MAS115 Calculus I 2007-2008

Problem sheet for exercise class 4

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problems in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online by Friday.

Problem 1: Continuity.

- (*) a. Can $f(x) = x(x^2-1)/|x^2-1|$ be extended to be continuous at x = 1 or x = -1? Give reasons for your answers.
 - b. For what value of a is

[2007 exam questions]

$$f(x) = \begin{cases} x^2 - 1, & x < 3 \\ 2ax, & x \ge 3 \end{cases}$$

continuous at every x?

- Problem 2: **Limits and continuity.** Which of the following statements are true and which false? If true, say why; if false, give a counterexample (that is, an example confirming the falsehood).
 - a. If f is continuous at a, then so is |f|.
 - b. If |f| is continuous at a, then so is f.

Problem 3: The Intermediate Value Theorem.

[2007 exam questions]

- a. What are the hypotheses and conclusions of the Intermediate Value Theorem?
- b. Using the Intermediate Value Theorem, explain why the equation

$$\cos x = x$$

has at least one solution.

Extra: A function continuous at only one point. Let

$$f(x) = \begin{cases} x , & \text{if } x \text{ is rational} \\ 0 , & \text{if } x \text{ is irrational.} \end{cases}$$

- a. Show that f is continuous at x = 0.
- b. Use the fact that every nonempty open interval of real numbers contains both rational and irrational numbers to show that f is not continuous at any nonzero value of x.

Problem (a)

At
$$x = -1$$
: $\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{x(x^{2}-1)}{|x^{2}-1|} = \lim_{x \to -1^{-}} \frac{x(x^{2}-1)}{|x^{2}-1|} = \lim_{x \to -1^{+}} \frac{x(x^{2}-1)}{|x^{2}-1|} = \lim_{x \to -1^{+}} \frac{x(x^{2}-1)}{|x^{2}-1|} = \lim_{x \to -1^{+}} \frac{x(x^{2}-1)}{-(x^{2}-1)} = \lim_{x \to -1^{+}} \frac{x(x^{2}-1)}{-(x^{2}-1)} = \lim_{x \to -1^{+}} \frac{x(x^{2}-1)}{-(x^{2}-1)} = \lim_{x \to -1^{+}} f(x)$

$$\lim_{x \to -1^{-}} f(x) \neq \lim_{x \to -1^{+}} f(x)$$

$$\lim_{x \to -1^{-}} f(x) \neq \lim_{x \to -1^{+}} f(x)$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} \frac{x(x^{2}-1)}{|x^{2}-1|} = \lim_{x \to -1^{-}} \frac{x(x^{2}-1)}{-(x^{2}-1)}$$

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} \frac{x(x^{2}-1)}{|x^{2}-1|} = \lim_{x \to -1^{+}} \frac{x(x^{2}-1)}{-(x^{2}-1)}$$

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} \frac{x(x^{2}-1)}{|x^{2}-1|} = \lim_{x \to -1^{+}} \frac{x(x^{2}-1)}{-(x^{2}-1)}$$

At x = 1: $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{x(x^{2}-1)}{|x^{2}-1|} = \lim_{x \to 1^{-}} \frac{x(x^{2}-1)}{-(x^{2}-1)} = \lim_{x \to 1^{+}} (-x) = -1$, and $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{x(x^{2}-1)}{|x^{2}-1|} = \lim_{x \to 1^{+}} \frac{x(x^{2}-1)}{|x^{2}-1|} = \lim_{x \to 1^{+}} x = 1$. Again $\lim_{x \to 1} f(x)$ does not exist so f <u>cannot</u> be extended to a continuous function at x = 1 either.

$$f(x)$$
 continuous at $x=3$ if

(i)
$$\lim_{x\to 3} f(x)$$
 exclus

(i):
$$lon = 3^{2} (=8)$$

$$la \int (x) = 203 = 6a$$

$$\Rightarrow \ln \int (x) \sin x dx = 6a \Rightarrow \alpha = \frac{2}{3}$$

(ii)
$$\int (3) = 2a \cdot 3 = 8$$
 exis

(iii)
$$list(5) = l(3)$$
 is ontespend

- (a) True, because g(x) = |x| is continuous g(x) = |x| is continuous as

 composition of continuous furthers
- (b) False, for example laber $f(x) = \begin{cases} -1 & \times \leq 0 \\ 1 & \times \geq 0 \end{cases}$ $f(x) = \begin{cases} 1 & \times \leq 0 \\ 1 & \times \geq 0 \end{cases}$ $f(x) = \begin{cases} 1 & \text{is continuous of } x \geq 0 \text{ but} \end{cases}$ |f(x)| = 1 is continuous at x = 0

Problem 3

Corclusions:

$$f(x)$$
 takes or every value between $f(a)$ and $f(b)$ on $[a,5]$

(b) Take
$$f(x) = \cos x - x$$

Pide $a = 0$, $b = \frac{\pi}{2}$
Then $f(0) = 1$ and $f(b) = -\frac{\pi}{2}$
Therefore $f(x)$ takes on every value
between $-\frac{\pi}{2}$ and 1 on $[0, \frac{\pi}{2}]$.
In particular, there is an $x_0 \in [0, \frac{\pi}{2}]$

 $O = f(x_0) = \cos x_0 - x_0$

- (a) Let $\epsilon > 0$ be given. If x is rational, then $f(x) = x \Rightarrow |f(x) 0| = |x 0| < \epsilon \Leftrightarrow |x 0| < \epsilon$; i.e., choose given $\epsilon > 0$ there is a $\delta = \epsilon > 0$ such that $0 < |x - 0| < \delta \Rightarrow |f(x) - 0| < \epsilon$. Therefore, f is continuous at $\delta = \epsilon$. Then $|x - 0| < \delta \Rightarrow |f(x) - 0| < \epsilon$ for x rational. If x is irrational, then $f(x) = 0 \Rightarrow |f(x) - 0| < \epsilon$ $\Leftrightarrow 0 < \epsilon$ which is true no matter how close irrational x is to 0, so again we can choose $\delta = \epsilon$. In either case,
- (b) Choose x = c > 0. Then within any interval $(c \delta, c + \delta)$ there are both rational and irrational numbers. there is a rational number x in $(c - \delta, c + \delta)$ with $|x - c| < \frac{c}{2} = \epsilon \Leftrightarrow \frac{c}{2} < x < \frac{3c}{2}$. Then |f(x) - f(c)| = |x - 0|the other hand, suppose c is irrational $\Rightarrow f(c) = 0$. Again pick $\epsilon = \frac{c}{2}$. No matter how small we choose $\delta > 0$ $(c-\delta,c+\delta) \Rightarrow |f(x)-f(c)| = |0-c| = c > \frac{c}{2} = \epsilon$. That is, f is not continuous at any rational c > 0. On If c is rational, pick $\epsilon = \frac{\epsilon}{2}$. No matter how small we choose $\delta > 0$ there is an irrational number x in $= |x| > \frac{c}{2} = \epsilon \implies f$ is not continuous at any irrational c > 0.

nonzero value x == c If x = c < 0, repeat the argument picking $\epsilon = \frac{|c|}{2} = \frac{-c}{2}$. Therefore f fails to be continuous at any