Recurrence and transience of some contractive Markov chains with super-heavy tailed innovations in random environment

Martin P.W. Zerner
University of Tuebingen, Germany

A random event - llya 70
Queen Mary University, London, December 20, 2017

Recurrence/transience criteria for
(1) 1-dimensional
(a) Non-negative contractive autoregressive processes of order 1:

$$
X_{n}:=a X_{n-1}+Y_{n}
$$

$0<a<1,\left(Y_{n}\right)_{n \geq 1}$ i.i.d., $[0, \infty)$-valued
(b) Subcritical Galton-Watson processes with immigration
(2) Generalization of (1) to $d \geq 1$-dimensional processes
(3) Generalization of (2) to random environments

Theorem 1: (Random exchange process ${ }^{1}$, long range percolation; Lamperti, Kesten '70; Kellerer '92, '06) Let $W_{n}, n \geq 1$, be i.i.d. \mathbb{N}_{0}-valued, $P\left[W_{1}=0\right]>0$.

$$
\text { Set } \quad R_{0}:=0 \quad \text { and } \quad R_{n}:=\max \left\{R_{n-1}-1, W_{n}\right\} \quad \text { for } n \geq 1
$$

Lamperti:

$$
\left(R_{n}\right)_{n \geq 0} \text { is transient if } \liminf _{n \rightarrow \infty} n P\left[W_{1}>n\right]>1 \text { and }
$$ $\left(R_{n}\right)_{n \geq 0}$ is recurrent if $\limsup n P\left[W_{1}>n\right]<1$. $n \rightarrow \infty$

Kesten; Kellerer: $\quad\left(R_{n}\right)_{n \geq 0}$ is recurrent iff $\sum_{n \geq 0} \prod_{m=0}^{n} P\left[W_{1} \leq m\right]=\infty$.
Proof of $(*)$: For all $n \geq 1$ it holds that $R_{n}=\max _{m=1}^{n}\left(W_{m}-n+m\right) \geq 0$. The state 0 (and by irreducibility the Markov chain) is recurrent iff $G(0,0)=\infty$, ie. iff

$$
\begin{aligned}
& \infty=\sum_{n \geq 1} P\left[R_{n}=0\right]=\sum_{n \geq 1} P\left[\max _{m=1}^{n}\left(W_{m}-n+m\right) \leq 0\right] \stackrel{\text { indep. }}{=} \sum_{n \geq 1} \prod_{m=1}^{n} P\left[W_{m} \leq n-m\right] \\
& \stackrel{\text { i.d. }}{=} \sum_{n \geq 1} \prod_{m=1}^{n} P\left[W_{1} \leq n-m\right]=\sum_{n \geq 1} \prod_{m=0}^{n-1} P\left[W_{1} \leq m\right]=\sum_{n \geq 0} \prod_{m=0}^{n} P\left[W_{1} \leq m\right] .
\end{aligned}
$$

[^0]$\left.\begin{array}{l}\left(W_{n}\right)_{n} \text { iid, } W_{1} \in \mathbb{N}_{0} \text { a.s., } P\left[W_{1}=0\right]>0 \\ R_{n}=\max \left\{R_{n-1}-1, W_{n}\right\}\end{array}\right\}\left(R_{n}\right)_{n}$ rec. $\Leftrightarrow \sum_{n \geq 0} \prod_{m=0}^{n} P\left[W_{1} \leq m\right]=\infty$

$$
\left.\begin{array}{l}
\left(W_{n}\right)_{n} \text { iid, } W_{1} \geq 0 \text { a.s., } P\left[W_{1}=0\right]>0 \\
R_{n}=\max \left\{R_{n-1}-1, W_{n}\right\}
\end{array}\right\}\left(R_{n}\right)_{n} \text { rec. } \Leftrightarrow \sum_{n \geq 0} \prod_{m=0}^{n} P\left[W_{1} \leq m\right]=\infty
$$

$$
\left.\begin{array}{l}
\left(W_{n}\right)_{n} \text { iid, } W_{1} \geq 0 \text { a.s., } P\left[W_{1}=0\right]>0 \\
R_{n}=\max \left\{R_{n-1}-c, W_{n}\right\}, c>0
\end{array}\right\}\left(R_{n}\right)_{n} \text { rec. } \Leftrightarrow \sum_{n \geq 0} \prod_{m=0}^{n} P\left[W_{1} \leq m c\right]=\infty
$$

$$
\left.\begin{array}{l}
\left(W_{n}\right)_{n} \text { iid, } W_{1} \geq 0 \text { a.s., } P\left[W_{1} \leq w\right]>0 \\
R_{n}=\max \left\{R_{n-1}-c, W_{n}\right\}, c>0, w \geq 0
\end{array}\right\}\left(R_{n}\right)_{n} \text { rec. } \Leftrightarrow \sum_{n \geq 0} \prod_{m=0}^{n} P\left[W_{1} \leq w+m c\right]=\infty
$$

Max-autoregressive process $\left(M_{n}\right)_{n}:=\left(e^{R_{n}}\right)_{n}$ rec. $\quad\left(a:=e^{-c}, Y_{n}:=e^{W_{n}}, y:=e^{w}\right)$ $\left.\begin{array}{l}\left(Y_{n}\right)_{n} \text { iid, } Y_{1} \geq 1 \text { a.s., } P\left[Y_{1} \leq y\right]>0 \\ M_{n}=\max \left\{a M_{n-1}, Y_{n}\right\}, 0<a<1\end{array}\right\}\left(M_{n}\right)_{n}$ rec. $\Leftrightarrow \sum_{n \geq 0} \prod_{m=0}^{n} P\left[Y_{1} \leq y a^{-m}\right]=\infty$

$$
\left.\begin{array}{l}
\left(Y_{n}\right)_{n} \text { iid, } Y_{1} \geq 0 \text { a.s., } P\left[Y_{1} \leq y\right]>0 \\
X_{n}=a X_{n-1}+Y_{n}, 0<a<1
\end{array}\right\}\left(X_{n}\right)_{n}{ }_{n}^{\Uparrow ?} \text { rec. }
$$

Definition of recurrence/transience (see e.g. Kellerer 2006 for a more general setting):

Let \mathcal{H} be the set of continuous functions from $[0, \infty)^{d}$ to $[0, \infty)^{d}$ which are monotone with respect to the partial order \leq on $[0, \infty)^{d}$.

- A $[0, \infty)^{d}$-valued Markov chain $V=\left(V_{n}\right)_{n \geq 0}$ with initial state $V_{0}=0$ (unimportant) is order-preserving iff it fulfills a recursion of the form $V_{n}=H_{n}\left(V_{n-1}\right)$ for an i.i.d. sequence $\left(H_{n}\right)_{n \geq 1}$ of \mathcal{H}-valued random variables.
- If V is order-preserving then V is called irreducible iff for all $x \in[0, \infty)^{d}$ there is some $n \geq 0$ such that $P\left[V_{n} \geq x\right]>0$.
- An irreducible V is called recurrent iff there exists $b \in(0, \infty)$ such that $\sum_{n \geq 0} P\left[\left\|V_{n}\right\| \leq b\right]=\infty$. Otherwise V is called transient.

Fact: Let V be irreducible.
Then V is recurrent iff there is a $b<\infty$ such that a.s. $\left\|V_{n}\right\| \leq b$ infinitely often.
V is transient iff a.s. all components of V diverge to ∞.

Theorem 2: $(Z ., 2016)$ Let $0<a<1, y \geq 0$ and let $\left(Y_{n}\right)_{n \geq 1}$ be an i.i.d. sequence of non-negative random variables such that $P\left[Y_{1} \leq y\right]>0$. Set $X_{0}:=0$ and

$$
X_{n}:=a X_{n-1}+Y_{n}
$$

for all $n \geq 1$. Then $\left(X_{n}\right)_{n \geq 0}$ is recurrent iff

$$
\begin{equation*}
\sum_{n \geq 0} \prod_{m=0}^{n} P\left[Y_{1} \leq y a^{-m}\right]=\infty \tag{*}
\end{equation*}
$$

Earlier results:

Theorem 3: (Kellerer 1992, unpublished) $\left(X_{n}\right)_{n \geq 0}$ is

$$
\begin{aligned}
\text { transient if } \liminf _{t \rightarrow \infty} t \cdot P\left[\ln Y_{1}>t\right] & >-\ln a \quad \text { and } \\
\text { recurrent if } \underset{t \rightarrow \infty}{\limsup } t \cdot P\left[\ln Y_{1}>t\right] & <-\ln a .
\end{aligned}
$$

Theorem 4: (Zeevi, Glynn 2004) Let $P\left[\ln \left(1+Y_{1}\right)>t\right]=(1+\beta t)^{-p}$ for some $\beta>0$ and $p>0$ ("log-Pareto"). Then $\left(X_{n}\right)_{n \geq 0}$ is recurrent if $p>1$ or $(p=1$ and $\beta \ln (1 / a) \geq 1)$, and transient otherwise.

Theorems 3 and 4 follow from Theorem 2 and Raabe's test.

Pf Th 1: Claim: $X_{n}=a X_{n-1}+Y_{n}$ recurrent $\Leftrightarrow M_{n}=\max \left\{a M_{n-1}, Y_{n}\right\}$ recurrent \Leftrightarrow

$$
\begin{equation*}
\sum_{n \geq 0} \prod_{m=0}^{n} P\left[Y_{1} \leq y a^{-m}\right]=\infty \tag{*}
\end{equation*}
$$

M recurrent $\Leftrightarrow(*)$:
X recurrent $\Leftrightarrow M$ recurrent: ${ }^{\prime} \Rightarrow$ ": $X_{n} \geq M_{n}$.
${ }^{\prime} \Leftarrow^{\prime \prime}$: Let $b<\infty$ be such that $\sum_{n \geq 0} P\left[M_{n} \leq b\right]=\infty$ and $P\left[Y_{1} \leq b\right] \geq 1 / 2$. Set
$\tau:=\inf \left\{m \geq 0: a^{m} Y_{1} \leq b\right\}$. Since $X_{n}=\sum_{m=1}^{n} a^{n-m} Y_{m}$ and $M_{n}=\max _{m=1}^{n} a^{n-m} Y_{m}$,
$E\left[X_{n} \mid M_{n} \leq b\right]=\sum_{m=1}^{n} E\left[a^{n-m} Y_{m} \mid \bigcap_{i=1}^{n}\left\{a^{n-i} Y_{i} \leq b\right\}\right]=\sum_{m=1}^{n} E\left[a^{n-m} Y_{m} \mid a^{n-m} Y_{m} \leq b\right]$

$$
=\sum_{m=0}^{n-1} \frac{E\left[a^{m} Y_{1}, a^{m} Y_{1} \leq b\right]}{P\left[a^{m} Y_{1} \leq b\right]} \leq 2 E\left[Y_{1} \sum_{m \geq \tau} a^{m}\right]=\frac{2 E\left[a^{\tau} Y_{1}\right]}{1-a} \leq \frac{2 b}{1-a}=: c
$$

Therefore, $P\left[X_{n} \leq 2 c\right] \geq P\left[X_{n} \leq 2 c, M_{n} \leq b\right]=P\left[M_{n} \leq b\right]-P\left[X_{n}>2 c, M_{n} \leq b\right]$

$$
\geq P\left[M_{n} \leq b\right]-\frac{E\left[X_{n}, M_{n} \leq b\right]}{2 c} \geq \frac{P\left[M_{n} \leq b\right]}{2}
$$

which is not summable.

Galton-Watson process $\left(Z_{n}\right)_{n \geq 0} \underline{\text { with immigration }}\left(Y_{n}\right)_{n \geq 0}$: Heathcote 1965.
Let $\left(X_{n, j}\right)_{n \geq 0, j \geq 1}$ be i.i.d. and independent of the i.i.d. sequence $\left(Y_{n}\right)_{n \geq 1}$ with $P\left[X_{1,1} \in \mathbb{N}_{0}\right]=1=P\left[Y_{1} \in \mathbb{N}_{0}\right]$. Set $Z_{0}:=0$ and

$$
Z_{n}:=Y_{n}+\sum_{j=1}^{Z_{n-1}} X_{n-1, j} \quad \text { for all } n \geq 1
$$

Pakes 1975, 1979: Sufficient conditions for recurrence or transience of Z in terms of generating functions

Theorem 5: (Z. 2016) Assume $0<a:=E\left[X_{1,1}\right]<1$ and $E\left[X_{1,1} \log X_{1,1}\right]<\infty$ and let $y \in(0, \infty)$ be such that $P\left[Y_{1} \leq y\right]>0$. Then $\left(Z_{n}\right)_{n \geq 0}$ is recurrent iff

$$
\sum_{n \geq 0} \prod_{m=0}^{n} P\left[Y_{1} \leq y a^{-m}\right]=\infty
$$

The proof uses that

- $X_{n}:=E\left[Z_{n} \mid\left(Y_{m}\right)_{m \geq 1}\right]$ defines an autoregressive process: $X_{n}=Y_{n}+a X_{n-1}$
- $P[$ GW-process with average offspring a is not extinct at time $n] \sim$ const a^{n}.

Application of Theorem 5 to frog processes

Fix $p, r \in(0,1)$. Put on each $n \geq 0$ a number Y_{n} of sleeping frogs. Wake up the frogs at 0 . Once woken up, every frog performs a nearest-neighbor random walk, jumping independently of everything else with probability $p r$ to the right and with probability $p(1-r)$ to the left. In each step it dies with probability $1-p$. Whenever a frog visits a site with sleeping frogs those frogs are woken up and start their own independent lives.

兹

Corollary 6: (Z. 2016) Let $y \in(0, \infty)$ be such that $P\left[Y_{0} \leq y\right]>0$. Then the following statements are equivalent.

- Almost surely only finitely many different frogs visit 0 .
- Almost surely only finitely many frogs are woken up.
- $\sum_{n \geq 0} \prod_{m=0}^{n} P\left[Y_{0} \leq y a^{-m}\right]=\infty$, where $a:=\frac{1-\sqrt{1-4 p^{2} r(1-r)}}{2 p(1-r)}$ is the probability that a frog starting at 0 ever reaches 1 .

Proof: $Z_{n}:=\#$ frogs ever jumping from n to $n+1$ gives a subcritical branching process with immigration up to the first time of extinction
(2) General dimension $d \geq 2$:

Theorem 7: (Z. 2016) Let $A \in[0, \infty)^{d \times d}$ be primitive with spectral radius $\rho<1$, $y \in(0, \infty)$ and let $\left(Y_{n}\right)_{n \geq 1}$ be an i.i.d. sequence of $[0, \infty)^{d}$-valued random variables such that $P\left[\left\|Y_{1}\right\| \leq y\right]>0$. Set $X_{0}:=0$ and

$$
X_{n}:=A X_{n-1}+Y_{n}
$$

for all $n \geq 1$. Then $\left(X_{n}\right)_{n \geq 0}$ is recurrent iff

$$
\sum_{n \geq 0} \prod_{m=0}^{n} P\left[\left\|Y_{1}\right\| \leq y \rho^{-m}\right]=\infty
$$

A similar statement holds for multitype Galton-Watson processes with immigration.

(3) Random environment:

Theorem 8: (Z. 2016) Let $\left(Y_{n}\right)_{n \geq 0}$ be a sequence of $[0, \infty)^{d}$-valued random vectors and let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of $[0, \infty)^{d \times d}$-valued random matrices. Assume that $\left(A_{n}, Y_{n}\right)_{n \geq 1}$ is i.i.d.. Let $y \in(0, \infty)$ be such that $P\left[\left\|Y_{1}\right\| \leq y\right]>0$. Define the a.s. limit

$$
\lambda:=\lim _{n \rightarrow \infty} \frac{-\ln \left\|A_{1} \ldots A_{n}\right\|}{n} \quad\left(=-E\left[\ln A_{1}\right] \text { if } d=1\right)
$$

and assume $\lambda>0$. Assume a certain boundedness condition (BA) on A_{1} and a regularity condition (REG) on Y_{1}. Set $X_{0}:=0$ and

$$
X_{n}:=A_{n} X_{n-1}+Y_{n} \quad \text { for all } n \geq 1
$$

Then $\left(X_{n}\right)_{n \geq 0}$ is recurrent iff $\quad \sum_{n \geq 0} \prod_{m=0}^{n} P\left[\left\|Y_{1}\right\| \leq y e^{m \lambda}\right]=\infty$.
A similar statement holds for multitype Galton-Watson processes $\left(Z_{n}\right)_{n \geq 0}$ with immigration in random environment. Earlier results:
Theorem 9 (Bauernschubert 2013): If $d=1$ then under weak assumptions

$$
\left(Z_{n}\right)_{n \geq 0}\left(\text { and }\left(X_{n}\right)_{n \geq 0}\right) \text { is transient if } \quad \liminf _{t \rightarrow \infty} t \cdot P\left[\ln Y_{1}>t\right]>-E\left[\ln A_{1}\right] \quad \text { and }
$$

$\left(Z_{n}\right)_{n \geq 0}$ is recurrent if $\quad \limsup t \cdot P\left[\ln Y_{1}>t\right]<-E\left[\ln A_{1}\right]$.

Assumptions in Theorem 8:

> If $d=1$ then $\ln A_{1}-E\left[\ln A_{1}\right]$ is sub-Gaussian.
> If $d \geq 2$ then there exist $K, \gamma \in \mathbb{N}$ and $\kappa>0$ such that a.s.
> $\left\|A_{1}\right\| \leq \gamma$ and $A_{1} \ldots A_{K} \in[\kappa, \infty)^{d \times d}$.

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{2 / 3}(\ln x)^{2} P\left[\left\|Y_{1}\right\|>e^{x}\right]=0 \quad \text { or } \quad \liminf _{x \rightarrow \infty} x P\left[\left\|Y_{1}\right\|>e^{x}\right]>\lambda \tag{REG}
\end{equation*}
$$

Main tool for the proof of Theorem 8:
Lemma 10 (Sub-Gaussian concentration inequality) Assume (BA) and set $S_{n}:=-\ln \left\|A_{1} \ldots A_{n}\right\|$. Then there are constants c_{1} and c_{2} such that for all $n \in \mathbb{N}$ and $t \in(0, \infty)$,

$$
P\left[\left|S_{n}-\lambda n\right| \geq t\right] \leq c_{1} \exp \left(-c_{2} t^{2} / n\right) .
$$

Application of Theorem 8 to excited random walks in random environment:

 Let $\omega_{x}, x \in \mathbb{Z}$, be i.i.d. (0,1)-valued. If there are no cookies at the walker's current position x then the walker jumps independently of everything else with probability ω_{x} to $x+1$ and with probability $1-\omega_{x}$ to $x-1$. This walk (without any cookies at all) is a.s. transient to the left iff $E\left[\ln \left(1-\omega_{0}\right) / \omega_{0}\right]>0$ (Solomon '75, Smith-Wilkinson '69).

Corollary 11: (Bauernschubert 2013, Z. 2016) Assume that $\left(\omega_{x}, Y_{x}\right)_{x \in \mathbb{Z}}$ is i.i.d., $E\left[\ln \left(1-\omega_{0}\right) / \omega_{0}\right]>0, \ln \left(1-\omega_{0}\right) / \omega_{0}-E\left[\ln \left(1-\omega_{0}\right) / \omega_{0}\right]$ sub-Gaussian, (REG), and $P\left[Y_{0}=0\right]>0$.
(a) If $E\left[\ln _{+} Y_{0}\right]<\infty$ then the walk is a.s. transient to the left.
(b) If $E\left[\ln _{+} Y_{0}\right]=\infty$ and if

$$
\sum_{n \geq 0} \prod_{m=0}^{n} P\left[Y_{0} \leq \exp \left(m E\left[\ln \frac{1-\omega_{0}}{\omega_{0}}\right]\right)\right]=\infty
$$

then the walk is a.s. recurrent.
(c) If the series in (b) is finite then the walk is a.s. transient to the right.

Proof: $Z_{n}^{\prime}:=\#$ upcrossing from n to $n+1$. Then $Z_{n}^{\prime}=Z_{n}$ if the first excursion to the right is finite and $Z_{n}^{\prime} \leq Z_{n}$ otherwise.

[^0]: ${ }^{1}$ Gade. Deep water exchanges in a sill fjord: a stochastic process. J. Phys. Oceanography, 1973

