packing bipartite graphs using the graph blow-up lemma. Then we generalise this result to packing tripartite 3-graphs. We divide this section into four subsections, organised as follows. In the first subsection we illustrate the use of the graph blow-up lemma, which is based on a decomposition obtained from Szemerédi’s Regularity Lemma and a simple lemma that one can delete a small number of vertices from a regular pair to make it super-regular. The second subsection describes some more hypergraph regularity theory for 3-graphs: the Regular Approximation Lemma and Counting Lemma of Rödl and Schacht. In the third subsection we give the 3-graph analogue of the super-regular deletion lemma, which requires rather more work than the graph case. We also give a ‘black box’ reformulation of the blow-up lemma that will be more accessible for future applications. We then apply this in the fourth subsection to packing tripartite 3-graphs.

5.1 Applying the graph blow-up lemma

In this subsection we sketch a proof of the following result of Kühn and Osthus. First we give some definitions. For any graph \( F \), an \( F \)-packing is a collection of vertex-disjoint copies of \( F \). We say that a graph \( G \) is \((a \pm b)\)-regular if the degree of every vertex in \( G \) lies between \( a - b \) and \( a + b \).
Theorem 5.1. For any bipartite graph \( F \) with different part sizes and \( 0 < \epsilon < 1 \) there is a real \( \epsilon > 0 \) and positive integers \( C, n_0 \) such that any \( (1 \pm \epsilon)cn \)-regular graph \( G \) on \( n > n_0 \) vertices contains an \( F \)-packing covering all but at most \( Cn \) vertices.

Note that the assumption that \( F \) has different part sizes is essential. For example, if \( F = C_4 \) is a 4-cycle and \( G \) is a complete bipartite graph with parts of size \( (1 + \epsilon)n/2 \) and \( (1 - \epsilon)n/2 \) then any \( F \)-packing leaves at least \( \epsilon n \) vertices uncovered. Also, we cannot expect to cover all vertices even when the number \( f \) of vertices of \( F \) divides \( n \), as \( G \) may be disconnected and have a component in which the number of vertices is not divisible by \( f \).

Without loss of generality we can assume \( F \) is a complete bipartite graph \( K_{r,s} \) for some \( r \neq s \). It is convenient to assume that \( G \) is bipartite, having parts \( A \) and \( B \) of sizes \( n/2 \). This can be achieved by choosing \( A \) and \( B \) randomly: if \( G \) is \((1 \pm \epsilon)cn\)-regular then with high probability the induced bipartite graph is \((1 \pm 2\epsilon)cn/2\)-regular. Then we refine the partition \((A, B)\) using the following ‘degree form’ of Szemerédi’s Regularity Lemma.

Lemma 5.2. Suppose \( 0 < 1/T < \epsilon < d < 1 \) and \( G = (A, B) \) is a bipartite graph with \( |A| = |B| = n/2 \). Then there are partitions \( A = A_0 \cup A_1 \cup \cdots \cup A_t \) and \( B = B_0 \cup B_1 \cup \cdots \cup B_t \) for some \( t \leq T \) such that \( |A_i| = |B_i| = m \) for \( 1 \leq i \leq t \) for some \( m \) and \( |A_0 \cup B_0| \leq \epsilon n \), and a spanning subgraph \( G' \) of \( G \) such that \( d_{G'}(x) > d_G(x) - (d + \epsilon)n \) for every vertex \( x \) and every pair \((A_i, B_j)\) with \( 1 \leq i, j \leq k \) induces a bipartite subgraph of \( G' \) that is either empty or \( \epsilon \)-regular of density at least \( d \).

Lemma 5.2 can be easily derived from the usual statement of Szemerédi’s Regularity Lemma (see e.g. [33, Lemma 41] for a non-bipartite version). We refer to the parts \( A_i \) and \( B_i \) with \( 1 \leq i \leq t \) as clusters and the parts \( A_0 \) and \( B_0 \) as exceptional sets. We write \((A_i, B_j)_{G'}\) for the bipartite subgraph of \( G' \) induced by \( A_i \) and \( B_j \). There is a naturally associated reduced graph, in which vertices correspond to clusters and edges to dense regular pairs: \( R \) is a weighted bipartite graph on \(([t], [t])\) with an edge \((i, j)\) of weight \( d_{ij} \) whenever \((A_i, B_j)_{G'}\) is \( \epsilon \)-regular of density \( d_{ij} \geq d \). We choose the parameter \( d \) to satisfy \( \epsilon < d \ll c \).

The next step of the proof is to select a nearly-perfect matching in \( R \), using the defect form of Hall’s matching theorem. Using the fact that \( G \) is \((1 \pm \epsilon)cn\)-regular one can show that for any \( I \subseteq [t] \) we have \( |N_R(I)| \geq (1 - 2(d + 2\epsilon)/c)|I| > (1 - \sqrt{d})|I| \) (say) so \( R \) has a matching of size \((1 - \sqrt{d})t\). The details are given in Lemma 11 of [31].

Now it is straightforward to find an \( F \)-packing covering all but at most \( 3\sqrt{d}n \) vertices. For each edge \((i, j)\) of the matching in \( R \) we greedily remove copies of \( K_{r,s} \) while possible, alternating which of \( A_i \) and \( B_j \) contains the part of size \( s \) to maintain parts of roughly equal size. While we still have at least \( \epsilon m n \) vertices remaining in each of \( A_i \) and \( B_j \), the definition of \( \epsilon \)-regularity implies that the remaining subgraph \((A_i, B_j)_{G'}\) has density at least \( d - \epsilon \). Then the Kövari-Sós-Turán theorem [29] implies that we can choose the next copy of \( K_{r,s} \). We can estimate the number of uncovered vertices by \( 2\sqrt{d} \cdot m < 2\sqrt{d}n \) in clusters not covered by the matching, \( 2t \cdot \epsilon m < 2\epsilon n \) in clusters covered by the matching, and \( \epsilon n \) in \((A_0 \cup B_0)\), so at most \( 3\sqrt{d}n \) vertices are uncovered.

However, we want to prove the stronger result that there is an \( F \)-packing covering all but at most \( Cn \) vertices. To do this we first move a small number of vertices from each cluster to the exceptional sets so as to make the matching pairs super-regular. This is a standard property of graph regularity;
we include the short proof of the next lemma for comparison with the analogous statement later for hypergraphs.

**Lemma 5.3.** Suppose $G = (A, B)$ is an $\epsilon$-regular bipartite graph of density $d$ with $|A| = |B| = m$. Then there are $A^* \subseteq A$ and $B^* \subseteq B$ with $|A^*| = |B^*| = (1 - \epsilon)m$ such that the restriction $G^*$ of $G$ to $(A^*, B^*)$ is $(2\epsilon, d)$-super-regular.

**Proof.** Let $A_0 = \{x \in A : d(x) < (d - \epsilon)m\}$. Then $|A_0| < \epsilon m$, otherwise $(A_0, B)$ would contradict the definition of $\epsilon$-regularity for $(A, B)$. Similarly, $B_0 = \{x \in B : d(x) < (d - \epsilon)m\}$ has $|B_0| < \epsilon m$. Let $A^*$ be obtained from $A$ by deleting a set of size $\epsilon m$ containing $A_0$. Define $B^*$ similarly. Then $|A^*| = |B^*| = (1 - \epsilon)m$. For any $A' \subseteq A^*$, $B' \subseteq B^*$ with $|A'| > 2\epsilon|A^*|$, $|B'| > 2\epsilon|B^*|$ we have $|A'| > \epsilon m$, $|B'| > 2\epsilon m$, so $(A', B')_G$ has density $d \pm \epsilon$ by $\epsilon$-regularity of $G$. Thus $G^*$ is $2\epsilon$-regular. Also, for any vertex $x$ of $G^*$ we have $d_{G^*}(x) \geq d_G(x) - \epsilon m \geq (d - \epsilon)m - \epsilon m \geq (d - 2\epsilon)(1 - \epsilon)m$, so $G^*$ is $(2\epsilon, d)$-super-regular. \hfill $\square$

We make the matching pairs $(\epsilon, 2d)$-super-regular and move all discarded vertices and unmatched clusters into the exceptional sets. For convenient notation, we redefine $A_1, \ldots, A_{t'}$ and $B_1, \ldots, B_{t'}$, where $t' = (1 - \sqrt{d})t$, to be the parts of the super-regular matched pairs, and $A_0, B_0$ to be the new exceptional sets. Thus $|A_i| = |B_i| = (1 - \epsilon)m$ for $1 \leq i \leq t'$ and $|A_0 \cup B_0| \leq \epsilon n + 2t'\epsilon m + 2\sqrt{dm} < 3\sqrt{dn}$.

We will select vertex-disjoint copies of $K_{r,s}$ to cover $A_0 \cup B_0$. We want to do this in such a way that the matching pairs remain super-regular (with slightly weaker parameters) and the uncovered parts of the clusters all have roughly equal sizes. Then we will be able to apply the graph blow-up lemma (Theorem 2.1) to pack the remaining vertices in each matching pair almost perfectly with copies of $K_{r,s}$. (We assumed $|V_i| = |X_i| = n$ in Theorem 2.1 for simplicity, but it is easy to replace this assumption by $n \leq |V_i| = |X_i| \leq 2n$, say.) The sizes of the uncovered parts in a pair may not permit a perfect $K_{r,s}$-packing, but it is easy to see that one can cover all but at most $r + s$ vertices in each pair. Taking $C = T(r + s)$ we will thus cover all but at most $C$ vertices.

It remains to show how to cover $A_0 \cup B_0$ with vertex-disjoint copies of $K_{r,s}$. First we set aside some vertices that we will not use so as to preserve the super-regularity of the matching pairs. For each matching pair $(i, j)$ we randomly partition $A_i$ as $A'_i \cup A''_i$ and $B_j$ as $B'_j \cup B''_j$. We will only use vertices from $A' = \cup_i A'_i$ and $B' = \cup_j B'_j$ when covering $A_0 \cup B_0$. By Chernoff bounds, with high probability these partitions have the following properties:

1. all parts $A'_i, A''_i, B'_j, B''_j$ have sizes $(1 - \epsilon)m/2 \pm m^{2/3}$.
2. every vertex $x$ has at least $d(x)/2 - 4\sqrt{dn}$ neighbours in $A' \cup B'$.
3. whenever a vertex $x$ has $K \geq \epsilon m$ neighbours in a cluster $A_i$ it has $K/2 \pm m^{2/3}$ neighbours in each of $A'_i, A''_i$; a similar statement holds for clusters $B_j$.
4. each of $N_{G'}(x) \cap B''_j$ and $N_{G''}(y) \cap A''_i$ have size at least $dm/2 - m^{2/3}$ for every matching edge $(i, j)$ and $x \in A_i, y \in B_j$.

Now we cover $A_0 \cup B_0$ by the following greedy procedure. Suppose we are about to cover a vertex $x \in A_0 \cup B_0$, say $x \in A_0$. We consider a cluster to be heavy if we have covered more than $d^{1/4}m$
of its vertices. Since \(|A_0 \cup B_0| < 3\sqrt{dn}\) we have covered at most \(3(r + s)\sqrt{dn}\) vertices by copies of \(K_{r,s}\), so there are at most \(4(r + s)d^{1/4}t\) heavy clusters. Since \(G\) is \((1 + \epsilon)cn\)-regular, \(x\) has at least \(cn/3\) neighbours in \(B'\) by property 2. At most \(4(r + s)d^{1/4}n\) of these neighbours lie in heavy clusters and at most \(cn/4\) of them lie in clusters \(B_j\) where \(x\) has at most \(cm/4\) neighbours. Thus we can choose a matching pair \((i, j)\) such that \(x\) has at least \(cm/4\) neighbours in \(B_j\), so at least \(cm/10\) neighbours in \(B'_j\) by property 3. Since \((A_i, B_j)\) is 2\(r\)-regular, \((A'_i, N(x) \cap B'_j)\) has density at least \(d/2\), so by Kövari-Sós-Turán we can choose a copy of \(K_{r-1,s}\) with \(r - 1\) vertices in \(A'_i\) and \(s\) vertices in \(N(x) \cap B'_j\). Adding \(x\) we obtain a copy of \(K_{r,s}\) covering \(x\).

Thus we can cover \(A_0 \cup B_0\), only using vertices from \(A' \cup B'\), and by avoiding heavy clusters we never cover more than \(d^{1/4}m + \max\{r, s\}\) vertices in any cluster. For each matching edge \((i, j)\), the uncovered part of \((A_i, B_j)\) is \(3\epsilon\)-regular, and has minimum degree at least \(dm/3\) by property 4. Thus it is super-regular, and as described above we can complete the proof via the blow-up lemma.

### 5.2 The regular approximation lemma and dense counting lemma

In order to apply regularity methods to 3-graphs we need a result analogous to the Szemerédi Regularity Lemma, decomposing an arbitrary 3-graph into a bounded number of 3-complexes, most of which are regular. This was achieved by Frankl and Rödl [9], but as we mentioned in Section 3, in this sparse setting the parameters are not suitable for our blow-up lemma. We will instead use the regular approximation lemma, which provides a dense setting for an approximation of the original 3-graph. For 3-graphs this result is due to Nagle, Rödl and Schacht [37] and in general to Rödl and Schacht [41]. A similar result was proved by Tao [45]. For simplicity we will just discuss the lemma for 3-graphs, although the statement for \(k\)-graphs is very similar. Note also that we will formulate the results using the notation established in this paper. We start with a general definition.

**Definition 5.4.** Suppose that \(V = V_1 \cup \cdots \cup V_r\) is an \(r\)-partite set. A partition \(k\)-system \(P\) on \(V\) is a collection of partitions \(P_A\) of \(K(V)_A\) for every \(A \in \binom{[r]}{2}\). We say that \(P\) is a partition \(k\)-complex if every two sets \(S, S'\) in the same cell of \(P_A\) are strongly equivalent, defined as in [13] to mean that \(S_B\) and \(S'_B\) belong to the same cell of \(P_B\) for every \(B \subseteq A\). Given \(S \in K(V)\) we write \(C_S^P\) for the cell in \(P_A\) containing \(S\). We write \(C_S = C_{S}^{P}\) when there is no danger of ambiguity. For any \(S' \subseteq S\) we write \(C_{S'} \leq C_S\) and say that \(C_{S'}\) lies under or is consistent with \(C_S\). We define the cell complex \(C_{S^{\leq}} = \bigcup_{S' \subseteq S} C_{S'}\).

We can use a partition 2-complex to decompose a 3-graph as follows.

**Definition 5.5.** Suppose \(G\) is an \(r\)-partite 3-graph on \(V\) and \(P\) is a partition 2-complex on \(V\). We define \(G[P]\) to be the coarsest partition 3-complex refining \(P\) and the partitions \(\{G_S, K(V)_S \setminus G_S\}\) for \(S \in G\).

We make a few remarks here to explain the structures defined in Definitions 5.4 and 5.5. The partition 2-complex \(P\) has vertex partitions and graph partitions. The vertex partitions \(P_i\) are of the form \(V_i = V_i^{a_1} \cup \cdots \cup V_i^{a_\ell}\) for some \(a_i\), for \(1 \leq i \leq r\). The graph partitions \(P_{ij}\) are of the form 

\[
K(V)_{ij} = J_{ij}^{a_{ij}} \cup \cdots \cup J_{ij}^{a_{ij}}
\]

for some \(a_{ij}\), for \(1 \leq i < j \leq r\). By strong equivalence, any bipartite graph \(J_{ij}^{a_{ij}}\) is spanned by some pair \((V_i^{a_{ij}}, V_j^{a_{ij}})\); it cannot cut across several such pairs. We also say that \(V_i^{a_{ij}}\)
and $V_j^{b_j}$ lie under or are consistent with $J_{ij}^{b_{ij}}$. A choice of $i < j < k$, singleton parts $V_i^{b_i}$, $V_j^{b_j}$, $V_k^{b_k}$ and graph parts $J_{ij}^{b_{ij}}$, $J_{jk}^{b_{jk}}$, $J_{ik}^{b_{ik}}$ such that the singleton parts are consistent with the graph parts is called a triad. (This terminology is used by Rödl et al.) If we consider the set of triangles in a triad, then we obtain a partition of the $r$-partite triples of $V$ as we range over all triads. Another way to describe this is to say as in [13] that $S, S'$ are weakly equivalent when $S_B, S'_B$ are in the same cell of $P_B$ for every strict subset $B \subset A$. Let $P_A^*$ denote the partition of $K(V)_A$ into weak equivalence classes. Then $P_{ijk}^*$ is the partition of $K(V)_{ijk}$ by triads as described above. The partition 3-complex $G[P]$ has two cells for each triad: for each cell $C$ of $P_{ijk}^*$ we have cells $G_{ijk} \cap C$ and $(K(V) \setminus G)_{ijk} \cap C$ of $G[P]_{ijk}$. For embeddings in $G$ only the cells $G_{ijk} \cap C$ are of interest, but we include both for symmetry in the definition. We make the following further definitions.

**Definition 5.6.** Suppose $P$ is a partition $k$-complex. We say that $P$ is equitable if for every $k' \leq k$ the $k'$-cells all have equal size, i.e. $|T| = |T'|$ for every $T \in P_A, T' \in P_{A'}$, $A, A' \in (\binom{V}{k})$. We say that $P$ is $a$-bounded if $|P_A| \leq a$ for every $A$. We say that $P$ is $\epsilon$-regular if every cell complex $C_{S \leq}$ is $\epsilon$-regular. We say that $r$-partite 3-graphs $G^0$ and $G$ on $V$ are $\nu$-close if $|G_A \Delta G_A| < \nu|K(V)_A|$ for every $A \in (\binom{V}{r})$. Here $\Delta$ denotes symmetric difference.

The following is a slightly modified version of the Regular Approximation Lemma [41, Theorem 14].² The reader should note the key point of the constant hierarchy: although the closeness of approximation $\nu$ may be quite large (it will satisfy $d_2 \ll \nu \ll d_3$), the regularity parameter $\epsilon$ will be much smaller.

**Theorem 5.7.** (Rödl-Schacht [41]) Suppose integers $n, a, r$ and reals $\epsilon, \nu$ satisfy $0 < 1/n \ll \epsilon \ll 1/a \ll \nu, 1/r$ and that $G^0$ is an $r$-partite 3-graph on an equitable $r$-partite set of $n$ vertices $V = V_1 \cup \cdots \cup V_r$, where $a|n$. Then there is an $a$-bounded equitable $r$-partite partition 2-complex $P$ on $V$ and an $r$-partite 3-graph $G$ on $V$ that is $\nu$-close to $G^0$ such that $G[P]$ is $\epsilon$-regular.

As we mentioned earlier, $\epsilon$-regular 3-complexes are useful because of a counting lemma that allows one to estimate the number of copies of any fixed complex $J$, using a suitable product of densities. First we state a counting lemma for tetrahedra, analogous to the triangle counting lemma in 1. Suppose $0 < \epsilon \ll d, \gamma$ and $G$ is an $\epsilon$-regular 4-partite 3-complex on $V = V_1 \cup \cdots \cup V_4$ with all relative densities $d_S(G) \geq d$. Then $G_{[4]}^n$ is the set of tetrahedra in $G$. We have the estimate

$$d(G_{[4]}^n) := \frac{|G_{[4]}^n|}{|V_1||V_2||V_3||V_4|} = (1 \pm \gamma) \prod_{S \subseteq [4]} d_S(G). \tag{7}$$

This follows from a result of Kohayakawa, Rödl and Skokan [22, Theorem 6.5]: they proved a counting lemma for cliques in regular $k$-complexes.

More generally, suppose $J$ is an $r$-partite 3-complex on $Y = Y_1 \cup \cdots \cup Y_r$ and $G$ is an $r$-partite 3-complex on $V = V_1 \cup \cdots \cup V_r$. We let $\Phi(Y, V)$ denote the set of all $r$-partite maps from $Y$ to $V$:

²The differences are: (i) we are starting with an initial partition of $V$, so technically we are using a simplified form of [41, Lemma 25], (ii) a weaker definition of ‘equitable’ is given in [41], that the singleton cells have equal sizes, but in fact they prove their result with the definition used here, and (iii) we omit the parameter $\eta$ in our statement, as by increasing $r$ we can ensure that all but at most $\eta n^3$ edges are $r$-partite.
Theorem 5.8. (Rödl-Schacht [42], see Theorem 13)

Suppose that we want to embed some bounded degree 3-graph $H$ in another 3-graph $G^0$ on a set $V$ of $n$ vertices, where $n$ is large. We fix constants with hierarchy $0 < n' \ll n < a \ll n, 1/r < 1$.

We delete at most $a!$ vertices so that the number remaining is divisible by $a!$, take an equitable $r$-partition $V = V_1 \cup \cdots \cup V_r$, and apply Theorem 5.7 to obtain an $a$-bounded equitable $r$-partite partition 2-complex $P$ on $V$ and an $r$-partite 3-graph $G$ on $V$ that is $\nu$-close to $G^0$ such that $G(P)$ is $\epsilon$-regular. Since $G$ is so regular, our strategy for embedding $H$ in $G^0$ will be to think about embedding it in $G$, subject to the rule that the edges $M = G \setminus G^0$ are marked as ‘forbidden’. Recall that we refer to the pair $(G, M)$ as a marked complex. To apply the 3-graph blow-up lemma (Theorem 4.1) we need the following analogue of Lemma 5.3, showing that we can enforce super-regularity by deleting a small number of vertices.

Lemma 5.9. Suppose that $0 < \epsilon_0 \ll \epsilon \ll \epsilon' \ll d_2 \ll \theta < d_3, 1/r$, and $(G, M)$ is a marked $r$-partite 3-complex on $V = V_1 \cup \cdots \cup V_r$ with $|M| \leq \theta |G|$, and $d_S(G) \geq d_S$ if $|S| = 2, 3$. Then we can delete at most $2\theta^{1/3}|G|$ vertices from each $G_i$, $1 \leq i \leq r$ to obtain an $(\epsilon, \epsilon', d_2/2, 2\sqrt{\theta}, d_3/2)$-super-regular marked complex $(G^0, M^0)$.

Proof. The idea is to delete vertices which cause failure of the regularity, density or marking conditions in Definition 3.16 (super-regularity). However, some care must be taken to ensure that this process terminates. There are three steps in the proof: firstly, we identify sets $Y_i$ of vertices in $G_i$ that cause the conditions on marked edges to fail; secondly, we identify sets $Z_i$ of vertices in $G_i$ that either cause the regularity and density conditions to fail or have atypical neighbourhood in some $Y_j$; thirdly, we delete the sets $Y_i$ and $Z_i$ and show that what remains is a super-regular pair.

Step 1. Fix $1 \leq i \leq r$. We will identify a set $Y_i$ of vertices in $G_i$ that are bad with respect to the conditions on marked edges in the definition of super-regularity. For any $j, k$ such that $G_{ijk}$ is

---

We have rephrased their statement and slightly generalised it by allowing the sets $Y_i$ to have more than one vertex; this version can easily be deduced from the case $|Y_i| = 1$, $1 \leq i \leq r$ by defining an auxiliary complex with the appropriate number of copies of each $V_i$ (see [4]).
defined we let $Y_{i,j,k}$ be the set of vertices $v \in G_i$ for which $\|M(v)_{jk}\| > \sqrt{\theta}\|G(v)_{jk}\|$. For any triple $S$ such that $G_S$ is defined and subcomplex $I$ of $S \subseteq$ such that $G_{S'i}$ is defined for all $S' \in I$ we let $Y_{i,S}$ be the set of vertices $v \in G_i$ for which $\|M \cap G_{S'i}\| > \sqrt{\theta}\|G_{S'i}\|$. Let $Y_i$ be the union of all such sets $Y_{i,j,k}$ and $Y_{i,S}$. We will show that $\|Y_i\| < \theta^{1/3}\|G_i\|$.

First we bound the sets $Y_{i,j,k}$. Let $Z_{i,j,k}$ be the set of vertices $v \in G_i$ such that we do not have $\|G(v)_{jk}\| = (1 \pm \varepsilon)|G_{ijk}||G_i|$ and $G(v)_{S'}$ is $\epsilon$-regular with $d_S(G(v)) = (1 \pm \epsilon)d_S(G)d_{S'i}(G)$ for $\emptyset \neq S \subseteq jk$. Since $G_{ijk}$ is $\epsilon_0$-regular we have $|Z_{i,j,k}| < \epsilon|G_i|$ by Lemma 4.12 and Lemma 4.6. Therefore $\sum_{v \in Y_{i,j,k}} |M(v)_{jk}| > \sqrt{\theta}\sum_{v \in Y_{i,j,k}} |G(v)_{jk}| > \sqrt{\theta}(|Z_{i,j,k} - \epsilon|G_i|)(1 - \epsilon)|G_{ijk}||G_i|$. We also have an upper bound $\sum_{v \in Y_{i,j,k}} |M(v)_{jk}| |\leq |M_{i,j,k}| \leq \theta|G_{ijk}||G_i|$ by the hypotheses of the lemma. This gives $|Y_{i,j,k}|/|G_i| < \sqrt{\theta} / (1 - \epsilon) + \epsilon < 2\sqrt{\theta}$.

Now we bound $Y_{i,S}$. Define $Z_{i,S}$ to equal $Z_{i,j,k}$ if $S = ijk$ or $Z_{i,ab} \cup Z_{i,bc} \cup Z_{i,ac}$ if $i \notin S = abc$. If $v \in G_i \setminus Z_{i,S}$ then by regular restriction $G_{S' \subseteq S}$ is $\sqrt{\epsilon}$-regular and $d_{S'}(G_{S' \subseteq S})$ is $(1 \pm \epsilon)d_{S'}(G)d_{S'i}(G)$ if $\emptyset \neq S' \in I$ or $(1 \pm \sqrt{\epsilon})d_{S'}(G)$ otherwise. By Lemma 4.10 we have $d(G_{S'}) = (1 \pm 8\epsilon)\prod_{S' \subseteq S} d_{S'}(G)$ and $d(G_{S' \subseteq S}) = (1 \pm 8\sqrt{\epsilon})\prod_{S' \subseteq S} d_{S'}(G_{S'}) = (1 \pm 20\sqrt{\epsilon})d(G_S)\prod_{\emptyset \neq S' \in I} d_{S'i}(G)$.

Write $\Sigma = \sum_{v \in Y_{i,S}} (|M \cap G_{S'}|)$. Then

$$\Sigma > \sqrt{\theta} \sum_{v \in Y_{i,S} \setminus Z_{i,S}} |G_{S'}| > \sqrt{\theta}(|Y_{i,S}| - 3\epsilon|G_i|)(1 - 20\sqrt{\epsilon})|G_S| \prod_{\emptyset \neq S' \in I} d_{S'i}(G).$$

For any $P \in G_S$, let $G_{P,I}$ be the set of $v \in G_i$ such that $Pv \in G_{S'i}$ for all $\emptyset \neq S' \in I$. Let $B_I$ be the set of $P \in G_S$ such that we do not have $|G_{P,I}| = (1 \pm \epsilon)|G_i|\prod_{\emptyset \neq S' \in I} d_{S'i}(G)$. Then $|B_I| \leq \epsilon|G_S|$ by Lemma 4.11. Now $\Sigma \leq \sum_{v \in G_i} (|M \cap G_{S'})$, which counts all pairs $(v,P)$ with $P \in M_S$ and $v \in G_{P,I}$, so

$$\Sigma \leq |M_S|(1 + \epsilon)|G_i| \prod_{\emptyset \neq S' \in I} d_{S'i}(G) + \epsilon|G_S||G_i|.$$ 

Combining this with the lower bound on $\Sigma$ we obtain

$$\sqrt{\theta}(|Y_{i,S}|/|G_i| - 3\epsilon)(1 - 20\sqrt{\epsilon}) < \frac{|M_S|}{|G_S|}(1 + \epsilon) + \epsilon \prod_{\emptyset \neq S' \in I} d_{S'i}(G)^{-1}.$$ 

Since $|M_S| < \theta|G_S|$ and $\epsilon' \leq d_2$ we deduce that $|Y_{i,j,k}|/|G_i| < 2\sqrt{\theta}$.

In total we deduce that $|Y_i|/|G_i| < (\left(\frac{\epsilon}{2}\right) + 8\left(\frac{\epsilon}{4}\right)) 2\sqrt{\theta} < \theta^{1/3}$.

**Step 2.** Next we come to the regularity and density conditions. Recall that $G(v)$ is $\epsilon$-regular with $d_S(G(v)) = (1 \pm \epsilon)d_S(G)d_{S'i}(G)$ for $\emptyset \neq S \subseteq jk$ when $v \notin Z_{i,j,k}$, where $|Z_{i,j,k}| < \epsilon|G_i|$. Now suppose $G_{ij}$ is defined and let $Z'_{i,j}$ be the set of $v \in G_i$ such that $|G(v)_{ij} \cap Y_j| \neq d_{ij}(G)|Y_j| \pm \epsilon|G_{ij}|$. We claim that $|Z'_{i,j}| < 2\epsilon|G_i|$. To prove this, we can assume that $|Y_j| > \epsilon|G_j|$, otherwise $Z'_{i,j}$ is empty. Since $G_{ij}$ is $\epsilon_0$-regular, $G_{ij}|Y_j|$ is $\epsilon$-regular by Lemma 2.3. Then the bound on $Z'_{i,j}$ follows from Lemma 2.2. Let $Z_i$ be the union of all the sets $Z_{i,j,k}$ and $Z'_{i,j}$. Then $|Z_i|/|G_i| < (\frac{\epsilon}{2}) + 2(\epsilon/2) \leq \sqrt{\epsilon}$, say.

**Step 3.** Now we show that deleting $Y_i \cup Z_i$ from $G_i$ for every $1 \leq i \leq r$ gives an $(\epsilon', \epsilon_0, \epsilon_2/2, 2\sqrt{\theta}, d_3/2)$-super-regular marked complex $(G', M')$. To see this, note first that the above upper bounds on $Y_i$ and $Z_i$ show that we have deleted at most $2\theta^{1/3}$-proportion of each $G_i$. Since $G$ is $\epsilon_0$-regular with
$d_S(G) \geq d_{|S|}$ if $|S| = 2, 3$, regular restriction implies that $G^\sharp$ is $\epsilon$-regular with $d_S(G^\sharp) = (1 \pm \epsilon)d_S(G)$ if $|S| = 2, 3$ and $d_i(G^2) > (1 - 2\theta^{1/3})d_i(G)$ for $1 \leq i \leq r$. This gives property (i) of super-regularity.

Now suppose $G_{ij}$ is defined and $v \in G^2_i$. Then $|G(v)_{ij}| = (1 \pm \epsilon)d_{ij}(G)|G_j|$ and $|G(v)_{ij} \cap Y_j| = d_{ij}(G)|Y_j| \pm \epsilon|G_j|$ since $v \notin Z'_{i,j}$. Since $G^2_j = G_j \setminus (Y_j \cup Z_j)$ and $|Z_j| < \sqrt{\epsilon}|G_j|$ we have

$$|G^2(v)_{ij}| = |G(v)_{ij} \setminus (Y_j \cup Z_j)| = |G(v)_{ij} - d_{ij}(G)|Y_j| \pm 2\sqrt{\epsilon}|G_j| = (1 \pm \epsilon')d_{ij}(G^2)|G^2_j|.$$ 

Next suppose that $G_{ijk}$ is defined and $v \in G^2_i$. Then $d_{jk}(G(v)) = (1 \pm \epsilon)d_{jk}(G)d_{ijk}(G)$ and $G(v)_{jk}$ is $\epsilon$-regular, so $d_{jk}(G^2(v)) = (1 \pm \epsilon')d_{jk}(G^2)d_{ijk}(G^2)$ and $G^2(v)_{ijk}$ is $\epsilon'$-regular by regular restriction. Also, since $v \notin Y_{i,j,k}$ we have $|M(v)_{ijk}| \leq \sqrt{\theta}|G(v)_{ijk}|$. Since

$$|G^2(v)_{ijk}| = d_{jk}(G^2(v))|G^2(v)| |G^2(v)_{ijk}| > (1 - \epsilon')(1 - 2\theta^{1/3})^2d_{jk}(G^2)|G(v)_{ijk}| |G^2(v)| > \frac{1}{2}|G(v)_{ijk}|$$

we have $|M^2(v)_{ijk}| \leq |M(v)_{ijk}| \leq 2\sqrt{\theta}|G^2(v)|$. This gives property (ii) of super-regularity.

Finally, consider any triple $S$ such that $G_S$ is defined and subcomplex $I$ of $S^\leq$ such that $G_{S,1}$ is defined for all $S' \subseteq I$. Since $v \notin Z_{i,S}, G_{i,S}^2$ is $\sqrt{\epsilon}$-regular and $d_S(G^2_{i,S}) = (1 \pm \epsilon)d_S(G)d_{S,1}(G)$ if $\emptyset \neq S' \subsetneq I$ or $(1 \pm \sqrt{\epsilon})d_S(G)$ otherwise. For $j \in S$, we have $d_j(G^2_{i,S}) = (1 \pm \epsilon)d_j(G^2) > (1 - 2\theta^{1/3})d_j(G)$ if $j \notin I$ or $d_j(G^2_{i,S}) = d_j(G^2(v)) = (1 \pm \epsilon')d_j(G^2)d_j(G^2) > 2\epsilon d_j(G)(1 - 2\theta^{1/3})d_j(G)$ if $j \in I$. Then by regular restriction, for $|S'| \geq 2$ with $S' \subseteq S$, $G^2_{S,S'}$ is $\epsilon'$-regular with $d_{S'}(G^2_{i,S'}) = (1 \pm \epsilon'/3)d_{S'}(G^2_{i,S'})$ equal to $(1 \pm \epsilon')d_{S'}(G^2)d_{S,1}(G^2)$ if $\emptyset \neq S' \subsetneq I$ or $(1 \pm \epsilon')d_{S'}(G^2)$ otherwise. Also, by Lemma 4.10 we have

$$\frac{|G^2_{i,S}|}{d(G_{i,S}^2)} = \frac{d(G^2_{i,S})}{d(G_{i,S}^2)} = (1 \pm 10\epsilon') \prod_{S' \subseteq S} \frac{d_{S'}(G^2_{i,S'})}{d_{S'}(G^2_{i,S'})} > (1 - 20\epsilon')(1 - 2\theta^{1/3})^3 > 1/2.$$ 

Since $v \notin Y'_{i,S}$ we have $|(M \cap G^2_{i,S})_S| \leq \sqrt{\theta}|G^2_{i,S}|$, so $|(M^2 \cap G^2_{i,S})_S| \leq 2\sqrt{\theta}|G^2_{i,S}|$. This gives property (iii) of super-regularity, so the proof is complete.

**Remark 5.10.** For some applications it may be important to preserve exact equality of the part sizes, i.e. start with $|G_i| = n$ for $1 \leq i \leq r$ and delete exactly $2\theta^{1/3}n$ vertices from each $G_i$ to obtain super-regularity. This can be achieved by deleting the sets $Y_i$ and $Z_i$ of Lemma 5.9, together with some randomly chosen additional vertices to equalise the numbers. With high probability these additional vertices intersect all vertex neighbourhoods in approximately the correct proportion, and then the same proof shows that the resulting marked complex is super-regular. We omit the details.

For applications it is also useful to know that super-regularity is preserved when one restricts to subsets that are both large and have large intersection with every vertex neighbourhood.

**Lemma 5.11. (Super-regular restriction)** Suppose $0 < \epsilon < \epsilon' \ll \epsilon'' \ll d_2 \ll \theta \ll d_3, d'$ and $(G, M)$ is a $(\epsilon, \epsilon', d_2, \theta, d_3)$-super-regular marked $r$-partite 3-complex on $V = V_1 \cup \cdots \cup V_r$ with $G_i = V_i$ for $1 \leq i \leq r$. Suppose also that we have $V_i' \subseteq V_i$ for $1 \leq i \leq r$. Write $V' = V_1' \cup \cdots \cup V_r'$, $G' = G[V']$, $M' = M[V']$, and that $|V_i'| \geq d'|V_i|$ and $|G(v)_{ij} \cap V_i'| \geq d'|G(v)|$ whenever $1 \leq i,j \leq r$, $v \in V_j'$ and $G_{ij}$ is defined. Then $(G', M')$ is $(\epsilon', \epsilon'', d_2/2, \sqrt{\theta}, d_3/2)$-super-regular.

**Proof.** The argument is similar to Step 3 of the previous lemma. Suppose $|S| = 3, G_S$ is defined, $i \in S$, $v \in G_i$. By Definition 3.16(i) for $(G, M)$, $G_{S,1}$ is $\epsilon$-regular with $d_{S'}(G) \geq d_{|S'|}$ for $S' \subseteq S$,
$|S'| = 2, 3$. By assumption we have $d_j(G') \geq d'd_j(G)$ for $j \in S$, so regular restriction implies that $G'_{S'j}$ is $\epsilon'$-regular with $d_{S'}(G') \geq d_{|S'|}/2$ for $S' \subseteq S$, $|S'| = 2, 3$. This gives Definition 3.16(i) for $(G', M')$. Similarly, by Definition 3.16(ii) for $(G, M)$, writing $S = jk$, $G(v)_{jk}$ is $\epsilon'$-regular with $d_{S'}(G(v)) = (1 + \epsilon')d_{S'}(G)_{dj}(G)$ for $\emptyset \neq S' \subseteq jk$ and $|M(v)_{jk}| \leq \theta|G(v)_{jk}|$. By assumption we have $d_j(G'(v)) \geq d'd_j(G(v))$ and $d_k(G'(v)) \geq d'k(G(v))$, so regular restriction implies that $G'(v)_{jk}$ is $\epsilon''$-regular with $d_{S'}(G'(v)) = (1 + \epsilon'')d_{S'}(G'_{jk})/2$ for $\emptyset \neq S' \subseteq jk$. Also $|G'(v)_{jk}|/|d_{S'}(G'(v))| = d(G'(v)_{jk})/d(G(v)_{jk}) > (d')^2/2$ so $|M'(v)_{jk}|/|G'(v)_{jk}| \leq 2\theta/(d')^2 < \sqrt{\theta}$. This gives Definition 3.16(ii) for $(G', M')$.

Finally, consider any triple $S$ such that $G_S$ is defined and subcomplex $I$ of $S'$ such that $G_{S'j}$ is defined for all $S' \in I$. By Definition 3.16(iii) for $(G, M)$, $|(M \cap G'I_S)| \leq \theta|G'I_S|$, $G'I_S$ is $\epsilon'$-regular and $d_{S'}(G'I_S)$ is $\epsilon''$-regular with $d_{S'}(G'I_S) = (1 \pm \epsilon')d_{S'}(G)_{dj}$. By assumption $d_j(G'I_S) = d_j(G'(v)) > d'd_j(G)$ if $j \notin I$ or $d_j(G'(v)) \geq d'd_j(G(v))$ if $j \in I$. Then by regular restriction, for $|S'| = 2$ with $S' \subseteq S$, $G'I_S$ is $\epsilon''$-regular with $d_{S'}(G'I_S) = (1 \pm \epsilon'')d_{S'}(G'I_S)$ equal to $(1 \pm \epsilon'')d_{S'}(G)_{dj}$. Also, by Lemma 4.10 we have $|G'I_S|/|G'I_S| = d(G'I_S)/d(G'I_S) = (1 \pm \epsilon'')|S'| \leq 2\theta/\epsilon'' < \sqrt{\theta}$. This gives Definition 3.16(iii) for $(G', M')$.

Now we will present a ‘black box’ reformulation that goes straight from regularity to embedding, bypassing super-regularity and the blow-up lemma. This more accessible form of our results will be more convenient for future applications of the method. First we give a definition.

**Definition 5.12. (Robustly universal)** Suppose $J$ is an $r$-partite $3$-complex on $Y = Y_1 \cup \cdots \cup Y_r$ with $J_i = Y_i$ for $1 \leq i \leq r$. We say that $J$ is $\epsilon \ell$-robustly $D$-universal if whenever

(i) $Y_i' \subseteq Y_i$ with $|Y_i'| \geq \epsilon\ell |Y_i|$ such that $Y' = \bigcup_{i=1}^r Y_i'$, $J' = J[Y']$ satisfy $|J'_S(v)| \geq \epsilon\ell |J_S(v)|$ whenever $|S| = 3$, $J_S$ is defined, $i \in S$, $v \in J_i'$, 

(ii) $H'$ is an $r$-partite $3$-complex on $X' = X'_1 \cup \cdots \cup X'_r$ of maximum degree at most $D$ with $|X'_i| = |Y'_i|$ for $1 \leq i \leq r$, 

then $J'$ contains a copy of $H'$, in which vertices of $X'_i$ correspond to vertices of $Y'_i$ for $1 \leq i \leq r$.

Now we show that one can delete a small number of vertices from a regular complex with a small number of marked triples to obtain a robustly universal pair.

**Theorem 5.13.** Suppose $0 \leq 1/n \ll \epsilon \ll d^\ell \ll d_2 \ll \theta \ll d_3, \epsilon^\ell, 1/D, 1/C$, that $G$ is an $\epsilon$-regular $r$-partite $3$-complex on $V = V_1 \cup \cdots \cup V_r$ with $d_S(G) \geq d_{|S|}$ for $|S| = 2, 3$ when defined and $n \leq |G_i| = |V_i| \leq Cn$ for $1 \leq i \leq r$, and $M \subseteq G$ with $|M| \leq \theta|G_S|$ when defined. Then we can delete at most $2\theta^{1/3}|G_i|$ vertices from $G_i$ for $1 \leq i \leq r$ to obtain $\tilde{G}^2$ and $M^2$ so that

(i) $d(G^2_S) > d^\ell$ and $|G^2_S(v)| > |G^2_S(v)|/2|G^2_S|$ whenever $|S| = 3$, $G_S$ is defined, $i \in S$, $v \in G_i$, and

(ii) $G^2 \setminus M^2$ is $\epsilon \ell$-robustly $D$-universal.

**Proof.** Define additional constants with $\epsilon \ll \epsilon_1 \ll \epsilon_2 \ll \epsilon_3 \ll d^\ell$. Applying Lemma 5.9, we can delete at most $2\theta^{1/3}|G_i|$ vertices from each $G_i$ to obtain an $(\epsilon_1, \epsilon_2, d_2/2, 2\sqrt{\theta}, d_3/2)$-super-regular marked
complex \((G^2, M^2)\) on some \(V^2 = V^2_1 \cup \cdots \cup V^2_r\). We will show that \(J = G^2 \setminus M^2\) is \((c^2, d^2)\)-robustly \(D\)-universal. To see this suppose \(|S| = 3\), \(G_S\) is defined, \(i \in S, v \in G'_i\). By Definition 3.16(i) and Lemma 4.10 we have \(d(G^2_S) = (1 \pm 8\epsilon_1)\prod_{i>j} (G^2_S) > (1 - 2\theta^{1/3})(d_2/2)^3(d_3/2) > d^2\). Writing \(S = \{i, j, k\}\), by Definition 3.16(ii) we have \(d(G^2_S(v)) = d_j(G^2_S)_{|G^2_S(v)}|d_k(G^2_S) = \prod_{S \subseteq j,k} (1 \pm 2\epsilon_2) d(S)_{|G^2_S(v)}|d(S)_{|G^2_S(v)} = d_i(G^2_S)_{|G^2_S(v)} = (1 \pm 8\epsilon_1)/(1 \pm 2\epsilon_2)^3 > 1/2\). Now suppose that \(V'_i \subseteq V^2_i\) and \(H'\) are given as in Definition 5.12 applied to \(J\). Then \((G^2[V'], M^2[V'])\) is \((\epsilon_2, \epsilon_3, d_2/4, 2\theta^{1/4}, d_3/4)\)-super-regular by Lemma 5.11. Applying Theorem 4.1, \(J' = J[V']\) contains a copy of \(H'\), in which vertices of \(X'_i\) correspond to vertices of \(V'_i\) for \(1 \leq i \leq r\). \(\square\)

5.4 Applying the 3-graph blow-up lemma

In this subsection we illustrate the 3-graph blow-up lemma by proving the following generalisation of Theorem 5.1 to packings of tripartite 3-graphs.

**Theorem 5.14.** For any 3-partite 3-graph \(F\) in which not all part sizes are equal and \(0 < c_1, c_2 < 1\) there is a real \(\epsilon > 0\) and positive integers \(C, n_0\) such that if \(G\) is a 3-graph on \(n > n_0\) vertices \(V\) such that every vertex \(v\) has degree \(|G(v)| = (1 \pm \epsilon)cn^2\) and every pair of vertices \(u, v\) has degree \(|G(uv)| > c_2n\) then \(G\) contains an \(F\)-packing that covers all but at most \(C\) vertices.

We start by recording some auxiliary results that will be used in the proof. First we need a result of Erdős on the number of copies of a \(k\)-partite \(k\)-graph.

**Theorem 5.15.** (Erdős [8]) For any \(a > 0\) and \(k\)-partite \(k\)-graph \(F\) on \(f\) vertices there is \(b > 0\) so that if \(H\) is a \(k\)-graph on \(n\) vertices with at least \(an^k\) edges then \(H\) contains at least \(bn^f\) copies of \(F\).

Next we need Azuma’s inequality on martingale deviations.

**Theorem 5.16.** (Azuma [2]) Suppose \(Z_0, \cdots, Z_n\) is a martingale, i.e. a sequence of random variables satisfying \(\mathbb{E}[Z_{i+1}|Z_0, \cdots, Z_i] = Z_i\), and that \(|Z_i - Z_{i-1}| \leq c_i, 1 \leq i \leq n, \) for some constants \(c_i\). Then for any \(t \geq 0,\)

\[
\Pr(|Z_n - Z_0| \geq t) \leq 2 \exp\left(-\frac{t^2}{2 \sum_{i=1}^n c_i^2}\right).
\]

We also need the following theorem of Kahn, which is a linear programming generalisation of a theorem of Pippenger on matchings in regular hypergraphs with small codegrees. (A matching is a set of vertex-disjoint edges.) Suppose \(H\) is a \(k\)-graph and \(t: E(H) \rightarrow \mathbb{R}^+\). Write \(t(H) = \sum_{A \subseteq E(H)} t(A)\) and \(t'(S) = \sum_{A \subseteq E(H), S \subseteq A} t'(A)\) for \(S \subseteq V(H)\). Let \(c_0(t) = \max_{S \subseteq V(H)} t'(S)\). Say that \(t\) is a fractional matching if \(t'(x) = \sum_{A \subseteq E(H), x \subseteq A} t(A) \leq 1\) for every \(x \in V(H)\).

**Theorem 5.17.** (Kahn [17]) For any \(\epsilon > 0\) there is \(\delta > 0\) so that if \(H\) is a \(k\)-graph on \(n\) vertices and \(t\) is a fractional matching of \(H\) with \(c_0(t) < \delta\) then \(H\) has a matching of size at least \(t(H) - \epsilon n\).

Now we will prove Theorem 5.14. We may suppose that \(F\) is complete 3-partite, say \(F = K(Y)_{123}\) on \(Y = Y_1 \cup Y_2 \cup Y_3\). We introduce parameters with the hierarchy

\[
0 \ll 1/n_0 \ll \epsilon \ll \epsilon' \ll \epsilon'' \ll d^2 \ll d_2 \ll 1/a \ll \nu \ll 1/r \ll d_3 \ll \delta \ll \gamma \ll \beta \ll \alpha \ll c_1, c_2, 1/|Y|.
\]
We delete at most \( a! \) vertices of \( G \) so that the number remaining is divisible by \( a! \), take an equitable \( r \)-partition \( V = V_1 \cup \cdots \cup V_r \), and apply Theorem 5.7 to obtain an \( a \)-bounded equitable \( r \)-partite partition 2-complex \( P \) on \( V \) and an \( r \)-partite 3-graph \( G' \) on \( V \) that is \( \nu \)-close to \( G \) such that \( G'[P] \) is \( \epsilon \)-regular. Since \( P \) is \( a \)-bounded, for every graph \( J_{ij} \in P_{ij} \) with \( 1 \leq i < j \leq r \), the densities \( d(J_i) \), \( d(J_j) \) and \( d(J_{ij}) \) are all at least \( 1/a \). We refer to singleton parts in \( P \) as clusters. Let \( n_1 \) be the size of each cluster. By means of an initial partition we may also assume that \( n_1 < \nu n \). Let \( M = G' \setminus G \) be the edges marked as ‘forbidden’.

Next we define the reduced 3-graph \( R \), a weighted 3-graph in which vertices correspond to clusters and triples correspond to cells of \( G'[P] \) that are useful for embedding, in that they have large density and few marked edges. Let \( Z = Z_1 \cup \cdots \cup Z_r \) be an \( r \)-partite set with \( |Z_i| = a_1 := |P_i| \) for \( 1 \leq i \leq r \), where \( a_1 \leq a \) and \( n - a! < rn_1 a_1 \leq n \). We identify \( Z_i \) with \([a_1]\), although it is to be understood that \( Z_i \) and \( Z_j \) are disjoint for \( i \neq j \), and label the cells of \( P_i \) as \( C_{i,1}, \cdots, C_{i,a_1} \). We identify an \( r \)-partite triple \( S \in K(Z) \) with \( S' = \cup_{i \in S} C_{i,S_i} \), where \( S_i = S \cap Z_i \). Write \( N = n_1^2 n_1 \) and \( K(S') = K(V[S']) \). We say that \( S \) is an edge of \( R \) with weight \( w(S) = |G'[S']_S|/N \) if \( |G'[S']_S| > d_3 |K(S')_S| \) and \( |M[S']_S| < \sqrt{\nu} |K(S')_S| \).

We define the weighted degree \( d_w(j) \) of a vertex \( j \) in \( R \) to be the sum of \( w(S) \) over all \( j \in S \in R \). We will delete a small number of vertices from \( R \) to obtain a 3-graph \( R' \) that is almost regular with respect to weighted degrees. For any \( i \in A \in [r] \) and \( j \in Z_i \) we define

\[
B^2_{i,A} = \{ S : j \in S \in K(Z)_A, |M[S']_S| > \sqrt{\nu} |K(S')_S| \} \quad \text{and} \quad Z_{i,A} = \{ j \in Z_i : |B^2_{i,A}| > \nu^{1/4}a_1^2 \}.
\]

Then

\[
|M_A| = \sum_{j \in Z_i} \sum_{S_j \in S \in K(Z)_A} |M[S']_S| > \sum_{j \in Z_{i,A}} \sum_{S \in B^2_{i,A}} \sqrt{\nu} |K(S')_S| > |Z_{i,A}| \cdot \nu^{1/4}a_1^2 \cdot \sqrt{\nu} n_1^3.
\]

Since \( G' \) is \( \nu \)-close to \( G \) (see Definition 5.6) we have \( |M_A| < \nu |K(V)_A| < \nu (n/r)^3 \), so \( |Z_{i,A}| < \nu^{1/4}(n/r)n_1^2/a_1^2 < 2\nu^{1/4}a_1 \). Let \( Z' = Z_1' \cup \cdots \cup Z_r' \) be obtained by deleting all sets \( Z_{i,A} \) from \( Z \) and let \( R' = R[Z'] \). Since \( \nu \ll 1/r \) we have \( |Z_i'| > (1 - \nu^{1/5})a_1 \) for \( 1 \leq i \leq r \).

Now we estimate the weighted degrees \( d'_w(j) \) in \( R' \). Suppose \( j \in Z' \). We have \( d'_w(j) = N^{-1} \sum_{S \in \mathcal{S}} |G'[S']_S| \). There are at most \( a_1^2 \) triples \( S \in K(V) \) containing \( j \), so at most \( d_3 a_1^2 n_1 \) \( R \)-triples in \( G'[S']_S \) for such \( S \) with \( |G'[S']_S| < d_3 |K(S')_S| \). There are at most \( \nu^{1/5}a_1^2 \) triples \( S \not\subseteq Z' \) with \( j \in S \in K(V) \), so at most \( \nu^{1/5}N \) \( R \)-triples in \( G'[S']_S \) for such \( S \). Since \( j \in Z' \) we have \( |B^2_{i,A}| \leq \nu^{1/4}a_1^2 \), so there are at most \( \nu^{1/4}N \) \( R \)-triples in \( G'[S']_S \) for triples \( S \) with \( j \in S \in K(V) \) and \( |M[S']_S| > \sqrt{\nu} |K(S')_S| \). Finally, there are at most \( r(n/r)^2 n_1 = N/r \) triples that are not \( r \)-partite. Altogether, at most \( 2d_3 N \) triples contributing to \( d'_w(j) \) do not belong to \( G'[S']_S \) with \( j \in S \in R \). Since \( |G(v)| = (1 \pm \epsilon)c_1 n_2 \) for all \( v \in G \) and \( \epsilon \ll 1/a \ll \nu \ll 1/r \ll d_3 \) we have

\[
d'_w(j) = N^{-1} \sum_{S \in \mathcal{S}} |G'[S']_S| = N^{-1} \sum_{v \in C_{i,j}} |G(v)| \pm 3d_3/2 = c_1 \pm 2d_3.
\]

Define \( t : E(R') \to \mathbb{R}^2 \) by \( t(S) = w(S)/(c_1 + 2d_3) \). Then \( t'(j) = d'_w(j)/(c_1 + 2d_3) \leq 1 \) for \( j \in R' \), so \( t \) is a fractional matching. We have

\[
t(R') = \sum_{j \in R'} \sum_{S \in S} t'(j)/3 = \sum_{j \in R'} d'_w(j)/3(c_1 + 2d_3) > (1 - \sqrt{d_3})|Z'|/3.
\]

67
Also, the trivial bound \( w(S) < n^2/N \) gives \( \text{co}(t) < n/n_1 \cdot n^2/(c_1 + 2d_3)N < n/c_1n < d_3. \) Applying Theorem 5.17, there is a matching in \( R' \) of size at least \( |Z'|/3 - \frac{1}{6}\delta|Z'| \), i.e. at most \( \frac{1}{6}\delta|Z'| \) vertices are not covered by the matching.

We can use an edge \( S \) of the matching as follows. Consider the partition \( P^*_S \) of \( K(V) \) by weak equivalence, i.e. we have a cell of \( P^*_S \) corresponding to each triad of consistent bipartite graphs indexed by \( S \). The cells lying over \( S' = \bigcup_{i \in S} C_{i,S} \) give a partition of \( K(S') \), which we denote by \( C^{S,i} \). Since \( P \) is \( a \)-bounded we have \( a_S \leq a^3. \) Furthermore, since \( P \) is equitable, the triangle counting lemma (1) gives \( |C^{S,i}| = (1 \pm \epsilon)|C^{S,j}| \) for any \( 1 \leq i, j \leq a_S. \) Now at most \( 2\epsilon^{1/4}|K(S')_S| \) triples of \( G'[S']_S \) can lie in cells \( C^{S,i} \) with \( |M \cap C^{S,i}| > \nu^{1/4}|C^{S,i}|; \) otherwise we would have at most \( (1 - \epsilon')2\epsilon^{1/4}a_S \) such cells, giving \( |M[S']| \geq (1 - \epsilon')2\epsilon^{1/4}a_S \cdot \nu^{1/4}(1 - \epsilon')|K(S')_S|/a_S > (1 - 3\epsilon')2\sqrt{\nu}|K(S')_S|, \) contradicting \( S \in R. \) Since \( |G'[S']_S| > d_3|K(S')_S| \) and \( \nu \ll d_3, \) more than \( \frac{1}{2}d_3|K(S')_S| \) triples of \( G'[S']_S \) lie in cells \( C^{S,i} \) with \( |M \cap C^{S,i}| < \nu^{1/4}|C^{S,i}|, \) so we can choose such a cell \( C^{S,i} \) with \( |G' \cap C^{S,i}| > \frac{1}{2}d_3|C^{S,i}|. \)

Fix such a cell \( C^{S,i} \) for each matching edge \( S \) and let \( G^S \) be the associated cell complex of \( G'[P] \), i.e. \( G^S = G' \cap C^{S,i} \) and for \( S' \subsetneq S, G^S_{S'} \) is the cell of \( P_{S'} \) underlying \( C^{S,i}. \) Then \( G^S \) is \( \epsilon \)-regular. Also, \( |G^S| > \frac{1}{2}d_3|C^{S,i}|, \) so writing \( M^S = M \cap G^S \) we have \( |M^S| < \nu^{1/4}|C^{S,i}| < \nu^{1/3}|G^S| \). At this stage, if we were satisfied with an \( F \)-packing covering all but \( o(n) \) vertices, we could just repeatedly remove copies of \( F \) from each \( G^S \setminus M^S. \) However, we want to cover all but at most \( C \) vertices, so we will apply the blow-up lemma, using the black box form in the previous subsection. By Lemma 5.13 we can delete at most \( 2\epsilon^{1/5}n_1 \) vertices from each cluster so that each \( (G^S, M^S) \) becomes a pair \( (G^2, M^2) \) such that \( J^S = G^2 \setminus M^2 \) is \( 1/2 \)-robustly \( |Y|^2 \)-universal.

Now we gather together all the removed vertices into an exceptional set \( A_0. \) This includes at most \( a! \) vertices removed at the start of the proof, at most \( \nu^{1/5}n \) vertices in parts indexed by \( Z \setminus Z', \) at most \( \frac{1}{6}\delta n \) vertices in parts not covered by the matching, and at most \( 2\nu^{1/5}n \) vertices deleted in making the pairs robustly universal. Therefore \( |A_0| < \delta n. \) For convenient notation we denote the clusters of \( G^2 \) by \( A_{S,1}, A_{S,2}, A_{S,3}. \) Thus \( A_0 \) and \( A_{S,1}, A_{S,2}, A_{S,3} \) for matching edges \( S \) partition the vertex set of \( G. \) To cover the vertices of \( A_0 \) by copies of \( F \) we need the following claim.

**Claim.** Any vertex \( v \) belongs to at least \( \beta n^{|Y|-1} \) copies of \( F \) in \( G. \)

**Proof.** Let \( \Phi \) be the set of all pairs \( (ab, T) \) such that \( ab \in G(v) \) and \( T \in G^{(ab)[Y]} \). There are \( |G(v)| > (1 - \epsilon)c_1n^2 \) choices for \( ab \), and for each \( ab \) the minimum degree property gives at least \( (c_2n-1) \) choices for \( T. \) Therefore \( |\Phi| > (1 - \epsilon)c_1n^2(c_2n-1). \) Let \( \Psi \) be the set of all \( T \in V(G)^{[Y]} \) such that there are at least \( \frac{1}{3}c_1c_2|Y|^{-1}n^2 \) pairs \( ab \in G(v) \) with \( (ab, T) \in \Phi. \) Then \( |\Psi| < |\Psi|^2 + \left( \frac{n}{|Y| - 1} \right)^2 |Y|^{-1}n^2, \) so

\[
|\Psi| > (1 - \epsilon)c_1\left( \frac{c_2n-1}{|Y| - 1} \right) - \left( \frac{n}{|Y| - 1} \right)^2 \frac{1}{3}c_1c_2|Y|^{-1}n^2 \geq \left( \frac{n}{|Y| - 1} \right)^2 \frac{1}{3}c_1c_2|Y|^{-1}n^2.
\]

For each \( T \in \Psi \), since \( \alpha \ll c_1, c_2. \) Theorem 5.15 implies that the sets \( ab \in G(v) \) with \( (ab, T) \in \Phi \) span at least \( a_{\alpha n^{Y+|Y|}} \) copies of \( K_{|Y|,|Y|}. \) Each of these gives a copy of \( F \) containing \( v \) when we add \( T \cup v. \) Summing over \( T \) in \( \Psi \) and dividing by \( |Y|! \) (a crude estimate for overcounting) we obtain (since \( \beta \ll \alpha \)) at least \( \beta n^{Y-1} \) copies of \( F \) containing \( v. \)

\[4\text{This could be achieved using the counting lemma to count copies of } F \text{ in } G^S \text{ and the ‘extension lemma’ to bound the number of copies of } F \text{ using an edge in } M^S. \text{ Alternatively one could start the proof with the ‘regular decomposition lemma’ instead of the regular approximation lemma, then find } F \text{ using the sparse counting lemma.} \]
Next we randomly partition each set \( A_{S,j} \) as \( A'_{S,j} \cup A''_{S,j} \), each vertex being placed independently into either class with probability \( 1/2 \). The reason for this partition is that, as in the proof of Theorem 5.1, we will be able to use the sets \( A'_{S,j} \) when covering the vertices in \( A_0 \), whilst preserving the vertices in \( A''_{S,j} \) so as to maintain super-regularity. Theorem 5.16 gives the following properties with high probability:

1. \( |A'_{S,j}| \) and \( |A''_{S,j}| \) are \( |A_{S,j}|/2 \pm n^{2/3} \) for every \( S \) and \( j \).

2. for every \( S \) and \( j \) and each vertex \( v \in A_{S,j} \), letting \( \{T_i\}_{i \neq j} \) denote the singleton classes of \( G^S(v) \), \( |A'_{S,j} \cap T_i| \) and \( |A''_{S,j} \cap T_i| \) are \( |T_i|/2 \pm n^{2/3} \) for \( i \neq j \), and

3. for any vertex \( v \) of \( G \), there are at least \( \gamma n^{|V|-1} \) copies of \( F \) in which all vertices, except possibly \( v \), are in \( \cup_{S,j} A'_{S,j} \).

In fact, the first two properties are simple applications of Chernoff bounds (in which the martingale is just a sum of independent variables). For the third property we use a vertex exposure martingale. Fix \( v \) and let \( Z \) be the random variable which is the number of copies of \( F \) in which all vertices, except possibly \( v \), are in \( \cup_{S,j} A_{S,j} \). Since \( |A_0| < \delta n \), the Claim gives \( \mathbb{E}Z > (1/2)^{|V|-1}(\beta - \delta)n^{|V|-1} \).

Next we restrict to the uncovered parts of each cluster.

Now we cover \( A_0 \) by the following greedy procedure. Suppose we are about to cover a vertex \( v \in A_0 \). We consider a cluster to be heavy if we have covered more than \( \gamma n_1 \) of its vertices. Since \( |A_0| < \delta n \) we have covered at most \( |Y|\delta n \) vertices by copies of \( F \), so there are at most \( |Y|\delta n/\gamma n_1 < 1/2 \gamma r \gamma 1 \) heavy clusters. As shown above, at least \( \gamma n^{|V|-1} \) copies of \( F \) that we can use to cover \( v \). At most \( 1/2 \gamma r \gamma 1 n_1 n^{|V|-2} < 1/2 \gamma n^{|V|-1} \) of these use a heavy cluster, so we can cover \( A_0 \) while avoiding heavy clusters.

Next we restrict to the vertices not already covered by the copies of \( F \) covering \( A_0 \), where we will use robust universality to finish the packing. Recall that each \( J^S \) is 1/2-robustly \( |Y|^2 \)-universal. By properties (1) and (2) of the partitions \( A_{S,j} = A'_{S,j} \cup A''_{S,j} \), on restricting to the uncovered vertices we obtain \( J^S \) that satisfies conditions (i) in Definition 5.12. (Property (i) of Theorem 5.13 and \( d^S \gg 1/n \) shows that the \( \pm n^{2/3} \) errors are negligible.) Also, any \( F \)-packing has maximum degree less than \( |Y|^2 \), so satisfies condition (ii) in Definition 5.12. Thus we can assume that \( J^S \) is complete, in that we can embed any \( F \)-packing in \( J^S \), subject only to the constraints given by the sizes of the uncovered parts of each cluster.

Now it is not hard to finish the proof with a slightly messy ad hoc argument, but we prefer to use the elegant argument of Kómlos [23, Lemma 12]. Denote the classes of \( J^S \) by \( J_1, J_2, J_3 \). Since we avoided heavy clusters we have \( (1-2\gamma)n_1 \leq |J_1| \leq n_1 \) for \( 1 \leq i \leq 3 \). Let \( P^3 = \{ \alpha \in [0,1]^3 : \alpha_1 \leq \alpha_2 \leq \alpha_3, \sum_{i=1}^3 \alpha_i = 1 \} \). We can associate a ‘class vector’ \( \alpha(X) \in P^3 \) to a 3-partite set \( X = X_1 \cup X_2 \cup X_3 \) by \( \alpha(X)_i = |X_{\sigma(i)}|/|X| \), for some permutation \( \sigma \in S_3 \) chosen to put the classes in increasing order by size. For \( \alpha, \beta \in P^3 \) write \( \alpha < \beta \) if \( \alpha_1 \leq \beta_1 \) and \( \alpha_1 + \alpha_2 \leq \beta_1 + \beta_2 \). Since the classes of \( F \) are not all of equal size and \( \gamma \ll 1/|Y| \) we have \( \alpha(F) < \alpha(J) \). By a theorem of Hardy, Littlewood...
and Pólya, this implies that there is a doubly stochastic matrix $M$ such that $\alpha(J) = M\alpha(F)$. By Birkhoff’s theorem $M$ is a convex combination of permutation matrices $M = \sum \lambda_i P_i$, $\sum \lambda_i = 1$. Thus we can write the class vector of $J$ as $\alpha(J) = \sum \lambda_i P_i \alpha(F)$, which is a convex combination of the permutations of the class vector of $F$. In fact, although the constant is not important, since $P^3$ has dimension 3, we can apply Carathéodory’s theorem to write $\alpha(J) = \sum_{i=1}^3 \mu_i P_i \alpha(F)$, $\sum_{i=1}^3 \mu_i = 1$ as a convex combination using only 3 permutations of $\alpha(F)$.\footnote{This last remark is attributed to Endre Boros in [23].} Finally, to pack copies of $F$ in $J^S$ we can use $|\mu_i|J|/|Y|$ copies of $F$ permuted according to $P_3$, for $1 \leq i \leq 3$. At most $3|Y|$ vertices of any $J_i$ are left uncovered because of the rounding, so in total at most $C = 3|Y|ra_1$ vertices will remain uncovered. This completes the proof. \hfill \square

As for Theorem 5.1, we needed to assume that not all part sizes of $F$ are equal and we could not expect to cover all vertices. Some assumption on the degrees of pairs was convenient, as without it a nearly regular 3-graph can have some vertices that do not belong to any copies of $F$. For example, let $G_0$ be a tripartite 3-graph on $V = V_1 \cup V_2 \cup V_3$ with $|V_1| = |V_2| = |V_3| = n_0/3$ such that every vertex $v$ has degree $|G_0(v)| = (1 + \epsilon)c_1 n_0^2$. Form $G$ from $G_0$ by adding new vertices $v_1, \cdots, v_t$ where $t \approx (3c_1)^{-1}$ and edges so that $G(v_i)$ are pairwise disjoint graphs of size $c_1 n_0^2$ contained in $(V_1) \cup (V_2) \cup (V_3)$. Then $G$ has $n = n_0 + t$ vertices and $|G(v)| = (1 \pm 2\epsilon)c_1 n^2$ for every vertex $v$. However, for every new vertex $v_i$, every pair $ab \in G(v_i)$ is only contained in the edge $v_i ab$, so $v_i$ is not contained in any $K_{2, 2, 3}$ (say). This example does not show that the assumption on pairs is necessary, as we can still cover all but $t$ vertices, but it at least indicates that it may not be so easy to remove the assumption. For simplicity we assumed that every pair has many neighbours, but it is clear from the proof that this assumption can be relaxed somewhat. The bottleneck is the Claim, which can be established under the weaker assumption that for every vertex $v$ there are at least $n^{2-\theta}$ pairs $ab \in G(v)$ with $|G(ab)| > n^{1-\theta}$, for some $\theta > 0$ depending on $F$.

Finally, we remark that one can apply the general hypergraph blow-up lemma in the next section and the same proof to obtain the following result (we omit the details). For any $k$-partite $k$-graph $F$ in which not all part sizes are equal and $0 < c_1, c_2 < 1$ there is a real $\epsilon > 0$ and positive integers $C, n_0$ such that if $G$ is an $k$-graph on $n > n_0$ vertices $V$ such that every vertex $v$ has degree $|G(v)| = (1 \pm \epsilon)c_1 n^{k-1}$ and every $(k-1)$-tuple $S$ of vertices has degree $|G(S)| > c_2 n$ then $G$ contains an $F$-packing that covers all but at most $C$ vertices.

\section{General hypergraphs}

In this section we present the general blow-up lemma. Besides working with $k$-graphs for any $k \geq 3$, we will introduce the following further generalisations:

(i) Restricted positions: a small number of sets in $H$ may be constrained to use a certain subset of their potential images in $G$ (provided that these constraints are regular and not too sparse).

(ii) Complex-indexed complexes: a structure that provides greater flexibility, in particular the possibility of embedding spanning hypergraphs (such as Hamilton cycles).
We divide this section into five subsections organised as follows. The first subsection contains various definitions needed for the general case, some of which are similar to those already given for 3-complexes and some of which are new. In the second subsection we state the general blow-up lemma and the algorithm that we use to prove it. The third subsection contains some properties of hypergraph regularity, analogous to those proved earlier for 3-graphs. We give the analysis of the algorithm in the fourth subsection, thus proving the general blow-up lemma. Since much of the analysis is similar to that for 3-graphs we only give full details for those aspects of the general case that are different. The last subsection contains the general cases of the lemmas to be used in applications of the blow-up lemma, namely Lemmas 5.9, 5.11 (super-regular restriction) and 5.13 (robust universality).

6.1 Definitions

We start by defining complex-indexed complexes.

**Definition 6.1.** We say $R$ is a multicomplex on $[r]$ if it consists some number of copies (possibly 0) of every $I \subseteq [r]$ which are partially ordered by some relation, which we denote by $\subseteq$, such that whenever $I^* \in R$ is a copy of some subset $I$ of $[r]$ and $J$ is a subset of $I$, there is a unique copy $J^*$ of $J$ with $J^* \subseteq I^*$. We say that $R$ is a multi-$k$-complex if $|I| \leq k$ for all $I \in R$.

Suppose $V$ is a set partitioned as $V = V_1 \cup \cdots \cup V_r$. Suppose each $V_i$, $1 \leq i \leq r$ is further partitioned as $V_i = \cup_{i^*} V_{i^*}$, where $i^*$ ranges over all copies of $i$ in $R$. We say $G$ is an $R$-indexed complex on $V$ if it consists of disjoint parts $G_I$ for $I \in R$ (possibly undefined), such that $G_i \subseteq V_i$ for singletons $i \in R$, and $G_{I^*} := \cup_{F \leq I} G_F$ is a complex whenever $G_I$ is defined. We say that an $R$-indexed complex $J$ on $V$ is an $R$-indexed subcomplex of $G$ if $J_I \subseteq G_I$ when defined. We say $S \subseteq V$ is $r$-partite if $|S \cap V_i| \leq 1$ for $1 \leq i \leq r$. The multi-index $i^*(S)$ of $S$ is that $I \in R$ with $S \in G_I$. If $S \in G$ we write $G_{i^*(S)}$ for the part of $G$ containing $S$.

We emphasise that $\subseteq$ is more restrictive than the inclusion relation (also denoted $\subseteq$) between subsets considered merely as subsets of $[r]$. To avoid confusion we never ‘mix’ subsets with copies of subsets. Thus, if $I \in R$ then $J \subseteq I$ means $J \in R$ and $(J, I)$ is in the relation $\subseteq$. Also, if $I \in R$ then $i \in I$ means $\{i\} \in R$ and $(\{i\}, I)$ is in the relation $\subseteq$. We also write $i \in R$ to mean $\{i\} \in R$ when the meaning is clear from the context. As in Definition 3.2, we henceforth simplify notation by writing $i$ instead of $\{i\}$.

**Remark 6.2.** We are adopting similar notation for complex-indexed complexes as for usual complexes for ease of discussing analogies between the two situations. Thus we typically denote a singleton multi-index by $i$ and a set multi-index by $I$. If we need to distinguish a multi-index from the index of which it is a copy, we typically use the notation that $i^*$ is a copy of $i$ and $I^*$ is a copy of $I$.

We illustrate Definition 6.1 with the following example.

**Example 6.3.** Figure 1 depicts an example of an $R$-indexed complex $G$ in which $R$ is a multi-3-complex on $[4]$ (not all parts have been labelled). The multi-indices have been represented as ordered
pairs \((A, t)\), where \(A \in \binom{[4]}{\leq 3}\) and \(t\) is a number (arbitrarily chosen) to distinguish different copies of \(A\). An example of the inclusion structure is \((34, 2) \subseteq (234, 1)\), since the intended interpretation of our picture is that for every triple in \(G_{234, 1}\) its restriction to index 34 lies in \(G_{34, 2}\). Other examples are \((1, 2) \subseteq (123, 2)\) and \((2, 2) \subseteq (123, 2)\), but \((1, 1) \not\subseteq (123, 2)\) and \((12, 3) \not\subseteq (123, 2)\), since the intended interpretation of our picture is that there are triples in \(G_{123, 2}\) such that their restriction to index 12 is a pair in \(G_{1, 2} \times G_{2, 2}\) not belonging to \(G_{12, 3}\).

Complex-indexed complexes arise naturally from the partition complexes needed for regular decompositions of hypergraphs, as in Theorem 5.7. Suppose \(P\) is an \(r\)-partite partition \(k\)-complex on \(V\). Recall that \(C_S\) denotes the cell containing a set \(S\). We can index the cells of \(P\) by a multicomplex \(R\) on \([r]\), where for each cell \(C_S\) we form a copy \(i^*(S)\) of its (usual) index \(i(S)\). The elements of \(R\) are partially ordered by a relation \(\subseteq\) which corresponds to the consistency relation \(\leq\) discussed above, i.e. \(i^*(S') \subseteq i^*(S)\) exactly when \(C_{S'} \leq C_S\). One could think of \(P\) as a ‘complete \(R\)-indexed \(k\)-complex’, in that it contains every \(r\)-partite set of size at most \(k\), although we remark that many partition \(k\)-complexes \(P\) will give rise to the same multicomplex \(R\), so the phrase is ambiguous.

Note that if we do not allow sets in \(R\) to have multiplicity more than 1 then an \(R\)-indexed complex is precisely an \(r\)-partite complex. The reason for working in the more general context is that \(R\)-indexed complexes are the structures that naturally arise from an application of Theorem 5.7, so a general theory of hypergraph embedding will need to take this into account. In particular, in order to use every vertex of \(V\) we need to consider every part of the partition \(P_i\) of \(V_i\) for \(1 \leq i \leq r\), i.e. we need multi-index copies of each index \(i\). The multi-index copies of larger index sets are useful because it may not be possible to choose mutually consistent cells. To illustrate this point, it may be helpful to consider an example of a 4-partite 3-complex where each triple has constant density (say 1/10) and there is no tetrahedron \(K_3^3\). A well-known example of Rödl is obtained by independently orienting each pair of vertices at random and taking the edges to be all triples that form cyclic triangles. (A similar example is described in [36].) Then we cannot make a consistent choice of cells in any 4-partite subcomplex so that each cell has good density. However, by working with indexed complexes one can embed using cells from each of the four triples, provided that the choice of cells is locally consistent.

Much of the notation we set up for \(r\)-partite 3-complexes extends in a straightforward manner
to $R$-indexed complexes for some multi-$k$-complex $R$ on $[r]$. Throughout we make the following
replacements: replace ‘3’ by ‘$k$’, ‘$r$-partite’ by ‘$R$-indexed’, ‘$I \subseteq [r]$’ by ‘$I \subseteq R$’, ‘index’ by ‘multi-
index’, $i(S)$ by $i^*(S)$, and understand $\subseteq$ as the partial order of multi-indices. Thus we define
$G_{I^\leq} = \cup_{s \subseteq I} G_{P^s}$, $G_{I^<} = \cup_{s \subseteq I} G_{P^s}$, etc. as in Definition 3.2. We define restriction of $R$-indexed
complexes as in Definition 3.5, and more generally composition of $R$-indexed complexes $G$ and $G'$ as
in Definition 4.4: we define $(G * G')_S$ if $(G \cup G')_S$ is defined and say that $S \in (G * G')_S$ if $A \in^* G_A$
and $A \in^* G'_A$ for any $A \subseteq S$. Lemma 4.5 applies to $R$-indexed complexes, with the same proof.

As in Definition 3.9, if $S \subseteq X$ is $r$-partite and $I \subseteq i^*(S)$ we write $S_I = S \cap \cup_{i \in I} X_i$. We also write
$S_T = S_{i(T)}$ for any $r$-partite set $T$ with $i^*(T) \subseteq i^*(S)$. As in Definition 3.6 we write $G_I^*$ for the set of
$r$-partite $|I|$-tuples $S$ with $i^*(S) = I$ such that $T \in G_T$ when defined for all $T \subseteq S$. When defined we have relative densities $d_I(G) = |G_I|/|G_I^*|$ and absolute densities $d(G_I) = |G_I|/\prod_{i \in I} |V_i|$. (Recall
that $i \in I$ means $\{i\} \subseteq I$ according to $R$.)

To define regularity we adopt the reformulation using restriction notation already discussed for 3-
complexes. For any $I \in R$ such that $G_I$ is defined we say that $G_I$ is $\epsilon$-regular if for every subcomplex
$J$ of $G$ with $|J_I^*| > \epsilon|G_I^*|$ and $J_I$ undefined we have $d_I(G[J]) = d_I(G) \pm \epsilon$. Note that if $|I| = 0, 1$ we
have $G[J]_I = G_I$, so $G_I$ is automatically $\epsilon$-regular for any $\epsilon$. We say that $G$ is $\epsilon$-regular if whenever
any $G_I$ is defined it is $\epsilon$-regular.

**Remark 6.4.** Some care is needed when forming neighbourhoods in complex-indexed complexes.
The usual definition defines $G_I(v)$ and $G_{I^\leq}(v)$. However the expression $G(v)_I$ may be ambiguous, as
there may be several multi-indices $I'$ such that $I = I' \setminus i$, where $i = i^*(v)$. We avoid this ambiguous
expression unless the meaning is clear from the context. The expression $P \in G(v)$ is unambiguous:
it means $Pv \in G$.

Henceforth we suppose $R$ is a multi-$k$-complex on $[r]$, $H$ is an $R$-indexed complex on $X = \cup_{i \in R} X_i$
and $G$ is an $R$-indexed complex on $V = \cup_{i \in R} V_i$, with $|V_i| = |X_i|$ for $i \in R$. As before we want to
find an embedding $\phi$ of $H$ in $G$, via an algorithm that considers the vertices of $X$ in some order and
embeds them one at a time. At some time $t$ in the algorithm, for each $S \subseteq H$ there will be some
$|S|$-graph $F_S(t) \subseteq G_S$ consisting of those sets $P \in G_S$ that are ‘free’ for $S$, in that mapping $S$ to $P$ is
‘locally consistent’ with the embedding so far. These free sets will be ‘mutually consistent’, in that
$F_{S^\leq}(t) = \cup_{S \subseteq S} F_S(t)$ is a complex. With the modifications already mentioned, we can apply the
following definitions and lemmas (and their proofs) to the general case: Definition 3.7 (the update
rule), Lemma 3.10 (consistency), Lemma 3.11 (iterative construction) and Lemma 3.12 (localisation).
Just as some triples were marked as forbidden for 3-graphs, in the general case some $k$-tuples $M$
will be marked as forbidden. Definition 3.13 ($M_{E, E}(t)$) applies in general when $E \in H$ is a $k$-tuple.

Definition 3.15 is potentially ambiguous for $R$-indexed complexes (see Remark 6.4), so we adopt
the following modified definition.

**Definition 6.5.** Suppose $G$ is an $R$-indexed complex on $V = \cup_{i \in R} V_i$, $i \in R$, $v \in G_i$ and $I$ is a
submulticomplex of $R$. We define $G^I_{v} = G[\cup_{S \subseteq I} G_S(v)]$.
Definition 6.6. (Super-regularity) Suppose $R$ is a multi-$k$-complex on $[r]$, $G$ is an $R$-indexed complex on $V = \bigcup_{i \in R} V_i$ and $M \subseteq G := \{ P \in G : |P| = k \}$. We say that $(G, M)$ is $(\epsilon, \epsilon', d, a, \theta, d)$-super-
 regular if

(i) $G$ is $\epsilon$-regular, and if $G_S$ is defined then $d_S(G) \geq d$ if $|S| = k$ or $d_S(G) \geq d_a$ if $|S| < k$,

(ii) if $G_S$ is defined, $i \in S$ and $v \in G_i$ then $|M_S(v)| \leq \theta |G_S(v)|$ if $|S| = k$ and $G_S(v)$ is $\epsilon'$-regular

with $d_S(v)(G_S(v)) = (1 + \epsilon') d_S(v)(d_S(G))$ for $i \subseteq S' \subseteq S$,

(iii) for every submulticomplex $I$ of $R$, if $G_S$ is defined, $i \in R$ and $v \in G_i$, then $|(M \cap G^{I_v})_S| \leq \theta |G^{I_v}_S|$ if $|S| = k$, and $G^{I_v}$ is $\epsilon'$-regular with densities (when defined)

$$d_S(G^{I_v}) = \begin{cases} (1 + \epsilon') d_S(G) d_T(G) & \text{if } \emptyset \neq S = T \setminus i, T \in I, G_T \text{ defined}, \\ (1 + \epsilon') d_S(G) & \text{otherwise}. \\ \end{cases}$$

We remark that the parameters in Definition 6.6 will satisfy the hierarchy $\epsilon \ll \epsilon' \ll d_a \ll \theta \ll d$. Thus we work in a dense setting with regularity parameters much smaller than density parameters. Note that we have two density thresholds $d_a$ and $d$, where $d_a$ is a lower bound on the $S$-densities when $|S| < k$ and $d$ is a lower bound on the $S$-densities when $|S| = k$. The marking parameter $\theta$ again lies between these thresholds. Next we will formalise the notation $d_S(F(t)) = d_S(F^{I_v}(t))$ used for 3-complexes by defining $F(t)$ as an object in its own right: a complex-coloured complex.

Definition 6.7. Suppose $R$ is a multi-$k$-complex on $[r]$, $H$ is an $R$-indexed complex on $X = \bigcup_{i \in R} X_i$ and $G$ is an $R$-indexed complex on $V = \bigcup_{i \in R} V_i$. An $H$-coloured complex $F$ (in $G$) consists of $|S|$-graphs $F_S \subseteq G_S$ such that $F_S \subseteq = \bigcup_{S' \subseteq S} F_{S'}$ is a complex for $S \in H$. We allow $F_S$ to be undefined for some $S \in H$. We say that an $H$-coloured complex $J$ is an $H$-coloured subcomplex of $F$ if $J_S \subseteq F_S$ when defined. The restriction $F[J]$ is the $H$-coloured complex with $F[J]_S = F_{S \subseteq}[J_{S \subseteq}]_S$. When $F(t)$ is an $H$-coloured complex at time $t$ we use $F(t)_S$ and $F_S(t)$ interchangeably. We let $G$ also denote the $H$-coloured complex $F$ in $G$ such that $F_S = G_S$ for all $S \in H$. When $I$ is a subcomplex of $H$ we let $F_I$ denote the $H$-coloured complex that consists of $F_S$ for every $S \in I$ and is otherwise undefined.

We use the terminology ‘coloured’ in analogy with various combinatorial questions involving hypergraphs in which each set can be assigned several colours. In our case a set $E \in G$ is assigned as colours all those $S \in H$ for which $E \in F_S$. Note also that if we had the additional property that the parts $F_S$, $S \in H$ were mutually disjoint, i.e. any set in $G$ has at most one colour from $H$, then $F$ would be an $H$-indexed complex. (We make this comment just to illustrate the definition: we will not have cause to consider any $H$-indexed complexes.)

In the proof of Theorem 4.1 there were several places where we divided the argument into separate cases. This will not be feasible for general $k$, so we will introduce some more notation, which may at first appear somewhat awkward, but will repay us by unifying cases into a single argument.

Definition 6.8. Suppose $R$ is a multi-$k$-complex on $[r]$, $H$ is an $R$-indexed complex on $X = \bigcup_{i \in R} X_i$ and $G$ is an $R$-indexed complex on $V = \bigcup_{i \in R} V_i$. Fix $x \in X$.

(i) We define a multi-$(k + 1)$-complex $R^+$ on $[r + 1]$ as follows. There is a single multi-index copy of $r + 1$, also called $r + 1$. Suppose $x \in X_i^*$, where $i^* \in R$ is a copy of some $i \in [r]$. Consider
Example 6.9. As in Example 3.8, suppose that 4 vertices with edges of $F$ in $S$. Similarly, for any $F$ the plus complex $X$.

Note that

(iii) Let $I$ consist of a single new vertex that we consider to be a copy of $x$. Let $H$ be the $R^+$-indexed complex $G \cup \{Pv^c : P \in G, v \in V_x\}$ on $V^+ = V \cup V_{r+1}$, where $i^*(Pv^c) = i^*(Pv)^c$ if $Pv \in G$ or $i^*(P^c)$ if $Pv \notin G$. If $Pv \in G$ we write $(Pv)^c = Pv^c$. If $v \notin P \in G$ we write $P^c = P$. If $P \in G \setminus G(v)$ we write $P^+ = P^c$. Note that $i^*((Pv)^c) = i^*(Pv))^c$ and $i^*(P^+) = (i^*(P))^+$.

(iv) If $I \subseteq H$ or $I \subseteq G$ we write $I^c = \{A^c : A \in I\}$.

(v) Suppose $F$ is an $H$-coloured complex in $G$. We define $H^+\text{-coloured complexes } F^c \subseteq \bigcup_{S \subseteq H} F_S$ and $F^+ = \bigcup_{S \subseteq H} (F_S \cup F_S^c) = F \cup F^c$. Suppose $I$ is an $R$-indexed subcomplex of $H$. The plus complex is $F^I = G^+[F \cup F_I^+]$.

We give the following example to illustrate Definition 6.8.

We work through Definition 6.8, setting $x = x_1$. $R^+$ is the subcomplex of $[5]$ that contains $R = \{4\}$ and all sets $S \cup 5$ with $S \in \{4\}$. $H^+$ is the $R^+$-indexed complex on $X^+ = X \cup X_5$ where $X_5 = \{x_1\}$ and $H^+$ consists of all sets $S$ and $Sx_1^c$ with $S \in H$. $G^+$ is the $R^+$-indexed complex on $V^+ = V \cup V_5$ where $V_5 = \{v^c : v \in V_1\}$ and $G^+$ consists of all sets $S$ and $Sv^c$ with $S \in G$ and $v \in V_1$. Note that $H^+$ and $G^+$ are 5-partite 4-complexes.

Let $F(0)$ be the $H$-coloured 3-complex in which $F(0)_S = G_S$ for all $S \in H$. We will describe the plus complex $F(0)^{H+x_1}$. For any $S \subseteq H$ we have $F(0)^{H+x_1}_S = F(0)_S = G_S$ by equation (2). Similarly, for any $S \in H\setminus\{x_1\}$ we have $F(0)^{H+x_1}_{Sx_1^c} = (F(0)^H_{Sx_1^c})\cap G_{Sx_1^c}$. (Recall that $S \in H(x_1)$ if $Sx_1 \in H$.) For example, $F(0)^{H+x_1}_{x_2x_1^c} = G_{x_2x_1^c} = \{v_2v_1^c : v_2v_1 \in G_{x_2x_1}\}$. If $S \in H \setminus H(x_1)$ then $F(0)^{H+x_1}_{Sx_1^c}$ consists of all $P \in G_{Sx_1^c}$ such that for all $S' \subseteq S$ we have $P_{S'} \in G_{S'}$ and $P_{Sx_1^c} \in G_{Sx_1}$. For example, $F(0)^{H+x_1}_{x_1x_2x_3x_1^c}$ consists of all 4-tuples $v'v_2v_3v_1^c$ where $v_1v_2v_3$ and $v_1'v_2v_3$ are in $G_{123}$.

To avoid confusion we should point out that the use of ‘copy’ here is different to the sense in which multi-indices are copies of normal indices.
Now suppose, as in Example 3.8, that we start the embedding by mapping $x_1$ to some $v_1 \in V_1$. Let $F(1)$ be the $H$-coloured 3-complex given by the update rule: this is worked out in Example 3.8 and formally defined in Definition 3.7. We can also describe it using the plus complex. For example, we saw that $F_{x_2x_3x_4}(1) = F(1)_{x_2x_3x_4}$ consists of all triples in $G_{234}$ that form a triangle in the neighbourhood of $v_1$, i.e. form a tetrahedron with $v_1$. We can write this as $F(1)_{x_2x_3x_4} = F(0)_{x_2x_3x_4} \cup (\{x_1\}_{x_2x_3x_4})$, as by definition $v_2v_3v_4v_1 \subseteq F(0)_{x_2x_3x_4}$ exactly when $v_1v_2v_3v_4$ is a tetrahedron. Another example from Example 3.8 is that $F(1)_{x_1x_2x_3}$ consists of all triples $P \in G_{123}$ not containing $v_1$ such that $P_3 = P \cap V_3$ is a neighbour of $v_1$. We can write this as $F(1)_{x_1x_2x_3} = F(0)_{x_1x_2x_3} \cup (\{x_1, x_2, x_3\})_{x_1x_2x_3}$, as by definition $v_1^tv_2^tv_3^t \subseteq F(0)_{x_1x_2x_3}$ exactly when $v_1^tv_2v_3 \cup v_1v_2v_3 \in G_{123}$.

Note that the plus complex in Definition 6.8(v) depends on $H$, but we suppress this in the notation, as $H$ will always be clear from the context. We have also suppressed $x$ from the notation in $R^+$ (etc). One should note that the definition of $R^+$ is rather different than $G^+$ and $H^+$. To clarify this definition, we note that $F_{H^+}^c = F^c$, and also that $F_{I^+}^c = F^c_{I^+}$, so one could also write $F^{I^+x} = G^+[F \cup F^c_{I^+}]$. To justify the definition of the plus complex, we note that $F^c$ and $F^+$ are $H^+$-coloured complexes in $G^+$, as $F^c_{(S_H^c)}$ is the copied version of the complex $F_{S_H^c}^c$ for any $S \in H$. Then $F \cup F_{I^+}^c$ is an $H^+$-coloured complex in $G^+$, with $(F \cup F_{I^+}^c)_S = F_S^c$ for $S \in H$ and $(F \cup F_{I^+}^c)_{S^c} = F_S^c$ for $S \in I$. We can also describe it using the plus complex. For example, we saw that $F_{x_1x_2x_3}$ consists of all triples $P \in G_{123}$ not containing $v_1$ such that $P_3 = P \cap V_3$ is a neighbour of $v_1$. We can write this as $F(1)_{x_1x_2x_3} = F(0)_{x_1x_2x_3} \cup (\{x_1, x_2, x_3\})_{x_1x_2x_3}$, as by definition $v_1^tv_2v_3 \subseteq F(0)_{x_1x_2x_3}$ exactly when $v_1^tv_2v_3 \in G_{123}$.

As noted in Remark 6.4, some care must be taken to avoid ambiguity when defining neighbourhoods. We adopt the following convention:

$$F_{I^+x} = F_S^c$$

As noted in Remark 6.4, some care must be taken to avoid ambiguity when defining neighbourhoods. We adopt the following convention:

$$F_{I^+x}(v^c)_S = F_{I^+x}^c(v^c)$$

for $S \in H$.

Note that we set $I = H$ in Example 6.9, and indeed this is the typical application of this definition. The reason for allowing general $I$ is for proving the analogue of Lemma 4.21 in the general case. Next we prove a lemma which confirms that the plus complex does describe the update rule in general, when we map $x$ to $\phi(x) = y$ at time $t$.

**Lemma 6.10.** If $x \not\subseteq S \in H$ then $F(t)_{S \subseteq} = F(t-1)^{I^+x}(y^c)_{S \subseteq} \setminus y$.

**Proof.** By Definition 3.7 we have $F_{S \subseteq}(t) = F_{S \subseteq}(t-1)[F_{S \not\subseteq}(t-1)(y)] \setminus y$. Thus $P \subseteq F_S(t)$ exactly when $P \subseteq F_S(t-1)$, $y \not\subseteq P$ and $P^c\subseteq F_{S^c}(t-1)$ for all $S^c \subseteq S$ with $S^c \in H(x)$. Since $P^c\subseteq F_{S^c}(t-1)$, $P^c\subseteq F_{S^c}(t-1)$, Definition 6.8 gives $P \subseteq F_S(t)$ exactly when $y \not\subseteq P$ and $P^c \subseteq F_{S^c}(t-1)$.

We also note that the plus complex can describe the construction $G_{I^v}$ in a similar manner. For the following identity we could take $H = R$, considered as an $R$-indexed complex with exactly one set $S \in H_S$ for every $S \in R$. Actually, the identity makes sense for any $R$-indexed complex $H$, when we interpret each $R$-indexed complex as an $H$-coloured complex as in Definition 6.7, i.e. $G_{I^v}$ is the $H$-coloured complex $F$ in $G_{I^v}$ with $F_S = G_{I^v}^S$ for all $S \in H$, and similarly for $G_{I^+v}(v^c)$.

**Lemma 6.11.** $G_{I^+x}(v^c)_S = G_{I^v}^S$ for $S \in H$ and $v \in G_x$.

**Proof.** We have $P \subseteq G_{I^v}^S$ exactly when $P \subseteq G_S$ and $P^c \subseteq G$ for all $P^c \subseteq P$ with $i^v(P^c) \subseteq I$. Since $P \subseteq G$ this is equivalent to $P^c \subseteq G_{I^+x}^S$. 

76
6.2 The general blow-up lemma

Now we come to the general blow-up lemma. First we give a couple of definitions. Suppose \( R \) is a multi-\( k \)-complex on \([r]\). We write \(|R|\) for the number of multi-indices in \( R \). For \( S \in R \), the degree of \( S \) is the number of \( T \in R \) with \( S \subseteq T \).

**Theorem 6.12. (Hypergraph blow-up lemma)** Suppose that

(i) \( 0 \ll 1/n \ll 1/n_R \ll \epsilon \ll \epsilon' \ll c \ll d_a \ll \theta \ll d, c', 1/D_R, 1/D, 1/C, 1/k \);

(ii) \( R \) is a multi-\( k \)-complex on \([r]\) of maximum degree at most \( D_R \) with \(|R| \leq n_R \);

(iii) \( H \) is an \( R \)-indexed complex on \( X = \cup_{i \in R} X_i \) of maximum degree at most \( D \), \( G \) is an \( R \)-indexed complex on \( V = \cup_{i \in R} V_i \), \( G_S \) is defined whenever \( H_S \) is defined, and \( n \leq |X_i| = |V_i| = |G_i| \leq Cn \) for \( i \in R \),

(iv) \( M \subseteq G = \{ S \in G : |S| = k \} \) and \((G, M)\) is \((\epsilon, \epsilon', d_a, \theta, d)\)-super-regular,

(v) \( \Gamma \) is an \( H \)-coloured complex in \( G \) with \( \Gamma_s \) defined only when \( x \in X_s \), where \(|X_s \cap X_i| \leq c|X_i|\) for all \( i \in R \), and for \( S \in H \), when defined \( \Gamma_S \) is \( \epsilon' \)-regular with \( d_s(\Gamma) > c'd_S(G) \).

Then there is a bijection \( \phi : X \to V \) with \( \phi(X_i) = V_i \) for \( i \in R \) such that for \( S \in H \) we have \( \phi(S) \in G_S \), \( \phi(S) \in G_S \setminus M_S \) when \(|S| = k \) and \( \phi(S) \in \Gamma_S \) when defined.

We make some comments here to explain the statement of Theorem 6.12. An informal statement is that we can embed any bounded degree \( R \)-indexed complex in any super-regular marked \( R \)-indexed complex, even with some restricted positions. The restricted positions are described by assumption (v): for some sets \( S \in H \) we constrain the embedding to satisfy \( \phi(S) \in \Gamma_S \), for some \( H \)-coloured complex \( \Gamma \) that is regular and dense and is not defined for too many vertices. Note that we now allow the embedding to use all \(|R|\) parts of \( V \), provided that \( R \) is of bounded degree. Thus this theorem could be used for embedding spanning hypergraphs, such as Hamilton cycles. Even in the graph case, embedding spanning subgraphs is a generalisation of the graph blow-up lemma in [24].

A blow-up lemma for spanning subgraphs was previously given by Csaba [5] (see [20] for another application). Restricted positions have arisen naturally in many applications of the graph blow-up lemma, and will no doubt be similarly useful in future applications of the hypergraph blow-up lemma. In particular, a simplified form of the condition (where \( \Gamma_S \) is only defined when \(|S| = 1\)) is used in a forthcoming work [19] on embedding loose Hamilton cycles in hypergraphs. We allow a general \( H \)-coloured complex \( \Gamma \) as the proof is the same, and it would be needed for embedding general Hamilton cycles.\(^7\)

We prove Theorem 6.12 with an embedding algorithm that is very similar to that used for Theorem 4.1. We introduce more parameters with the hierarchy

\[
0 \leq 1/n \ll 1/n_R \ll \epsilon \ll \epsilon' \ll \epsilon_{k, 3D} \ll \ldots \ll \epsilon_{k, 3D} \ll p_0 \ll c \ll \gamma \ll \delta_Q \ll p \ll d_u \ll d_a \\
\ll \theta \ll \theta_0 \ll \theta'_0 \ll \ldots \ll \theta_{k, 3D} \ll \theta'_{k, 3D} \ll \theta_0 \ll \delta_Q \ll \delta_B \ll d, c', 1/D, 1/D_R, 1/C, 1/k.
\]

\(^7\)While [19] and the current paper have been under review, more general results on Hamilton cycles have been obtained in [28] and [21] without using the hypergraph blow-up lemma. However, it seems most likely that more complicated embedding problems will require the hypergraph blow-up lemma.
The roles of the parameters from Theorem 4.1 are exactly as before. Our generalisations to \( R \)-indexed complexes and restricted positions have introduced some additional parameters, so one should note how they fit into the hierarchy. The restricted positions hypothesis has two parameters \( c \) and \( c' \). Parameter \( c \) controls the number of restricted positions and satisfies \( p_0 \ll c \ll \gamma \). Parameter \( c' \) gives a lower bound on the density relative to \( G \) of the constraints and satisfies \( c' \gg \delta_B \). The indexing complex \( R \) has two parameters \( n_R \) and \( D_R \). Parameter \( n_R \) is a bound for \(|R|\) and can be very large, provided that \( n \) is even larger. Parameter \( D_R \) bounds the maximum degree of \( R \) and satisfies \( D_R \ll 1/\delta_B \).

**Initialisation and notation.** Write \( X'_* = X_* \cup \bigcup_{x \in X_*} VN_H(x) \). We choose a buffer set \( B \subset X \) of vertices at mutual distance at least 9 in \( H \) so that \(|B \cap X_i| = \delta_B|X_i|\) for \( i \in R \) and \( B \cap X'_* = \emptyset \). Since \( n \leq |X_i| \leq Cn \) for \( i \in R \) and \( H \) has maximum degree \( D \) we can construct \( B \) by selecting vertices one-by-one greedily. Every vertex neighbourhood in \( H \) has size less than \( kD \), so there are at most \((kD)^8\) vertices at distance less than 9 from any vertex of \( H \). Similarly, there are at most \((kD_R)^8\) multi-indices \( j \in R \) at distance less than 9 from any fixed multi-index \( i \in R \). Thus at any stage we have excluded at most \((kD_R)^8(kD)^8\delta_Bcn < n/2\) vertices from \( X_i \), since \( \delta_B \ll 1/D_R \). Similarly, since \(|X_* \cap X_j| < c|X_j|\) for all \( j \in R \) we have \(|X'_* \cap X_i| < (kD_R)^8(kD)^8\delta_Bcn < \sqrt{c}n\). Since \(|X_i| \geq n\) we can construct \( B \) greedily. Let \( N = \bigcup_{x \in B} VN_H(x) \) be the set of all vertices that have a neighbour in the buffer. Then \( N \) is disjoint from \( X_* \), as we chose \( B \) disjoint from \( X'_* \). Also, \(|N \cap X_i| < (kD_R)(kD)\delta_Bcn < \sqrt{\delta_B}|X_i|\) for any \( i \in R \).

For \( S \in H \) we set \( F_S(0) = G[\Gamma]_S \). We define \( L = L(0), q(t), Q(t), j(t), J(t), X_i(t), V_i(t) \) as in the 3-graph algorithm. We let \( X(t) = \bigcup_{t \in R} X_i(t) \) and \( V(t) = \bigcup_{t \in R} V_i(t) \).

**Iteration.** At time \( t \), while there are still some unembedded non-buffer vertices, we select a vertex to embed \( x = s(t) \) according to the same selection rule as for the 3-graph algorithm. We choose the image \( \phi(x) \) of \( x \) uniformly at random among all elements \( y \in F_s(t-1) \) that are 'good' (a property defined below). Note that all expressions at time \( t \) are to be understood with the embedding \( \phi(x) = y \), for some unspecified vertex \( y \).

**Definitions.**

1. For a vertex \( x \) we write \( \nu_x(t) \) for the number of elements in \( VN_H(x) \) that have been embedded at time \( t \). For a set \( S \) we write \( \nu_S(t) = \sum_{y \in S} \nu_y(t) \). We also define \( \nu'_S(t) \) as follows. When \(|S| = k \) we let \( \nu'_S(t) = \nu_S(t) \). When \(|S| < k \) we let \( \nu'_S(t) = \nu_S(t) + K \), where \( K \) is the maximum value of \( \nu'_x'(t') \) over vertices \( x' \) embedded at time \( t' \leq t \) with \( S \in H(x') \); if there is no such vertex \( x' \) we let \( \nu'_S(t) = \nu_S(t) \).

2. For any \( r \)-partite set \( S \) we define \( F_S(t) = F_S(t-1)^y \) if \( x \in S \) or \( F_S(t) = F_S(t-1)[F_S,x \in \{t-1\}[y]_{|S \setminus y} \) if \( x \notin S \). We define an exceptional set \( E_x(t-1) \subseteq F_x(t-1) \) by saying \( y \) is in \( F_x(t-1) \setminus E_x(t-1) \) if and only if for every unembedded \( \emptyset \neq S \in H(x) \),

\[
d_S(F(t)) = (1 + \epsilon_{\nu'_S(t),0})d_S(F(t-1))d_S(F(t-1)), \text{ and } F_S(t) \text{ is } \epsilon_{\nu'_S(t),0}\text{-regular.} \quad \text{(**6.2)}
\]

3. We define \( E^t, M_{E,E}(t), D_{E,E}(t-1) \) and \( U(x) \) as in the 3-graph algorithm, replacing ‘triple’ by ‘\( k \)-tuple’. We obtain the set of \( \text{good} \) elements \( OK_x(t-1) \) from \( F_x(t-1) \) by deleting \( E_x(t-1) \) and \( D_{E,E}(t-1) \) for every \( E \in U(x) \).
We embed $x$ as $\phi(x) = y$ where $y$ is chosen uniformly at random from the good elements of $F_x(t - 1)$. We update $L(t)$, $q(t)$ and $j(t)$ as before, using the same rule for adding vertices to the queue. We repeat until the only unembedded vertices are buffer vertices, but abort with failure if at any time we have $|Q(t) \cap X_i| > \delta_Q|X_i|$ for some $i \in R$. Let $T$ denote the time at which the iterative phase terminates (whether with success or failure).

**Conclusion.** When all non-buffer vertices have been embedded, we choose a system of distinct representatives among the available slots $A'_x$ (defined as before) for $x \in X(T)$ to complete the embedding, ending with success if possible, otherwise aborting with failure.

Similarly to Lemma 4.2, the algorithm embeds $H$ in $G \setminus M$ unless it aborts with failure. Furthermore, when $\Gamma_S$ is defined we have $F_S(0) = G[\Gamma]|_S = \Gamma_S$, so we ensure that $\phi(S) \in \Gamma_S$. Note that any vertex neighbourhood contains at most $(k - 1)D$ vertices. Thus in the selection rule, any element of the queue can cause at most $(k - 1)D$ vertices to jump the queue. Note also that when a vertex neighbourhood jumps the queue, its vertices are immediately embedded at consecutive times before any other vertices are embedded. We collect here a few more simple observations on the algorithm.

**Lemma 6.13.**

(i) For any $i \in R$ and time $t$ we have $|V_i(t)| \geq \delta_Bn/2$.

(ii) For any $i \in R$ and time $t$ we have $|J(t) \cap X_i| < \sqrt{\delta_Qn}$.

(iii) We have $\nu_S(t) \leq (k - 1)D$ for any vertex and $\nu_S'(t) \leq k^3D$ for any $S \in H$. Thus the $\epsilon$-subscripts are always defined in $(*6.2)$.

(iv) For any $z \in VN_H(x)$ we have $\nu_z(t) = \nu_z(t - 1) + 1$, so for any $S \in H$ that intersects $VN_H(x)$ we have $\nu_S(t) > \nu_S(t - 1)$.

(v) If $\nu_S(t) > \nu_S(t - 1)$ then $\nu_S'(t) > \nu_S'(t - 1)$.

(vi) If $z$ is embedded at time $t' \leq t$ and $S \in H(z)$ then $\nu_S'(t) \geq \nu_S'(t) > \nu_S'(t - 1)$.

**Proof.** The proofs of (i) and (iii-vi) are similar to those in Lemma 4.3 so we omit them. For (ii) we have to be more careful to get a good bound inside each part. Note that we only obtain a new element $x$ of $J(t) \cap X_i$ when $x$ is a neighbour of some $b \in B$ and some $z$ within distance 4 of $x$ is queued. In particular $z$ is within distance 5 of $x$. Given $i$, there are at most $(kD_R)^5$ choices for $j = i^*(z) \in R$, at most $|Q(t) \cap X_j| < \delta_QCn$ choices for $z$, then at most $(kD)^5$ choices for $x$. Therefore $|J(t) \cap X_i| < (kD_R)^5(kD)^5\delta_QCn < \sqrt{\delta_Qn}$. \qed

### 6.3 Hypergraph regularity properties

This subsection contains various properties of hypergraph regularity analogous to those described earlier for 3-graphs. We start with the general counting lemma, analogous to Theorem 5.8.
Theorem 6.14. (Rödl-Schacht [42], see Theorem 13) Suppose $0 < \epsilon \ll d, \gamma/1, 1/j, 1/k$, that $J$ and $G$ are $r$-partite $k$-complexes with vertex sets $Y = Y_1 \cup \cdots \cup Y_r$ and $V = V_1 \cup \cdots \cup V_r$ respectively, that $|J| = j$, and $G$ is $\epsilon$-regular with all densities at least $d$. Then

$$d(J, G) = E_{A \in \Phi(Y, V)} \left[ \prod_{A \in J} G_A(\phi(A)) \right] = (1 + \gamma) \prod_{A \in J} d_A(G).$$

A useful case of Theorem 6.14 is when $r = k$ and $J = [k] \subseteq$ consists of all subsets of a $k$-tuple; this gives the following analogue of Lemma 4.10.

Lemma 6.15. Suppose $0 < \epsilon \ll \epsilon' \ll d, 1/k$, $G$ is a $k$-partite $k$-complex on $V = V_1 \cup \cdots \cup V_k$ with all densities $d_S(G) > d$ and $G$ is $\epsilon$-regular. Then $d(G_{[k]}) = (1 + \epsilon') \prod_{S \subseteq [k]} d_S(G)$.

Next we give the analogue of Lemma 4.6.

Lemma 6.16. (Vertex neighbourhoods) Suppose $G$ is a $k$-partite $k$-complex on $V = V_1 \cup \cdots \cup V_k$ with all densities $d_S(G) > d$ and $0 < \eta_I \ll \eta'_I \ll d, 1/k$ for each $I \subseteq [k]$. Suppose that each $G_I$ is $\eta_I$-regular. Then for all but at most $2\sum_{I \subseteq [k-1]} \eta'_I|G_k|$ vertices $v \in G_k$, for every $\emptyset \neq I \subseteq [k-1]$, $G(v)_I$ is $\eta_I + \eta'_k$-regular with $d_I(G(v)) = (1 + \eta_I + \eta'_k)d_I(G)d_{I_k}(G)$. The base case is $\emptyset$, or less trivially any $C$ with $|I| \leq 2$ for all $I \in C$, by Lemmas 2.2 and 4.6.

For the induction step, fix any maximal element $I$ of $C$. By induction hypothesis, for all but at most $2\sum_{I' \in C \setminus I} \eta'_I|G_k|$ vertices $v \in G_k$, for every $I' \in C \setminus I$, $G(v)_I$ is $\eta_I + \eta'_k$-regular with $d_{I'}(G(v)) = (1 + \eta_I + \eta'_k)d_{I'}(G)d_{I_k}(G)$. Let $G'_k$ be the set of such vertices. It suffices to show the claim that all but at most $2\eta'_k|G_k|$ vertices $v \in G'_k$ have the following property: if $J^v$ is a subcomplex of $G(v)_I$ with $|J^v| > \eta_I + \eta'_k |G(v)|$ then $|G[J^v]| = (1 + \eta_I/2)d_I(G)(|J^v|)$ and $|G(v)[J^v]| = (1 + \eta'_k/2)d_{I_k}(G)(|J^v|)$.

Suppose for a contradiction that this claim is false. Let $\gamma = \max_{I \subseteq [k]} \eta'_I$. By Theorem 6.14, for any $v \in G'_k$ we have

$$|G(v)| \prod_{i \in I} |V_i|^{-1} = d(G(v)) > (1 - \gamma) \prod_{I' \subseteq I} (1 - \eta_I - \eta'_I)d_{I'}(G)d_{I_k}(G) > \frac{1}{2}d^{2k}.$$

Then for any $J^v \subseteq G(v)_I$ with $|J^v| > \eta'_I + \eta'_k |G(v)|$ we have $|J^v| > \eta_I \prod_{i \in I} |V_i| \geq \eta_I |G^*_v|$, so $|G[J^v]| = (d_I(G) + \eta_I)|J^v| = (1 + \eta_I/2)d_I(G)(|J^v|)$, since $G_I$ is $\eta_I$-regular. So without loss of generality, we can have vertices $v_1, \cdots, v_t \in G'_k$ with $t > \eta'_k|G_k|$, and subcomplexes $J^{v_i} \subseteq G(v_{i-1})$ with $|J^{v_i}| > \eta'_I + \eta'_k |G(v_i)|$ such that $|G(v_i)[J^{v_i}]| \leq (t - \eta'_k/2)d_{I_k}(G)|G[J^{v_i}]|$, for $1 \leq i \leq t$. Define complexes $A^i = G[J^{v_i}] \cup \{v_i : S \in J^{v_i}\}$ and $A = \bigcup_{1 \leq i \leq t} A^i$.

We have $|A^i_{I_k}| = \sum_{i=1}^{t-1} |A^i_{I_k}| = \sum_{i=1}^{t-1} |G[J^{v_i}]|$. Now $|G[J^{v_i}]| > (d_I(G) - \eta_I)|J^{v_i}|$, $d_I(G) > d$, $|J^{v_i}| > \eta_I + \eta'_k |G(v_i)| > \eta'_k \cdot \frac{1}{2}d^{2k} \prod_{i \in I} |V_i|$ and $t > \eta'_k|G_k|$, so

$$|A^i_{I_k}| > \eta'_k |G_k| \cdot (d - \eta_I) - \eta'_k \cdot \frac{1}{2}d^{2k} \prod_{i \in I} |V_i| > \eta'_k \prod_{i \in I} |V_i| \geq \eta'_k |G^*_k|.  \qquad 80$$
Since $G_\ell k$ is $\eta_\ell k$-regular we have $d_{\ell k}(G[A])_{\ell k} = d_{\ell k}(G) \pm \eta_\ell k$. Therefore $|G \cap A_{\ell k}^*| > (d_{\ell k}(G) - \eta_\ell k)|A_{\ell k}^*| = (d_{\ell k}(G) - \eta_\ell k)\sum_{i=1}^t |G[J_{\ell i}]|$. But we also have

$$|G \cap A_{\ell k}^*| = \sum_{i=1}^t |G(v_i)|[J_{\ell i}] < \sum_{i=1}^t (1 - \eta_{\ell k}/2)d_{\ell k}(G)[J_{\ell i}] < (d_{\ell k}(G) - \eta_\ell k)\sum_{i=1}^t |G[J_{\ell i}]|,$$

contradiction. This proves the claim, and so completes the induction. $\square$

We apply Lemma 6.16 in the next lemma showing that arbitrary neighbourhoods are typically regular.

**Lemma 6.17. (Set neighbourhoods)** Suppose $0 < \epsilon \ll \epsilon' < d, 1/k$ and $G$ is an $\epsilon$-regular $k$-partite $k$-complex on $V = V_1 \cup \cdots \cup V_k$ with all densities $d_S(G) > d$. Then for any $A \subseteq [k]$ and for all but at most $\epsilon'|G_A|$ sets $P \subseteq G_A$, for any $\emptyset \neq I \subseteq [k] \setminus A$, $G(P)I$ is $\epsilon'$-regular with $d_I(G(P)) = (1 \pm \epsilon')\prod_{A' \subseteq A} d_{A'}(G)$ (and $d_\emptyset(G(P)) = 1$ as usual).

**Proof.** For convenient notation suppose that $A = [k']$ for some $k' < k$. Introduce additional constants with the hierarchy $\epsilon \ll \epsilon_1 \ll \epsilon'_1 \ll \cdots \ll \epsilon_{k'} \ll \epsilon'_{k'} \ll \epsilon'$. We prove inductively for $1 \leq t \leq k'$ that for all but at most $\epsilon_t|G[t]|$ sets $S \subseteq G[t]$, for any $\emptyset \neq I \subseteq [k] \setminus [t]$, $G(S)$ is $\epsilon_t$-regular with $d_I(G(S)) = (1 \pm \epsilon_t)\prod_{T \subseteq [t]} d_{T I}(G)$. The base case $t = 1$ is immediate from Lemma 6.16 with $\epsilon'$ replaced by $\epsilon_1$. For the induction step, consider $S \subseteq G[t]$ such that for any $\emptyset \neq I \subseteq [k] \setminus [t]$, $G(S)$ is $\epsilon_t$-regular with $d_I(G(S)) = (1 \pm \epsilon_t)\prod_{T \subseteq [t]} d_{T I}(G)$. We have $d_I(G(S)) > \frac{1}{2}d^2$, so we can apply Lemma 6.16 to $G(S)$ with $\eta_\ell I = \epsilon_t$, $\eta'_\ell I = 2^{-k}\epsilon'_t$ and $d$ replaced by $\frac{1}{2}d^2$. Then for all but at most $\epsilon'_t|G(S)[t+1]|$ vertices $v \in G(S)[t+1]$, for every $\emptyset \neq I \subseteq [k] \setminus [t+1]$, $G(S)[v]_I = G(S[v])_{[t+1]}$ is $\epsilon'_t$-regular with $d_I(G(S)v) = (1 \pm \epsilon'_t)d_I(G(S))d_{\ell k}(G(S)) = (1 \pm 2\epsilon'_t)\prod_{T \subseteq [t+1]} d_{T I}(G)$. Also, since $|G(S)[t+1]| > \frac{1}{2}d^{t+1}\prod_{i=1}^{t+1} |V_i|$ by Theorem 6.14, the number of pairs $(S, v)$ for which this fails is at most $\epsilon'_t|G[t]| \cdot |V_{t+1}| + |G[t]| \cdot \epsilon'_t|G(S)[t+1]| < \epsilon_{t+1}|G[t+1]|$. $\square$

We omit the proofs of the next three lemmas, as they are almost identical to those of the corresponding Lemmas 4.8, 4.9 and 4.12, replacing 123 by $[k]$ and using Theorem 6.14 instead of the triangle-counting lemma.

**Lemma 6.18. (Regular restriction)** Suppose $G$ is a $k$-partite $k$-complex on $V = V_1 \cup \cdots \cup V_k$ with all densities $d_S(G) > d$, $G[k]$ is $\epsilon$-regular, where $0 < \epsilon \ll d, 1/k$, and $J \subseteq G$ is a $(k-1)$-complex with $|J[k]| > \sqrt{\epsilon}|G[k]|$. Then $G[J][k]$ is $\sqrt{\epsilon}$-regular and $d_{[k]}(G[J]) = (1 \pm \sqrt{\epsilon})d_{[k]}(G)$.

**Lemma 6.19.** Suppose $G$ is a $k$-partite $k$-complex on $V = V_1 \cup \cdots \cup V_k$ with all densities $d_S(G) > d$ and $G[k]$ is $\epsilon$-regular, where $0 < \epsilon \ll d, 1/k$. Suppose also that $J \subseteq G$ is a $(k-1)$-complex, and when defined, $d_I(J) > d$ and $J_I$ is $\eta$-regular, where $0 < \eta \ll d$. Then $G[J][k]$ is $\sqrt{\epsilon}$-regular and $d_{[k]}(G[J]) = (1 \pm \sqrt{\epsilon})d_{[k]}(G)$.

**Lemma 6.20.** Suppose $G$ is a $k$-partite $k$-complex on $V = V_1 \cup \cdots \cup V_k$ with all densities $d_S(G) > d$ and $G$ is $\epsilon$-regular, where $0 < \epsilon \ll \epsilon' \ll d, 1/k$. Then for any $A \subseteq [k]$ and for all but at most $\epsilon'|G_A|$ sets $P \subseteq G_A$ we have $|G(P)[A]| = (1 \pm \epsilon')|G[k]|/|G_A|$.

Note that we will not need an analogue of the technical Lemma 4.11.
6.4 Analysis of the algorithm

We start the analysis of the algorithm by showing that most free vertices are good. First we record some properties of the initial sets $F_S(0)$, taking into account the restricted positions.

**Lemma 6.21.** $F_S(0)$ is $\epsilon'$-regular with $d_S(F(0)) > c'd_S(G)$ and $|F_S(0)| > (c')^{2|S|}|G_S|$. 

**Proof.** By definition we have $F_S(0) = G[\Gamma]|_S$. Condition (i) of Definition 6.6 tells us that $G_S$ is $\epsilon$-regular with $d_S(G) \geq d_u$. Hypothesis (v) of Theorem 6.12 says that when defined $\Gamma_S'$ is $\epsilon'$-regular with $d_S'(\Gamma) > c'd_S'(G)$ for $S' \subseteq S$. If $\Gamma$ is defined then $F_S(0) = \Gamma_S$ is $\epsilon'$-regular with $d_S(F(0)) = d_S(\Gamma) > c'd_S(G)$. Otherwise, by Lemma 6.19, $\Gamma$ is $\sqrt{7}$-regular with $d_S(F(0)) = (1+\epsilon)d_S(G) > c'd_S(G)$. The estimate $|F_S(0)| > (c')^{2|S|}|G_S|$ follows by applying Theorem 6.14 to $F(0)|_{S_S}$ and $G_{S_S}$. Note that $d_\emptyset(F(0)) = d_\emptyset(G) = 1$, so one of the $c'$ factors compensates for the error terms in Theorem 6.14. □

Next we define the exceptions for regularity and density in the algorithm.

**Lemma 6.22.** The exceptional set $E_x(t-1)$ defined by ($\ast_{6.2}$) satisfies $|E_x(t-1)| < \epsilon_e|F_x(t-1)|$, and $F_S(t)$ is $\epsilon'_{\nu'_x(t),1}$-regular with $d_S(F(t)) \geq d_u$ for every $S \subseteq H$.

**Proof.** We argue by induction on $t$. At time $t = 0$ the first statement is vacuous and the second follows from Lemma 6.21, since $d_S(G) \geq d_u$ for $S \subseteq H$. Now suppose $t \geq 1$ and $\emptyset \neq S \subseteq H$ is unembedded, so $x \notin S$. We consider various cases for $S$ to establish the bound on the exceptional set and the regularity property, postponing the density bound until later in the proof.

We start with the case when $S \subseteq H(x)$. By induction $F_S(t-1)$ is $\epsilon'_{\nu'_x(t-1),1}$-regular and $d_S(F(t-1)) \geq d_u$ for every $S' \subseteq Sx$. Write $\nu = \max_{S' \subseteq S} x_{\nu'_x(t-1)}$ and $\nu^* = \max\{\nu'_x(t-1), \nu'_x(t-1)\}$. By Lemma 6.16, for all but at most $\epsilon_{\nu,2}|F_x(t-1)|$ vertices $y \in F_x(t-1)$, $F_S(t) = F_S(x)(t-1)$ is $\epsilon'_{\nu^*,2}$-regular with $d_S(F(t)) = (1+\epsilon_{\nu,2})d_S(F(t-1))d_S(x)(t-1)$. Also, we claim that $\nu'_x(t) \geq \nu^*$. This holds by Lemma 6.13: (iv) gives $\nu'_x(t) > \nu'_x(t-1)$, (v) gives $\nu'_x(t) > \nu'_x(t-1)$, and (v) gives $\nu'_x(t) > \nu'_x(t-1)$. Thus we have ($\ast_{6.2}$) for such $y$. We also note for future reference that $d_S(F(t)) > d_u/2$. In the argument so far we have excluded at most $\epsilon_{\nu,2}^2|F(x)(t-1)|$ vertices $y \in F_x(t-1)$ for each at most $2k^{-1}D$ sets $S \subseteq H(x)$; this gives the required bound on $E_x(t-1)$. We also have the required regularity property of $F_S(t)$, but for now we postpone showing the density bounds.

Next we consider the case when $S \in H$ and $S \notin H(x)$. We show by induction on $|S|$ that $F_S(t)$ is $\epsilon'_{\nu'_x(t),1}$-regular with $d_S(F(t)) \geq d_u/2$, and moreover $F_S(t)$ is $\epsilon'_{\nu'_x(t-1),2}$-regular when $S$ intersects $V_{\bar{N}_H}(x)$. Note that if $S$ intersects $V_{\bar{N}_H}(x)$ then we have $\nu'_S(t) > \nu'_x(t-1)$ by Lemma 6.13(v). For the base case when $S = \{v\}$ has size 1 we have $|F_v(t)| = |F_v(t-1) \setminus y| \geq |F_v(t-1)| - 1$, so $d_v(F(t)) \geq d_v(F(t-1)) - 1/n > d_u/2$. For the induction step, suppose that $|S| \geq 2$. Recall that Lemma 3.11 gives $F_S(t) = F_{S\subseteq}(t-1)[F_{S\subseteq}(t)]S$. Since $F_S(t) = F_{S\subseteq}(t-1)$ is $\epsilon'_{\nu'_x(t-1),1}$-regular, by Lemma 6.18, $F_
(t) = \epsilon'_{\nu'_x(t-1),2}$-regular with $d_S(F(t)) = (1+\epsilon_{\nu'_x(t-1),2})d_S(F(t))$. This gives the required property in the case when $S$ intersects $V_{\bar{N}_H}(x)$. Next suppose that $S$ and $V_{\bar{N}_H}(x)$ are disjoint. Let $t'$ be the most recent time at which we embedded a vertex $x'$ with a neighbour in $S$. Then by Lemma 3.12, $F_{S\subseteq}(t)$ is obtained from $F_{S\subseteq}(t')$ just by deleting all sets containing any vertices that are embedded between time $t'+1$ and $t$. Equivalently, $F_S(t) = F_{S\subseteq}(t')[(F_x(t) : z \in S, \{0\})]$. Now $F_S(t')$ is $\epsilon'_{\nu'_x(t-1),2}$-regular with $d_S(F(t')) > d_u$ and $\nu'_x(t) \geq \nu'_x(t') > \nu'_S(t'+1)$, so $F_S(t)$ is $\epsilon'_{\nu'_x(t),1}$-regular with $d_S(F(t)) > d_u/2$ by Lemma 6.18.
Now we have established the bound on $E_x(t-1)$ and the regularity properties, so it remains to show the density bounds. First we consider any unembedded $S \subseteq H$ with $|S| = k$. Then $F_S(t) = F(0)[F_{S^c}(t)]_S$, similarly to (4) in Lemma 4.13. By Lemma 6.21, $F(0)_S$ is $\epsilon'$-regular with $d_{S}(F(0)) = c' d$. Also, we showed above for every $S' \subseteq S$ that $F_{S'}(t)$ is $\epsilon_{S',(t)}$-1-regular with $d_{S'}(F(t)) > d_{a}/2$. Now Lemma 6.19 shows that $F_S(t)$ is $\sqrt{\epsilon}$-regular with $d_{S}(F(t)) = (1 \pm \sqrt{\epsilon}) d_{S}(F(0)) > c'd/2$. In particular we have $d_{S}(F(t)) > d_{a}$, though we also use the bound $c'd/2$ below.

Next we show for $k - 1 \geq |S| \geq 2$ that $d_{S}(F(t)) > 4d_a^{2D2^{k−|S|}}$. We argue by induction on $t$ and reverse induction on $|S|$, i.e. we assume that the bound holds for larger sets than $S$. When $|S| = k$ we have already proved $d_{S}(F(t)) > c'd/2 > 4d_a^{2}$. Let $t' \leq t$ be the most recent time at which we embedded a vertex $x'$ with $S \in H(x')$, or let $t' = 0$ if there is no such vertex $x'$. Note that we may have $t' = t$ if $S \in H(x)$. Let $J(t)$ be the 1-complex $((F_z(t) : z \in S), \emptyset)$. As in Lemma 4.13 we have $F_S(t) = F(t)'[J(t)]_S$, so Lemma 6.18 gives $d_{S}(F(t)) > d_{S}(F(t'))/2$. Also, $(\ast_{6,2})$ gives $d_{S}(F(t')) = (1 \pm \epsilon_{S,\epsilon_d}) d_{S}(F(t' - 1)) d_{Sx'}(F(t' - 1))$, where $d_{Sx'}(F(t' - 1)) > 4d_a^{2D2^{k−|S|−1}}$ by induction. Thus the $S$-density starts with $d_{S}(F(0)) > c'd_a$, loses a factor no worse than $1/2$ before we embed some $x'$ with $S \in H(x')$, then loses a factor no worse than $d_a^{2D2^{k−|S|−1}}$ on at most $D$ occasions when we embed some $x'$ with $S \in H(x')$. This gives $d_{S}(F(t)) > c'd_a/2 \cdot d_a^{2D2^{k−|S|+1}} > 4d_a^{2D2^{k−|S|}}$. In particular we have $d_{S}(F(t)) > d_{a}$, though we also use the bound $4d_a^{2D2^{k−|S|}}$ below.

Finally we consider any unembedded vertex $z$. Suppose that the current $z$-regime started at some time $t_z \leq t$. If $t_z > 0$ then we embedded some neighbour $w = s(t_z)$ of $z$ at time $t_z$. By $(\ast_{6,2})$ and the above bound for pair densities we have $d_{z}(F(t_z)) > d_{wz}(F(t_z - 1)) d_{z}(F(t_z - 1))/2 > d_a^{2D2^{k−z}}$. We consider cases according to whether $z$ is in the list $L(t-1)$, the queue $q(t-1)$ or the queue jumpers $j(t-1)$. Suppose first that $z \in L(t-1)$. Then the rule for updating the queue in the algorithm gives $|F_z(t)| > (1/\delta_Q)|F_z(t_z)|$. Next suppose that $z \in j(t-1) \cup q(t-1)$, and $z$ first joined $j(t') \cup q(t')$ at some time $t' < t$. Since $z$ did not join the queue at time $t' - 1$ we have $|F_z(t' - 1)| > (1/\delta_Q)|F_z(t_z)|$. Also, between times $t'$ and $t$ we only embed vertices that are in the queue or jumping the queue, or otherwise we would have embedded $z$ before $x$. Now $|Q(t) \cap X_i| \leq \delta_Q Cn$ for $i \in R$, or otherwise we abort the algorithm, and $|J(t) \cap X_z| < \sqrt{\delta_Q n}$ by Lemma 6.13(ii), so we embed at most $2\sqrt{\delta_Q}|V_z|$ vertices in $V_z$ between times $t'$ and $t$. Thus we have catalogued all possible ways in which the number of vertices free for $z$ can decrease. It may decrease by a factor of $d_a^{2D2^{k−z}}$ when a new $z$-regime starts, and by a factor $\delta_Q$ during a $z$-regime before $z$ joins the queue. Also, if $z$ joins the queue or jumps the queue it may decrease by at most $2\sqrt{\delta_Q}|V_z|$ in absolute size. Since $z$ has at most $2D$ neighbours, and $|F_z(0)| > c'|V_z|$, we have $|F_z(t)| > (d_a^{2D2^{k−z}}\delta_Q)^k d'|V_z| - 2\sqrt{\delta_Q}|V_z| > d_a|V_z|$. □

From now on it will often suffice and be more convenient to use a crude upper bound of $\epsilon_x$ for any epsilon parameter. The estimates in Lemma 4.14 hold in general (we can replace $12D$ by $k^3D$ in (vi)). We also need some similar properties for plus complexes. In the following statement $H^+$ is to be understood as in Definition 6.8 but with $x$ replaced by $z$.

**Lemma 6.23.** Suppose $z \in X$ and $S' \subseteq S \subseteq H^+$ are unembedded and $I$ is a subcomplex of $H$. Then

(i) $F(t)^{I+z}_{S^c}$ is $\epsilon_{k^3D,3}$-regular.

(ii) If $S \subseteq H$ then $d_{S}(F(t)^{I+z}) = d_{S}(F(t))$.

If $S \subseteq H^+$, $H$ then $d_{S}(F(t)^{I+z})$ is $dT(F(t))$ if $S = T^c$, $T \in I$ or 1 otherwise.

83
(iii) For all but at most \( \epsilon_\star |F(t)^{I_{S^c}}_{S'_{S^c}}| \) sets \( P \in F(t)^{I_{S^c}}_{S'_{S^c}} \) we have 
\[
|F(t)^{I_{S^c}}_{S'_{S^c}}(P)| = (1 + \epsilon_\star) |F(t)^{I_{S^c}}_{S'_{S^c}}|/|F(t)^{I_{S^c}}_{S'_{S^c}}|.
\]
(iv) \( d(F(t)^{I_{S^c}}_{S'_{S^c}}) = (1 + \epsilon_\star) \prod_{T \subseteq S} d_T(F(t)^{I_{S^c}}).
\]
(v) 
\[
\frac{|F(t)^{I_{S^c}}_{S'_{S^c}}|}{|F(t)^{I_{S^c}}_{S'_{S^c}}||F(t)^{I_{S^c}}_{S'_{S^c}}|} = \frac{d(F(t)^{I_{S^c}}_{S'_{S^c}})}{d(F(t)^{I_{S^c}}_{S'_{S^c}})d(F(t)^{I_{S^c}}_{S'_{S^c}})} = (1 + 4\epsilon_\star) \prod_{T : T \subseteq S, T \not\subseteq S' \cup T \not\subseteq S} d_T(F(t)^{I_{S^c}}).
\]
(vi) Statements (iii-v) hold replacing \( F(t)^{I_{S^c}}_{S'_{S^c}}(t) \) by \( F(t)^{I_{S^c}}_{S'_{S^c}}(t)[\Gamma] \) for any \( \epsilon_{k^3D,3} \)-regular subcomplex \( \Gamma \) of \( F(t)^{I_{S^c}}_{S'_{S^c}}(t) \), such that \( d_T(\Gamma) \geq \epsilon_\star \) when defined.

Proof. If \( S \in H \) then \( F(t)^{I_{S^c}}_{S'_{S^c}} = F(t)_{S'_{S^c}} \). Now suppose \( S \in H^+ \setminus H \), say \( S = Tz^c \) with \( T \in H \). Then by Definition 6.8, \( F(t)^{I_{S^c}}_{S'_{S^c}} = G^+[F(t) \cup F(t)^{I_1}_{S^c}]_{S'_{S^c}} \) consists of all \( Pg^c \) with \( P \in F(t)_T \) and \( P_Sg^c \in F_Sg^c(t)^c \) when defined for all \( S' \in I \). Thus we can write \( F(t)^{I_{S^c}}_{S'_{S^c}} = K(V^+)[F(t) \cup F(t)^{I_1}_{S^c}]_{S'_{S^c}} \). Note that \( K(V^+) \) is \( \epsilon \)-regular with \( d_{S'}(K(V^+)) = 1 \) for any \( S' \in H^+ \). Thus (i) and (ii) follow by regular restriction. The other statements of the Lemma can be proved as in Lemma 4.14.

Our next lemma concerns the definitions for marked edges in the algorithm.

**Lemma 6.24.**

(i) For every \( k \)-tuple \( E \in H \) we have \( |M_{E^t,E}(t)| \leq \theta_{\nu_{E^t}(t)}|F_{E^t}(t)| \), and in fact
\[
|M_{E^t,E}(t)| \leq \theta_{\nu_{E^t}(t)}|F_{E^t}(t)| \text{ for } E \in U(x).
\]
(ii) For every \( x \) and \( k \)-tuple \( E \in U(x) \) we have \( |D_{x,E}(t-1)| \leq \theta_{\nu_{E^t}(t)}|F_{x}(t-1)| \).

Proof. Throughout we use the notation \( E = E^{t-1}, \nu = \nu_{E^t}(t-1), \nu^a = \nu_{E^t}(t) \).

(i) To verify the bound for \( t = 0 \), we use the assumption that \( (G,M) \) is \((\epsilon,\epsilon',d,a,\theta,d)\)-super-regular. We take \( I = \{\emptyset\} \), when for any \( v \) we have \( G^v = G \) by Definition 6.5. Then condition (iii) in Definition 6.6 gives \( |M_{E}| \leq \theta |G_E| \). Since \( E^0 = E \) we have \( M_{E,E}(0) = M_E \cap F_{E}(0) \), where \( |F_{E}(0)| > (c')^k |G_E| \) by Lemma 6.21. Since \( \theta \ll c' \) we have \( |M_{E,E}(0)| \leq |M_E| \leq \theta |G_E| < \theta (c')^{-k} |F_{E}(0)| < \theta_0 |F_{E}(0)| \). Now suppose \( t > 0 \). When \( E \in U(x) \) we have \( |M_{E,t,E}(t)| \leq \theta_{\nu_{E^t}(t)}|F_{E^t}(t)| \) by definition, since the algorithm chooses \( y = \phi(x) \notin D_{x,E}(t-1) \). Now suppose \( E \notin U(x) \), and let \( t' < t \) be the most recent time at which we embedded a vertex \( x' \) with \( E \in U(x') \). Then \( E^t = E^t, \nu_{E^t}(t') = \nu^a, \) and \( |M_{E^t,E}(t')| \leq \theta_{\nu_{E^t}(t')}|F_{E^t}(t')| \) by the previous case. For any \( z \in E^t \), we can bound \( |F_{E}(t)| \) using the same argument as that used at the end of the proof of Lemma 6.22. We do not embed any neighbour of \( z \) between time \( t' + 1 \) and \( t \), so the size of the free set for \( z \) can only decrease by a factor of \( \delta_Q \) and an absolute term of \( 2\sqrt{\delta_Q} \). Since \( d_z(F(t')) \geq d_a \gg \delta_Q \) we have \( |F_z(t)| \geq \delta'_Q |F_z(t')| - 2\sqrt{\delta_Q} \geq \frac{1}{2} \delta'_Q |F_z(t')| \). By Lemma 3.11, for every \( \emptyset \neq S \subseteq E' \), \( F_S(t) \) is obtained from \( F_S(t') \) by restricting to the 1-complex \( ((F_z(t) : z \in S), \emptyset) \). If \( |S| \geq 2 \) then Lemma 6.18 gives \( d_S(F(t)) = (1 + \epsilon_\star) d_S(F(t')) \). Now \( d(F_{E^t}(t)) = (1 + \epsilon_\star) \prod_{S \subseteq E} d_S(F(t)) \) by Lemma 6.15, so
\[
\frac{|F_{E^t}(t)|}{|F_{E^t}(t')|} = (1 + 2k+1 \epsilon_\star) \prod_{S \subseteq E} \frac{d_S(F(t))}{d_S(F(t'))} = (1 + 2k+2 \epsilon_\star) \prod_{z \in E} \frac{d_z(F(t))}{d_z(F(t'))} > (\delta_Q/2)^{k}/2.
\]
Therefore $|M_{E^t,E}(t)| \leq |M_{E^t,E}(t')| \leq \theta_{\nu^*}|F_{E^t}(t')| < 2(\delta_Q/2)^{-k}\theta_{\nu^*}|F_{E^t}(t)| < \theta_{\nu^*}|F_{E^t}(t)|$.

(ii) The argument when $x \in E$ is identical to that in Lemma 4.15, so we just consider the case when $x \notin E$. Then $E^t = E^{t-1} = E$. Note that when $E \in U(x)$ we have $E \cap VN_H(x) \neq \emptyset$, so $\nu^* > \nu$. By Lemma 6.10 we have $F(t)_{E^t} = F(t-1)^{H^E}(y^c) \setminus y = (F(t-1)^{H^E} \setminus y)(y^c)$. Since $M_{E,E}(t) = M_{E,E}(t-1) \cap F_{E}(t)$ we have

$$D_{x,E}(t-1) = \left\{ y \in F_x(t-1) : \frac{|M_{E,E}(t-1) \cap (F(t-1)^{H^E} \setminus y)(y^c)|}{|(F(t-1)^{H^E} \setminus y)(y^c)|} > \theta_{\nu^*} \right\}.$$ 

Then

$$\Sigma := \sum_{y \in D_{x,E}(t-1)} |M_{E,E}(t-1) \cap (F(t-1)^{H^E} \setminus y)(y^c)|$$

$$> \theta_{\nu^*} \sum_{y \in D_{x,E}(t-1) \setminus F_x(t-1)} |(F(t-1)^{H^E} \setminus y)(y^c)|$$

$$> (1-2\epsilon_\ast)\theta_{\nu^*}(|D_{x,E}(t-1)| - \epsilon_\ast)\sum F_x(t-1) |F(t-1)^{H^E}||F_x(t-1)|$$

$$= (1-2\epsilon_\ast)\theta_{\nu^*}(|D_{x,E}(t-1)||F_x(t-1)| - \epsilon_\ast)\sum F(t-1)^{H^E}.$$ 

Here we used $|F_x(t-1)| = |F_x(t-1)|$, and in the second inequality we applied Lemma 6.23, with a factor $1-2\epsilon_\ast$ rather than $1-\epsilon_\ast$ to account for the error from deleting $y$ (which has a lower order of magnitude). We also have $\Sigma \leq \sum_{y \in F_x(t-1)} |M_{E,E}(t-1) \cap F(t-1)^{H^E}(y^c)|$. This counts all pairs $(y,P)$ with $P \in M_{E,E}(t-1)$, $y \in F_x(t-1)$ and $Py^c \in F(t-1)^{H^E}$, so we can rewrite it as $\Sigma \leq \sum_{P \in M_{E,E}(t-1)} |F(t-1)^{H^E}(P)|$. By Lemma 6.23 we have

$$|F(t-1)^{H^E}(P)| = (1 \pm \epsilon_\ast)\frac{|F(t-1)^{H^E}|}{|F(t-1)^{H^E}|}$$

for all but at most $\epsilon_\ast|F(t-1)^{H^E}|$ sets $P \in F(t-1)^{H^E}$. Since $F(t-1)^{H^E} = F_{E^t}(t-1)$ we have

$$\Sigma \leq |M_{E,E}(t-1)|(1+\epsilon_\ast)\frac{|F(t-1)^{H^E}|}{|F_{E^t}(t-1)|} + \epsilon_\ast|F_{E^t}(t-1)||F_x(t-1)|.$$ 

Combining this with the lower bound on $\Sigma$ we obtain

$$(1-2\epsilon_\ast)\theta_{\nu^*} \left( |D_{x,E}(t-1)| - \epsilon_\ast \right) < (1+\epsilon_\ast)\frac{|M_{E,E}(t-1)|}{|F_{E^t}(t-1)|} + \epsilon_\ast \frac{|F_{E^t}(t-1)||F_x(t-1)|}{|F(t-1)^{H^E}|}.$$ 

Now $|M_{E,E}(t-1)| < \theta_{\nu^*}|F_{E^t}(t-1)|$ by (i) and $\frac{|F_{E^t}(t-1)||F_x(t-1)|}{|F(t-1)^{H^E}|} \leq d_{u}^{-\alpha k} \ll \epsilon_\ast^{-1}$, by Lemma 6.23, so

$$\frac{|D_{x,E}(t-1)|}{|F_x(t-1)|} < \frac{(1+\epsilon_\ast)\theta_{\nu^*} + \sqrt{\epsilon_\ast}}{(1-2\epsilon_\ast)\theta_{\nu^*}} + \epsilon_\ast < \theta_{\nu^*}.$$ 

$\square$

The following corollary is now immediate from Lemmas 6.22 and 6.24. Recall that $OK_x(t-1)$ is obtained from $F_x(t-1)$ by deleting $E_x(t-1)$ and $D_{x,E}(t-1)$ for $E \in U(x)$, and note that since $H$ has maximum degree at most $D$ we have $|U(x)| \leq (k-1)D^2$. 

85
Corollary 6.25. \(|OK_x(t - 1)| > (1 - \theta_*)|F_x(t - 1)|\).

Next we consider the initial phase of the algorithm, during which we embed the neighbourhood \(N\) of the buffer \(B\). We give three lemmas that are analogous to those used for the 3-graph blow-up lemma. First we recall the key properties of the selection rule during the initial phase. Since \(H\) has maximum degree \(D\) we have \(|VN_H(x)| \leq (k - 1)D\) for all \(x\). We embed all vertex neighbourhoods \(VN_H(x), x \in B\) at consecutive times, and before \(x\) or any other vertices at distance at most 4 from \(x\). Then Lemma 3.12 implies that if we start embedding \(VN_H(x)\) just after some time \(T_0\) then \(F_z(T_0) = F_z(0) \cap V_z(T_0)\) consists of all vertices in \(F_z(0)\) that have not yet been used by the embedding, for every \(z\) at distance at most 3 from \(x\). Recall that \(F_z(0) = G[\Gamma]z\) is either a set of restricted positions \(\Gamma_z\) with \(|\Gamma_z| > c'|G_z| = c'|V_z|\) or is \(G_z = V_z\) if \(\Gamma_z\) is undefined. We chose \(B\) disjoint from \(X_1' = X_0 \cup \bigcup_{x \in X} VN_H(x)\), so \(B \cap N\) is disjoint from \(X_0\). Thus for \(z \in VN_H(x) \cup \{x\}\) we have \(F_z(T_0) = V_z(T_0)\). We also recall that \(|B \cap V_z| = \delta_B|V_z|, |N \cap V_z| < \sqrt{\delta_B}|V_z|, |Q(T_0) \cap V_z| \leq \delta_Q|V_z|\) and \(|J(T_0) \cap V_z| \leq \sqrt{\delta_Q}|V_z|\) by Lemma 4.3(ii). Since \(\delta_Q \ll \delta_B \ll c', \) for any \(z\) at distance at most 3 from \(x\) we have

\[
|F_z(T_0)| = |F_z(0) \cap V_z(T_0)| > (1 - \delta_B^{1/3})|F_z(0)|. \tag{8}
\]

Our first lemma is analogous to Lemma 4.18. We omit the proof, which is almost identical to that for 3-graphs. The only modifications are to replace \(2D\) by \((k - 1)D, 12D\) by \(k^3D\), and \(\sum_{\ell=1}^{\gamma} \) by a sum over at most \(D_R\) neighbours \(\ell \in R\) of \(\ell\); the estimates are still valid as \(\delta_B \ll 1/D_R\).

Lemma 6.26. With high probability, for every \(S \in R\) with \(|S| = 2\) lying over some \(i, j \in R,\) and vertex \(v \in G_i\) with \(|G_S(v)| \geq d_u|V_j|\), we have \(|G_S(v) \cap V_j(T_1)| > (1 - \delta_B^{1/3})|G_S(v)|\).

Next we fix a vertex \(x \in B\) and write \(VN_H(x) = \{z_1, \ldots, z_g\}\), with vertices listed in the order that they are embedded. We let \(T_j\) be the time at which \(z_j\) is embedded. By the selection rule, \(VN_H(x)\) jumps the queue and is embedded at consecutive times: \(T_{j+1} = T_j + 1\) for \(1 \leq j \leq g - 1\). For convenience we also define \(T_0 = T_1 - 1\). Note that no vertex of \(VN_H(x)\) lies in \(X_x\). Our second lemma shows that for that any \(W \subseteq V_x\) that is not too small, the probability that \(W\) does not contain a vertex available for \(x\) is quite small.

Lemma 6.27. For any \(W \subseteq V_x\) with \(|W| > \epsilon_*|V_z|\), conditional on any embedding of the vertices \(\{s(u) : u < T_1\}\) that does not use any vertex of \(W\), we have \(P[A_x \cap W = \emptyset] < \theta_*\).

Proof. The proof is very similar to that of Lemma 4.20, so we will just describe the necessary modifications. We note that since \(B \cup N\) is disjoint from \(X_x\) we do not need to consider restricted positions in this proof. Suppose \(1 \leq j \leq g\) and that we are considering the embedding of \(z_j\). We interpret quantities at time \(T_j\) with the embedding \(\phi(z_j) = y_j\) for some as yet unspecified \(y_j \in F_{z_j}(T_j - 1)\). We define \(W_j, [W_j], E_j, E_j^W(T_j - 1), D_j^W, D_j^{z_j,E}(T_j - 1)\) and the events \(A_{i,j}\) as before (replacing triples with \(k\)-tuples). The proofs of Claims A, B, C, E and the conclusion of the proof are almost identical to before. We need to modify various absolute constants to take account of the dependence on \(k\), e.g. changing 20 to \(2^{k+2}\) in Claim A, 12 to \(k^3\) in Claim E, and \(g \leq 2D\) to \(g \leq (k - 1)D\). Also, when we apply equation (8) instead of (5) we will replace \(2\sqrt{\delta_B\delta}^{1/3}\).

To complete the proof of the lemma it remains to establish Claim D. This requires more substantial modifications, similar to those in Lemma 6.24, so we will give more details here. Suppose that
$A_{1,j-1}$ and $A_{2,j-1}$ hold and $E$ is a $k$-tuple containing $x$. As before we write $E = E^{T_j-1}$, $\nu = \nu^{E^{T_j}}(T_j-1)$, $\nu^* = \nu^{E^{T_j}}(T_j)$ and $B_{z_j} = E_{z_j}(T_j-1) \cup E^{W^{T_j-1}}(T_j-1)$. Again we have $|B_{z_j}| < 2\epsilon_1|F_{z_j}(T_j-1)|$. We are required to prove that $|D_{z_j}^{W,E}(T_j-1)| < \theta_\nu^*|F_{z_j}(T_j-1)|$. The proof of Case D.1 when $z_j \in E$ is exactly as before, so we just consider the case $z_j \notin E$. In Lemma 4.20 we divided this into Cases D.2 and D.3, but here we will give a unified argument.

Suppose that $z_j \notin E$. Then $E^{T_j} = E^{T_j-1} = E$. Also $x \in E \cap V_{N_H}(z_j)$, so $\nu^* > \nu$. By Lemma 6.10 we have $F_{T_j}(E) = F_{T_j}(T_j-1)^{H+z_j}(y^c_E) \setminus y = (F(T_j-1)^{H+z_j}(y^c_E) \setminus y)(y^c)$. Now $W_{z_j} = W_{z_j-1} \cap F_{z_j}(T_j-1)(y) = W_{z_j-1} \cap F(T_j-1)^{H+z_j}(y^c_E)$, so

$$F_{E}(T_j)(W_{z_j}) = (F(T_j-1)^{H+z_j}(y^c_E) \setminus y)(y^c)[W_{z_j}] = (F(T_j-1)^{H+z_j}(W_{z_j-1}) \setminus y)(y^c).$$

Since $M_{E,E}(T_j) = M_{E,E}(T_j-1) \cap F_{E}(T_j)$ we have

$$D_{z_j}^{W,E}(T_j-1) = \left\{ y \in F_{z_j}(T_j-1) : \frac{|M_{E,E}(T_j-1) \cap (F(T_j-1)^{H+z_j}(W_{z_j-1}) \setminus y)(y^c)|}{|(F(T_j-1)^{H+z_j}(W_{z_j-1}) \setminus y)(y^c)|} > \theta_\nu^* \right\}.$$ 

Then

$$\Sigma := \sum_{y \in D_{z_j}^{W,E}(T_j-1)} |M_{E,E}(T_j-1) \cap (F(T_j-1)^{H+z_j}(W_{z_j-1}) \setminus y)(y^c)|$$

$$> \theta_\nu^* \sum_{y \in D_{z_j}^{W,E}(T_j-1) \setminus B_{z_j}} |(F(T_j-1)^{H+z_j}(W_{z_j-1}) \setminus y)(y^c)|$$

$$> (1 - 2\epsilon_*)\theta_\nu^* (|D_{z_j}^{W,E}(T_j-1)| - 2\epsilon_*$|F_{z_j}(T_j-1)|) |F(T_j-1)^{H+z_j}(W_{z_j-1})|/|F_{z_j}(T_j-1)|$$

$$= (1 - 2\epsilon_*)\theta_\nu^* (|D_{z_j}^{W,E}(T_j-1)|/|F_{z_j}(T_j-1)| - 2\epsilon_*)|F(T_j-1)^{H+z_j}(W_{z_j-1})|.$$ 

Here we used $|F_{z_j}(T_j-1)| = |F_{z_j}(T_j-1)|$ and Lemma 6.23 with $\Gamma = (W_{z_j-1}, \{\emptyset\})$, as usual denoting the exceptional set by $B_{z_j}$; the factor $1 - 2\epsilon_*$ rather than $1 - \epsilon_*$ accounts for the error from deleting $y$ (which has a lower order of magnitude). We also have $\Sigma \leq \sum_{y \in F_{z_j}(T_j-1)} |M_{E,E}(T_j-1) \cap F(T_j-1)^{H+z_j}(W_{z_j-1})(y^c)|$. This counts all pairs $(y, P)$ with $P \in M_{E,E}(T_j-1)(W_{z_j-1})$, $y \in F_{z_j}(T_j-1)$ and $Py^c \in F(T_j-1)^{H+z_j}(W_{z_j-1})$, so we can rewrite it as $\Sigma \leq \sum_{P \in M_{E,E}(T_j-1)(W_{z_j-1})} |F(T_j-1)^{H+z_j}(W_{z_j-1})(P)|$. By Lemma 6.23, we have

$$|F(T_j-1)^{H+z_j}(W_{z_j-1})(P)| = (1 \pm \epsilon_*) \frac{|F(T_j-1)^{H+z_j}(W_{z_j-1})|}{|F(T_j-1)^{H+z_j}(W_{z_j-1})|}$$

for all but at most $\epsilon_* |F(T_j-1)^{H+z_j}(W_{z_j-1})|$ sets $P \in F(T_j-1)^{H+z_j}(W_{z_j-1})$.

Since $F(T_j-1)^{H+z_j} = F_{E}(T_j-1)$ we have

$$\Sigma \leq |M_{E,E}(T_j-1)(W_{z_j-1})|(1 + \epsilon_*) \frac{|F(T_j-1)^{H+z_j}(W_{z_j-1})|}{|F_{E}(T_j-1)(W_{z_j-1})|} + \epsilon_* |F_{E}(T_j-1)(W_{z_j-1})||F_{z_j}(T_j-1)|.$$ 

87
Combining this with the lower bound on $\Sigma$ we obtain

$$(1 - 2\epsilon_*)\theta_\nu \left( \frac{|D_{z_j, E}(T_j - 1)|}{|F_{z_j}(T_j - 1)|} - 2\epsilon_* \right) < (1 + \epsilon_*) \frac{|M_{F, E}(T_j - 1)[W_{j-1}]|}{|F_E(T_j - 1)[W_{j-1}]|} + \epsilon_* \frac{|F_{E}(T_j - 1)[W_{j-1}]||F_{z_j}(T_j - 1)|}{|F(T_j - 1)|_{E^c_{z_j}} [W_{j-1}]}.$$

Now $|M_{F, E}(T_j - 1)[W_{j-1}]| < \theta_\nu |F_E(T_j - 1)|$ by $A_{2, j-1}$ and

$$\frac{|F_{E}(T_j - 1)[W_{j-1}]||F_{z_j}(T_j - 1)|}{|F(T_j - 1)|_{E^c_{z_j}} [W_{j-1}]} \leq d_{\nu}^{-2} \ll \epsilon_*^{-1},$$

by Lemma 6.23, so

$$\frac{|D_{z_j, E}(T_j - 1)|}{|F_{z_j}(T_j - 1)|} < \frac{(1 + \epsilon_*)\theta_\nu + \sqrt{\epsilon_*}}{(1 - 2\epsilon_*)\theta_\nu} + 2\epsilon_* < \theta_\nu^*.$$

Our final lemma for the initial phase is similar to the previous one, but instead of asking for a set $W$ of vertices to contain an available vertex for $x$, we ask for some particular vertex $v$ to be available for $x$.

**Lemma 6.28.** For any $v \in V_x$, conditional on any embedding of the vertices $\{s(u) : u < T_1\}$ that does not use $v$, with probability at least $p$ we have $\phi(H(x)) \subseteq (G \setminus M)(v)$, so $v \in A_{x}$.

**Proof.** We follow the proof of Lemma 4.21, indicating the necessary modifications. We note again that since $B \cup N$ is disjoint from $X_*$, restricted positions have no effect on any $z \in VN_H(x) \cup \{x\}$. However, we need to consider all vertices within distance 3 of $x$, so some of these may have restricted positions. The bound in equation (8) will be adequate to deal with these. By Remark 6.4 we also need to clarify the meaning of neighbourhood constructions, which are potentially ambiguous: $F(T_j)(v)_S$ is $F(T_j)|_{S_x}(v)$ when $Sx \in H$ or undefined when $Sx \notin H$.

For $z \in VN_H(x)$ we define $\alpha_z$ as before. We also define $\alpha_S = 1$ for $S \in H$ with $|S| \geq 2$. As before, we define $\nu_S^z(t)$ similarly to $\nu_S^z(t)$, replacing ‘embedded’ with ‘allocated’. Suppose $1 \leq j \leq g$ and that we are considering the embedding of $z_j$. We interpret quantities at time $T_j$ with the embedding $\phi(z_j) = y$, for some as yet unspecified $y \in F_{z_j}(T_j - 1)$. We define $E^u_{z_j}(T_j - 1)$ as before, except that the condition for $|S| = 2$ now applies whenever $|S| \geq 2$. We define $Y$, $Y'$, $F(T_j)|_{S^*_z}^Z$ and $D^{Z^*_z}_{z_j, E}(T_j - 1)$ as before. Properties (i-iv) of $Z$ hold as before. We define the events $A_{i,j}$ as before.

Recall that we used the notation $Z \subseteq Y$, $Z' = Z_{z_j}$, $I = \{S \subseteq Z : S \in H(x)\}$, $I' = \{S \subseteq Z' : S \in H(x)\}$. Here we also define $J = \{S \subseteq Z : S \in H\}$ and $J' = \{S \subseteq Z' : S \in H\}$. Using the plus complex notation we can write

$$F(T_j)|_{S^*_z}^Z = F(T_j)^{J+v}(v^c)|_{S^*_z}.$$

To see this, we need to show that $P \in F(T_j)|_{S^*_z}^Z \iff P v^c \in F(T_j)^{J+v}_{S^*}. Recall that $F(T_j)|_{S^*_z}^Z$ consists of all sets $P \in F_S(T_j)$ such that $P' v^c \in F_{S'}(T_j)$ for all $S' \subseteq S$ with $S' \in I$. Also, from Definition 6.8(v) we have $P v^c \in F(T_j)^{J+v}_{S^*}$ if and only if $P \in F(T_j)|_{S^*_z}$. This is the restriction from $F$ and $P' v^c \in (F(T_j)|_{I'})|_{S^*}$ for every $S' \subseteq S$ with $S' \in J$. Since $S' \in I \iff S' \in J$, this is equivalent to the condition for $F(T_j)|_{S^*_z}^Z$, as required.
The proof of Claim A is similar to before. Instead of the bound $|F_z(T_0)| > (1 - 2\sqrt{\delta_B})|V_z|$ from equation (5) we use $|F_z(T_0)| > (1 - \delta_B^{1/3})|V_z|$ from equation (8). We again have $|F_z(T_0) \cap G(v)_z| > (1 - \delta_B^{1/3})|G(v)_z|$ for $z \in VN_H(x)$ by Lemma 6.26, using the fact that $z \notin X_s$. Again, $A_{1.0}$ holds by definition and Lemma 6.26 implies that $A_{1.0}$ holds with high probability. The arguments for $A_{2.0}$ and $A_{3.0}$ are as before, modifying the absolute constants to take account of their dependence on $k$.

(In the $A_{2.0}$ argument we have $F(0)^*_{E_0} = G^*_{E_0}$, where we let $J$ also denote the submulticomplex \{i*(S) : S \in J\} of $R$.) The proofs of Claims B and E and the conclusion of the lemma are also similar to before. As usual we replace triple by $k$-tuple, $2D$ by $(k - 1)D$ and $12D$ by $k^3D$. Also, in Claim E we previously estimated $2D^2$ choices for $E$ then 8 choices for $Z$; here we estimate $(k - 1)D^2$ choices for $E$ then $2^k$ choices for $Z$. To complete the proof of the lemma it remains to establish Claims C and D. These require more substantial modifications, so we will give the details here.

We start with Claim C. Suppose that $A_{1,j-1}$ and $A_{3,j-1}$ hold. We are required to prove that $|E^z_0(T_j - 1) \setminus E_s(T_j - 1)| < \epsilon_s|F_{sz_j}(T_j - 1)(v)|$. For any $S \in H$ we write $\nu^*_S = \nu_S^*(T_j - 1)$ and $\nu^*_S = \nu^*_S(T_j)$. Consider any unembedded $\emptyset \neq S \in H(x) \cap H(z_j)$. Note that $\nu^*_S > \max\{\nu^*_S, \nu^*_S, \nu^*_S\}$. Applying the definitions, it suffices to show that for all but at most $\epsilon_s \delta^3 |F_{xz_j}(T_j - 1)(v)|$ vertices $y \in F_{xz_j}(T_j - 1)(v) \setminus E_{s_j}(T_j - 1)$, $F_{sz_j}(T_j)(v)$ is $\epsilon_{\nu^*_S, 1}$-regular with $ds(F(T_j)(v)) = (1 \mp \epsilon_{\nu^*_S, 1})ds(F(T_j))d_s(F(T_j))\alpha_S$. We claim that

$$F_{sz_j}(T_j)(v) = F(T_j - 1)^{H+z_j}(vy^c)_S.$$ 

To see this we apply Definition 6.8, which tells us that for $P \in F(T_j - 1)_S$, $v_0 \in F(T_j - 1)_x$ and $y_0 \in F(T_j - 1)_z_j$, we have $Pv_0y_0 \in F(T_j - 1)^{H+z_j}_{xz_j}$ exactly when $Pv_0 \in F(T_j - 1)_x$ and $(Pv_0)y_0 \in F(T_j - 1)^{S_{z_j}}_{z_j}$ for all $S' \subseteq S_x, S' \subseteq H(z_j)$. Therefore $F(T_j - 1)^{H+z_j}(vy^c)_S$ consists of all $P \in F(T_j - 1)_S$ such that $Pv \in F(T_j - 1)_S$ and $(Pv)_y \in F(T_j - 1)^{S'_{z_j}}_{z_j}(y)$ for all $S' \subseteq S_x, S' \subseteq H(z_j)$. By Definition 3.7 this is equivalent to $Pv \in F(T_j)_S$, i.e. $P \in F_{sz_j}(T_j)(v)$ as claimed. (We do not need to delete $y$ as $S$ and $x$ are in $H(z_j)$.)

By Definition 6.8, $F(T_j - 1)^{H+z_j}_{Sz_j}$ is $F(T_j - 1)^{S_{z_j}}_{Sz_j}$ if $Sxz_j \in H$ or consists of all $Pyc$ with $P \in F(T_j - 1)_{Sz_j}, y \in F(T_j - 1)_{z_j}$ and $P_{z_j}y \in F(T_j - 1)^{S_{z_j}}_{z_j}$ for $S' \subseteq S_x$ with $S' \subseteq H(z_j)$. Thus $F(T_j - 1)^{H+z_j}_{Sz_j}$ is $F(T_j - 1)^{S_{z_j}}_{Sz_j}(v)$ if $Sxz_j \in H$ or $F(T_j - 1)[F(T_j - 1)^{S_{z_j}}_{Sz_j}][v]_{Sz_j}$ if $Sxz_j \notin H$. Either way we can see that is $\epsilon_{\nu^*_S, 2}$-regular: in the first case we write $F(T_j - 1)^{S_{z_j}}_{Sz_j}(v) = F(T_j - 1)^{S_{z_j}}_{Sz_j}$ and use $A_{3,j-1}$; in the second case we use Lemma 6.19 and the fact that $F(T_j - 1)^{S_{z_j}}_{Sz_j}$ is a copy of $F(T_j - 1)^{S_{z_j}}_{Sz_j}$, which is $\epsilon_{\nu^*_S, 1}$-regular by Lemma 6.22. Also by $A_{3,j-1}$, $ds_{Sz_j}(F(T_j - 1)^{H+z_j}(v)) = (1 \pm \epsilon_{\nu^*_S, 2})ds_{Sz_j}(F(T_j - 1))ds_{Sz_j}(F(T_j - 1))$ if $Sxz_j \in H$ or $(1 \pm \epsilon_{\nu^*_S, 2})ds_{Sz_j}(F(T_j - 1))$ if $Sxz_j \notin H$. Similarly, $F(T_j - 1)^{H+z_j}(v)$ is $\epsilon_{\nu^*_S, 2}$-regular with $ds(F(T_j - 1)^{H+z_j}(v)) = (1 \pm \epsilon_{\nu^*_S, 2})ds(F(T_j - 1))ds_{Sz_j}(F(T_j - 1))\alpha_S$.

Since $x \in H(z_j)$ we have $F(T_j - 1)^{H+z_j}(v)_{Sz_j} = F_{xz_j}(T_j - 1)^{c}(v)$. By Lemma 6.16, for all but at most $\sum_{S' \subseteq S_{xz_j}} \epsilon_{\nu^*_S, 3}|F_{xz_j}(T_j - 1)(v)|$ vertices $y \in F_{xz_j}(T_j - 1)(v)$, writing $\eta = \epsilon_{\nu^*_S, 3} + \epsilon_{\nu^*_S, 3}$, $F_{sz_j}(T_j)(v) = F(T_j - 1)^{H+z_j}(v)^c_{S}$ is $\eta$-regular with $ds(F(T_j)(v)) = ds(F(T_j - 1)^{H+z_j}(v)_{Sz_j}) = (1 \pm \eta)ds(F(T_j - 1)^{H+z_j}(v))ds_{Sz_j}(F(T_j - 1)^{H+z_j}(v)) = (1 \pm 3\eta)ds(F(T_j - 1))ds_{Sz_j}(F(T_j - 1))\alpha_S \cdot ds_{Sz_j}(F(T_j - 1))ds_{Sz_j}(F(T_j - 1)^{1_{S_{xz_j}}})_{S_{xz_j}}H$. 89
This gives the required regularity property for $F_{S_x}(T_j)(v)$. Next, (*6.2) gives
\[
\begin{align*}
  d_S(F(T_j)) &= (1 \pm \epsilon_{v_{S_x},0}) d_S(F(T_j - 1)) d_{S_{xj}}(F(T_j - 1)) \\
  d_{S_x}(F(T_j)) &= (1 \pm \epsilon_{v_{S_x},0}) d_{S_x}(F(T_j - 1)) d_{S_{xj}}(F(T_j - 1))^{1_{S_{xj}} \in H},
\end{align*}
\]
so since $\nu^*_S > \max\{\nu^{w}_S, \nu^{w'}_{S_x}, \nu^{w''}_{S_{xj}}\}$ we have $d_S(F(T_j)(v)) = (1 \pm \epsilon_{v^*_S,1}) d_S(F(T_j)) d_{S_x}(F(T_j))\alpha_S$. This proves Claim C.

It remains to the case $z_j \notin E$. Suppose that $A_{1,j-1}$, $A_{2,j-1}$ and $A_{3,j-1}$ hold, $E \in U(z_j)$, $Z \subseteq E$ and $Z' = Z \cup z_j$. As before we write $E = E^{T_i-1}$, $\nu = \nu^{w}_{E}(T_j - 1)$, $\nu^* = \nu^{w'}_{E^x}(T_j)$, $B_{z_j} = E_{z_j}(T_j - 1) \cup E'_{z_j}(T_j - 1)$. Since $E \in U(z_j)$ we have $\nu^* > \nu$. We are required to prove that $|D_{z_j}^{w''}(T_j - 1)| < \theta_{v^*}|F_{x_{zj}}(T_j - 1)(v)|$. The proof of Case D.1 when $z_j \in E$ is exactly as before, so we just consider the case $z_j \notin E$.

Suppose that $z_j \notin E$. Then $E^{T_i} = E^{T_j-1} = E$. By Lemma 6.10 we have
\[
F(T_j)_{E} = F(T_j - 1)^{H+z_j}(y^c)'_{E} \setminus y = (F(T_j - 1)^{H+z_j})_{E'_z} \setminus y)(y^c).
\]
We claim that
\[
F(T_j)^{Z_{zz}}_{E_{z}^c} = F(T_j - 1)^{H+z_j}(y^c)^{j+v}(v^c)_{E_{z}^c} \setminus y = F(T_j - 1)^{j+v}(v^c)^{H+z_j}y_{E_{z}^c} \setminus y. \tag{6.28}
\]
For the first equality we use (+6.28) to get $F(T_j)^{Z_{zz}}_{E_{z}^c} = F(T_j)^{j+v}(v^c)_{E_{z}^c}$ and substitute $F(T_j) = F(T_j - 1)^{j+v}(v^c)_{E_{z}^c}$ from Lemma 6.10. For the second equality we apply Definition 6.8 as follows. Suppose $S \subseteq E$. We have $P \in F(T_j - 1)^{H+z_j}(y^c)^{j+v}(v^c)_{S}$ exactly when $P \in F(T_j - 1)^{H+z_j}(y^c)_{S}$ and $P_S v \in F(T_j - 1)^{H+z_j}(y^c)_{S'}x$ for all $S' \subseteq S$ with $S'x \in J$. Equivalently, $P \in F(T_j - 1)_{S}$, $P_U y \in F(T_j - 1)_{U_{zj}}$ for $U \subseteq S$ with $U \in H(z_j)$, $P_S v \in F(T_j - 1)_{S'}x$ and $(P v)_{S''} \in F(T_j - 1)_{S''z_j}$ for $S'' \subseteq S$ with $S'x \in J$ and $S'' \subseteq S'x$ with $S'' \in H(z_j)$. Note that it is equivalent to assume $x \in S''$, as otherwise the $S''$ condition is covered by the $U$ condition. Writing $W = S'' \setminus x$ and using $J = \{A \subseteq Zx : A \in H\}$ we have
\[
P \in F(T_j - 1)^{H+z_j}(y^c)^{j+v}(v^c)_{S} \text{ if and only if } P \in F(T_j - 1)_{S}, P_U y \in F(T_j - 1)_{U_{zj}} \text{ for } U \subseteq S \text{ with } U \in H(z_j), P_S v \in F(T_j - 1)_{S'}x \text{ for } S' \subseteq S \cap Z, S' \in H(x), \text{ and } P_{W} v \in F(T_j - 1)_{Wx_{zj}} \text{ for } W \subseteq S \cap Z \text{ with } W \in H(x_{zj}).
\]
On the other hand, we have $P \in F(T_j - 1)^{j+v}(v^c)^{H+z_j}(y^c)_{S}$ exactly when $P \in F(T_j - 1)^{j+v}(v^c)_{S}$ and $P_U y \in F(T_j - 1)^{j+v}(v^c)_{U_{zj}}$ for all $U \subseteq S$ with $U \in H(z_j)$. Equivalently, $P \in F(T_j - 1)_{S}$, $P_S v \in F(T_j - 1)_{S'}x$ for $S' \subseteq S$ with $S'x \in J$, $P_U y \in F(T_j - 1)_{U_{zj}}$ and $(P y)_{U'} v \in F(T_j - 1)_{U'x}$ for $U \subseteq S$ with $U \in H(z_j)$ and $U' \subseteq U_{zj}$ with $U'x \in J$. Note that it is equivalent to assume $z_j \in U'$, as otherwise the $U'$ condition is covered by the $S'$ condition. Writing $W = U' \setminus z_j$ and using $J' = \{A \subseteq Z'x : A \in H\}$ we have
\[
P \in F(T_j - 1)^{j+v}(v^c)^{H+z_j}(y^c)_{S} \text{ if and only if } P \in F(T_j - 1)_{S}, P_S v \in F(T_j - 1)_{S'}x \text{ for } S' \subseteq S \cap Z' = S \cap Z \text{ with } S' \in H(x), P_U y \in F(T_j - 1)_{U_{zj}} \text{ for } U \subseteq S \text{ with } U \in H(z_j), \text{ and } P_{W} v \in F(T_j - 1)_{Wx_{zj}} \text{ for } W \subseteq S \cap Z \text{ with } W \in H(x_{zj}).
\]
This proves (6.28). Now, since $M_{E,E^x}(T_j) = M_{E,E^x}(T_j - 1) \cap F_{E}(T_j)$ we have
\[
D_{z_{j},E}^{w''}(T_j - 1) = \left\{ y \in F_{zj}(T_j - 1) : \left| \frac{|M_{E,E}(T_j - 1) \cap (F(T_j - 1)^{j+v}(v^c)^{H+z_j}_{E_{zj}^c} \setminus y)(y^c)|}{|(F(T_j - 1)^{j+v}(v^c)^{H+z_j}_{E_{zj}^c} \setminus y)(y^c)|} > \theta_{v^*} \right\}.
\]

Writing $B'_{y_j}$ for the set of vertices $y \in F(T_j - 1)^{J' + v}(v^c)^{H + z_j} = F(T_j - 1)_{x z_j}(v)$ for which we do not have

$$|F(T_j - 1)^{J' + v}(v^c)^{H + z_j}(y^c)| = (1 \pm \epsilon_s)|F(T_j - 1)^{J' + v}(v^c)^{H + z_j}|/|F(T_j - 1)_{x z_j}(v)|,$$

we have $|B'_{y_j}| < \epsilon_s|F(T_j - 1)_{x z_j}(v)|$ by Lemma 6.20. Here we use the fact that the ‘double plus’ complex is $\epsilon_{k^3 D,3}$-regular; this proof of this is similar to that of Lemma 6.23(i): $F(T_j - 1)^{J' + v}$ is $\epsilon_{k^3 D,1}$-regular, $F(T_j - 1)^{J' + v}(v^c)$ is $\epsilon_{k^3 D,2}$-regular by Lemma 6.16, $F(T_j - 1)^{J' + v}(v^c)^{H + z_j}$ is $\epsilon_{k^3 D,3}$-regular. Then

$$\Sigma := \sum_{y \in D'_{z_j} \cap (F(T_j - 1)^{J' + v}(v^c)^{H + z_j} \setminus y)(y^c)} (1 - 2\epsilon_s) \theta_{v^c}(y) - \epsilon_s |F(T_j - 1)_{x z_j}(v)||F(T_j - 1)^{J' + v}(v^c)^{H + z_j}|/|F(T_j - 1)_{x z_j}(v)|$$

$$= (1 - 2\epsilon_s) \theta_{v^c}(y) - \epsilon_s |F(T_j - 1)^{J' + v}(v^c)^{H + z_j}|.$$

We also have

$$\Sigma \leq \sum_{y \in F_{x z_j}(T_j - 1)(v)} |M_{T, E}(T_j - 1) \cap F(T_j - 1)^{J' + v}(v^c)^{H + z_j}(y^c)|.$$

This counts all pairs $(y, P)$ with $P \in M_{T, E}(T_j - 1) \cap F(T_j - 1)^{J' + v}(v^c)^{H + z_j}$, $y \in F_{x z_j}(T_j - 1)(v)$ and $P y^c \in F(T_j - 1)^{J' + v}(v^c)^{H + z_j}$, so we can rewrite it as

$$\Sigma \leq \sum_{P \in M_{T, E}(T_j - 1) \cap F(T_j - 1)^{J' + v}(v^c)^{H + z_j}} |F(T_j - 1)^{J' + v}(v^c)^{H + z_j}(P)|.$$

For all but at most $\epsilon_s |F(T_j - 1)^{J' + v}(v^c)^{H + z_j}|$ sets $P \in F(T_j - 1)^{J' + v}(v^c)^{H + z_j}$, we have

$$|F(T_j - 1)^{J' + v}(v^c)^{H + z_j}| = (1 \pm \epsilon_s) |F(T_j - 1)^{J' + v}(v^c)^{H + z_j}|/|F(T_j - 1)^{J' + v}(v^c)^{H + z_j}|.$$

(Recall that the ‘double plus’ complex is $\epsilon_{k^3 D,3}$-regular and use Lemma 6.20.) Therefore

$$\Sigma \leq |M_{T, E}(T_j - 1) \cap F(T_j - 1)^{J' + v}(v^c)^{H + z_j}| \cdot (1 + \epsilon_s) |F(T_j - 1)^{J' + v}(v^c)^{H + z_j}|/|F(T_j - 1)^{J' + v}(v^c)^{H + z_j}| + \epsilon_s |F(T_j - 1)^{J' + v}(v^c)^{H + z_j}|.$$
Combining this with the lower bound on Σ we have
\[
(1 - 2\epsilon_s)\theta_{\nu^*}(|D_{z_j,E}(T_j - 1)|/|F(T_j - 1)_{xz_j}(v)| - \epsilon_s)
\leq (1 + \epsilon_s)\frac{|M_{E,E}(T_j - 1) \cap F(T_j - 1)^{J^+v(v^c)_{H^+z_j}}|}{|F(T_j - 1)^{J^+v(v^c)_{H^+z_j}}|}
+ \epsilon_s\frac{|F(T_j - 1)^{J^+v(v^c)_{H^+z_j}}||F(T_j - 1)_{xz_j}(v)|}{|F(T_j - 1)^{J^+v(v^c)_{H^+z_j}}|}.
\]

Since \(z_j \notin E\), Definition 6.8 and equation (+6.28) give \(F(T_j - 1)^{J^+v(v^c)_{H^+z_j}} = F(T_j - 1)^{J^+v(v^c)_{E}} = F(T_j - 1)^{J^+v(v^c)_{\bar{E}}} = F(T_j - 1)^{J^+v(v^c)_{\tilde{E}^*}}\), so
\[
|M_{E,E}(T_j - 1) \cap F(T_j - 1)^{J^+v(v^c)_{H^+z_j}}| < \theta_{\nu^*}|F(T_j - 1)^{J^+v(v^c)_{H^+z_j}}|
\]
by \(A_{2,j-1}\). We also have
\[
\frac{|F(T_j - 1)^{J^+v(v^c)_{H^+z_j}}||F(T_j - 1)_{xz_j}(v)|}{|F(T_j - 1)^{J^+v(v^c)_{H^+z_j}}|} \leq d_n^{-2k} \ll \epsilon_s^{-1},
\]
similarly to Lemma 6.23(v) (the statement is only for \(F(t)\), but the estimate for the densities is valid for any \(\epsilon_k D_3\)-regular complex). Therefore
\[
\frac{|D_{z_j,E}(T_j - 1)|}{|F_{xz_j}(T_j - 1)(v)|} < \frac{(1 + \epsilon_s)\theta_{\nu^*} + \sqrt{\epsilon_s}}{(1 - 2\epsilon_s)\theta_{\nu^*} + \epsilon_s} + \epsilon_s < \theta_{\nu^*}.
\]

The analysis for the conclusion of the algorithm is very similar to that for 3-graphs, with the usual modifications to absolute constants to account for their dependence on \(k\). The only important difference is to take account of restricted positions. Lemma 4.22 (the ‘main lemma’) holds, provided that we assume that the set \(Y\) is disjoint from the set \(X_s\) of vertices with restricted positions. We applied Lemma 4.22 in the proof of Theorem 4.23 to show that it is very unlikely that the iteration phase aborts with failure. This required an estimate for the probability that a given set \(Y \subseteq X_t\) of size \(\delta_Q|X_t|\) is contained in \(Q(T)\) (the vertices that have ever been queued). Since \(|X_s \cap X_t| \leq c|x|\) and \(c \ll \delta_Q\), we can apply the same argument to \(Y \setminus X_s\), which has size at least \(\frac{1}{2}\delta_Q|x|\). The remainder of the proof of Theorem 4.23 is checking Hall’s condition for the sets \(\{A'_z : z \in S\}\), where \(S \subseteq X_t(T) \subseteq B\). No changes are required here, as we chose the buffer \(B\) to be disjoint from \(X_s\). This completes the proof of Theorem 6.12.

### 6.5 Obtaining super-regularity and robust universality

We conclude with some lemmas that will be useful when applying the blow-up lemma. We start with the analogue of Lemma 5.9, showing that one can delete a small number of vertices to enforce super-regularity.
Lemma 6.29. Suppose $0 < \epsilon_0 \ll \epsilon \ll \epsilon' \ll d_a \ll \theta \ll 1/D_R, d, 1/k$, we have a multi-$k$-complex $R$ on $[v]$ with maximum degree at most $D_R$, and $(G, M)$ is an $R$-indexed marked complex on $V = \cup_{i \in R} V_i$ such that when defined $G_S$ is $\epsilon_0$-regular, $|M_S| \leq \theta |G_S|$, $d_S(G) \geq d_a$ when $|S| \geq 2$ and $d_S(G) \geq d$ when $|S| = 1$. Then we can delete at most $2 \theta^{1/3} |G_i|$ vertices from each $G_i$, $i \in R$ to obtain an $(\epsilon, \epsilon', d_a/2, 2\sqrt{\theta}, d/2)$-super-regular marked complex $(G^*, M^*)$.

Proof. The proof is similar to that of Lemma 5.9, so we will just sketch the necessary modifications. Similarly to before, for any $i, S$ such that $i \in S$, $|S| = k$ and $G_S$ is defined we let $Y_{i, S \setminus i}$ be the set of vertices $v \in G_i$ for which $|M_S(v)| > \theta |G_i(v)|$. We also let $Z_{i, S \setminus i}$ be the set of vertices $v \in G_i$ such that we do not have $|G_S(v)| = (1 + \epsilon)|G_i|/|G_i|$. And $G_S^\leq(v)$ is $\epsilon$-regular with $d_{S \setminus i}(G_{S \setminus i}(v)) = (1 + \epsilon)d_{S \setminus i}(G) + d_{S \setminus i}(G)$ for $i \subseteq S' \subseteq S$. As before we have $|Z_{i, S \setminus i}| \leq |G_i|$ and $|Y_{i, S \setminus i}| < 2\sqrt{\theta}$. Next, consider any $k$-tuple $S$ containing at least one neighbour of $i$ in $R$ such that $G_S$ is defined, and any subcomplex $I$ of $S_i^\leq$ such that $G_{S'}$ is defined for all $S' \subseteq I$. We let $Y_{i, S}$ be the set of vertices $v \in G_i$ for which $[(M \cap G_{S'}^i)] \gg \sqrt{\theta} |G_{S'}^i|$. Note that we only need to consider $S$ containing at least one neighbour of $i$ in $R$, we have $G_{S'}^i = G_S$ and $|M_S| \leq \theta |G_S|$ by assumption. We let $Z_{i, S}$ be the union of all $Z_{i, S'}$ with $i \not\in S' \subseteq S$, $|S'| = k - 1$. Recall from Lemma 6.11 that $G_{S'}^i = G_i^{I+}(v^c)$. If $v \not\in Z_{i, S}$ then $G_{S'}^i$ is $\sqrt{\theta}$-regular by regular restriction and $|G_i^{I+}(v^c)| = (1 + \epsilon')|G_{S'}^i|/|G_i|$ by Lemma 6.20. Then $\Sigma = \sum_{v \in Y_{i, S}} [(M \cap G_{S'}^i)] = \sum_{v \in Y_{i, S}} [(M \cap G_{S'}^{I+}(v^c))]$ satisfies

$$\Sigma > \sqrt{\theta} \sum_{v \in Y_{i, S} \setminus Z_{i, S}} [(M \cap G_{S'}^{I+}(v^c))] > \sqrt{\theta} |G_{i,v}| - k\epsilon |G_i|((1 - \epsilon')|G_{S'}^{I+}|/|G_i|).$$

We also have $\Sigma \leq \sum_{v \in G_i} [(M \cap G_{S'}^{I+}(v^c))]$, which counts all pairs $(v, P)$ with $P \subseteq G_M$, $v \in G_i$ and $Pv^c \subseteq G_{S'}^{I+}$. By Lemma 6.20 we have $|G_{S'}^{I+}(v^c)| = (1 + \epsilon')|G_{S'}^{I+}|/|G_i|$ for all but at most $\epsilon'|G_{S'}^{I+}|$ sets $P \subseteq G_{S'}^{I+}$. Since $G_{S'}^{I+} = G_S$ we have

$$\Sigma \leq \sum_{P \subseteq G_M} |G_{S'}^{I+}(v^c)| \leq |G_M|(1 + \epsilon')|G_{S'}^{I+}|/|G_i| + \epsilon'|G_S||G_i|.$$

Combining this with the lower bound on $\Sigma$ and using $|M_S| \leq \theta |G_S|$ we obtain $|Y_{i, S}|/|G_i| < \frac{(1 + \epsilon')|G_{S'}^{I+}|}{(1 - \epsilon')\sqrt{\theta}} + k\epsilon < 2\sqrt{\theta}$. Let $Y_i$ be the union of all such sets $Y_{i, S \setminus i}$ and $Y_{i, S}$. Since $\theta \ll 1/D_R$ we have $|Y_i| < \theta^{1/3} |G_i|$ as in Step 1 of Lemma 5.9. We define $Z_{i, j}$, $Z_i$ and obtain $|Z_i| < \sqrt{\theta} |G_i|$ as in Step 2 of Lemma 5.9. Now we delete $Y_i \cup Z_i$ from $G_i$ for every $i \in R$; as in Step 3 of Lemma 5.9 this gives an $(\epsilon, \epsilon', d_a/2, 2\sqrt{\theta}, d/2)$-super-regular marked complex $(G^*, M^*)$.

The next lemma is analogous to Lemma 5.11; we omit its very similar proof.

Lemma 6.30. (Super-regular restriction) Suppose $0 < \epsilon \ll \epsilon' \ll \epsilon'' \ll d_a \ll \theta \ll d, d', 1/k$, we have a multi-$k$-complex $R$, and $(G, M)$ is a $(\epsilon, \epsilon', d_a, \theta, d)$-super-regular marked $R$-indexed complex on $V = \cup_{i \in R} V_i$ with $G_i = V_i$ for $i \in R$. Suppose also that we have $V'_i \subseteq V_i$ for $i \in R$, write $V' = \cup_{i \in R} V'_i$, $G' = G[V']$, $M' = M[V']$, and that $|V'_i| \geq d'|V_i|$ and $|G_{S'}(v) \cap V'_i| \geq d'|G_S(v)|$ whenever $S \subseteq R$ with $|S| = 2$ lies over $i, j \in R$ and $v \in G_j$. Then $(G', M')$ is $(\epsilon', \epsilon'', d_a/2, \sqrt{\theta}, d/2)$-super-regular.

More generally, the same proof shows that superrregularity is preserved on restriction to a dense regular subcomplex $\Gamma$, provided that the singleton parts of $\Gamma$ have large intersection with every
vertex neighbourhood. More precisely, suppose \((G, M)\) is as in Lemma 6.30 and \(\Gamma\) is an \(\ell\)-regular subcomplex of \(G\) with \(|\Gamma_S| \geq d'|G_S|\) when defined and \(|G_S(v) \cap \Gamma_i| \geq d'|G_S(v)|\) whenever \(S \subseteq R\) with \(|S| = 2\) lies over \(i, j \in R, v \in G_j\) and \(\Gamma_i\) is defined. Then \((G', M')\) is \((\ell', \ell''d_a, \sqrt{\theta}, d\ell')\)-super-regular. Next we will reformulate the blow-up lemma in a more convenient ‘black box’ form. The following definition of robustly universal is more general than that used for 3-graphs, in that it allows for restricted positions.

**Definition 6.31. (Robustly universal)** Suppose \(R\) is a multi-\(k\)-complex \(R\) and \(J\) is an \(R\)-indexed complex on \(Y = \bigcup_{i \in R} Y_i\) with \(J_i = Y_i\) for \(i \in R\). We say that \(J\) is \((\ell^i, c)\)-robustly \(D\)-universal if whenever

1. \(Y'_i \subseteq Y_i\) with \(|Y'_i| \geq c |Y_i|\) such that \(Y' = \bigcup_{i \in R} Y'_i, J' = J(Y')\) satisfy \(|J'_S(v)| \geq \ell^i |J_S(v)|\) whenever \(|S| = k, J_S\) is defined, \(i \in S, v \in J'_i\),
2. \(H'\) is an \(R\)-indexed complex on \(X' = \bigcup_{i \in R} X'_i\) of maximum degree at most \(D\) with \(|X'_i| = |Y'_i|\) for \(i \in R\),
3. \(X_s \subseteq X'\) with \(|X_s \cap X'_i| \leq c |X_i|\) for all \(i \in R\), and \(\Gamma_x \subseteq Y'_x\) with \(|\Gamma_x| \geq \ell^i |Y'_x|\) for \(x \in X_s\),

then there is a bijection \(\phi : X' \to V'\) with \(\phi(X'_i) = V'_i\) for \(i \in R\) such that \(\phi(S) \subseteq J_S\) for \(S \subseteq H'\) and \(\phi(x) \in \Gamma_x\) for \(x \in X_s\).

More generally, one can allow restrictions to regular subcomplexes in both conditions (i) and (iii) of Definition 6.31, but for simplicity we will not formulate the definition here. As before, one can delete a small number of vertices from a regular complex with a small number of marked \(k\)-tuples to obtain a robustly universal complex. As for Theorem 5.13, the proof is immediate from Lemma 6.30, Definition 6.31 and Theorem 6.12.

**Theorem 6.32.** Suppose \(0 < 1/n \ll 1/n_R \ll \epsilon \ll c \ll d^\ell \ll d_a \ll \theta \ll \ell^i, d, 1/k, 1/D_R, 1/D\), we have a multi-\(k\)-complex \(R\) on \([r]\) with maximum degree at most \(D_R\) and \(|R| \leq n_R\), \(G\) is an \(\epsilon\)-regular \(R\)-indexed complex on \(V = \bigcup_{i \in R} V_i\) with \(n \leq |V_i| = |G_i| \leq C n\) for \(i \in R\), \(d_S(G) \geq d_a\) when \(|S| \geq 2\) and \(d_S(G) \geq d\) when \(|S| = k\), and \(M \subseteq G_{\infty}\) with \(|M| \leq \theta |G_S|\) when defined. Then we can delete at most \(2\theta^{1/2} |G_i|\) vertices from \(G_i\) for \(i \in R\) to obtain \(G^2\) and \(M^2\) so that

1. \(d(G^2_S) > d^2\) and \(|G_S^2(v)| > d^2 |G^2_S(v)|/|G^2_i|\) whenever \(|S| = k, G^2_S\) is defined, \(i \in S, v \in G^2_i\), and
2. \(G^2 \setminus M^2\) is \((\ell^i, c)\)-robustly \(D\)-universal.

Finally, we mention that one can allow much smaller densities in the restricted positions, provided that one makes an additional assumption to control the marking edges. We can replace \(\ell^i\) by \(d_a\) in condition (v) of Theorem 6.12, provided that we add the following additional assumptions:

1. \(|M_S(v)| \leq \theta |\Gamma_S(v)|\) when \(|S| = k, \Gamma_S\) is defined, \(i \in S\) and \(v \in \Gamma_i\),
2. \(|(M \cap G[\Gamma_i])_S| \leq \theta |G[\Gamma_i]|_{S}\) for any submulticomplex \(I\) of \(R\), when \(|S| = k, v \in G_i\) and \(S \cap V N_R(i) \neq \emptyset\).
Note that these conditions ensure that the marked edges are controlled in $G[\Gamma]$ exactly as in conditions (ii) and (iii) of super-regularity, so the proof goes through as before. In this general form there is no simplification to be gained by reformulating the statement in a black box form. We suppressed this refined form in the statement of Theorem 6.12 to avoid overburdening the reader with technicalities, but we note that it may be needed in some applications. Indeed, one may well have to generate restricted positions using neighbourhood complexes in $G$, and then $c'$ will be of the order of the densities in $G$.

6.6 Concluding remarks

The theory of regularity and super-regularity for hypergraphs is considerably more involved than that for graphs. As explained in Section 3, these technicalities cannot be avoided, but the black box reformulation in Lemma 6.32 should make the hypergraph blow-up lemma more convenient for future applications. The graph blow-up lemma has had many applications in modern graph theory, so it is natural to look for hypergraph generalisations of these results. However, many such applications build on basic results for graphs for which the hypergraph analogue is unknown. For example, in our application in Section 5 we only needed a matching, and were able to rely on Kahn’s matching theorem, which is already quite a difficult result. Thus one may expect it will take longer for the hypergraph blow-up lemma to achieve its full potential.

Another question for future research is to obtain an algorithmic version of our theorem, along the lines of the algorithmic graph blow-up lemma in [27]. In applications this could be combined with an algorithmic version of hypergraph regularity given by [6]. A rather different direction of research would be along the lines of the ‘infinitary’ versions of hypergraph regularity theory, whether probabilistic [1, 45], analytic [34], model theoretic [7] or algebraic [10, 38]. It is natural to ask whether the blow-up lemma has an interpretation in any of these frameworks.

Further refinements could include estimating the number of embeddings, rather than just proving the existence of a single embedding as in this paper. Here it may be helpful to note that one can combine Lemma 6.28 with martingale estimates to show that with high probability there will be at least $\frac{1}{2}p|B \cap X_v|$ vertices $x \in B \cap X_v$ such that $\phi(H(x)) \subseteq (G \setminus M)(v)$. We also note that small improvements to the tail decay of our martingales may be obtained from the Optional Sampling Theorem (see e.g. [14] p. 462). One could also try to obtain (nearly) perfect edge-decompositions of super-regular complexes into copies of a given bounded degree hypergraph. For example, one could ask for hypergraph generalisations of a result of Frieze and Krivelevich [11] that one can cover almost all edges of an $\epsilon$-regular graph by edge-disjoint Hamilton cycles.\footnote{Note added during revisions: Frieze and Krivelevich now have a preprint on this topic.}

Acknowledgements. I thank Daniela Kühn, Deryk Osthus, Richard Mycroft and Mathias Schacht for drawing my attention to a significant oversight in an earlier version of this paper. That version contained a weaker version of the blow-up lemma, which assumed a dense environment that cannot be guaranteed in many applications. In particular it was not adequate for the application that I give in this paper. I also thank the anonymous referees, Daniela Kühn, Deryk Osthus and Richard Mycroft for carefully reading and commenting extensively on various versions of this paper, and Mathias Schacht for explaining [41, 42] to me.
References


Index of notation and terminology

(·), see neighbourhood, see $F_S(t)$

($·$), 74
($·$)$^c$, 74
$A'_x$, 22
$A^x$, 11
$A_x$, 22, 39
$A_{i,j}$, 39, 46
$B$, 5
$B_{j,A}$, 67
$B_{z,j}$, 41, 46
$C_{S,i}$, 68
$C_{S}$, 74
$D_{W_z,j}$, $E(T_{j-1})$, 39
$D_{z_j}$, 41, 46
$D_{x,E}(t-1)$, 22
$E$, 3
$E_{W}(T_{j-1})$, 39
$E^t$, 17, 73
$E_{z_j}(T_{j-1})$, 45
$E_{x}(t-1)$, 21, 29
$F$, 32
$F(T_{j})_{S^2}$, 45
$F(t)_S$, 74
$F^{t+x}$, 75
$F_I$, 74
$F_S(t)$, 14, 73, 74
$F_{S}(t-1)y$, 14
$F_{x}(t)$, 5
$F_{S,<}(t)$, 16
$F_{S,z}(t)$, 14, 73
$F_{S,x}(t-1)(y)$, 14
$G$, 4, 73
$G^*$, 23, 73
$G[P]$, 60
$G^0$, 62
$G_{i}^k$, 17, 73
$G_{=}$, 18, 74
$G_I$, 62

$H$, 4, 73
$H'$, 45
$H(S)$, 3
$H[·]$, 13
$H^x$, 3
$H_I$, 11
$H^t_I$, 13
$H_S$, 11
$H_{I<}$, 11
$H_{I<}$, 11
$I$, 46
$I'$, 46
$J(t)$, 20
$K(S')$, 67
$K(·)$, 11
$K_{r,s}$, 58
$L(t)$, 5
$M$, 12, 62, 73
$M_{E^t,E}(t)$, 17, 73
$N$, 5, 67
$OK$, 6, 35, 40, 46, 78, 86
$P$, 60
$P_A^*$, 61
$P_A$, 60
$Q(t)$, 5
$R$, 67, 73
$R'$, 67
$S_{x}$, 14
$S_I$, 15
$T$, 6, 22
$T_0$, 8, 38
$T_I$, 36
$T_j$, 8, 38
$T_{123}(G)$, 3
$U(x)$, 22
$V$, 4, 73
$V(H)$, 3
$V(t)$, 5
$V_{N_H}(x)$, 3
$V_i(t)$, 5
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_x$</td>
<td>5</td>
</tr>
<tr>
<td>$W$</td>
<td>39, 86</td>
</tr>
<tr>
<td>$X$</td>
<td>4, 73</td>
</tr>
<tr>
<td>$X'$</td>
<td>78</td>
</tr>
<tr>
<td>$X(t)$</td>
<td>5</td>
</tr>
<tr>
<td>$X_s$</td>
<td>77</td>
</tr>
<tr>
<td>$X_i(t)$</td>
<td>5</td>
</tr>
<tr>
<td>$Y$</td>
<td>45</td>
</tr>
<tr>
<td>$Z$</td>
<td>45, 46, 67</td>
</tr>
<tr>
<td>$Z'$</td>
<td>46, 67</td>
</tr>
<tr>
<td>$Z_{i,A}$</td>
<td>67</td>
</tr>
<tr>
<td>$[W_j]$</td>
<td>67</td>
</tr>
<tr>
<td>$[n]$</td>
<td>2</td>
</tr>
<tr>
<td>$\Delta$</td>
<td>61</td>
</tr>
<tr>
<td>$\Gamma$</td>
<td>77, 93, 94</td>
</tr>
<tr>
<td>$\Lambda_j(t)$</td>
<td>36</td>
</tr>
<tr>
<td>$\Phi(Y, V)$</td>
<td>61</td>
</tr>
<tr>
<td>$\Pi_{i,j}(t)$</td>
<td>37</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>67</td>
</tr>
<tr>
<td>$\alpha_S$</td>
<td>88</td>
</tr>
<tr>
<td>$\alpha_z$</td>
<td>45</td>
</tr>
<tr>
<td>$\beta$</td>
<td>67</td>
</tr>
<tr>
<td>$\bigodot$</td>
<td>23</td>
</tr>
<tr>
<td>$(X^X)$</td>
<td>2</td>
</tr>
<tr>
<td>$(X^X)_k$</td>
<td>2</td>
</tr>
<tr>
<td>$(X^X)_k'$</td>
<td>2</td>
</tr>
<tr>
<td>$\delta$</td>
<td>67</td>
</tr>
<tr>
<td>$\delta_Q'$</td>
<td>5</td>
</tr>
<tr>
<td>$\delta_B$</td>
<td>5</td>
</tr>
<tr>
<td>$\delta_Q$</td>
<td>5</td>
</tr>
<tr>
<td>$\epsilon$-regular</td>
<td>see regular</td>
</tr>
<tr>
<td>$\gamma$</td>
<td>5, 67</td>
</tr>
<tr>
<td>$\varepsilon$</td>
<td>71</td>
</tr>
<tr>
<td>$\varepsilon^*$</td>
<td>23</td>
</tr>
<tr>
<td>$\leq$</td>
<td>60, 72</td>
</tr>
<tr>
<td>$\ll$</td>
<td>3</td>
</tr>
<tr>
<td>$\text{co}(t)$</td>
<td>66</td>
</tr>
<tr>
<td>$\nu$</td>
<td>32, 41, 45</td>
</tr>
<tr>
<td>$\nu$-close</td>
<td>see close</td>
</tr>
<tr>
<td>$\nu_S^*$</td>
<td>48</td>
</tr>
<tr>
<td>$\nu_S^{\nu}(t)$</td>
<td>45</td>
</tr>
<tr>
<td>$\nu_S^*(t)$</td>
<td>21, 78</td>
</tr>
<tr>
<td>$\nu^*$</td>
<td>32, 45</td>
</tr>
<tr>
<td>$\nu_{S,48}$</td>
<td></td>
</tr>
<tr>
<td>$\nu_S(t)$</td>
<td>21, 78</td>
</tr>
<tr>
<td>$\nu_x(t)$</td>
<td>21, 78</td>
</tr>
<tr>
<td>$\mathcal{E}$</td>
<td>41, 45</td>
</tr>
<tr>
<td>$\phi$</td>
<td>5, 20, 73</td>
</tr>
<tr>
<td>$\setminus y$</td>
<td>15</td>
</tr>
<tr>
<td>$\subseteq$</td>
<td>71</td>
</tr>
<tr>
<td>$a \pm b$</td>
<td>2</td>
</tr>
<tr>
<td>$a$</td>
<td>62</td>
</tr>
<tr>
<td>$a$-bounded</td>
<td>see bounded</td>
</tr>
<tr>
<td>$a_1$</td>
<td>67</td>
</tr>
<tr>
<td>$c$</td>
<td>78</td>
</tr>
<tr>
<td>$c'$</td>
<td>78</td>
</tr>
<tr>
<td>$c^*$</td>
<td>65</td>
</tr>
<tr>
<td>$d_w'(j)$</td>
<td>67</td>
</tr>
<tr>
<td>$d(H_1)$</td>
<td>13</td>
</tr>
<tr>
<td>$d^\nu$</td>
<td>65</td>
</tr>
<tr>
<td>$d_I(H)$</td>
<td>13</td>
</tr>
<tr>
<td>$d_J(G)$</td>
<td>62</td>
</tr>
<tr>
<td>$d_u$</td>
<td>5</td>
</tr>
<tr>
<td>$d_w(j)$</td>
<td>67</td>
</tr>
<tr>
<td>$d_{ij}$</td>
<td>6</td>
</tr>
<tr>
<td>$g$</td>
<td>8, 38</td>
</tr>
<tr>
<td>$i(S)$</td>
<td>11</td>
</tr>
<tr>
<td>$i^*(S)$</td>
<td>71</td>
</tr>
<tr>
<td>$j(t)$</td>
<td>20</td>
</tr>
<tr>
<td>$n_1$</td>
<td>67</td>
</tr>
<tr>
<td>$n_R$</td>
<td>78</td>
</tr>
<tr>
<td>$p$</td>
<td>5</td>
</tr>
<tr>
<td>$p_0$</td>
<td>5</td>
</tr>
<tr>
<td>$q(t)$</td>
<td>5</td>
</tr>
<tr>
<td>$r$-partite</td>
<td>see partite</td>
</tr>
<tr>
<td>$s(t)$</td>
<td>5</td>
</tr>
<tr>
<td>$t$</td>
<td>14</td>
</tr>
<tr>
<td>$t'(S)$</td>
<td>66</td>
</tr>
<tr>
<td>$t(H)$</td>
<td>66</td>
</tr>
<tr>
<td>$t_N$</td>
<td>22</td>
</tr>
<tr>
<td>$u$</td>
<td>35</td>
</tr>
<tr>
<td>$w(S)$</td>
<td>67</td>
</tr>
<tr>
<td>$x$</td>
<td>14, 35</td>
</tr>
<tr>
<td>$y$</td>
<td>14, 39</td>
</tr>
<tr>
<td>$z_j$</td>
<td>8, 38</td>
</tr>
</tbody>
</table>

* see $H^*_t$, $\varepsilon^*$, $G \ast G'$, $\bigodot$, $F(T_j)^{S_{\leq}}$, $i^*(S)$, $P^*_A$
3-complex, 11
3-graph blowup lemma, 19

absolute density, 13, see density
allocated, 45
annotated $\epsilon$, 20
annotated $\theta$, 20
available, 22, 35, 39
average, 29
Azuma, 66

black box, 65, 94
bounded, 61
buffer, 5
buffer parameter, 5
cell, 60
cell complex, 60
Chernoff, 59
close, 61
cluster, 58, 67
complete, 11
complex-coloured, 74
complex-indexed, 70
composition, 23, 73
concatenation, 11
conclusion, 55
consistent, 60, 72
copy, 71, 75
dangerous, 22, 39, 45
defined, 11
degree, 3, 77
dense counting lemma, 62, 80
dense setting, 12
density, 3, 10, 13, 73
degree, 3, 77
dense counting lemma, 62, 80
dense setting, 12
density, 3, 10, 13, 73
edge set, 3
empty complex, 13, 15
equitable, 61
exceptional, 21, 29, 39, 45, 78, 82
fractional matching, 66
free, 4, 5, 14, 73
good, 6–8, 22, 29, 78, 86
good, 6–8, 22, 29, 78, 86

3-complex, 11
3-graph blowup lemma, 19

absolute density, 13, see density
allocated, 45
annotated $\epsilon$, 20
annotated $\theta$, 20
available, 22, 35, 39
average, 29
Azuma, 66

black box, 65, 94
bounded, 61
buffer, 5
buffer parameter, 5
cell, 60
cell complex, 60
Chernoff, 59
close, 61
cluster, 58, 67
complete, 11
complex-coloured, 74
complex-indexed, 70
composition, 23, 73
concatenation, 11
conclusion, 55
consistent, 60, 72
copy, 71, 75
dangerous, 22, 39, 45
defined, 11
degree, 3, 77
dense counting lemma, 62, 80
dense setting, 12
density, 3, 10, 13, 73
degree, 3, 77
dense counting lemma, 62, 80
dense setting, 12
density, 3, 10, 13, 73
edge set, 3
empty complex, 13, 15
equitable, 61
exceptional, 21, 29, 39, 45, 78, 82
fractional matching, 66
free, 4, 5, 14, 73
good, 6–8, 22, 29, 78, 86

$H$-coloured, see complex-coloured
heavy, 60, 69
homomorphism, 62
hypergraph blow-up lemma, 77
$I$-density, 13, see relative density
index, 11
initial phase, 8, 35, 86
intersection, 11
jump, 20
$k$-complex, 3
$k$-graph, 3
lies under, 60
list, 5
local, 16, 73, 86
locally consistent, 14, 16, 73
main lemma, 9, 55
marked, 17, 73, 84
marked complex, 12
martingale, 66
matching, 58, 66
multi-$k$-complex, 71
multi-index, 71
multicomplex, 71
mutually consistent, 14, 73
neighbourhood, 3
packing, 57, 66
pair neighbourhoods, 26
partite, 11
partite homomorphism density, 62
partition $k$-complex, 60
partition $k$-system, 60
plus complex, 75, 83
queue, 5
queue admission parameter, 5
queue threshold, 5
$R$-indexed, see complexed-indexed

101
reduced 3-graph, 67
reduced graph, 58
regime, 22
regular, 3, 12, 61, 73
regular approximation lemma, 61
regular restriction, 7, 27, 81
relative density, 13, 73
restricted positions, 70, 77, 82, 86
restriction, 13, 73, 74
robustly universal, 65, 94

selection rule, 21
separate, 23
set neighbourhoods, 81
simplicial complex, 3
spanning, 4, 77
sparse setting, 12
sphere of influence, 45
strongly equivalent, 60
super-regular, 4, 18, 74
super-regular restriction, 64, 93
supermartingale, 36

triad, 61, 68
triangles, 3
typical degrees, 6

undefined, 11
unembedded, 21
union, 11
update rule, 14, 73

vertex neighbourhood, 3, 25, 80
vertex regular, 11
vertex set, 3

walk, 3
weakly equivalent, 61, 68
weight, 67
weighted degree, 67
with high probability, 3