
Two conjectures

Rechnitzer

Outline

First lesson

Permutations

2 Conjectures

Surely false?

Disproofs

What now?

The End

Disproving things is easier when

you know they are false
Experimenting with two conjectures
on pattern-avoiding permutations

Andrew Rechnitzer

Department of Mathematics and Statistics
The University of Melbourne

and
MASCOS

11-11-2005



Two conjectures

Rechnitzer

Outline

First lesson

Permutations

2 Conjectures

Surely false?

Disproofs

What now?

The End

Work with. . .

My collaborators in this work are

Murray Elder — University of St Andrews, Scotland.

Mike Zabrocki — York University, Canada.

Paul Westcott — some badly run bank in Melbourne.

Michael Albert — University of Otago, New Zealand.



Two conjectures

Rechnitzer

Outline

First lesson

Permutations

2 Conjectures

Surely false?

Disproofs

What now?

The End

Outline

1 My first lesson from my supervisor
Lesson context

2 Pattern-avoiding permutations
Some definitions
The core problem

3 Two conjectures
Growth constants
Nature of the generating function

4 Why I think they are false
Numerics
Symbolics?

5 Disproving things
Disproving one conjecture
Towards a disproof of the other conjecture

6 What now?
FlatPERM

7 The End



Two conjectures

Rechnitzer

Outline

First lesson

Lesson context

Permutations

2 Conjectures

Surely false?

Disproofs

What now?

The End

My first lesson from supervisor

I learnt lots of maths from my PhD supervisors.

The first lesson sticks in my mind.



Two conjectures

Rechnitzer

Outline

First lesson

Lesson context

Permutations

2 Conjectures

Surely false?

Disproofs

What now?

The End

My first lesson from supervisor

I learnt lots of maths from my PhD supervisors.

The first lesson sticks in my mind.

“It is always easier to prove something when you

know it is true.”



Two conjectures

Rechnitzer

Outline

First lesson

Lesson context

Permutations

2 Conjectures

Surely false?

Disproofs

What now?

The End

My first lesson from supervisor

I learnt lots of maths from my PhD supervisors.

The first lesson sticks in my mind.

“It is always easier to prove something when you

know it is true.”

I have used this a lot — Maple, GFUN, etc.

Recently I needed to tweak this idea:



Two conjectures

Rechnitzer

Outline

First lesson

Lesson context

Permutations

2 Conjectures

Surely false?

Disproofs

What now?

The End

My first lesson from supervisor

I learnt lots of maths from my PhD supervisors.

The first lesson sticks in my mind.

“It is always easier to prove something when you

know it is true.”

I have used this a lot — Maple, GFUN, etc.

Recently I needed to tweak this idea:

It is always easier to disprove something when you

know it is false.
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Lesson context

I usually work on

Lattice models of polymers

Self-avoiding walks and related objects

Related and more easily solved models

nn-interaction

force

adsorbed monomer
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The sorts of results I have looked for

Results

Find generating functions.

If cn is the number of objects of size n, the generating function is

f (z) =
∑

n≥0

cnz
n

Guess using Maple etc. . .
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The sorts of results I have looked for

Results

Find generating functions.

Find growth constants and free energies

If cn is the number of objects of size n, the growth constant is

µ = lim
n→∞

c1/n

n

Guess using numerics or simulations
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The sorts of results I have looked for

Results

Find generating functions.

Find growth constants and free energies

Some physics and scaling.

How does the system behave? Are there phase transitions?
Study the g.f. or use numerics and simulations.
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Lesson context

The sorts of results I have looked for

Results

Find generating functions.

Find growth constants and free energies

Some physics and scaling.

What type of solutions do unsolved problems have?

Is there a polynomial time algorithm to find cn?
Is the g.f. rational, algebraic or D-finite?
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Lesson context

The sorts of results I have looked for

Results

Find generating functions.

Find growth constants and free energies

Some physics and scaling.

What type of solutions do unsolved problems have?

Almost all my work has been on lattice.
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A recent diversion into permutations

In 2004 I visited Murray Elder in St-Andrews.

He introduced me to some data-sorting problems.

Similar objects turn up in algebraic combinatorics.

Pattern-avoiding permutations
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Some definitions

What is a pattern?

How do we know if a permutation avoids it?
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A pattern of length k is a permutation of {1, 2, . . . , k}.
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A pattern of length k is a permutation of {1, 2, . . . , k}.

Pattern containment

A permutation σ of length n contains the pattern τ of length k if we
can delete all but k elements of σ and reduce it to get τ .
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Some definitions

A pattern

A pattern of length k is a permutation of {1, 2, . . . , k}.

Pattern containment

A permutation σ of length n contains the pattern τ of length k if we
can delete all but k elements of σ and reduce it to get τ .

Reducing a vector

A vector v is reduced by replacing

its smallest element with 1,

its second smallest with 2,

and so on.
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Examples

The permutation 712483569 contains the pattern 1324

The permutation contains the subsequence 2839

This reduces to 1324

The permutation 769384521 avoids 1324

It contains no subsequence that reduces to 1324.

Checking by hand is laborious.

The computer does a good job!
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The core problem

The generating function

Let Sn(τ) be # permutations of length n that avoid τ .

Let Pτ (z) be the generating function
∑

n≥0

Sn(τ)zn.

Core problem = find either of these for a given τ .

We would be happy with

closed expression for the coefficients

formula for the generating function

a recurrence

asymptotics

growth constant
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τ = 12 . . . k — Gessel.
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Very few results

(Un)fortunately the problem seems to be very hard.

There are results for a small set of patterns.

Which patterns are known?

τ = any pattern of length ≤ 3 — find the Catalan numbers!

τ = most patterns of length 4 — Gessel, Stankova, Bóna.

τ = 12 . . . k — Gessel.

and a few more.

But not 1324 and 4231.

Very difficult since pattern avoidance is a non-local condition.

There are some conjectures. . .
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For a pattern τ the growth constant is

µ(τ) = lim
n→∞

Sn(τ)1/n

The growth constant known for very small set of τ .

Stanley-Wilf Conjecture

For any given τ , the growth constant exists.
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Growth constants

Growth constant

For a pattern τ the growth constant is

µ(τ) = lim
n→∞

Sn(τ)1/n

The growth constant known for very small set of τ .

Stanley-Wilf Conjecture X

For any given τ , the growth constant exists.

Only very recently proved — Marcos and Tardos.
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Another conjecture

Arratia-Bóna Conjecture

Let τ be a permutation of length k , then

µ(τ) ≤ (k − 1)2.
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Arratia-Bóna Conjecture
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No one had done (serious) numerics!
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Another conjecture

Arratia-Bóna Conjecture

Let τ be a permutation of length k , then

µ(τ) ≤ (k − 1)2.

Based on small number of known µ(τ)

No one had done (serious) numerics!

Getting series data is hard — µ is big!
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Nature of the generating function

Differentiably finite

A power series f (z) is differentiably finite if

it satisfies a DE of the form

qd(z)f (d)(z) + · · · + q1(z)f ′(z) + q0(z)f (z) = 0

the qi are polynomials in z .
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the qi are polynomials in z .

Most common functions in mathematics & physics are D-finite.
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Differentiably finite

A power series f (z) is differentiably finite if

it satisfies a DE of the form

qd(z)f (d)(z) + · · · + q1(z)f ′(z) + q0(z)f (z) = 0

the qi are polynomials in z .

Most common functions in mathematics & physics are D-finite.

Many solved combinatorial models have D-finite solutions.
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Nature of the generating function

Differentiably finite

A power series f (z) is differentiably finite if

it satisfies a DE of the form

qd(z)f (d)(z) + · · · + q1(z)f ′(z) + q0(z)f (z) = 0

the qi are polynomials in z .

Most common functions in mathematics & physics are D-finite.

Many solved combinatorial models have D-finite solutions.

Many unsolved ones probably do not!
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Yet another conjecture

Zeilberger-Noonan Conjecture

For a given τ , the generating function

Pτ (z) =
∑

n≥0

Sn(τ)zn

is a differentiably finite power series.



Two conjectures

Rechnitzer

Outline

First lesson

Permutations

2 Conjectures

Growth

Nature

Surely false?

Disproofs

What now?

The End

Yet another conjecture

Zeilberger-Noonan Conjecture

For a given τ , the generating function

Pτ (z) =
∑

n≥0

Sn(τ)zn

is a differentiably finite power series.

Based on small number of known gf

Not all of these gf are algebraic — Gessel, Bousquet-Mélou.

Getting series data for GFUN is hard.
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Write some code and generate some numbers.

Second thing to do

Play with the numbers
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The first thing I do with a new problem. . .

First thing to do

Write some code and generate some numbers.

Second thing to do

Play with the numbers

First unsolved pattern is 1324 (≡ 4231).

Brute-force enumeration is slow — µ ≤ 9? (by conjecture)

Marinov and Radoičić found a much faster way.

Unfortunately it is still exponential time.
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Plot the enumeration data

Get numbers from Sloan and play with them:

1/
√

n

 2

 4

 6

 8

 10

 12

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Sn+1

Sn
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Plot the enumeration data

Get numbers from Sloan and play with them:

1/
√

n

 2

 4

 6

 8

 10

 12

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

Sn+1

Sn

Ratio should → µ and its going way past 9.

The conjecture looks pretty shaky!
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Lower bound for µ by counting large subsets

The growth constant of a large subset =⇒ lower bound on µ.

Restrict permutation statistics

number of descents

number of valleys

or some other statistic?

or perhaps

Restricted growth by insertion

Grow 23154 by 1 → ◦1
Restrict insertions to first few positions.
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Lower bound for µ by counting large subsets

The growth constant of a large subset =⇒ lower bound on µ.

Restrict permutation statistics

number of descents

number of valleys

or some other statistic?

or perhaps

Restricted growth by insertion

Grow 23154 by 1 → 21

Restrict insertions to first few positions.
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Lower bound for µ by counting large subsets

The growth constant of a large subset =⇒ lower bound on µ.

Restrict permutation statistics

number of descents

number of valleys

or some other statistic?

or perhaps

Restricted growth by insertion

Grow 23154 by 1 → 21 → 2 ◦ 1

Restrict insertions to first few positions.
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Lower bound for µ by counting large subsets

The growth constant of a large subset =⇒ lower bound on µ.

Restrict permutation statistics

number of descents

number of valleys

or some other statistic?

or perhaps

Restricted growth by insertion

Grow 23154 by 1 → 21 → 231

Restrict insertions to first few positions.
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Lower bound for µ by counting large subsets

The growth constant of a large subset =⇒ lower bound on µ.

Restrict permutation statistics

number of descents

number of valleys

or some other statistic?

or perhaps

Restricted growth by insertion

Grow 23154 by 1 → 21 → 231 → 231◦
Restrict insertions to first few positions.
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Lower bound for µ by counting large subsets

The growth constant of a large subset =⇒ lower bound on µ.

Restrict permutation statistics

number of descents

number of valleys

or some other statistic?

or perhaps

Restricted growth by insertion

Grow 23154 by 1 → 21 → 231 → 2314

Restrict insertions to first few positions.
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Lower bound for µ by counting large subsets

The growth constant of a large subset =⇒ lower bound on µ.

Restrict permutation statistics

number of descents

number of valleys

or some other statistic?

or perhaps

Restricted growth by insertion

Grow 23154 by 1 → 21 → 231 → 2314 → 231 ◦ 4

Restrict insertions to first few positions.
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Lower bound for µ by counting large subsets

The growth constant of a large subset =⇒ lower bound on µ.

Restrict permutation statistics

number of descents

number of valleys

or some other statistic?

or perhaps

Restricted growth by insertion

Grow 23154 by 1 → 21 → 231 → 2314 → 23154

Restrict insertions to first few positions.
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With this idea, Murray Mike and I generated some series. . .
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Praying at the temple of Maple
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Praying at the temple of Maple

With this idea, Murray Mike and I generated some series. . .

1324-avoiders with ≤ k descents

simple rational function

denominator is a power of (1 − z)

1324-avoiders with ≤ k valleys

simple rational function

denominator is product of (1 − 2z) and (1 − 3z)

Mike, Murray and I proved the rational form.

Can do similarly for any given pattern.

More general result — Albert, Atkinson & Ruškuc.
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With this idea, Murray Mike and I generated some series. . .

1324-avoiders with ≤ k descents

simple rational function

denominator is a power of (1 − z)

1324-avoiders with ≤ k valleys

simple rational function

denominator is product of (1 − 2z) and (1 − 3z)

Not good bounds — µ ≥ 3.

Try restricted growth instead.

Cannot use the Guttmann-Enting solvability test?
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Guttmann-Enting solvability test

Rewrite the gf as

F (z , t) =
∑

k≥0

Hk(z)tk

and look at Hk(z).

Guttmann + Enting observed

The Hk(z) are usually rational.

Solved models =⇒ the Hk have a small number of poles.

Unsolved models =⇒ the Hk have more and more poles.

This can be made more rigorous

Bousquet-Mélou

Let S be the set of singularities of the Hk .

If S is dense then F (z , t) is not D-finite.
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Work and think harder — 4k states.

Dominant eigenvalue gives lower bound for µ.
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Arratia-Bóna conjecture for 1324-avoiders

Count big subsets by restricting growth

Insert only in first k positions

Checking for pattern
— only the first k entries of the permutation are important.

Hence finite-state automata with k! states.

Work and think harder — 4k states.

Dominant eigenvalue gives lower bound for µ.

Need 2 tricks for efficient memory use:

combinatorial trick for simple description of the automata states.

a real c++ programmer — Paul Westcott.
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Memory growth is 4k .

We used 16Gb (credit to Tony Guttmann).

Got µ > 8.7.
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So close. . . We have a disproof!

Very memory hungry

Memory growth is 4k .

We used 16Gb (credit to Tony Guttmann).

Got µ > 8.7.

But all was not lost. . .

Less memory hungry

Michael Albert had a different growth method.

Restrict the number of “slots”.

Memory growth rate is (1 +
√

2)k

Gives µ(1324) = µ(4231) > 9.45.

Arratia owes us US$100!
Albert, Elder, Rechnitzer, Westcott & Zabrocki — $20 each.
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Back to praying — the temple of Sloan.

Look in more detail at 1324-avoiders with k descents

The denominator connection

The generating function is

Gk(z) =
some polynomial

(1 − z)dk

The first few dk are 1, 4, 8, 12, 17, 22, 27, . . .

Sloan — these are Davenport-Schinzel numbers

DS numbers grow superlinearly.

Superlinear denominator growth =⇒ not D-finite.

A way of attacking the Zeilberger-Noonan conjecture!
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Davenport-Schinzel sequences

DS sequences

A word on s symbols is a Davenport-Schinzel sequence if

No adjacencies: wi 6= wi+1.

No alternating subsequences: ababa.

The sth DS number is the max length of such a sequence.
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DS sequences

A word on s symbols is a Davenport-Schinzel sequence if

No adjacencies: wi 6= wi+1.

No alternating subsequences: ababa.

The sth DS number is the max length of such a sequence.

s = 1 a 1
s = 2 a, b, a, b 4
s = 3 a, b, a, c, a, c, b, c 8
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Davenport-Schinzel sequences

DS sequences

A word on s symbols is a Davenport-Schinzel sequence if

No adjacencies: wi 6= wi+1.

No alternating subsequences: ababa.

The sth DS number is the max length of such a sequence.

s = 1 a 1
s = 2 a, b, a, b 4
s = 3 a, b, a, c, a, c, b, c 8

Faster than linear

The maximum length of a DS sequence on s symbols is

O(sα(s)) where α = inverse Ackermann.

Faster than linear (but only just).
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Linking 1324-avoiders to Davenport-Schnizel

Simplifying things

Look at Gk

(

z

1 + z

)

— simple positive polynomial.

Counts “squashed” 1324-avoiders with k descents.
“squashed” means σi+1 6= σi + 1.

Degree of polynomial = max length = dk .
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Linking 1324-avoiders to Davenport-Schnizel

Simplifying things

Look at Gk

(

z

1 + z

)

— simple positive polynomial.

Counts “squashed” 1324-avoiders with k descents.
“squashed” means σi+1 6= σi + 1.

Degree of polynomial = max length = dk .

There is then a simple mapping:

squashed 1324-avoiders 7→ a subset of DS-sequences

Since it is a subset we do not have superlinearity yet!
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Where we are at

∃ constructive proof of the superlinear growth of DS sequences.

Trying to alter this proof for 1324-avoiders.

This would show that the 2-variable g.f. is not D-finite.

Unfortunately does not disprove the Zeilberger-Noonan
conjecture for the 1-variable g.f.

But does make it less likely.

In fact, Zeilberger no longer believes his conjecture.
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Trying hard to prove

Elder-Rechnitzer-Zabrocki Conjecture

For 1324-avoiders, the two variable generating function

F (z , t) =
∑

k≥0

Gk(z)tk

is not a D-finite power series.
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Where we are going. . .

Trying hard to prove

Elder-Rechnitzer-Zabrocki Conjecture

For 1324-avoiders, the two variable generating function

F (z , t) =
∑

k≥0

Gk(z)tk

is not a D-finite power series.

Done some preliminary work on

Growth constant classification

Use FlatPERM to do approximate enumeration.

Estimate µ(τ) for different τ .

What makes a pattern hard to avoid?
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Approximate enumeration

Since we cannot find µ exactly we would like to estimate it.

Normally one would generate series and use numerical methods.

Series generation is exponential time and µ is big.

Approximate enumeration

Instead of computing Sn(τ) exactly we compute it approximately.

The algorithm we use is based on the Rosenbluth2 method.

It is called FlatPERM — a major developer is Thomas Prellberg.
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Permutations can be constructed recursively.

Each permutation of size n is built from a permutation of size
n − 1 by insertion.

This gives a directed tree structure on the set of permutations.
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Permutations can be constructed recursively.

Each permutation of size n is built from a permutation of size
n − 1 by insertion.

This gives a directed tree structure on the set of permutations.

312213231321
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If we are looking at 123-avoiders.
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Repeat until desired depth reached or no children.
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Rosenbluth sampling

Random path on the tree

Start at the root.

Choose a child of current node uniformly at random.

Move to child node.

Repeat until desired depth reached or no children.

The nodes at a given depth are not chosen with uniform
probability.

But this allows us to estimate the # nodes at a given depth.
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Weights

Atmosphere and weight

Let a(node) = its number of children.

w(node) =

{

1 node = root
a(parent)w(parent) otherwise

This then gives

Pr(node) = 1/w(node)

and
〈w(node)〉 = #nodes
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Problems with this

This works very well when the tree is quite uniform.

Otherwise the weights can be vastly different.

The mean weight can take a long time to converge.
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Problems with this

This works very well when the tree is quite uniform.

Otherwise the weights can be vastly different.

The mean weight can take a long time to converge.

Need “tricks” to combat weight fluctuations.

Efficient implementation of these tricks is difficult.

RR =⇒ PERM =⇒ FlatPERM
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Gives µ(1324) ≈ 10.3(2).
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Thanks for listening

Questions?
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