MAS115 Calculus I 2007-2008

Problem sheet for exercise class 4

¢ Make sure you attend the excercise class that you have been assigned to!
¢ The instructor will present the starred problems in class.

¢ You should then work on the other problems on your own,

e The instructor and helper will be available for questions.

e Solutions will be available online by Friday.

Problem 1: Continnity.

(*} a. Can f(z) = 2(2?-1)/|2%— 1] be extended to be continnous at 2 = 1 or @ = - 17
Give reasons for your answers.

b, For what value of a is 12007 exam questions}

continuous at every z7?

Problem 2: Limits and continuity. Which of the following statements are true and which false?
If true, say why; if false, give a counterexample (that is, an example confirming the
falsehood).

a. If f is continuous at a, then so is {f|.

b. If | f] is continuous at a, then so is f.
Problemn 30 The Intermediate Value Theorem. [2007 exaun questions)

a. What are the hypotheses and conclusions of the Intermediate Value Theorem?

b. Using the Intermediate Value Theorem, explain why the equation
COS T = &
has at least one solution.
Extra: A function continuous at only one point. Lot

f( 2, if xis rational
0, if xig irrational.
a. Show that [ is continuous at 2 = 0.
b. Use the fact that every nonempty open interval of real numbers contains both
rational and irrational numbers $o show that [ is not continuous at any nonzero
alue of .

Thomas Preliberg, October 2007
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(a) Lete > 0 be given. If x is rational, then f(x) = x =5 |f(x) ~ O] =[x 0] <¢ & Ix~0 <eie. choose
6 =e Thenx—0f <8 = [f(x) ~ 0] < ¢ for x rational. If x is irrational, then f(x) = 0 => fx) —0f <€
<> 0 < € which is true no matter how close irrational x is to 0. so again we can choose & = €. In cither case.
givene > Othereisad=¢ > Osuch that 0 < jx — 0] < § = [F(x)~ 0] < ¢. Therefore, fis continuous
x == 0.

{b) Choose X == ¢ > 0. Then within any interval {¢ — &, ¢ + &) there are both rational and irrational numbers.
If ¢ is rational, pick ¢ = 5. No matter how small we choose § > 0 there is an ircational number x in
(¢—8c+8) = [f(x)— ) =0~ =c> %= e Thatis. fis not continuous at any rational ¢ > 0. On

b

the other hand, suppose ¢ is irrational ~> f(c) = 0. Again pick ¢ = 5. No matter how small we choose § > 0
< %< F. Then {fiix) — f{e)f = |x ~ 0

javila]

there is a rational number x in (¢ ~ §,c + 8y with [x — ¢] < §me
w %] > § = ¢ = {is not continuous a any irrational ¢ > 0.
If x == ¢ < 0. repeat the argument picking ¢ = & = =8 Therefore f fails to be continuous at any

nonzero value x == ¢,



