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Recurrence/transience criteria for

(1) 1-dimensional

(a) Non-negative contractive autoregressive processes of order 1:

Xn := aXn−1 + Yn

0 < a < 1, (Yn)n≥1 i.i.d., [0,∞)-valued

(b) Subcritical Galton-Watson processes with immigration

(2) Generalization of (1) to d ≥ 1-dimensional processes

(3) Generalization of (2) to random environments
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Theorem 1: (Random exchange process1, long range percolation; Lamperti,
Kesten ’70; Kellerer ’92, ’06) Let Wn, n ≥ 1, be i.i.d. N0-valued, P[W1 = 0] > 0.

Set R0 := 0 and Rn := max{Rn−1 − 1,Wn} for n ≥ 1.

Lamperti: (Rn)n≥0 is transient if lim inf
n→∞

n P[W1 > n] > 1 and

(Rn)n≥0 is recurrent if lim sup
n→∞

n P[W1 > n] < 1.

Kesten; Kellerer: (Rn)n≥0 is recurrent iff
∑
n≥0

n∏
m=0

P[W1 ≤ m] = ∞. (∗)

Proof of (∗): For all n ≥ 1 it holds that Rn =
n

max
m=1

(Wm − n + m) ≥ 0. The state 0

(and by irreducibility the Markov chain) is recurrent iff G (0, 0) =∞, i.e. iff

∞ =
∑
n≥1

P[Rn = 0] =
∑
n≥1

P
[

n
max
m=1

(Wm − n + m) ≤ 0
]

indep.
=

∑
n≥1

n∏
m=1

P[Wm ≤ n −m]

i.d.
=

∑
n≥1

n∏
m=1

P[W1 ≤ n −m] =
∑
n≥1

n−1∏
m=0

P[W1 ≤ m] =
∑
n≥0

n∏
m=0

P[W1 ≤ m]. �

1Gade. Deep water exchanges in a sill fjord: a stochastic process. J. Phys. Oceanography, 1973
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(Wn)n iid,W1 ∈ N0 a.s., P[W1 = 0] > 0
Rn = max{Rn−1 − 1,Wn}

}
(Rn)n rec. ⇔

∑
n≥0

n∏
m=0

P[W1 ≤ m] =∞

(Wn)n iid,W1≥ 0 a.s., P[W1 = 0] > 0
Rn = max{Rn−1 − 1,Wn}

}
(Rn)n rec. ⇔

∑
n≥0

n∏
m=0

P[W1 ≤ m] =∞

(Wn)n iid,W1 ≥ 0 a.s., P[W1 = 0] > 0
Rn = max{Rn−1 − c ,Wn}, c > 0

}
(Rn)n rec. ⇔

∑
n≥0

n∏
m=0

P[W1 ≤ mc] =∞

(Wn)n iid,W1 ≥ 0 a.s., P[W1≤ w ] > 0
Rn = max{Rn−1 − c ,Wn}, c > 0,w ≥ 0

}
(Rn)n rec. ⇔

∑
n≥0

n∏
m=0

P[W1 ≤ w+mc] =∞

Max-autoregressive process (Mn)n :=

m
(eRn)n rec. (a := e−c ,Yn := eWn , y := ew )

(Yn)n iid,Y1 ≥ 1 a.s., P[Y1 ≤ y ] > 0
Mn = max{aMn−1,Yn}, 0 < a < 1

}
(Mn)n rec. ⇔

∑
n≥0

n∏
m=0

P[Y1 ≤ ya−m] =∞

(Yn)n iid,Y1 ≥ 0 a.s., P[Y1 ≤ y ] > 0
Xn = aXn−1+Yn, 0 < a < 1

} m?
(Xn)n rec.
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Definition of recurrence/transience (see e.g. Kellerer 2006 for a more general
setting):

Let H be the set of continuous functions from [0,∞)d to [0,∞)d which are monotone
with respect to the partial order ≤ on [0,∞)d .

I A [0,∞)d -valued Markov chain V = (Vn)n≥0 with initial state V0 = 0
(unimportant) is order-preserving iff it fulfills a recursion of the form Vn = Hn(Vn−1)
for an i.i.d. sequence (Hn)n≥1 of H-valued random variables.

I If V is order-preserving then V is called irreducible iff for all x ∈ [0,∞)d there is
some n ≥ 0 such that P[Vn ≥ x ] > 0.

I An irreducible V is called recurrent iff there exists b ∈ (0,∞) such that∑
n≥0

P[‖Vn‖ ≤ b] =∞. Otherwise V is called transient.

Fact: Let V be irreducible.
Then V is recurrent iff there is a b <∞ such that a.s. ‖Vn‖ ≤ b infinitely often.
V is transient iff a.s. all components of V diverge to ∞.
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Theorem 2: (Z., 2016) Let 0 < a < 1, y ≥ 0 and let (Yn)n≥1 be an i.i.d. sequence of
non-negative random variables such that P[Y1 ≤ y ] > 0. Set X0 := 0 and

Xn := aXn−1 + Yn

for all n ≥ 1. Then (Xn)n≥0 is recurrent iff∑
n≥0

n∏
m=0

P[Y1 ≤ ya−m] =∞. (∗)

Earlier results:

Theorem 3: (Kellerer 1992, unpublished) (Xn)n≥0 is

transient if lim inf
t→∞

t · P[lnY1 > t] > − ln a and

recurrent if lim sup
t→∞

t · P[lnY1 > t] < − ln a.

Theorem 4: (Zeevi, Glynn 2004) Let P[ln(1 + Y1) > t] = (1 + βt)−p for some
β > 0 and p > 0 (“log-Pareto”). Then (Xn)n≥0 is recurrent if p > 1 or (p = 1 and
β ln(1/a) ≥ 1), and transient otherwise.

Theorems 3 and 4 follow from Theorem 2 and Raabe’s test. c©Zerner 5



Pf Th 1: Claim: Xn = aXn−1 + Yn recurrent ⇔ Mn = max{aMn−1,Yn} recurrent ⇔∑
n≥0

n∏
m=0

P[Y1 ≤ ya−m] =∞ (∗)

M recurrent ⇔ (∗): X
X recurrent ⇔ M recurrent:

”
⇒“: Xn ≥ Mn.

”
⇐“: Let b <∞ be such that

∑
n≥0 P[Mn ≤ b] =∞ and P[Y1 ≤ b] ≥ 1/2. Set

τ := inf{m ≥ 0 : amY1 ≤ b}. Since Xn =
n∑

m=1

an−mYm and Mn =
n

max
m=1

an−mYm,

E [Xn |Mn ≤ b] =
n∑

m=1

E

[
an−mYm

∣∣∣∣ n⋂
i=1

{an−iYi ≤ b}
]

=
n∑

m=1

E

[
an−mYm

∣∣∣∣ an−mYm ≤ b

]
=

n−1∑
m=0

E [amY1, amY1 ≤ b]

P[amY1 ≤ b]
≤ 2E

[
Y1

∑
m≥τ

am
]

=
2E [aτY1]

1− a
≤ 2b

1− a
=: c .

Therefore, P[Xn ≤ 2c] ≥ P[Xn ≤ 2c ,Mn ≤ b] = P[Mn ≤ b]− P[Xn > 2c ,Mn ≤ b]

≥ P[Mn ≤ b]− E [Xn,Mn ≤ b]

2c
≥ P[Mn ≤ b]

2
,

which is not summable. �
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Galton-Watson process (Zn)n≥0 with immigration (Yn)n≥0: Heathcote 1965.

Let (Xn,j)n≥0,j≥1 be i.i.d. and independent of the i.i.d. sequence (Yn)n≥1 with
P[X1,1 ∈ N0] = 1 = P[Y1 ∈ N0]. Set Z0 := 0 and

Zn := Yn +

Zn−1∑
j=1

Xn−1,j for all n ≥ 1.

Pakes 1975, 1979: Sufficient conditions for recurrence or transience of Z in terms of
generating functions

Theorem 5: (Z. 2016) Assume 0 < a := E [X1,1] < 1 and E [X1,1 logX1,1] <∞ and let
y ∈ (0,∞) be such that P[Y1 ≤ y ] > 0. Then (Zn)n≥0 is recurrent iff∑

n≥0

n∏
m=0

P[Y1 ≤ ya−m] =∞.

The proof uses that

I Xn := E [Zn | (Ym)m≥1] defines an autoregressive process: Xn = Yn + aXn−1
I P[GW-process with average offspring a is not extinct at time n] ∼ const an.
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Application of Theorem 5 to frog processes
Fix p, r ∈ (0, 1). Put on each n ≥ 0 a number Yn of sleeping frogs. Wake up the frogs
at 0. Once woken up, every frog performs a nearest-neighbor random walk, jumping
independently of everything else with probability pr to the right and with probability
p(1− r) to the left. In each step it dies with probability 1− p. Whenever a frog visits a
site with sleeping frogs those frogs are woken up and start their own independent lives.

No frogs

−2 −1 0 1 2 3 4 5

prp(1− r)

1− p
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Corollary 6: (Z. 2016) Let y ∈ (0,∞) be such that P[Y0 ≤ y ] > 0. Then the following
statements are equivalent.

I Almost surely only finitely many different frogs visit 0.

I Almost surely only finitely many frogs are woken up.

I
∑
n≥0

n∏
m=0

P
[
Y0 ≤ ya−m

]
=∞, where a :=

1−
√

1− 4p2r(1− r)

2p(1− r)
is the probability

that a frog starting at 0 ever reaches 1.

Proof: Zn := # frogs ever jumping from n to n + 1 gives a subcritical branching
process with immigration up to the first time of extinction
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(2) General dimension d ≥ 2:

Theorem 7: (Z. 2016) Let A ∈ [0,∞)d×d be primitive with spectral radius ρ < 1,
y ∈ (0,∞) and let (Yn)n≥1 be an i.i.d. sequence of [0,∞)d -valued random variables
such that P[‖Y1‖ ≤ y ] > 0. Set X0 := 0 and

Xn := AXn−1 + Yn

for all n ≥ 1. Then (Xn)n≥0 is recurrent iff

∑
n≥0

n∏
m=0

P[‖Y1‖ ≤ yρ−m] =∞.

A similar statement holds for multitype Galton-Watson processes with immigration.
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(3) Random environment:
Theorem 8: (Z. 2016) Let (Yn)n≥0 be a sequence of [0,∞)d -valued random vectors
and let (An)n≥1 be a sequence of [0,∞)d×d -valued random matrices. Assume that
(An,Yn)n≥1 is i.i.d.. Let y ∈ (0,∞) be such that P[‖Y1‖ ≤ y ] > 0. Define the a.s. limit

λ := lim
n→∞

− ln ‖A1 ...An‖
n

(= −E [lnA1] if d = 1)

and assume λ > 0. Assume a certain boundedness condition (BA) on A1 and a
regularity condition (REG) on Y1. Set X0 := 0 and

Xn := AnXn−1 + Yn for all n ≥ 1.

Then (Xn)n≥0 is recurrent iff
∑
n≥0

n∏
m=0

P[‖Y1‖ ≤ yemλ] =∞.

A similar statement holds for multitype Galton-Watson processes (Zn)n≥0 with
immigration in random environment. Earlier results:
Theorem 9 (Bauernschubert 2013): If d = 1 then under weak assumptions

(Zn)n≥0 (and (Xn)n≥0) is transient if lim inf
t→∞

t · P[lnY1 > t] > −E [lnA1] and

(Zn)n≥0 is recurrent if lim sup
t→∞

t · P[lnY1 > t] < −E [lnA1].
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Assumptions in Theorem 8:

If d = 1 then lnA1 − E [lnA1] is sub-Gaussian.
If d ≥ 2 then there exist K , γ ∈ N and κ > 0 such that a.s.
‖A1‖ ≤ γ and A1 ...AK ∈ [κ,∞)d×d .

(BA)

lim
x→∞

x2/3(ln x)2P[‖Y1‖ > ex ] = 0 or lim inf
x→∞

xP[‖Y1‖ > ex ] > λ. (REG)

Main tool for the proof of Theorem 8:

Lemma 10 (Sub-Gaussian concentration inequality) Assume (BA) and set
Sn := − ln ‖A1 ...An‖. Then there are constants c1 and c2 such that for all n ∈ N and
t ∈ (0,∞),

P [|Sn − λn| ≥ t] ≤ c1 exp
(
−c2t2/n

)
.
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Application of Theorem 8 to excited random walks in random environment:
Let ωx , x ∈ Z, be i.i.d. (0,1)-valued. If there are no cookies at the walker’s current
position x then the walker jumps independently of everything else with probability ωx

to x + 1 and with probability 1− ωx to x − 1. This walk (without any cookies at all) is
a.s. transient to the left iff E [ln(1− ω0)/ω0] > 0 (Solomon ’75, Smith-Wilkinson ’69).

Now perturb this walk by putting on each x ∈ Z a stack of Yx cookies. If there is at
least one cookie at the walker’s position x then the walker eats one of these cookies
and moves to x + 1.

ωx1− ωx

xx

1
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Corollary 11: (Bauernschubert 2013, Z. 2016) Assume that (ωx ,Yx)x∈Z is i.i.d.,
E [ln(1− ω0)/ω0] > 0, ln(1− ω0)/ω0 − E [ln(1− ω0)/ω0] sub-Gaussian, (REG), and
P[Y0 = 0] > 0.

(a) If E [ln+ Y0] <∞ then the walk is a.s. transient to the left.

(b) If E [ln+ Y0] =∞ and if

∑
n≥0

n∏
m=0

P

[
Y0 ≤ exp

(
mE

[
ln

1− ω0

ω0

])]
=∞

then the walk is a.s. recurrent.

(c) If the series in (b) is finite then the walk is a.s. transient to the right.

Proof: Z ′n := # upcrossing from n to n + 1. Then Z ′n = Zn if the first excursion to the
right is finite and Z ′n ≤ Zn otherwise.

c©Zerner 14


