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Problem: Construct a ‘dynamical’ binary tree such that

each x ∈ [0,1] can be uniquely approached along a finite

or infinite path {xk}k≥1 with x1 = 1/2.



For k ≥ 1 the k-th row has 2k−1 elements (leaves) which

can be enumerated lexicographically as follows: let Gk :=

(Z/2Z)k and define on for each k ≥ 1 the involution

S : Gk → Gk, S(σ) = σ

where σi = 1−σi. The quotient G̃k := Gk/S is again

a group isomorphic to Gk−1 when for each equivalence

class we choose the element starting with 0.

Dyadic tree D : for each σ ∈ G̃k set

xk(σ) = 0.σ′1, 0σ′ = σ.

The leaves of D are all dyadic rationals and the path on

D which converges to a given x ∈ [0,1] is the sequence

of successive truncations of its binary expansion:

x =
∑

i≥1

σi 2
−i ⇒ xk =

k−1∑

i=1

σi 2
−i + 2−k
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Coding: To every x ∈ [0,1] with dyadic expansion

x = 0.σ there corresponds a unique sequence φ0(x) ∈
{0,1}N given by φ0(x) = 0σ (replacing 1 → 01∞ if

x is a dyadic rational) which represents an infinite path on

D, and viceversa.



Farey tree F

Let σ ∈ G̃k be of the form

σ = (0, . . .0,︸ ︷︷ ︸
a1

1, . . .1,︸ ︷︷ ︸
a2

0, . . .0,︸ ︷︷ ︸
a3

· · · u, . . . , u,︸ ︷︷ ︸
an−1

u, . . . , u︸ ︷︷ ︸
r−1

)

with u = 1 (u = 0) for n odd (even), and integers
ai > 0 and r > 1, such that k =

∑n−1
i=1 ai + r − 1.

Set

xk(σ) = [a1, a2, . . . , an−1 +
1

r
].

Alternatively, the k-th row of F can be defined as the set
Fk \Fk−1 where Fk (the k-th modified Farey sequence)
is the ascending sequence of irreducible fractions between
0 and 1 constructed inductively from F0 = (0

1, 1
1) by

inserting mediants:

F1 =
(
0

1
,
1

2
,
1

1

)
, F2 =

(
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1
,
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,
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,
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(
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1
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and so on.



The leaves of F are all rationals and the path which con-
verges to a given x = [a1, a2, a3, . . .] is the sequence
of Farey convergents (FC’s) yielding the slow continued
fraction algorithm:

xk = (k + 1)−1, k < a1,

xk =
r pn−1 + pn−2

r qn−1 + qn−2
,

{
1 ≤ r ≤ an,

k =
∑n−1

i=1 ai + r − 1 ≥ a1.

If r = an then xk = pn/qn, an ordinary continued frac-
tion convergent (CFC), with:

p0

q0
=

0

1
,

p1

q1
=

1

a1

and
pn

qn
=

an pn−1 + pn−2

an qn−1 + qn−2
, n ≥ 2.

The fraction tk/sk := xk is the best one-sided rational
approximation to x whose denominator does not exceed
sk (although, if r < an, there might be a CFC with de-
nominator less than sk and closer to x on the other side
of x).
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Coding: To every x ∈ [0,1] with continued frac-
tion expansion x = [a1, a2, a3, . . .] there corresponds
a unique sequence φ1(x) ∈ {0,1}N given by φ1(x) =
0a11a20a3 . . . which represents an infinite path on F (ex-
tended with 01∞ or 10∞ for rational x’s) along the se-
quence of FC’s of x, and viceversa.



Growth of the denominators

CFC’s denominators qn typically grow exponentially fast:

log qn

n
→ π2

12 log2
almost everywhere

On the other hand, setting xk = tk/sk we have min{sk} =

k+1 whereas max{sk} = (k+1)−st Fibonacci number.

For all k =
∑n−1

i=1 ai + r − 1 ≥ a1 it holds qn−1 <

sk ≤ qn. Moreover (Khinchin and Lévy):

1

n logn

n∑

i=1

ai →
1

log2
in measure.

Therefore

log sk

k
∼ π2

12 log k
in measure.



The Minkowski question mark

Given x ∈ (0,1) with continued fraction expansion x =
[a1, a2, a3, . . .], what is the number obtained by inter-
preting the sequence φ1(x) as the binary expansion of a
real number in (0,1), i.e. what is φ−1

0 ◦ φ1(x)? The
number so obtained is denoted ?(x) and writes

?(x) :=
∑

k≥1

(−1)k−1 2−(a1+···+ak−1)

= 0.00 . . .0︸ ︷︷ ︸
a1−1

11 . . .1︸ ︷︷ ︸
a2

00 . . .0︸ ︷︷ ︸
a3

· · ·
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x
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? x 



Some properties:

• ?(x) is strictly increasing from 0 to 1 and Hölder

continuous of order β = log2√
5+1

;

• x is rational iff ?(x) is of the form k/2s, with k and

s integers;

• x is a quadratic irrational iff ?(x) is a (non-dyadic)

rational;

• ?(x) is a singular function: its derivative vanishes

Lebesgue-almost everywhere;

• it satisfies the functional eq. ?(1 − x) = 1−?(x).



? maps the Farey tree F to the dyadic tree D:

Theorem

Since

x = lim
k→∞

#{p
q ∈ Dk \ {0} : p

q ≤ x}
2k

then

?(x) = lim
k→∞

#{p
q ∈ Fk \ {0} : p

q ≤ x}
2k

·

Corollary

Let

cn =
∫ 1

0
e2π i n xd?(x)

then

cn = lim
k→∞

1

2k

∑

p
q∈Fk\{0}

e
2π i n p

q .



The Farey map and the tent map

Let F : [0,1] → [0,1] and T : [0,1] → [0,1] be

given by

F (x) =






x

1 − x
, if 0 ≤ x ≤ 1

2 ,

1 − x

x
, if 1

2 < x ≤ 1 ,

and

T (x) =

{
2x, if 0 ≤ x < 1

2,

2(1 − x), if 1
2 ≤ x ≤ 1.

respectively. Then

∪k+1
i=0 F−i{0} = Fk and ∪k+1

i=0 T−i{0} = Dk

and the k-th rows of the Farey and the dyadic tree are

F−(k−1)
(
1

2

)
and T−(k−1)

(
1

2

)

respectively.



Theorem

φ1 ◦ F ◦ φ−1
1 = φ0 ◦ T ◦ φ−1

0

and acts as the left-shift on Σ := {0,1}N/S.

In particular,

[0,1]
F−→ [0,1]

↓? ↓?
[0,1]

T−→ [0,1]

The measure d?(x) is F -invariant and its entropy is equal

to log 2 (this makes d?(x) the measure of maximal en-

tropy for F ). Being zero at every rational point d? is

singular w.r.t. Lebesgue. On the other hand, F has an ab-

solutely continuous infinite invariant measure with density

1/x.



A one-parameter analytic Markov family

Fr(x) =






(2 − r)x

1 − rx
, if 0 ≤ x ≤ 1

2 ,

(2 − r)(1 − x)

1 − r + rx
, if 1

2 < x ≤ 1 .

For r ∈ [0,2), inf |F ′
r(x)| = F ′

r(0) = 2 − r := ρ.

Invariant density: hr(x) = (1 − r + rx)−1.

r=0                                                                      r=0.5

r=1                                       r=1.5



A one-parameter family of binary trees

For each r ∈ [0,2) one can construct as before a ‘dy-

namical’ binary tree T (r) from the sequences

Tk(r) := ∪k+1
i=0 F−i

r (0).

The ordered elements of Tk(r) can be written as ratios of

irreducible polynomials over Z.

For example

T0 =
(
0

1
,
1

1

)
, T1 =

(
0

1
,
1

2
,
1

1

)
,

T2 =
(
0

1
,

1

4 − r
,
1

2
,
3 − r

4 − r
,
1

1

)
,

T3\T2 = (
1

r2 − 5r + 8
,

3 − r

8 − 3r
,
5 − 2r

8 − 3r
,
r2 − 5r + 7

r2 − 5r + 8
)

and so on.
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Spin chains

The set Tk(r) \ {0} = ∪k+1
i=0 F−i

r (1) contains 2k ele-

ments of the form pk/qk which can be labelled with the

elements of the group Gk = (Z/2Z)k. Each σ ∈ Gk

can then be interpreted as the configuration of k classical

binary spins, with energy function

Hk = log qk : Gk → R

The Fourier coefficients

jk(τ) = −2−k
∑

σ∈Gk

Hk(σ) · χτ(σ)

of −Hk, where χτ(σ) = (−1)σ·τ (τ ∈ G∗
k) are the

characters on Gk, are called interaction coefficients and

Hk(σ) = −
∑

τ∈G∗
k

jk(τ) · χσ(τ)

Theorem

The interaction is ferromagnetic for r ∈ [0,2):

jk(τ) ≥ 0 (τ ∈ G∗
k\{0}).
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The (canonical) partition function:

Zk(β) =
∑

σ∈Gk

qk(σ)−β ≡
∑

p
q∈Tk(r)\{0}

q−β

Example: r = 0

Zk(β) =
2β − 1 − 2k(1−β)

2β − 2
so that

lim
k→∞

Zk(β) =
2β − 1

2β − 2
=

ζ0(β − 1)

ζ0(β)
, Re(β) > 1,

with ζ0(β) = 2β/(2β − 1). The free energy is

−β f(β) = lim
k→∞

1

k
logZk(β) =

{
(1 − β) log2, β < 1

0, β ≥ 1

-2 -1 1 2 3

0.5

1

1.5

2



Example: r = 1 (Knauf’s model)

lim
k→∞

Zk(β) =
ζ(β − 1)

ζ(β)
, Re(β) > 2,

and

Zk(2) ∼ k

2 log k
, k → ∞.

The free energy −β f(β) is real analytic for β < 2 and

(Prellberg)

−β f(β) ∼ 2 − β

− log (2 − β)
as β → 2−

Explicit values for β = −k, k ∈ N:

−f(−1) = log3

−2 f(−2) = log

(
5 +

√
17

2

)

−3 f(−3) = log7

−4 f(−4) = log

(
11 +

√
113

2

)

etc



Transfer operators: Given r ∈ [0,2), β ∈ C and
f : [0,1] → C let

Pβ,rf(x) =
ρβ

(rx + ρ)2β

[
f

(
Φr,0(x)

)
+ f

(
Φr,1(x)

)]

with inverse maps (ρ = 2 − r)

Φr,0(x) =
x

rx + ρ
and Φr,1(x) = 1 − x

rx + ρ

Involutions: The matrix

Sr =

(
r − 1 ρ

r 1 − r

)
∈ PSL(2, R)

with S2
r = Id and det Sr = −1 acts on C as the Möbius

transformation

x → Ŝr(x) =
(r − 1)x + ρ

rx + ρ − 1

and on functions as

f → (Iβ,rf)(x) =
1

(rx + ρ − 1)2β
f

(
Ŝr(x)

)

Since Φr,i ◦ Ŝr = Φr,1−i, i = 0,1, we have

Pβ,rf = λ f, λ �= 0 ⇐⇒ Iβ,rf = f



Extended trees: T (r) is a subtree of a larger tree
having 1

1 as root node (the 0-th row). Its k-th row Rk has
2k leaves which once enumerated lexicographically with
the group Gk satisfy

xk(σ) = Ŝr(xk(σ))

For r = 1 this is the but the Stern-Brocot tree:
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Theorem For all r ∈ [0,2), β ∈ C, k ≥ 1 and

f : [0,1] → C we have

(Pk
β,rf)(x) = ρk β

∑

p
q∈Rk

f

(
n0(x, p/q)
p r x+ρ q

)
+ f

(
n1(x, p/q)
p r x+ρ q

)

(prx + ρq)2β

where the functions n0 and n1 can be computed recur-

sively and satisfy:

n0(x, p/q) + n1(x, p/q) = p r x + ρ q.

The choice f ≡ 1 and x = 1 yields

Corollary

2Zn(2β) = 1 +
n∑

k=0

ρ−kβ (Pk
β,r1)(1).

Thus, at least for β ∈ R, Zn(β) has a finite limit as

n → ∞ whenever β > βcr where βcr is twice the smallest

positive real solution of the equation

spec rad(Pβ,r) = ρβ



Remark 1

Note that (only) for r = 1 (due to arithmetical quibbles)

we have

Pn
β,11(0) = 1 +

n−1∑

k=0

Pk
β,11(1)

and therefore

2Zn−1(2β) = Pn
β,11(0)

This makes the ‘canonical’ and ‘grand canonical’ descrip-

tions equivalent at all temperatures for r = 1. But for

r �= 1 this equivalence fails below β−1
cr .

Remark 2

For r = 1 the phase transition at βcr = 2 is of second

order (although the magnetization jumps at βcr from 1

to 0). On the other hand at r = 0 the first derivative

of −β f(β) is discontinuous (first order transition). This

seems to be the general case, at least for r ∈ [0,1).



Generalizations: The choice f ≡ 1 can be generalized
to f(x) = e2πi m x, m ∈ Z. Let

Z
(m)
n (β) :=

∑

p
q∈Tn(r)\{0}

q−β e
2πi m p

q

then

2Z
(m)
n (2β) = 1 +

n∑

k=0

ρ−kβ Pk
β,re

2πi m x|x=1.

The behaviour of the limit limn→∞ Z
(m)
n (β) is related

to the spectral properties of Pβ,r.

Example For m = r = 1 we have for Re(β) > 2

lim
n→∞Z

(1)
n (β) =

∑

q≥1

µ(q)

qβ
=

1

ζ(β)

since the Möbius function

µ(
∏

pnp) =

{
(−1)

∑
np, np ≤ 1 ,

0, otherwise ,

satisfies

µ(q) =
∑

0<p≤q
gcd(p,q)=1

e
2πi p

q , q ∈ N.



Spectral properties

Let Hβ the Hilbert space of all complex-valued functions f

which can be represented as a generalized Borel transform

f(x) = (B [ϕ])(x) :=
1

x2β

∫ ∞

0
e−

t
x et ϕ(t)mβ(dt),

with ϕ ∈ L2(mβ) and mβ(dt) = t2β−1 e−t dt.

Theorem

For all r ∈ [0,2) the space Hβ is invariant for Pβ,r, and

Pβ,rB [ϕ] = B [(Mβ,r + Nβ,r)ϕ]

with

Mβ,r ϕ(t) =
e
−r

ρ t

ρ2β−1
ϕ

(
t

ρ

)

and

Nβ,rϕ(t) =
e
(1−ρ

ρ ) t

ρ2β−1

∫ ∞

0

J2β−1

(
2
√

st
ρ

)

(
st
ρ

)β−1/2
ϕ(s)mβ(ds) .



Transition from discrete to continuous spectrum

as r → 1−:

• For all r ∈ [0,1), the transfer operator Pβ,r when

acting on Hβ is of the trace-class, and

trPβ,r =
ρ1−β

r − 1
+ (4ρ)1−β

√
1 + 4ρ − 1

2
√

1 + 4ρ

• For r = 1 Pβ,1 is self-adjoint in Hβ and its spectrum

is the union of [0,1] and a (possibly empty) countable

set of real eigenvalues of finite multiplicity.

Conjecture

For β = r = 1, P1,1 : H1 → H1 has no eigenvalues

�= 0 and σ(P1,1) = [0,1].



General features of the eigenfunctions (r = 1):

induced operators

Write Pβ = P(0)
β + P(1)

β and for z ∈ C define

Qβ,z = z P(1)
β (1 − zP(0)

β )−1

and

Rβ,z = z P(0)
β (1 − zP(1)

β )−1

Power series expansions:

Qβ,zf(x) =
∑

n≥1

zn

(x + n)2β
f

(
1

x + n

)

and

Rβ,zf(x) =
∑

n≥1

zn

(Fn+1x + Fn)2β
f

(
Fnx + Fn−1

Fn+1x + Fn

)

For bounded f absolute convergence in {|z| ≤ 1,Re(β) >

1/2} and |z| <

(√
5−1
2

)−2β
, respectively.



Invariant densities relation:

1

x(x + 1)
+

1

x + 1
=

1

x



Invariant spaces:

let Kβ be the Hilbert space of all complex-valued func-

tions f which can be represented as a generalized Laplace

transform of a function ϕ ∈ L2(mβ):

f(x) = (L[ϕ])(x) :=
∫ ∞

0
e−t x ϕ(t)mβ(dt)

By Tricomi thm: Kβ ⊂ Hβ, with L[ϕ] = B[Nβ ϕ].

• Qβ,z : Kβ → Kβ admits an analytic continuation in

the cut plane C \ (1,∞) and

Qβ,z L[ϕ] = L [z(1 − zM)−1 Nβ ϕ]

• Rβ,z : Hβ → Hβ can be meromorphically continued

to C with simple poles at z = (−1)k−1
(√

5−1
2

)−2 k β

(k ≥ 1) and

Rβ,z B[ϕ] = B [z M(1 − zNβ)
−1 ϕ]



Algebraic identity:

(1−Qβ,z)(1−z P(0)
β ) = (1−Rβ,z)(1−z P(1)

β ) = 1−z Pβ

Theorem

We have Pβf = λ f for some f ∈ Hβ and λ /∈ {0,1}
if and only if f is analytic in Re(x) > 0 and satisfies

f(x) = h0(x) + h1(x)

with h0 ∈ Kβ and h1 ∈ Hβ are such that

Qβ,1/λh0 = h0 and Rβ,1/λh1 = h1

and satisfy

h0 = Iβ h1 and h1 = Iβ h0.

For λ = 1 the decomposition f = h0 + h1 reduces to

the Lewis functional equation:

f(x) = f(x + 1) + x−2βf(1 +
1

x
)

whereas (1−Qβ,1)h0 and (1−Rβ,1)h1 are 1-periodic.


