Disproving things is easier when you know they are false
 Experimenting with two conjectures on pattern-avoiding permutations

Andrew Rechnitzer
Department of Mathematics and Statistics
The University of Melbourne and
MASCOS

11-11-2005

My collaborators in this work are

- Murray Elder — University of St Andrews, Scotland.
- Mike Zabrocki - York University, Canada.
- Paul Westcott - some badly run bank in Melbourne.
- Michael Albert - University of Otago, New Zealand.
(1) My first lesson from my supervisor
- Lesson context
(2) Pattern-avoiding permutations
- Some definitions
- The core problem
(3) Two conjectures
- Growth constants
- Nature of the generating function
(4) Why I think they are false
- Numerics
- Symbolics?
(5) Disproving things
- Disproving one conjecture
- Towards a disproof of the other conjecture
(6) What now?
- FlatPERM
(7) The End
- I learnt lots of maths from my PhD supervisors.
- The first lesson sticks in my mind.

My first lesson from supervisor

Outline

- I learnt lots of maths from my PhD supervisors.
- The first lesson sticks in my mind.
"It is always easier to prove something when you know it is true."

My first lesson from supervisor

- I learnt lots of maths from my PhD supervisors.
- The first lesson sticks in my mind.

> "It is always easier to prove something when you know it is true."

- I have used this a lot - Maple, GFUN, etc.
- Recently I needed to tweak this idea:

My first lesson from supervisor

- I learnt lots of maths from my PhD supervisors.
- The first lesson sticks in my mind.
"It is always easier to prove something when you know it is true."
- I have used this a lot - Maple, GFUN, etc.
- Recently I needed to tweak this idea:

It is always easier to disprove something when you know it is false.

Outline
First lesson
Lesson context
Permutations
2 Conjectures
Surely false?
Disproofs
What now?
The End

- I usually work on

Lattice models of polymers

Lesson context

- I usually work on

Lattice models of polymers

- Self-avoiding walks and related objects
- Related and more easily solved models

The sorts of results I have looked for

2 Conjectures
Surely false?
Disproofs
What now?
The End

Results

Lesson context

The sorts of results I have looked for

Results

- Find generating functions.

If c_{n} is the number of objects of size n, the generating function is

$$
f(z)=\sum_{n \geq 0} c_{n} z^{n}
$$

Guess using Maple etc. . .

Lesson context

The sorts of results I have looked for

Results

- Find generating functions.
- Find growth constants and free energies

Lesson context

The sorts of results I have looked for

Results

- Find generating functions.
- Find growth constants and free energies
- Some physics and scaling.

How does the system behave? Are there phase transitions?
Study the g.f. or use numerics and simulations.

Lesson context

The sorts of results I have looked for

Results

- Find generating functions.
- Find growth constants and free energies
- Some physics and scaling.
- What type of solutions do unsolved problems have?

Is there a polynomial time algorithm to find c_{n} ?
Is the g.f. rational, algebraic or D-finite?

Lesson context

The sorts of results I have looked for

Results

- Find generating functions.
- Find growth constants and free energies
- Some physics and scaling.
- What type of solutions do unsolved problems have?
- Almost all my work has been on lattice.
- In 2004 I visited Murray Elder in St-Andrews.
- He introduced me to some data-sorting problems.
- Similar objects turn up in algebraic combinatorics.

Pattern-avoiding permutations

Some definitions

Rechnitzer

Outline

First lesson
Permutations
Some definitions Core problem

2 Conjectures
Surely false?
Disproofs
What now?
The End

- What is a pattern?
- How do we know if a permutation avoids it?

Some definitions

A pattern

A pattern of length k is a permutation of $\{1,2, \ldots, k\}$.

Surely false?

Disproofs
What now?
The End

Some definitions

A pattern

A pattern of length k is a permutation of $\{1,2, \ldots, k\}$.

Pattern containment

A permutation σ of length n contains the pattern τ of length k if we can delete all but k elements of σ and reduce it to get τ.

A pattern

A pattern of length k is a permutation of $\{1,2, \ldots, k\}$.

Pattern containment

A permutation σ of length n contains the pattern τ of length k if we can delete all but k elements of σ and reduce it to get τ.

Reducing a vector

A vector v is reduced by replacing

- its smallest element with 1 ,
- its second smallest with 2,
and so on.

Examples

Outline
First lesson
Permutations
Some definitions
Core problem
2 Conjectures
Surely false?
Disproofs
What now?
The End

The permutation 712483569 contains the pattern 1324

Examples

Outline
First lesson

The permutation 712483569 contains the pattern 1324

- The permutation contains the subsequence 2839

Examples

Outline
First lesson

The permutation 712483569 contains the pattern 1324

- The permutation contains the subsequence 2839

Examples

Outline
First lesson

The permutation 712483569 contains the pattern 1324

- The permutation contains the subsequence 2839
- This reduces to 1324

Examples

The permutation 712483569 contains the pattern 1324

- The permutation contains the subsequence 2839
- This reduces to 1324

The permutation 769384521 avoids 1324

- It contains no subsequence that reduces to 1324.
- Checking by hand is laborious.
- The computer does a good job!

The core problem

The generating function

- Let $S_{n}(\tau)$ be \# permutations of length n that avoid τ.
- Let $P_{\tau}(z)$ be the generating function $\sum_{n \geq 0} S_{n}(\tau) z^{n}$.

The core problem

The generating function

- Let $S_{n}(\tau)$ be \# permutations of length n that avoid τ.
- Let $P_{\tau}(z)$ be the generating function $\sum_{n \geq 0} S_{n}(\tau) z^{n}$.
- Core problem $=$ find either of these for a given τ.

The core problem

The generating function

- Let $S_{n}(\tau)$ be \# permutations of length n that avoid τ.
- Let $P_{\tau}(z)$ be the generating function $\sum_{n \geq 0} S_{n}(\tau) z^{n}$.
- Core problem $=$ find either of these for a given τ.
- We would be happy with
- closed expression for the coefficients
- formula for the generating function
- a recurrence
- asymptotics
- growth constant
- (Un)fortunately the problem seems to be very hard.

Rechnitzer

Outline

First lesson
Permutations
Some definitions
Core problem
2 Conjectures
Surely false?
Disproofs
What now?
The End

- (Un)fortunately the problem seems to be very hard.
- There are results for a small set of patterns.
- (Un)fortunately the problem seems to be very hard.
- There are results for a small set of patterns.

Which patterns are known?

- (Un)fortunately the problem seems to be very hard.
- There are results for a small set of patterns.

Which patterns are known?

- $\tau=$ any pattern of length ≤ 3 - find the Catalan numbers!
- (Un)fortunately the problem seems to be very hard.
- There are results for a small set of patterns.

Which patterns are known?

- $\tau=$ any pattern of length ≤ 3 - find the Catalan numbers!
- $\tau=$ most patterns of length 4 - Gessel, Stankova, Bóna.

Very few results

- (Un)fortunately the problem seems to be very hard.
- There are results for a small set of patterns.

Which patterns are known?

- $\tau=$ any pattern of length ≤ 3 - find the Catalan numbers!
- $\tau=$ most patterns of length 4 - Gessel, Stankova, Bóna.
- $\tau=12$. . . k - Gessel.
- and a few more.

Very few results

- (Un)fortunately the problem seems to be very hard.
- There are results for a small set of patterns.

Which patterns are known?

- $\tau=$ any pattern of length ≤ 3 - find the Catalan numbers!
- $\tau=$ most patterns of length 4 - Gessel, Stankova, Bóna.
- $\tau=12 \ldots k$ - Gessel.
- and a few more.
- But not 1324 and 4231.

Very few results

- (Un)fortunately the problem seems to be very hard.
- There are results for a small set of patterns.

Which patterns are known?

- $\tau=$ any pattern of length ≤ 3 - find the Catalan numbers!
- $\tau=$ most patterns of length 4 - Gessel, Stankova, Bóna.
- $\tau=12 \ldots k$ - Gessel.
- and a few more.
- But not 1324 and 4231.
- Very difficult since pattern avoidance is a non-local condition.
- There are some conjectures...

Growth constants

Growth constant

For a pattern τ the growth constant is

$$
\mu(\tau)=\lim _{n \rightarrow \infty} S_{n}(\tau)^{1 / n}
$$

- The growth constant known for very small set of τ.

Growth constants

Growth constant

For a pattern τ the growth constant is

$$
\mu(\tau)=\lim _{n \rightarrow \infty} S_{n}(\tau)^{1 / n}
$$

- The growth constant known for very small set of τ.

Stanley-Wilf Conjecture

For any given τ, the growth constant exists.

Growth constants

Growth constant

For a pattern τ the growth constant is

$$
\mu(\tau)=\lim _{n \rightarrow \infty} S_{n}(\tau)^{1 / n}
$$

- The growth constant known for very small set of τ.

Stanley-Wilf Conjecture

For any given τ, the growth constant exists.
Only very recently proved - Marcos and Tardos.

Another conjecture

Outline

First lesson
Permutations

2 Conjectures

Growth
Nature
Surely false?
Disproofs
What now?

Arratia-Bóna Conjecture

Let τ be a permutation of length k, then

$$
\mu(\tau) \leq(k-1)^{2} .
$$

Another conjecture

Outline

First lesson
Permutations

2 Conjectures

Growth
Nature
Surely false?
Disproofs
What now?

Arratia-Bóna Conjecture

Let τ be a permutation of length k, then

$$
\mu(\tau) \leq(k-1)^{2} .
$$

- Based on small number of known $\mu(\tau)$

Another conjecture

Outline
First lesson
Permutations
2 Conjectures
Growth
Nature
Surely false?
Disproofs
What now?

Arratia-Bóna Conjecture

Let τ be a permutation of length k, then

$$
\mu(\tau) \leq(k-1)^{2} .
$$

- Based on small number of known $\mu(\tau)$
- No one had done (serious) numerics!

Arratia-Bóna Conjecture

Let τ be a permutation of length k, then

$$
\mu(\tau) \leq(k-1)^{2} .
$$

- Based on small number of known $\mu(\tau)$
- No one had done (serious) numerics!
- Getting series data is hard $-\mu$ is big!

Nature of the generating function

Outline
First lesson
Permutations
2 Conjectures Growth
Nature
Surely false?
Disproofs
What now? The End

Differentiably finite

A power series $f(z)$ is differentiably finite if

- it satisfies a DE of the form

$$
q_{d}(z) f^{(d)}(z)+\cdots+q_{1}(z) f^{\prime}(z)+q_{0}(z) f(z)=0
$$

- the q_{i} are polynomials in z.

Differentiably finite

A power series $f(z)$ is differentiably finite if

- it satisfies a DE of the form

$$
q_{d}(z) f^{(d)}(z)+\cdots+q_{1}(z) f^{\prime}(z)+q_{0}(z) f(z)=0
$$

- the q_{i} are polynomials in z.
- Most common functions in mathematics \& physics are D-finite.

Nature of the generating function

Differentiably finite

A power series $f(z)$ is differentiably finite if

- it satisfies a DE of the form

$$
q_{d}(z) f^{(d)}(z)+\cdots+q_{1}(z) f^{\prime}(z)+q_{0}(z) f(z)=0
$$

- the q_{i} are polynomials in z.
- Most common functions in mathematics \& physics are D-finite.
- Many solved combinatorial models have D-finite solutions.

Nature of the generating function

Differentiably finite

A power series $f(z)$ is differentiably finite if

- it satisfies a DE of the form

$$
q_{d}(z) f^{(d)}(z)+\cdots+q_{1}(z) f^{\prime}(z)+q_{0}(z) f(z)=0
$$

- the q_{i} are polynomials in z.
- Most common functions in mathematics \& physics are D-finite.
- Many solved combinatorial models have D-finite solutions.
- Many unsolved ones probably do not!

Zeilberger-Noonan Conjecture

For a given τ, the generating function

$$
P_{\tau}(z)=\sum_{n \geq 0} S_{n}(\tau) z^{n}
$$

is a differentiably finite power series.

Zeilberger-Noonan Conjecture

For a given τ, the generating function

$$
P_{\tau}(z)=\sum_{n \geq 0} S_{n}(\tau) z^{n}
$$

is a differentiably finite power series.

- Based on small number of known gf
- Not all of these gf are algebraic - Gessel, Bousquet-Mélou.
- Getting series data for GFUN is hard.

The first thing I do with a new problem...

First thing to do

- Write some code and generate some numbers.

Second thing to do

- Play with the numbers

The first thing I do with a new problem...

First thing to do

- Write some code and generate some numbers.

Second thing to do

- Play with the numbers
- First unsolved pattern is 1324 ($\equiv 4231$).
- Brute-force enumeration is slow $-\mu \leq 9$? (by conjecture)
- Marinov and Radoičić found a much faster way.
- Unfortunately it is still exponential time.

Plot the enumeration data

Rechnitzer

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Numerics
Symbolics?
Disproofs
What now?
The End

- Get numbers from Sloan and play with them:

Plot the enumeration data

Rechnitzer

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Numerics
Symbolics?
Disproofs
What now?
The End

- Get numbers from Sloan and play with them:

- Ratio should $\rightarrow \mu$ and its going way past 9 .
- The conjecture looks pretty shaky!

Lower bound for μ by counting large subsets

Outline

First lesson
Permutations
2 Conjectures
The growth constant of a large subset \Longrightarrow lower bound on μ.

Lower bound for μ by counting large subsets

The growth constant of a large subset \Longrightarrow lower bound on μ.
Restrict permutation statistics

- number of descents
- number of valleys
- or some other statistic?

The growth constant of a large subset \Longrightarrow lower bound on μ.

Restrict permutation statistics

- number of descents
- number of valleys
- or some other statistic?
or perhaps
Restricted growth by insertion
- Grow 23154 by $1 \rightarrow 01$
- Restrict insertions to first few positions.

The growth constant of a large subset \Longrightarrow lower bound on μ.

Restrict permutation statistics

- number of descents
- number of valleys
- or some other statistic?
or perhaps
Restricted growth by insertion
- Grow 23154 by $1 \rightarrow 21$
- Restrict insertions to first few positions.

The growth constant of a large subset \Longrightarrow lower bound on μ.
Restrict permutation statistics

- number of descents
- number of valleys
- or some other statistic?
or perhaps
Restricted growth by insertion
- Grow 23154 by $1 \rightarrow 21 \rightarrow 2 \circ 1$
- Restrict insertions to first few positions.

The growth constant of a large subset \Longrightarrow lower bound on μ.
Restrict permutation statistics

- number of descents
- number of valleys
- or some other statistic?
or perhaps
Restricted growth by insertion
- Grow 23154 by $1 \rightarrow 21 \rightarrow 231$
- Restrict insertions to first few positions.

The growth constant of a large subset \Longrightarrow lower bound on μ.
Restrict permutation statistics

- number of descents
- number of valleys
- or some other statistic?
or perhaps
Restricted growth by insertion
- Grow 23154 by $1 \rightarrow 21 \rightarrow 231 \rightarrow 231$ 。
- Restrict insertions to first few positions.

The growth constant of a large subset \Longrightarrow lower bound on μ.
Restrict permutation statistics

- number of descents
- number of valleys
- or some other statistic?
or perhaps
Restricted growth by insertion
- Grow 23154 by $1 \rightarrow 21 \rightarrow 231 \rightarrow 2314$
- Restrict insertions to first few positions.

The growth constant of a large subset \Longrightarrow lower bound on μ.
Restrict permutation statistics

- number of descents
- number of valleys
- or some other statistic?
or perhaps
Restricted growth by insertion
- Grow 23154 by $1 \rightarrow 21 \rightarrow 231 \rightarrow 2314 \rightarrow 231 \circ 4$
- Restrict insertions to first few positions.

The growth constant of a large subset \Longrightarrow lower bound on μ.
Restrict permutation statistics

- number of descents
- number of valleys
- or some other statistic?
or perhaps
Restricted growth by insertion
- Grow 23154 by $1 \rightarrow 21 \rightarrow 231 \rightarrow 2314 \rightarrow 23154$
- Restrict insertions to first few positions.

Praying at the temple of Maple

With this idea, Murray Mike and I generated some series. . .

Praying at the temple of Maple

With this idea, Murray Mike and I generated some series. . .

1324 -avoiders with $\leq k$ descents

- simple rational function
- denominator is a power of $(1-z)$

Praying at the temple of Maple

Outline
First lesson
Permutations
2 Conjectures
Surely false?

With this idea, Murray Mike and I generated some series. . .

1324-avoiders with $\leq k$ descents

- simple rational function
- denominator is a power of $(1-z)$

1324-avoiders with $\leq k$ valleys

- simple rational function
- denominator is product of $(1-2 z)$ and $(1-3 z)$

Praying at the temple of Maple

With this idea, Murray Mike and I generated some series...

Permutations
2 Conjectures
Surely false?
Numerics
Symbolics?
Disproofs
What now?
The End

1324-avoiders with $\leq k$ descents

- simple rational function
- denominator is a power of $(1-z)$

1324-avoiders with $\leq k$ valleys

- simple rational function
- denominator is product of $(1-2 z)$ and $(1-3 z)$
- Mike, Murray and I proved the rational form.
- Can do similarly for any given pattern.
- More general result - Albert, Atkinson \& Ruškuc.

Praying at the temple of Maple

With this idea, Murray Mike and I generated some series...

Permutations
2 Conjectures
Surely false?
Numerics
Symbolics?
Disproofs
What now?
The End

1324-avoiders with $\leq k$ descents

- simple rational function
- denominator is a power of $(1-z)$

1324-avoiders with $\leq k$ valleys

- simple rational function
- denominator is product of $(1-2 z)$ and $(1-3 z)$
- Not good bounds $-\mu \geq 3$.
- Try restricted growth instead.
- Cannot use the Guttmann-Enting solvability test?

Guttmann-Enting solvability test

Rewrite the gf as

$$
F(z, t)=\sum_{k \geq 0} H_{k}(z) t^{k}
$$

and look at $H_{k}(z)$.

Guttmann-Enting solvability test

Rewrite the gf as

$$
F(z, t)=\sum_{k \geq 0} H_{k}(z) t^{k}
$$

and look at $H_{k}(z)$.
Guttmann + Enting observed

- The $H_{k}(z)$ are usually rational.
- Solved models \Longrightarrow the H_{k} have a small number of poles.
- Unsolved models \Longrightarrow the H_{k} have more and more poles.

Guttmann-Enting solvability test

Rewrite the gf as

$$
F(z, t)=\sum_{k \geq 0} H_{k}(z) t^{k}
$$

and look at $H_{k}(z)$.

Guttmann + Enting observed

- The $H_{k}(z)$ are usually rational.
- Solved models \Longrightarrow the H_{k} have a small number of poles.
- Unsolved models \Longrightarrow the H_{k} have more and more poles.

This can be made more rigorous

Bousquet-Mélou

- Let \mathcal{S} be the set of singularities of the H_{k}.
- If \mathcal{S} is dense then $F(z, t)$ is not D-finite.

Count big subsets by restricting growth

Count big subsets by restricting growth

Insert only in first k positions

- Checking for pattern
- only the first k entries of the permutation are important.
- Hence finite-state automata with k ! states.
- Work and think harder - 4^{k} states.
- Dominant eigenvalue gives lower bound for μ.

Arratia-Bóna conjecture for 1324-avoiders

Count big subsets by restricting growth

Insert only in first k positions

- Checking for pattern
- only the first k entries of the permutation are important.
- Hence finite-state automata with k ! states.
- Work and think harder - 4^{k} states.
- Dominant eigenvalue gives lower bound for μ.

Need 2 tricks for efficient memory use:

- combinatorial trick for simple description of the automata states.
- a real c++ programmer - Paul Westcott.

So close. . .

Very memory hungry

- Memory growth is 4^{k}.
- We used 16Gb (credit to Tony Guttmann).
- Got $\mu>8.7$.

So close. . .

Very memory hungry

- Memory growth is 4^{k}.
- We used 16 Gb (credit to Tony Guttmann).
- Got $\mu>8.7$.

But all was not lost...

So close. . . We have a disproof!

Very memory hungry

- Memory growth is 4^{k}.
- We used 16 Gb (credit to Tony Guttmann).
- Got $\mu>8.7$.

But all was not lost...
Less memory hungry

- Michael Albert had a different growth method.
- Restrict the number of "slots".
- Memory growth rate is $(1+\sqrt{2})^{k}$
- Gives $\mu(1324)=\mu(4231)>9.45$.

Arratia owes us US\$100!
Albert, Elder, Rechnitzer, Westcott \& Zabrocki - \$20 each.

Back to praying - the temple of Sloan.

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs
Look in more detail at 1324 -avoiders with k descents

Back to praying - the temple of Sloan.

Look in more detail at 1324-avoiders with k descents

The denominator connection

- The generating function is

$$
G_{k}(z)=\frac{\text { some polynomial }}{(1-z)^{d_{k}}}
$$

- The first few d_{k} are $1,4,8,12,17,22,27, \ldots$

Back to praying - the temple of Sloan.

Look in more detail at 1324-avoiders with k descents

The denominator connection

- The generating function is

$$
G_{k}(z)=\frac{\text { some polynomial }}{(1-z)^{d_{k}}}
$$

- The first few d_{k} are $1,4,8,12,17,22,27, \ldots$
- Sloan - these are Davenport-Schinzel numbers

Back to praying - the temple of Sloan.

Look in more detail at 1324-avoiders with k descents

The denominator connection

- The generating function is

$$
G_{k}(z)=\frac{\text { some polynomial }}{(1-z)^{d_{k}}}
$$

- The first few d_{k} are $1,4,8,12,17,22,27, \ldots$
- Sloan - these are Davenport-Schinzel numbers
- DS numbers grow superlinearly.
- Superlinear denominator growth \Longrightarrow not D-finite.
- A way of attacking the Zeilberger-Noonan conjecture!

Davenport-Schinzel sequences

DS sequences

A word on s symbols is a Davenport-Schinzel sequence if

- No adjacencies: $w_{i} \neq w_{i+1}$.
- No alternating subsequences: ababa.

The $s^{\text {th }}$ DS number is the max length of such a sequence.

Davenport-Schinzel sequences

DS sequences

A word on s symbols is a Davenport-Schinzel sequence if

- No adjacencies: $w_{i} \neq w_{i+1}$.
- No alternating subsequences: ababa.

The $s^{\text {th }}$ DS number is the max length of such a sequence.

$$
\begin{array}{l|l|l}
s=1 & \mathrm{a} & 1 \\
s=2 & \mathrm{a}, \mathrm{~b}, \mathrm{a}, \mathrm{~b} & 4 \\
s=3 & \mathrm{a}, \mathrm{~b}, \mathrm{a}, \mathrm{c}, \mathrm{a}, \mathrm{c}, \mathrm{~b}, \mathrm{c} & 8
\end{array}
$$

Davenport-Schinzel sequences

DS sequences

A word on symbols is a Davenport-Schinzel sequence if

- No adjacencies: $w_{i} \neq w_{i+1}$.
- No alternating subsequences: ababa.

The $s^{\text {th }} \mathrm{DS}$ number is the max length of such a sequence.

$s=1$	a	1
$s=2$	$\mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{b}$	4
$s=3$	$\mathrm{a}, \mathrm{b}, \mathrm{a}, \mathrm{c}, \mathrm{a}, \mathrm{c}, \mathrm{b}, \mathrm{c}$	8

Faster than linear
The maximum length of a DS sequence on symbols is

- $O(s \alpha(s))$ where $\alpha=$ inverse Ackermann.
- Faster than linear (but only just).

Linking 1324-avoiders to Davenport-Schnizel

Outline
First lesson
Permutations
2 Conjectures
Surely false?
Disproofs

Simplifying things

- Look at $G_{k}\left(\frac{z}{1+z}\right)$ - simple positive polynomial.
- Counts "squashed" 1324-avoiders with k descents. "squashed" means $\sigma_{i+1} \neq \sigma_{i}+1$.
- Degree of polynomial $=$ max length $=d_{k}$.

Linking 1324-avoiders to Davenport-Schnizel

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs
Disproof 1
Disproof 2?
What now?

Simplifying things

- Look at $G_{k}\left(\frac{z}{1+z}\right)$ - simple positive polynomial.
- Counts "squashed" 1324-avoiders with k descents. "squashed" means $\sigma_{i+1} \neq \sigma_{i}+1$.
- Degree of polynomial $=\max$ length $=d_{k}$.

There is then a simple mapping:

squashed 1324-avoiders \mapsto a subset of DS-sequences

Since it is a subset we do not have superlinearity yet!

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs

- \exists constructive proof of the superlinear growth of DS sequences.
- Trying to alter this proof for 1324 -avoiders.
- \exists constructive proof of the superlinear growth of DS sequences.
- Trying to alter this proof for 1324 -avoiders.
- This would show that the 2 -variable g.f. is not D-finite.
- \exists constructive proof of the superlinear growth of DS sequences.
- Trying to alter this proof for 1324-avoiders.
- This would show that the 2 -variable g.f. is not D-finite.
- Unfortunately does not disprove the Zeilberger-Noonan conjecture for the 1 -variable g.f.

Outline

First lesson
Permutations

Where we are going. . .

Outline
First lesson
Permutations
2 Conjectures
Surely false?
Disproofs
What now? FlatPERM

The End
Trying hard to prove

Elder-Rechnitzer-Zabrocki Conjecture

For 1324 -avoiders, the two variable generating function

$$
F(z, t)=\sum_{k \geq 0} G_{k}(z) t^{k}
$$

is not a D-finite power series.

Elder-Rechnitzer-Zabrocki Conjecture

For 1324-avoiders, the two variable generating function

$$
F(z, t)=\sum_{k \geq 0} G_{k}(z) t^{k}
$$

is not a D-finite power series.
Done some preliminary work on

Growth constant classification

- Use FlatPERM to do approximate enumeration.
- Estimate $\mu(\tau)$ for different τ.
- What makes a pattern hard to avoid?
- Since we cannot find μ exactly we would like to estimate it.
- Since we cannot find μ exactly we would like to estimate it.
- Normally one would generate series and use numerical methods.
- Since we cannot find μ exactly we would like to estimate it.
- Normally one would generate series and use numerical methods.
- Series generation is exponential time and μ is big.
- Since we cannot find μ exactly we would like to estimate it.
- Normally one would generate series and use numerical methods.
- Series generation is exponential time and μ is big.

Approximate enumeration
Instead of computing $S_{n}(\tau)$ exactly we compute it approximately.

Approximate enumeration

- Since we cannot find μ exactly we would like to estimate it.
- Normally one would generate series and use numerical methods.
- Series generation is exponential time and μ is big.

Approximate enumeration

Instead of computing $S_{n}(\tau)$ exactly we compute it approximately.

- The algorithm we use is based on the Rosenbluth ${ }^{2}$ method.
- It is called FlatPERM - a major developer is Thomas Prellberg.

Rosenbluth sampling

- Permutations can be constructed recursively.
- Each permutation of size n is built from a permutation of size $n-1$ by insertion.

Rosenbluth sampling

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs
What now?
FlatPERM
The End $n-1$ by insertion.

- Permutations can be constructed recursively.
- Each permutation of size n is built from a permutation of size
- This gives a directed tree structure on the set of permutations.

Rosenbluth sampling

Outline

First lesson
Permutations

- Permutations can be constructed recursively.
- Each permutation of size n is built from a permutation of size $n-1$ by insertion.
- This gives a directed tree structure on the set of permutations.
\square

Rosenbluth sampling

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs $n-1$ by insertion.

- Permutations can be constructed recursively.
- Each permutation of size n is built from a permutation of size
- This gives a directed tree structure on the set of permutations.

Rosenbluth sampling

Outline

- Permutations can be constructed recursively.
- Each permutation of size n is built from a permutation of size $n-1$ by insertion.
- This gives a directed tree structure on the set of permutations.

If we are looking at 123 -avoiders.

Rosenbluth sampling

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs

- Permutations can be constructed recursively.
- Each permutation of size n is built from a permutation of size $n-1$ by insertion.
- This gives a directed tree structure on the set of permutations.

If we are looking at 123 -avoiders.

Rosenbluth sampling

Random path on the tree

- Start at the root.
- Choose a child of current node uniformly at random.
- Move to child node.
- Repeat until desired depth reached or no children.

Rosenbluth sampling

Random path on the tree

- Start at the root.
- Choose a child of current node uniformly at random.
- Move to child node.
- Repeat until desired depth reached or no children.
- The nodes at a given depth are not chosen with uniform probability.

Rosenbluth sampling

Random path on the tree

- Start at the root.
- Choose a child of current node uniformly at random.
- Move to child node.
- Repeat until desired depth reached or no children.
- The nodes at a given depth are not chosen with uniform probability.
- But this allows us to estimate the \# nodes at a given depth.

Probability of paths

Outline

First lesson
Permutations
2 Conjectures
Surely false?

Disproofs

What now?

FlatPERM
The End

$$
\operatorname{Pr}(\text { node })=
$$

Probability of paths

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs
What now?
FlatPERM
The End

$$
\operatorname{Pr}(\text { node })=1
$$

Probability of paths

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs
What now?
FlatPERM
The End

$$
\operatorname{Pr}(\text { node })=1 \cdot \frac{1}{2}
$$

Probability of paths

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs
What now?

FlatPERM

The End

$$
\operatorname{Pr}(\text { node })=1 \cdot \frac{1}{2} \cdot \frac{1}{3}
$$

Probability of paths

Outline

First lesson
Permutations
2 Conjectures
Surely false?

Disproofs

What now?
FlatPERM
The End

$$
\operatorname{Pr}(\text { node })=1 \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{2}=\frac{1}{12}
$$

Probability of paths

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs
What now?
FlatPERM
The End

$$
\operatorname{Pr}(\text { node })=1
$$

Probability of paths

Outline

First lesson
Permutations
2 Conjectures
Surely false?

Disproofs

What now?

FlatPERM
The End

$$
\operatorname{Pr}(\text { node })=1 \cdot \frac{1}{2}
$$

Probability of paths

Outline

First lesson
Permutations
2 Conjectures
Surely false?

Disproofs

What now?

FlatPERM
The End

$$
\operatorname{Pr}(\text { node })=1 \cdot \frac{1}{2} \cdot \frac{1}{2}
$$

Probability of paths

Outline

First lesson
Permutations
2 Conjectures
Surely false?

Disproofs

What now?

FlatPERM
The End

$$
\operatorname{Pr}(\text { node })=1 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}
$$

Atmosphere and weight

- Let $a($ node $)=$ its number of children.

$$
w(\text { node })= \begin{cases}1 & \text { node }=\text { root } \\ a(\text { parent }) w(\text { parent }) & \text { otherwise }\end{cases}
$$

This then gives

$$
\operatorname{Pr}(\text { node })=1 / w(\text { node })
$$

and

$$
\langle w(\text { node })\rangle=\# \text { nodes }
$$

- This works very well when the tree is quite uniform.
- Otherwise the weights can be vastly different.
- The mean weight can take a long time to converge.
- This works very well when the tree is quite uniform.
- Otherwise the weights can be vastly different.
- The mean weight can take a long time to converge.
- Need "tricks" to combat weight fluctuations.
- This works very well when the tree is quite uniform.
- Otherwise the weights can be vastly different.
- The mean weight can take a long time to converge.
- Need "tricks" to combat weight fluctuations.
- Efficient implementation of these tricks is difficult.
- This works very well when the tree is quite uniform.
- Otherwise the weights can be vastly different.
- The mean weight can take a long time to converge.
- Need "tricks" to combat weight fluctuations.
- Efficient implementation of these tricks is difficult.

$$
\mathrm{RR} \Longrightarrow \text { PERM } \Longrightarrow \text { FlatPERM }
$$

Two conjectures
Rechnitzer

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs
What now?
FlatPERM
The End

Tentative results

都

Two conjectures
Rechnitzer

Outline

First lesson
Permutations
2 Conjectures
Surely false?
Disproofs
What now?
FlatPERM
The End

Tentative results

