Maps, Spectra and Trees

Stefano Isola (Università di Camerino)

joint work with Andreas Knauf (Universität Erlangen) and Mirko Degli Esposti (Università di Bologna)

Problem: Construct a 'dynamical' binary tree such that each $x \in[0,1]$ can be uniquely approached along a finite or infinite path $\left\{x_{k}\right\}_{k \geq 1}$ with $x_{1}=1 / 2$.

For $k \geq 1$ the k-th row has 2^{k-1} elements (leaves) which can be enumerated lexicographically as follows: let $\mathbf{G}_{k}:=$ $(\mathbb{Z} / 2 \mathbb{Z})^{k}$ and define on for each $k \geq 1$ the involution

$$
S: \mathbf{G}_{k} \rightarrow \mathbf{G}_{k}, \quad S(\sigma)=\bar{\sigma}
$$

where $\bar{\sigma}_{i}=1-\sigma_{i}$. The quotient $\tilde{\mathrm{G}}_{k}:=\mathrm{G}_{k} / S$ is again a group isomorphic to \mathbf{G}_{k-1} when for each equivalence class we choose the element starting with 0 .

Dyadic tree \mathcal{D} : for each $\sigma \in \widetilde{\mathbf{G}}_{k}$ set

$$
x_{k}(\sigma)=0 . \sigma^{\prime} 1, \quad 0 \sigma^{\prime}=\sigma
$$

The leaves of \mathcal{D} are all dyadic rationals and the path on \mathcal{D} which converges to a given $x \in[0,1]$ is the sequence of successive truncations of its binary expansion:

$$
x=\sum_{i \geq 1} \sigma_{i} 2^{-i} \Rightarrow x_{k}=\sum_{i=1}^{k-1} \sigma_{i} 2^{-i}+2^{-k}
$$

Coding: To every $x \in[0,1]$ with dyadic expansion $x=0 . \sigma$ there corresponds a unique sequence $\phi_{0}(x) \in$ $\{0,1\}^{\mathbb{N}}$ given by $\phi_{0}(x)=0 \sigma$ (replacing $1 \rightarrow 01^{\infty}$ if x is a dyadic rational) which represents an infinite path on \mathcal{D}, and viceversa.

Farey tree \mathcal{F}
Let $\sigma \in \widetilde{\mathbf{G}}_{k}$ be of the form
$\sigma=(\underbrace{0, \ldots 0}_{a_{1}} \underbrace{1, \ldots 1}_{a_{2}} \underbrace{0, \ldots 0}_{a_{3}} \cdots \underbrace{u, \ldots, u}_{a_{n-1}} \underbrace{\bar{u}, \ldots, \bar{u}}_{r-1})$
with $u=1(u=0)$ for n odd (even), and integers $a_{i}>0$ and $r>1$, such that $k=\sum_{i=1}^{n-1} a_{i}+r-1$.

Set

$$
x_{k}(\sigma)=\left[a_{1}, a_{2}, \ldots, a_{n-1}+\frac{1}{r}\right] .
$$

Alternatively, the k-th row of \mathcal{F} can be defined as the set $\mathcal{F}_{k} \backslash \mathcal{F}_{k-1}$ where \mathcal{F}_{k} (the k-th modified Farey sequence) is the ascending sequence of irreducible fractions between 0 and 1 constructed inductively from $\mathcal{F}_{0}=\left(\frac{0}{1}, \frac{1}{1}\right)$ by inserting mediants:

$$
\begin{gathered}
\mathcal{F}_{1}=\left(\frac{0}{1}, \frac{1}{2}, \frac{1}{1}\right), \quad \mathcal{F}_{2}=\left(\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}\right), \\
\mathcal{F}_{3}=\left(\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}\right)
\end{gathered}
$$

and so on.

The leaves of \mathcal{F} are all rationals and the path which converges to a given $x=\left[a_{1}, a_{2}, a_{3}, \ldots\right]$ is the sequence of Farey convergents (FC's) yielding the slow continued fraction algorithm:

$$
\begin{gathered}
x_{k}=(k+1)^{-1}, \quad k<a_{1} \\
x_{k}=\frac{r p_{n-1}+p_{n-2}}{r q_{n-1}+q_{n-2}}, \quad\left\{\begin{array}{l}
1 \leq r \leq a_{n} \\
k=\sum_{i=1}^{n}-1
\end{array} a_{i}+r-1 \geq a_{1}\right.
\end{gathered}
$$

If $r=a_{n}$ then $x_{k}=p_{n} / q_{n}$, an ordinary continued fraction convergent (CFC), with:

$$
\frac{p_{0}}{q_{0}}=\frac{0}{1}, \quad \frac{p_{1}}{q_{1}}=\frac{1}{a_{1}}
$$

and

$$
\frac{p_{n}}{q_{n}}=\frac{a_{n} p_{n-1}+p_{n-2}}{a_{n} q_{n-1}+q_{n-2}}, \quad n \geq 2
$$

The fraction $t_{k} / s_{k}:=x_{k}$ is the best one-sided rational approximation to x whose denominator does not exceed s_{k} (although, if $r<a_{n}$, there might be a CFC with denominator less than s_{k} and closer to x on the other side of x).

Coding: To every $x \in[0,1]$ with continued fraction expansion $x=\left[a_{1}, a_{2}, a_{3}, \ldots\right]$ there corresponds a unique sequence $\phi_{1}(x) \in\{0,1\}^{\mathbb{N}}$ given by $\phi_{1}(x)=$ $0^{a_{1}} 1^{a_{2}} 0^{a_{3}} \ldots$ which represents an infinite path on \mathcal{F} (extended with 01^{∞} or 10^{∞} for rational x 's) along the sequence of FC 's of x, and viceversa.

Growth of the denominators

CFC's denominators q_{n} typically grow exponentially fast:

$$
\frac{\log q_{n}}{n} \rightarrow \frac{\pi^{2}}{12 \log 2} \quad \text { almost everywhere }
$$

On the other hand, setting $x_{k}=t_{k} / s_{k}$ we have $\min \left\{s_{k}\right\}=$ $k+1$ whereas $\max \left\{s_{k}\right\}=(k+1)$-st Fibonacci number.

For all $k=\sum_{i=1}^{n-1} a_{i}+r-1 \geq a_{1}$ it holds $q_{n-1}<$ $s_{k} \leq q_{n}$. Moreover (Khinchin and Lévy):

$$
\frac{1}{n \log n} \sum_{i=1}^{n} a_{i} \rightarrow \frac{1}{\log 2} \quad \text { in measure }
$$

Therefore

$$
\frac{\log s_{k}}{k} \sim \frac{\pi^{2}}{12 \log k} \quad \text { in measure }
$$

The Minkowski question mark

Given $x \in(0,1)$ with continued fraction expansion $x=$ $\left[a_{1}, a_{2}, a_{3}, \ldots\right]$, what is the number obtained by interpreting the sequence $\phi_{1}(x)$ as the binary expansion of a real number in $(0,1)$, i.e. what is $\phi_{0}^{-1} \circ \phi_{1}(x)$? The number so obtained is denoted ? (x) and writes

$$
\begin{aligned}
?(x) & :=\sum_{k \geq 1}(-1)^{k-1} 2^{-\left(a_{1}+\cdots+a_{k}-1\right)} \\
& =0 \underbrace{00 \ldots 0}_{a_{1}-1} \underbrace{11 \ldots 1}_{a_{2}} \underbrace{00 \ldots 0}_{a_{3}} \cdots
\end{aligned}
$$

Some properties:

- ? (x) is strictly increasing from 0 to 1 and Hölder continuous of order $\beta=\frac{\log 2}{\sqrt{5}+1}$;
- x is rational iff $?(x)$ is of the form $k / 2^{s}$, with k and s integers;
- x is a quadratic irrational iff $?(x)$ is a (non-dyadic) rational;
- ? (x) is a singular function: its derivative vanishes Lebesgue-almost everywhere;
- it satisfies the functional eq. ? $(1-x)=1-?(x)$.
? maps the Farey tree \mathcal{F} to the dyadic tree \mathcal{D} :

Theorem

Since

$$
x=\lim _{k \rightarrow \infty} \frac{\#\left\{\frac{p}{q} \in \mathcal{D}_{k} \backslash\{0\}: \frac{p}{q} \leq x\right\}}{2^{k}}
$$

then

$$
?(x)=\lim _{k \rightarrow \infty} \frac{\#\left\{\frac{p}{q} \in \mathcal{F}_{k} \backslash\{0\}: \frac{p}{q} \leq x\right\}}{2^{k}}
$$

Corollary

Let

$$
c_{n}=\int_{0}^{1} e^{2 \pi i n x} d ?(x)
$$

then

$$
c_{n}=\lim _{k \rightarrow \infty} \frac{1}{2^{k}} \sum_{\frac{p}{q} \in \mathcal{F}_{k} \backslash\{0\}} e^{2 \pi i n \frac{p}{q}}
$$

The Farey map and the tent map

Let $F:[0,1] \rightarrow[0,1]$ and $T:[0,1] \rightarrow[0,1]$ be given by

$$
F(x)= \begin{cases}\frac{x}{1-x}, & \text { if } 0 \leq x \leq \frac{1}{2}, \\ \frac{1-x}{x}, & \text { if } \frac{1}{2}<x \leq 1,\end{cases}
$$

and

$$
T(x)= \begin{cases}2 x, & \text { if } 0 \leq x<\frac{1}{2} \\ 2(1-x), & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

respectively. Then

$$
\cup_{i=0}^{k+1} F^{-i}\{0\}=\mathcal{F}_{k} \quad \text { and } \quad \cup_{i=0}^{k+1} T^{-i}\{0\}=\mathcal{D}_{k}
$$

and the k-th rows of the Farey and the dyadic tree are

$$
F^{-(k-1)}\left(\frac{1}{2}\right) \quad \text { and } \quad T^{-(k-1)}\left(\frac{1}{2}\right)
$$

respectively.

Theorem

$$
\phi_{1} \circ F \circ \phi_{1}^{-1}=\phi_{0} \circ T \circ \phi_{0}^{-1}
$$

and acts as the left-shift on $\Sigma:=\{0,1\}^{\mathbb{N}} / S$.
In particular,

$$
\begin{array}{cccc}
{[0,1]} & \xrightarrow{F} & {[0,1]} \\
\downarrow ? & & \downarrow ? \\
{[0,1]} & \xrightarrow{l} & {[0,1]}
\end{array}
$$

The measure $d ?(x)$ is F-invariant and its entropy is equal to $\log 2$ (this makes $d ?(x)$ the measure of maximal entropy for F). Being zero at every rational point d ? is singular w.r.t. Lebesgue. On the other hand, F has an absolutely continuous infinite invariant measure with density $1 / x$.

A one-parameter analytic Markov family

$$
F_{r}(x)= \begin{cases}\frac{(2-r) x}{1-r x}, & \text { if } 0 \leq x \leq \frac{1}{2}, \\ \frac{(2-r)(1-x)}{1-r+r x}, & \text { if } \frac{1}{2}<x \leq 1\end{cases}
$$

For $r \in[0,2), \inf \left|F_{r}^{\prime}(x)\right|=F_{r}^{\prime}(0)=2-r:=\rho$. Invariant density: $\quad h_{r}(x)=(1-r+r x)^{-1}$.

A one-parameter family of binary trees

For each $r \in[0,2)$ one can construct as before a 'dynamical' binary tree $\mathcal{T}(r)$ from the sequences

$$
\mathcal{T}_{k}(r):=\cup_{i=0}^{k+1} F_{r}^{-i}(0) .
$$

The ordered elements of $\mathcal{T}_{k}(r)$ can be written as ratios of irreducible polynomials over \mathbb{Z}.

For example

$$
\begin{gathered}
\mathcal{T}_{0}=\left(\frac{0}{1}, \frac{1}{1}\right), \quad \mathcal{T}_{1}=\left(\frac{0}{1}, \frac{1}{2}, \frac{1}{1}\right), \\
\mathcal{T}_{2}=\left(\frac{0}{1}, \frac{1}{4-r}, \frac{1}{2}, \frac{3-r}{4-r}, \frac{1}{1}\right), \\
\mathcal{T}_{3} \backslash \mathcal{T}_{2}=\left(\frac{1}{r^{2}-5 r+8}, \frac{3-r}{8-3 r}, \frac{5-2 r}{8-3 r} r, \frac{r^{2}-5 r+7}{r^{2}-5 r+8}\right) \\
\text { and so on. }
\end{gathered}
$$

r 0.4

r 0.8

r 1.

r 1.4

r 1.8

r 1.6

r 2 .

Spin chains

The set $\mathcal{T}_{k}(r) \backslash\{0\}=\cup_{i=0}^{k+1} F_{r}^{-i}(1)$ contains 2^{k} elements of the form p_{k} / q_{k} which can be labelled with the elements of the group $\mathbf{G}_{k}=(\mathbb{Z} / 2 \mathbb{Z})^{k}$. Each $\sigma \in \mathbf{G}_{k}$ can then be interpreted as the configuration of k classical binary spins, with energy function

$$
H_{k}=\log q_{k}: \mathbf{G}_{k} \rightarrow \mathbb{R}
$$

The Fourier coefficients

$$
j_{k}(\tau)=-2^{-k} \sum_{\sigma \in \mathbf{G}_{k}} H_{k}(\sigma) \cdot \chi_{\tau}(\sigma)
$$

of $-H_{k}$, where $\chi_{\tau}(\sigma)=(-1)^{\sigma \cdot \tau}\left(\tau \in \mathrm{G}_{k}^{*}\right)$ are the characters on G_{k}, are called interaction coefficients and

$$
H_{k}(\sigma)=-\sum_{\tau \in \mathbf{G}_{k}^{*}} j_{k}(\tau) \cdot \chi_{\sigma}(\tau)
$$

Theorem

The interaction is ferromagnetic for $r \in[0,2)$:

$$
j_{k}(\tau) \geq 0 \quad\left(\tau \in \mathrm{G}_{k}^{*} \backslash\{0\}\right)
$$

The (canonical) partition function:

$$
Z_{k}(\beta)=\sum_{\sigma \in \mathbf{G}_{k}} q_{k}(\sigma)^{-\beta} \equiv \sum_{\frac{p}{q} \in \mathcal{T}_{k}(r) \backslash\{0\}} q^{-\beta}
$$

Example: $r=0$

$$
Z_{k}(\beta)=\frac{2^{\beta}-1-2^{k(1-\beta)}}{2^{\beta}-2}
$$

so that
$\lim _{k \rightarrow \infty} Z_{k}(\beta)=\frac{2^{\beta}-1}{2^{\beta}-2}=\frac{\zeta_{0}(\beta-1)}{\zeta_{0}(\beta)}$,
$\operatorname{Re}(\beta)>1$,
with $\zeta_{0}(\beta)=2^{\beta} /\left(2^{\beta}-1\right)$. The free energy is
$-\beta f(\beta)=\lim _{k \rightarrow \infty} \frac{1}{k} \log Z_{k}(\beta)= \begin{cases}(1-\beta) \log 2, & \beta<1 \\ 0, & \beta \geq 1\end{cases}$

Example: $\quad r=1$ (Knauf's model)

$$
\lim _{k \rightarrow \infty} Z_{k}(\beta)=\frac{\zeta(\beta-1)}{\zeta(\beta)}, \quad \operatorname{Re}(\beta)>2
$$

and

$$
Z_{k}(2) \sim \frac{k}{2 \log k}, \quad k \rightarrow \infty
$$

The free energy $-\beta f(\beta)$ is real analytic for $\beta<2$ and (Prellberg)

$$
-\beta f(\beta) \sim \frac{2-\beta}{-\log (2-\beta)} \quad \text { as } \quad \beta \rightarrow 2^{-}
$$

Explicit values for $\beta=-k, k \in \mathbb{N}$:

$$
\begin{aligned}
-f(-1) & =\log 3 \\
-2 f(-2) & =\log \left(\frac{5+\sqrt{17}}{2}\right) \\
-3 f(-3) & =\log 7 \\
-4 f(-4) & =\log \left(\frac{11+\sqrt{113}}{2}\right) \\
& \text { etc }
\end{aligned}
$$

Transfer operators: Given $r \in[0,2), \beta \in \mathbb{C}$ and $f:[0,1] \rightarrow \mathbb{C}$ let
$\mathcal{P}_{\beta, r} f(x)=\frac{\rho^{\beta}}{(r x+\rho)^{2 \beta}}\left[f\left(\Phi_{r, 0}(x)\right)+f\left(\Phi_{r, 1}(x)\right)\right]$
with inverse maps ($\rho=2-r$)

$$
\Phi_{r, 0}(x)=\frac{x}{r x+\rho} \quad \text { and } \quad \Phi_{r, 1}(x)=1-\frac{x}{r x+\rho}
$$

Involutions: The matrix

$$
S_{r}=\left(\begin{array}{cc}
r-1 & \rho \\
r & 1-r
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{R})
$$

with $S_{r}^{2}=\mathrm{Id}$ and $\operatorname{det} S_{r}=-1$ acts on \mathbb{C} as the Möbius transformation

$$
x \rightarrow \widehat{S}_{r}(x)=\frac{(r-1) x+\rho}{r x+\rho-1}
$$

and on functions as

$$
f \rightarrow\left(\mathcal{I}_{\beta, r} f\right)(x)=\frac{1}{(r x+\rho-1)^{2 \beta}} f\left(\widehat{S}_{r}(x)\right)
$$

Since $\Phi_{r, i} \circ \widehat{S}_{r}=\Phi_{r, 1-i}, i=0,1$, we have

$$
\mathcal{P}_{\beta, r} f=\lambda f, \quad \lambda \neq 0 \quad \Longleftrightarrow \quad \mathcal{I}_{\beta, r} f=f
$$

Extended trees: $\quad \mathcal{T}(r)$ is a subtree of a larger tree having $\frac{1}{1}$ as root node (the 0 -th row). Its k-th row R_{k} has 2^{k} leaves which once enumerated lexicographically with the group \mathbf{G}_{k} satisfy

$$
x_{k}(\bar{\sigma})=\widehat{S}_{r}\left(x_{k}(\sigma)\right)
$$

For $r=1$ this is the but the Stern-Brocot tree:

Theorem For all $r \in[0,2), \beta \in \mathbb{C}, k \geq 1$ and $f:[0,1] \rightarrow \mathbb{C}$ we have

$$
\left(\mathcal{P}_{\beta, r}^{k} f\right)(x)=\rho^{k \beta} \sum_{\frac{p}{q} \in R_{k}} \frac{f\left(\frac{n_{0}(x, p / q)}{p r x+\rho q}\right)+f\left(\frac{n_{1}(x, p / q)}{p r x+\rho q}\right)}{(p r x+\rho q)^{2 \beta}}
$$

where the functions n_{0} and n_{1} can be computed recursively and satisfy:

$$
n_{0}(x, p / q)+n_{1}(x, p / q)=p r x+\rho q
$$

The choice $f \equiv 1$ and $x=1$ yields

Corollary

$$
2 Z_{n}(2 \beta)=1+\sum_{k=0}^{n} \rho^{-k \beta}\left(\mathcal{P}_{\beta, r}^{k} 1\right)(1)
$$

Thus, at least for $\beta \in \mathbb{R}, Z_{n}(\beta)$ has a finite limit as $n \rightarrow \infty$ whenever $\beta>\beta_{c r}$ where $\beta_{c r}$ is twice the smallest positive real solution of the equation

$$
\operatorname{spec} \operatorname{rad}\left(\mathcal{P}_{\beta, r}\right)=\rho^{\beta}
$$

Remark 1

Note that (only) for $r=1$ (due to arithmetical quibbles) we have

$$
\mathcal{P}_{\beta, 1}^{n} 1(0)=1+\sum_{k=0}^{n-1} \mathcal{P}_{\beta, 1}^{k} 1(1)
$$

and therefore

$$
2 Z_{n-1}(2 \beta)=\mathcal{P}_{\beta, 1}^{n} 1(0)
$$

This makes the 'canonical' and 'grand canonical' descriptions equivalent at all temperatures for $r=1$. But for $r \neq 1$ this equivalence fails below $\beta_{c r}^{-1}$.

Remark 2

For $r=1$ the phase transition at $\beta_{c r}=2$ is of second order (although the magnetization jumps at $\beta_{c r}$ from 1 to 0). On the other hand at $r=0$ the first derivative of $-\beta f(\beta)$ is discontinuous (first order transition). This seems to be the general case, at least for $r \in[0,1)$.

Generalizations: The choice $f \equiv 1$ can be generalized to $f(x)=e^{2 \pi i m x}, m \in \mathbb{Z}$. Let

$$
Z_{n}^{(m)}(\beta):=\sum_{\frac{p}{q} \in \mathcal{T}_{n}(r) \backslash\{0\}} q^{-\beta} e^{2 \pi i m \frac{p}{q}}
$$

then

$$
2 Z_{n}^{(m)}(2 \beta)=1+\left.\sum_{k=0}^{n} \rho^{-k \beta} \mathcal{P}_{\beta, r}^{k} e^{2 \pi i m x}\right|_{x=1}
$$

The behaviour of the limit $\lim _{n \rightarrow \infty} Z_{n}^{(m)}(\beta)$ is related to the spectral properties of $\mathcal{P}_{\beta, r}$.

Example For $m=r=1$ we have for $\operatorname{Re}(\beta)>2$

$$
\lim _{n \rightarrow \infty} Z_{n}^{(1)}(\beta)=\sum_{q \geq 1} \frac{\mu(q)}{q^{\beta}}=\frac{1}{\zeta(\beta)}
$$

since the Möbius function

$$
\mu\left(\prod p^{n_{p}}\right)=\left\{\begin{array}{lc}
(-1)^{\sum n_{p}}, & n_{p} \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

satisfies

$$
\mu(q)=\sum_{\substack{0<p \leq q \\ g c d(p, q)=1}} e^{2 \pi i \frac{p}{q}}, \quad q \in \mathbb{N} .
$$

Spectral properties

Let \mathcal{H}_{β} the Hilbert space of all complex-valued functions f which can be represented as a generalized Borel transform $f(x)=(\mathcal{B}[\varphi])(x):=\frac{1}{x^{2 \beta}} \int_{0}^{\infty} e^{-\frac{t}{x}} e^{t} \varphi(t) m_{\beta}(d t)$, with $\varphi \in L^{2}\left(m_{\beta}\right)$ and $m_{\beta}(d t)=t^{2 \beta-1} e^{-t} d t$.

Theorem

For all $r \in[0,2)$ the space \mathcal{H}_{β} is invariant for $\mathcal{P}_{\beta, r}$, and

$$
\mathcal{P}_{\beta, r} \mathcal{B}[\varphi]=\mathcal{B}\left[\left(M_{\beta, r}+N_{\beta, r}\right) \varphi\right]
$$

with

$$
M_{\beta, r} \varphi(t)=\frac{e^{-\frac{r}{\rho} t}}{\rho^{2 \beta-1}} \varphi\left(\frac{t}{\rho}\right)
$$

and

$$
N_{\beta, r} \varphi(t)=\frac{e^{\left(\frac{1-\rho}{\rho}\right) t}}{\rho^{2 \beta-1}} \int_{0}^{\infty} \frac{J_{2 \beta-1}\left(\frac{2 \sqrt{s t}}{\rho}\right)}{\left(\frac{s t}{\rho}\right)^{\beta-1 / 2}} \varphi(s) m_{\beta}(d s)
$$

Transition from discrete to continuous spectrum

 as $r \rightarrow 1^{-}$:- For all $r \in[0,1)$, the transfer operator $\mathcal{P}_{\beta, r}$ when acting on \mathcal{H}_{β} is of the trace-class, and

$$
\operatorname{tr} \mathcal{P}_{\beta, r}=\frac{\rho^{1-\beta}}{r-1}+(4 \rho)^{1-\beta} \frac{\sqrt{1+4 \rho}-1}{2 \sqrt{1+4 \rho}}
$$

- For $r=1 \mathcal{P}_{\beta, 1}$ is self-adjoint in \mathcal{H}_{β} and its spectrum is the union of $[0,1]$ and a (possibly empty) countable set of real eigenvalues of finite multiplicity.

Conjecture

For $\beta=r=1, \mathcal{P}_{1,1}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$ has no eigenvalues $\neq 0$ and $\sigma\left(\mathcal{P}_{1,1}\right)=[0,1]$.

General features of the eigenfunctions ($r=1$): induced operators

Write $\mathcal{P}_{\beta}=\mathcal{P}_{\beta}^{(0)}+\mathcal{P}_{\beta}^{(1)}$ and for $z \in \mathbb{C}$ define

$$
\mathcal{Q}_{\beta, z}=z \mathcal{P}_{\beta}^{(1)}\left(1-z \mathcal{P}_{\beta}^{(0)}\right)^{-1}
$$

and

$$
\mathcal{R}_{\beta, z}=z \mathcal{P}_{\beta}^{(0)}\left(1-z \mathcal{P}_{\beta}^{(1)}\right)^{-1}
$$

Power series expansions:

$$
\mathcal{Q}_{\beta, z} f(x)=\sum_{n \geq 1} \frac{z^{n}}{(x+n)^{2 \beta}} f\left(\frac{1}{x+n}\right)
$$

and

$$
\mathcal{R}_{\beta, z} f(x)=\sum_{n \geq 1} \frac{z^{n}}{\left(F_{n+1} x+F_{n}\right)^{2 \beta}} f\left(\frac{F_{n} x+F_{n-1}}{F_{n+1} x+F_{n}}\right)
$$

For bounded f absolute convergence in $\{|z| \leq 1, \operatorname{Re}(\beta)>$ $1 / 2\}$ and $|z|<\left(\frac{\sqrt{5}-1}{2}\right)^{-2 \beta}$, respectively.

Invariant densities relation:

$$
\frac{1}{x(x+1)}+\frac{1}{x+1}=\frac{1}{x}
$$

Invariant spaces:

let \mathcal{K}_{β} be the Hilbert space of all complex-valued functions f which can be represented as a generalized Laplace transform of a function $\varphi \in L^{2}\left(m_{\beta}\right)$:

$$
f(x)=(\mathcal{L}[\varphi])(x):=\int_{0}^{\infty} e^{-t x} \varphi(t) m_{\beta}(d t)
$$

By Tricomi thm: $\mathcal{K}_{\beta} \subset \mathcal{H}_{\beta}$, with $\mathcal{L}[\varphi]=\mathcal{B}\left[N_{\beta} \varphi\right]$.

- $\mathcal{Q}_{\beta, z}: \mathcal{K}_{\beta} \rightarrow \mathcal{K}_{\beta}$ admits an analytic continuation in the cut plane $\mathbb{C} \backslash(1, \infty)$ and

$$
\mathcal{Q}_{\beta, z} \mathcal{L}[\varphi]=\mathcal{L}\left[z(1-z M)^{-1} N_{\beta} \varphi\right]
$$

- $\mathcal{R}_{\beta, z}: \mathcal{H}_{\beta} \rightarrow \mathcal{H}_{\beta}$ can be meromorphically continued to \mathbb{C} with simple poles at $z=(-1)^{k-1}\left(\frac{\sqrt{5}-1}{2}\right)^{-2 k \beta}$ ($k \geq 1$) and

$$
\mathcal{R}_{\beta, z} \mathcal{B}[\varphi]=\mathcal{B}\left[z M\left(1-z N_{\beta}\right)^{-1} \varphi\right]
$$

Algebraic identity:

$$
\left(1-\mathcal{Q}_{\beta, z}\right)\left(1-z \mathcal{P}_{\beta}^{(0)}\right)=\left(1-\mathcal{R}_{\beta, z}\right)\left(1-z \mathcal{P}_{\beta}^{(1)}\right)=1-z \mathcal{P}_{\beta}
$$

Theorem

We have $\mathcal{P}_{\beta} f=\lambda f$ for some $f \in \mathcal{H}_{\beta}$ and $\lambda \notin\{0,1\}$ if and only if f is analytic in $\operatorname{Re}(x)>0$ and satisfies

$$
f(x)=h_{0}(x)+h_{1}(x)
$$

with $h_{0} \in \mathcal{K}_{\beta}$ and $h_{1} \in \mathcal{H}_{\beta}$ are such that

$$
\mathcal{Q}_{\beta, 1 / \lambda} h_{0}=h_{0} \quad \text { and } \quad \mathcal{R}_{\beta, 1 / \lambda} h_{1}=h_{1}
$$

and satisfy

$$
h_{0}=\mathcal{I}_{\beta} h_{1} \quad \text { and } \quad h_{1}=\mathcal{I}_{\beta} h_{0}
$$

For $\lambda=1$ the decomposition $f=h_{0}+h_{1}$ reduces to the Lewis functional equation:

$$
f(x)=f(x+1)+x^{-2 \beta} f\left(1+\frac{1}{x}\right)
$$

whereas $\left(1-\mathcal{Q}_{\beta, 1}\right) h_{0}$ and $\left(1-\mathcal{R}_{\beta, 1}\right) h_{1}$ are 1-periodic.

