Maps, Spectra and Trees

Stefano Isola (Università di Camerino)

joint work with Andreas Knauf (Universität Erlangen) and Mirko Degli Esposti (Università di Bologna)

Problem: Construct a 'dynamical' binary tree such that each $x \in [0, 1]$ can be uniquely approached along a finite or infinite path $\{x_k\}_{k\geq 1}$ with $x_1 = 1/2$.

For $k \ge 1$ the k-th row has 2^{k-1} elements (leaves) which can be enumerated lexicographically as follows: let $\mathbf{G}_k := (\mathbb{Z}/2\mathbb{Z})^k$ and define on for each $k \ge 1$ the involution

$$S: \mathbf{G}_k \to \mathbf{G}_k, \qquad S(\sigma) = \overline{\sigma}$$

where $\overline{\sigma}_i = 1 - \sigma_i$. The quotient $\tilde{\mathbf{G}}_k := \mathbf{G}_k / S$ is again a group isomorphic to \mathbf{G}_{k-1} when for each equivalence class we choose the element starting with 0.

Dyadic tree \mathcal{D} : for each $\sigma \in \tilde{\mathbf{G}}_k$ set

$$x_k(\sigma) = 0.\sigma' 1, \qquad 0\sigma' = \sigma.$$

The leaves of \mathcal{D} are all dyadic rationals and the path on \mathcal{D} which converges to a given $x \in [0, 1]$ is the sequence of successive truncations of its binary expansion:

$$x = \sum_{i \ge 1} \sigma_i \, 2^{-i} \Rightarrow x_k = \sum_{i=1}^{k-1} \sigma_i \, 2^{-i} + 2^{-k}$$

Coding: To every $x \in [0, 1]$ with dyadic expansion $x = 0.\sigma$ there corresponds a unique sequence $\phi_0(x) \in \{0, 1\}^{\mathbb{N}}$ given by $\phi_0(x) = 0\sigma$ (replacing $1 \to 01^{\infty}$ if x is a dyadic rational) which represents an infinite path on \mathcal{D} , and viceversa.

Farey tree \mathcal{F}

Let $\sigma \in \tilde{G}_k$ be of the form $\sigma = (\underbrace{0, \dots, 0}_{a_1}, \underbrace{1, \dots, 1}_{a_2}, \underbrace{0, \dots, 0}_{a_3}, \dots, \underbrace{u, \dots, u}_{a_{n-1}}, \underbrace{\overline{u}, \dots, \overline{u}}_{r-1})$ with u = 1 (u = 0) for n odd (even), and integers $a_i > 0$ and r > 1, such that $k = \sum_{i=1}^{n-1} a_i + r - 1$.

Set

$$x_k(\sigma) = [a_1, a_2, \dots, a_{n-1} + \frac{1}{r}]$$

Alternatively, the k-th row of \mathcal{F} can be defined as the set $\mathcal{F}_k \setminus \mathcal{F}_{k-1}$ where \mathcal{F}_k (the k-th modified Farey sequence) is the ascending sequence of irreducible fractions between 0 and 1 constructed inductively from $\mathcal{F}_0 = (\frac{0}{1}, \frac{1}{1})$ by inserting mediants:

$$\mathcal{F}_1 = \left(\frac{0}{1}, \frac{1}{2}, \frac{1}{1}\right), \quad \mathcal{F}_2 = \left(\frac{0}{1}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{1}{1}\right),$$
$$\mathcal{F}_3 = \left(\frac{0}{1}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{1}{1}\right)$$

and so on.

The leaves of \mathcal{F} are all rationals and the path which converges to a given $x = [a_1, a_2, a_3, \ldots]$ is the sequence of Farey convergents (FC's) yielding the *slow continued fraction algorithm*:

$$x_{k} = (k+1)^{-1}, \qquad k < a_{1},$$
$$x_{k} = \frac{r p_{n-1} + p_{n-2}}{r q_{n-1} + q_{n-2}}, \quad \begin{cases} 1 \le r \le a_{n}, \\ k = \sum_{i=1}^{n-1} a_{i} + r - 1 \ge a_{1}. \end{cases}$$

If $r = a_n$ then $x_k = p_n/q_n$, an ordinary continued fraction convergent (CFC), with:

$$\frac{p_0}{q_0} = \frac{0}{1}, \quad \frac{p_1}{q_1} = \frac{1}{a_1}$$

and

$$\frac{p_n}{q_n} = \frac{a_n p_{n-1} + p_{n-2}}{a_n q_{n-1} + q_{n-2}}, \quad n \ge 2.$$

The fraction $t_k/s_k := x_k$ is the best one-sided rational approximation to x whose denominator does not exceed s_k (although, if $r < a_n$, there might be a CFC with denominator less than s_k and closer to x on the other side of x).

Coding: To every $x \in [0,1]$ with continued fraction expansion $x = [a_1, a_2, a_3, \ldots]$ there corresponds a unique sequence $\phi_1(x) \in \{0,1\}^{\mathbb{N}}$ given by $\phi_1(x) = 0^{a_1}1^{a_2}0^{a_3}\ldots$ which represents an infinite path on \mathcal{F} (extended with 01^{∞} or 10^{∞} for rational x's) along the sequence of FC's of x, and viceversa.

Growth of the denominators

CFC's denominators q_n typically grow exponentially fast:

$$\frac{\log q_n}{n} \to \frac{\pi^2}{12\log 2} \quad \text{almost everywhere}$$

On the other hand, setting $x_k = t_k/s_k$ we have min $\{s_k\} = k+1$ whereas max $\{s_k\} = (k+1)$ -st Fibonacci number.

For all $k = \sum_{i=1}^{n-1} a_i + r - 1 \ge a_1$ it holds $q_{n-1} < s_k \le q_n$. Moreover (Khinchin and Lévy):

$$\frac{1}{n \log n} \sum_{i=1}^{n} a_i \to \frac{1}{\log 2} \quad \text{in measure.}$$

Therefore

$$\frac{\log s_k}{k} \sim \frac{\pi^2}{12\log k} \quad \text{in measure.}$$

The Minkowski question mark

Given $x \in (0, 1)$ with continued fraction expansion $x = [a_1, a_2, a_3, \ldots]$, what is the number obtained by interpreting the sequence $\phi_1(x)$ as the binary expansion of a real number in (0, 1), i.e. what is $\phi_0^{-1} \circ \phi_1(x)$? The number so obtained is denoted ?(x) and writes

Some properties:

- ?(x) is strictly increasing from 0 to 1 and Hölder continuous of order $\beta = \frac{\log 2}{\sqrt{5}+1}$;
- x is rational iff ?(x) is of the form k/2^s, with k and s integers;
- x is a quadratic irrational iff ?(x) is a (non-dyadic) rational;
- ?(x) is a singular function: its derivative vanishes
 Lebesgue-almost everywhere;
- it satisfies the functional eq. ?(1-x) = 1 ?(x).

? maps the Farey tree ${\mathcal F}$ to the dyadic tree ${\mathcal D}$:

Theorem

Since

$$x = \lim_{k \to \infty} \frac{\#\{\frac{p}{q} \in \mathcal{D}_k \setminus \{0\} : \frac{p}{q} \le x\}}{2^k}$$

then

$$?(x) = \lim_{k \to \infty} \frac{\#\{\frac{p}{q} \in \mathcal{F}_k \setminus \{0\} : \frac{p}{q} \le x\}}{2^k}.$$

Corollary

Let

$$c_n = \int_0^1 e^{2\pi i n x} d?(x)$$

then

$$c_n = \lim_{k \to \infty} \frac{1}{2^k} \sum_{\substack{p \\ q \in \mathcal{F}_k \setminus \{0\}}} e^{2 \pi i n \frac{p}{q}}.$$

The Farey map and the tent map

Let $F : [0,1] \rightarrow [0,1]$ and $T : [0,1] \rightarrow [0,1]$ be given by

$$F(x) = \begin{cases} \frac{x}{1-x}, & \text{if } 0 \le x \le \frac{1}{2}, \\ \frac{1-x}{x}, & \text{if } \frac{1}{2} < x \le 1, \end{cases}$$

 $\quad \text{and} \quad$

$$T(x) = \begin{cases} 2x, & \text{if } 0 \le x < \frac{1}{2}, \\ 2(1-x), & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

respectively. Then

$$\cup_{i=0}^{k+1} F^{-i}\{0\} = \mathcal{F}_k \text{ and } \cup_{i=0}^{k+1} T^{-i}\{0\} = \mathcal{D}_k$$

and the k-th rows of the Farey and the dyadic tree are

$$F^{-(k-1)}\left(\frac{1}{2}\right)$$
 and $T^{-(k-1)}\left(\frac{1}{2}\right)$

respectively.

Theorem

$$\phi_1 \circ F \circ \phi_1^{-1} = \phi_0 \circ T \circ \phi_0^{-1}$$

and acts as the left-shift on $\Sigma := \{0, 1\}^{\mathbb{N}}/S$.

In particular,

$$\begin{array}{cccc} [0,1] & \stackrel{F}{\longrightarrow} & [0,1] \\ \downarrow? & & \downarrow? \\ [0,1] & \stackrel{T}{\longrightarrow} & [0,1] \end{array}$$

The measure d?(x) is *F*-invariant and its entropy is equal to $\log 2$ (this makes d?(x) the measure of maximal entropy for *F*). Being zero at every rational point *d*? is singular w.r.t. Lebesgue. On the other hand, *F* has an absolutely continuous infinite invariant measure with density 1/x.

A one-parameter analytic Markov family

$$F_r(x) = \begin{cases} \frac{(2-r)x}{1-rx}, & \text{if } 0 \le x \le \frac{1}{2} \\ \frac{(2-r)(1-x)}{1-r+rx}, & \text{if } \frac{1}{2} < x \le 1 \end{cases}.$$

For $r \in [0, 2)$, $\inf |F'_r(x)| = F'_r(0) = 2 - r := \rho$.

Invariant density: $h_r(x) = (1 - r + rx)^{-1}$.

A one-parameter family of binary trees

For each $r \in [0,2)$ one can construct as before a 'dynamical' binary tree $\mathcal{T}(r)$ from the sequences

$$\mathcal{T}_k(r) := \bigcup_{i=0}^{k+1} F_r^{-i}(0).$$

The ordered elements of $\mathcal{T}_k(r)$ can be written as ratios of irreducible polynomials over \mathbb{Z} .

For example

$$\begin{aligned} \mathcal{T}_0 &= \left(\frac{0}{1}, \frac{1}{1}\right), \quad \mathcal{T}_1 = \left(\frac{0}{1}, \frac{1}{2}, \frac{1}{1}\right), \\ \mathcal{T}_2 &= \left(\frac{0}{1}, \frac{1}{4-r}, \frac{1}{2}, \frac{3-r}{4-r}, \frac{1}{1}\right), \\ \mathcal{T}_3 \backslash \mathcal{T}_2 &= \left(\frac{1}{r^2 - 5r + 8}, \frac{3-r}{8-3r}, \frac{5-2r}{8-3r}, \frac{r^2 - 5r + 7}{r^2 - 5r + 8}\right) \\ \text{and so on.} \end{aligned}$$

Spin chains

The set $\mathcal{T}_k(r) \setminus \{0\} = \bigcup_{i=0}^{k+1} F_r^{-i}(1)$ contains 2^k elements of the form p_k/q_k which can be labelled with the elements of the group $\mathbf{G}_k = (\mathbb{Z}/2\mathbb{Z})^k$. Each $\sigma \in \mathbf{G}_k$ can then be interpreted as the configuration of k classical binary spins, with *energy function*

$$H_k = \log q_k : \mathbf{G}_k \to \mathbb{R}$$

The Fourier coefficients

$$j_k(\tau) = -2^{-k} \sum_{\sigma \in \mathbf{G}_k} H_k(\sigma) \cdot \chi_{\tau}(\sigma)$$

of $-H_k$, where $\chi_{\tau}(\sigma) = (-1)^{\sigma \cdot \tau}$ ($\tau \in \mathbf{G}_k^*$) are the characters on \mathbf{G}_k , are called *interaction coefficients* and

$$H_k(\sigma) = -\sum_{\tau \in \mathbf{G}_k^*} j_k(\tau) \cdot \chi_{\sigma}(\tau)$$

Theorem

The interaction is ferromagnetic for $r \in [0, 2)$:

$$j_k(au) \geq 0 \qquad (au \in \mathbf{G}_k^* ackslash \{0\}).$$

The (canonical) partition function:

$$Z_k(\beta) = \sum_{\sigma \in \mathbf{G}_k} q_k(\sigma)^{-\beta} \equiv \sum_{\frac{p}{q} \in \mathcal{T}_k(r) \setminus \{\mathbf{0}\}} q^{-\beta}$$

Example: r = 0

$$Z_k(\beta) = \frac{2^{\beta} - 1 - 2^{k(1-\beta)}}{2^{\beta} - 2}$$

so that

$$\lim_{k \to \infty} Z_k(\beta) = \frac{2^{\beta} - 1}{2^{\beta} - 2} = \frac{\zeta_0(\beta - 1)}{\zeta_0(\beta)}, \qquad \operatorname{Re}(\beta) > 1,$$

with $\zeta_0(eta) = 2^{eta}/(2^{eta}-1)$. The free energy is

$$-\beta f(\beta) = \lim_{k \to \infty} \frac{1}{k} \log Z_k(\beta) = \begin{cases} (1-\beta) \log 2, & \beta < 1\\ 0, & \beta \ge 1 \end{cases}$$

Example: r = 1 (Knauf's model)

$$\lim_{k\to\infty} Z_k(\beta) = \frac{\zeta(\beta-1)}{\zeta(\beta)}, \qquad \operatorname{Re}(\beta) > 2,$$

 $\quad \text{and} \quad$

$$Z_k(2)\sim rac{k}{2\log k}, \quad k
ightarrow\infty.$$

The free energy $-\beta f(\beta)$ is real analytic for $\beta < 2$ and (Prellberg)

$$-\beta f(\beta) \sim rac{2-eta}{-\log{(2-eta)}}$$
 as $eta
ightarrow 2^-$

Explicit values for $\beta = -k$, $k \in \mathbb{N}$:

$$-f(-1) = \log 3$$

$$-2f(-2) = \log \left(\frac{5+\sqrt{17}}{2}\right)$$

$$-3f(-3) = \log 7$$

$$-4f(-4) = \log \left(\frac{11+\sqrt{113}}{2}\right)$$

$$etc$$

Transfer operators: Given $r \in [0, 2)$, $\beta \in \mathbb{C}$ and $f : [0, 1] \rightarrow \mathbb{C}$ let

$$\mathcal{P}_{\beta,r}f(x) = \frac{\rho^{\beta}}{(rx+\rho)^{2\beta}} \left[f\left(\Phi_{r,0}(x)\right) + f\left(\Phi_{r,1}(x)\right) \right]$$

with inverse maps (
ho=2-r)

$$\Phi_{r,0}(x) = \frac{x}{rx+\rho} \quad \text{and} \quad \Phi_{r,1}(x) = 1 - \frac{x}{rx+\rho}$$

Involutions: The matrix

$$S_r = \begin{pmatrix} r-1 & \rho \\ r & 1-r \end{pmatrix} \in PSL(2,\mathbb{R})$$

with $S_r^2 = \text{Id}$ and det $S_r = -1$ acts on \mathbb{C} as the Möbius transformation

$$x \to \widehat{S}_r(x) = \frac{(r-1)x + \rho}{rx + \rho - 1}$$

and on functions as

$$f \to (\mathcal{I}_{\beta,r}f)(x) = \frac{1}{(rx+\rho-1)^{2\beta}} f\left(\widehat{S}_r(x)\right)$$

Since $\Phi_{r,i} \circ \widehat{S}_r = \Phi_{r,1-i}$, i = 0, 1, we have

$$\mathcal{P}_{\beta,r}f = \lambda f, \quad \lambda \neq 0 \quad \Longleftrightarrow \quad \mathcal{I}_{\beta,r}f = f$$

Extended trees: $\mathcal{T}(r)$ is a subtree of a larger tree having $\frac{1}{1}$ as root node (the 0-th row). Its k-th row R_k has 2^k leaves which once enumerated lexicographically with the group G_k satisfy

$$x_k(\overline{\sigma}) = \widehat{S}_r(x_k(\sigma))$$

For r = 1 this is the but the Stern-Brocot tree:

Theorem For all $r \in [0,2)$, $\beta \in \mathbb{C}$, $k \ge 1$ and $f : [0,1] \rightarrow \mathbb{C}$ we have

$$(\mathcal{P}_{\beta,r}^k f)(x) = \rho^{k\beta} \sum_{\frac{p}{q} \in R_k} \frac{f\left(\frac{n_0(x, p/q)}{p \, r \, x + \rho \, q}\right) + f\left(\frac{n_1(x, p/q)}{p \, r \, x + \rho \, q}\right)}{(prx + \rho q)^{2\beta}}$$

where the functions n_0 and n_1 can be computed recursively and satisfy:

 $n_0(x, p/q) + n_1(x, p/q) = pr x + \rho q.$

The choice $f \equiv 1$ and x = 1 yields

Corollary

$$2Z_n(2\beta) = 1 + \sum_{k=0}^n \rho^{-k\beta} (\mathcal{P}^k_{\beta,r} 1)(1).$$

Thus, at least for $\beta \in \mathbb{R}$, $Z_n(\beta)$ has a finite limit as $n \to \infty$ whenever $\beta > \beta_{cr}$ where β_{cr} is twice the smallest positive real solution of the equation

 $\operatorname{spec} \operatorname{rad}(\mathcal{P}_{\beta,r}) = \rho^{\beta}$

Remark 1

Note that (only) for r = 1 (due to arithmetical quibbles) we have

$$\mathcal{P}_{\beta,1}^n 1(0) = 1 + \sum_{k=0}^{n-1} \mathcal{P}_{\beta,1}^k 1(1)$$

and therefore

$$2Z_{n-1}(2\beta) = \mathcal{P}^n_{\beta,1}1(0)$$

This makes the 'canonical' and 'grand canonical' descriptions equivalent at all temperatures for r = 1. But for $r \neq 1$ this equivalence fails below β_{cr}^{-1} .

Remark 2

For r = 1 the phase transition at $\beta_{cr} = 2$ is of second order (although the magnetization jumps at β_{cr} from 1 to 0). On the other hand at r = 0 the first derivative of $-\beta f(\beta)$ is discontinuous (first order transition). This seems to be the general case, at least for $r \in [0, 1)$. **Generalizations:** The choice $f \equiv 1$ can be generalized to $f(x) = e^{2\pi i m x}$, $m \in \mathbb{Z}$. Let

$$Z_n^{(m)}(\beta) := \sum_{\frac{p}{q} \in \mathcal{T}_n(r) \setminus \{0\}} q^{-\beta} e^{2\pi i m \frac{p}{q}}$$

then

$$2Z_n^{(m)}(2\beta) = 1 + \sum_{k=0}^n \rho^{-k\beta} \mathcal{P}_{\beta,r}^k e^{2\pi i \, m \, x}|_{x=1}.$$

The behaviour of the limit $\lim_{n\to\infty} Z_n^{(m)}(\beta)$ is related to the spectral properties of $\mathcal{P}_{\beta,r}$.

Example For m = r = 1 we have for $\operatorname{Re}(\beta) > 2$

$$\lim_{n \to \infty} Z_n^{(1)}(\beta) = \sum_{q \ge 1} \frac{\mu(q)}{q^{\beta}} = \frac{1}{\zeta(\beta)}$$

since the Möbius function

$$\mu(\prod p^{n_p}) = \begin{cases} (-1)^{\sum n_p}, & n_p \leq 1 \\ 0, & \text{otherwise} \end{cases},$$

satisfies

$$\mu(q) = \sum_{\substack{0$$

Spectral properties

Let \mathcal{H}_{β} the Hilbert space of all complex-valued functions f which can be represented as a generalized Borel transform

$$f(x) = (\mathcal{B}[\varphi])(x) := \frac{1}{x^{2\beta}} \int_0^\infty e^{-\frac{t}{x}} e^t \varphi(t) m_\beta(dt),$$

with $\varphi \in L^2(m_\beta)$ and $m_\beta(dt) = t^{2\beta-1} e^{-t} dt.$

Theorem

For all $r \in [0,2)$ the space \mathcal{H}_{eta} is invariant for $\mathcal{P}_{eta,r}$, and

$$\mathcal{P}_{\beta,r}\mathcal{B}\left[\varphi\right] = \mathcal{B}\left[\left(M_{\beta,r} + N_{\beta,r}\right)\varphi\right]$$

with

$$M_{\beta,r}\,\varphi(t) = \frac{e^{-\frac{r}{\rho}t}}{\rho^{2\beta-1}}\,\varphi\left(\frac{t}{\rho}\right)$$

and

$$N_{\beta,r}\varphi(t) = \frac{e^{\left(\frac{1-\rho}{\rho}\right)t}}{\rho^{2\beta-1}} \int_0^\infty \frac{J_{2\beta-1}\left(\frac{2\sqrt{st}}{\rho}\right)}{\left(\frac{st}{\rho}\right)^{\beta-1/2}} \varphi(s) \, m_\beta(ds) \, ds$$

Transition from discrete to continuous spectrum as $r \rightarrow 1^-$:

• For all $r \in [0, 1)$, the transfer operator $\mathcal{P}_{\beta, r}$ when acting on \mathcal{H}_{β} is of the trace-class, and

tr
$$\mathcal{P}_{\beta,r} = \frac{\rho^{1-\beta}}{r-1} + (4\rho)^{1-\beta} \frac{\sqrt{1+4\rho}-1}{2\sqrt{1+4\rho}}$$

For r = 1 P_{β,1} is self-adjoint in H_β and its spectrum is the union of [0, 1] and a (possibly empty) countable set of real eigenvalues of finite multiplicity.

Conjecture

For $\beta = r = 1$, $\mathcal{P}_{1,1} : \mathcal{H}_1 \to \mathcal{H}_1$ has no eigenvalues $\neq 0$ and $\sigma(\mathcal{P}_{1,1}) = [0, 1]$.

General features of the eigenfunctions (r = 1): induced operators

Write
$$\mathcal{P}_{eta} = \mathcal{P}_{eta}^{(0)} + \mathcal{P}_{eta}^{(1)}$$
 and for $z \in \mathbb{C}$ define
 $\mathcal{Q}_{eta,z} = z \, \mathcal{P}_{eta}^{(1)} (1 - z \mathcal{P}_{eta}^{(0)})^{-1}$

and

$$\mathcal{R}_{eta,z} = z \, \mathcal{P}_{eta}^{(0)} (1 - z \mathcal{P}_{eta}^{(1)})^{-1}$$

Power series expansions:

$$\mathcal{Q}_{\beta,z}f(x) = \sum_{n \ge 1} \frac{z^n}{(x+n)^{2\beta}} f\left(\frac{1}{x+n}\right)$$

and

$$\mathcal{R}_{\beta,z}f(x) = \sum_{n \ge 1} \frac{z^n}{(F_{n+1}x + F_n)^{2\beta}} f\left(\frac{F_n x + F_{n-1}}{F_{n+1}x + F_n}\right)$$

For bounded f absolute convergence in $\{|z| \leq 1, \operatorname{Re}(\beta) > 1/2\}$ and $|z| < \left(\frac{\sqrt{5}-1}{2}\right)^{-2\beta}$, respectively.

Invariant densities relation:

$$\frac{1}{x(x+1)} + \frac{1}{x+1} = \frac{1}{x}$$

Invariant spaces:

let \mathcal{K}_{β} be the Hilbert space of all complex-valued functions f which can be represented as a generalized Laplace transform of a function $\varphi \in L^2(m_{\beta})$:

$$f(x) = (\mathcal{L}[\varphi])(x) := \int_0^\infty e^{-tx} \varphi(t) m_\beta(dt)$$

By Tricomi thm: $\mathcal{K}_{\beta} \subset \mathcal{H}_{\beta}$, with $\mathcal{L}[\varphi] = \mathcal{B}[N_{\beta}\varphi]$.

• $\mathcal{Q}_{\beta,z} : \mathcal{K}_{\beta} \to \mathcal{K}_{\beta}$ admits an analytic continuation in the cut plane $\mathbb{C} \setminus (1, \infty)$ and

$$\mathcal{Q}_{\beta,z}\mathcal{L}[\varphi] = \mathcal{L}\left[z(1-zM)^{-1}N_{\beta}\varphi\right]$$

• $\mathcal{R}_{\beta,z} : \mathcal{H}_{\beta} \to \mathcal{H}_{\beta}$ can be meromorphically continued to \mathbb{C} with simple poles at $z = (-1)^{k-1} \left(\frac{\sqrt{5}-1}{2}\right)^{-2k\beta}$ $(k \ge 1)$ and

$$\mathcal{R}_{\beta,z} \mathcal{B}[\varphi] = \mathcal{B} \left[z M (1 - z N_{\beta})^{-1} \varphi \right]$$

Algebraic identity:

$$(1-\mathcal{Q}_{\beta,z})(1-z\mathcal{P}_{\beta}^{(0)}) = (1-\mathcal{R}_{\beta,z})(1-z\mathcal{P}_{\beta}^{(1)}) = 1-z\mathcal{P}_{\beta}$$

Theorem

We have $\mathcal{P}_{\beta}f = \lambda f$ for some $f \in \mathcal{H}_{\beta}$ and $\lambda \notin \{0, 1\}$ if and only if f is analytic in $\operatorname{Re}(x) > 0$ and satisfies

$$f(x) = h_0(x) + h_1(x)$$

with $h_0 \in \mathcal{K}_\beta$ and $h_1 \in \mathcal{H}_\beta$ are such that

$$\mathcal{Q}_{eta,1/\lambda}h_0=h_0$$
 and $\mathcal{R}_{eta,1/\lambda}h_1=h_1$

and satisfy

 $h_0 = \mathcal{I}_\beta h_1$ and $h_1 = \mathcal{I}_\beta h_0$.

For $\lambda = 1$ the decomposition $f = h_0 + h_1$ reduces to the *Lewis functional equation*:

$$f(x) = f(x+1) + x^{-2\beta} f(1+\frac{1}{x})$$

whereas $(1 - Q_{\beta,1})h_0$ and $(1 - \mathcal{R}_{\beta,1})h_1$ are 1-periodic.