MAS115 Calculus I 2007-2008

Problem sheet for exercise class 1

- Make sure you attend the excercise class that you have been assigned to!
- The instructor will present the starred problems in class.
- You should then work on the other problems on your own.
- The instructor and helper will be available for questions.
- Solutions will be available online by Friday.
- (*) Problem 1: Determine the set of all real numbers x (i.e. $x \in \mathbb{R}$) that satisfy

$$x^2 - 3x - 4 < 0$$

- (a) by direct computation, and
- (b) by plotting the graph of $y = x^2 3x 4$. Hint: compute the zeros of $x^2 3x 4$.

Problem 2: Determine the set of all real numbers x (i.e. $x \in \mathbb{R}$) that satisfy

$$|2x-1|+|4x+1|<3$$

- (a) by direct computation, and
- (b) by plotting the graph.

Problem 3: Determine the set of all real numbers x (i.e. $x \in \mathbb{R}$) that satisfy

$$\sqrt{1-x^2} \le -x$$

- (a) by direct computation, and
- (b) by plotting the graphs of y = -x and $y = \sqrt{1 x^2}$.

Problem 4: Prove that for all positive real numbers x and y (i.e. $x, y \in \mathbb{R}^+$),

$$\frac{2}{\frac{1}{x} + \frac{1}{y}} \le \sqrt{xy}$$

- (a) by direct proof, and
- (b) by using the geometric-arithmetic inequality.

Extra: Prove that for all real numbers x and y (i.e. $x, y \in \mathbb{R}$)

$$||x| - |y|| = |x + y| + |x - y| - |x| - |y|.$$

$$x^{2}-3x-4=(x-x,)(x-x_{e})$$

$$x^{2}-3x-4<0 \iff (x+1)(x-4)<0$$

(a) gives
$$\times > -1$$
 and $\times < 4 \Rightarrow \times \in (-1, 4)$

Solution:
$$x \in (-1, 4)$$

Gaph of
$$y = x^2 - 3x - 4 = (x - 4)(x + 1)$$

×	
-3	14
-2	6
~ (0
Ö	- U
ţ	(,
2.	-6
3	-4
ч	0
5	6
(14

Poblam 2

$$(3)$$
 \times < $\frac{1}{4}$ and \times < $-\frac{1}{4}$

$$x \in (-\infty, -1)$$

so
$$\times \in (-\infty, -\frac{1}{4}) \land (-\frac{1}{2}, \infty) = (-\frac{1}{2}, -\frac{1}{4}]$$

$$= -(2 \times -1) + (4 \times +1) = 2 \times +2$$

so
$$x \in [-\frac{1}{4}, \frac{1}{2}) \cap (-\sigma, \frac{1}{2}) = \underline{[-\frac{1}{4}, \frac{1}{2})}$$

$$\Rightarrow$$
 \times \Rightarrow $\frac{1}{4}$ and \times $<$ $-\frac{1}{4}$

$$(x) \times \in [\frac{1}{2}, \infty)$$

$$= (2x-1) + (4x+1) = 6x$$

$$6 \times < 3 \Leftrightarrow \times < \frac{1}{2}$$

so
$$\times \in \left[\frac{1}{2}, \infty\right) \cap \left(-\infty, \frac{1}{2}\right) = \emptyset$$

Together,

$$x \in (-\frac{1}{2}, -\frac{1}{4}] \cup (-\frac{1}{4}, \frac{1}{2}) = (-\frac{1}{2}, \frac{1}{2})$$

Observe

· the is only defined for
$$x \in [-1,1]$$

Squaring both sides gives

List XELI, OJ, 10 XELI, CZJ

Problem 4

You have seen the aritmetic-geometric

mequality in class, induding a proof.

(a) Direct calculation

(x) } { (x) }

= 2xy = [why = ?]

 $(2) \frac{4(xy)}{(xy)^2} \leq xy \qquad \left[x \frac{(xy)^2}{xy} \right] \frac{1}{(xy)^2}$

=> 4xy = (x+y)2 |-4xy

 \Leftrightarrow 0 $\leq (x+y)^2 - 4xy$

= X2 - 5×4 + A3 = (X - A) 3

(b) way
$$-\sqrt{xy} \leq \frac{1}{2}(x+y)$$

Extra lab of defort cases

x = y = 0, x = 0 = y, 0 = x = y

the the gives

11×1-141 = 1×+41

arl the rts gives

1x dy 1 de 1x my 1 in 1x m 1y 1

= |x+1| + x - y - x + y = |x+1|

While are equal.