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Recurrence/transience criteria for

(1) 1-dimensional
(a) Non-negative contractive autoregressive processes of order 1:

Xpi=aXp21+ Y,
0<a<l, (Yy)s>1iid., [0, 00)-valued

(b) Subcritical Galton-Watson processes with immigration

(2) Generalization of (1) to d > 1-dimensional processes

(3) Generalization of (2) to random environments
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Theorem 1: (Random exchange process®, long range percolation; Lamperti,
Kesten '70; Kellerer '92, '06) Let W, n > 1, be i.i.d. Ng-valued, P[W; = 0] > 0.

Set Ry:=0 and R,:=max{R,-1—1,W,} forn>1.

Lamperti: (Rn)n>o is transient if liminfn P[Wy >n] > 1 and
- n—oo
(Rn)n>o is recurrent if limsupn P[Wy >n] < 1.
n—o00
n
Kesten; Kellerer: (Rn)n>o0 is recurrent iff Z H PIWL <m] = oc. (%)
n>0 m=0

Proof of (x): For all n > 1 it holds that R, = mr:':\)l(( Wm — n+ m) > 0. The state 0
m=
(and by irreducibility the Markov chain) is recurrent iff G(0,0) = oo, i.e. iff

00 = 3 PRy =0] = > P [max(Won —n+m) <0 " S T P[Woy < 0 — ]

n>1 , n>1 o1 nznl m=1
S S [IPmaicn-—m=Y [[Pmi<m=[[PMi<m. O
n>1 m=1 n>1 m=0 n>0 m=0

!Gade. Deep water exchanges in a sill fjord: a stochastic process. J. Phys. Oceanography, 1973 5
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(Wn)n iid, Wp € No a.s., P[W1 = 0] >0
Ry, =max{R,—1 — 1, W, }

Ry, = max{R,—1 — 1, W,}

(W,)n iid, Wi > 0 as., P[W; = 0] > 0
Ry =max{Rp—1 — ¢, Wp},c >0

(Wa)n iid, Wy >0 as., PIWA< w] >0

(W,), iid, Wi> 0 as., P[W; =0] >0 }
Ry =max{Rp—1 — ¢, Wp},c>0,w >0 }

Max-autoregressive process (M,), : (eR"),, rec.

(Yo)niid, Yo > 1 as., P[Y1 <y] >0
M, = max{aM,_1, Y}, 0<a<1

(Yn)n iid, Y1 >0 as,, P[Yl < y] >0
Xn = aanlJFYn, O<axl1

—~
=<
N
3
=
D
@]

& ZﬁP[ngm]:oo

n>0 m=0

& ZﬁP[ngm]:oo

n>0 m=0

& ZﬁP[ngmc]:oo

n>0 m=0

& Z ﬁ P[Wy < w+mc] = 00

n>0 m=0

ai=e Y, =eVn y.—eW
( n y

& Z ﬁ PlY1 <ya " =00

n>0 m=0
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Definition of recurrence/transience (see e.g. Kellerer 2006 for a more general
setting):

Let H be the set of continuous functions from [0, 00)9 to [0, c0)¢ which are monotone
with respect to the partial order < on [0, 00)?.

> A [0, 00)%valued Markov chain V = (V,),>0 with initial state Vo =0
(unimportant) is order-preserving iff it fulfills a recursion of the form V,, = Hp(V,-1)
for an i.i.d. sequence (H,)n>1 of H-valued random variables.

» If V is order-preserving then V is called irreducible iff for all x € [0, 00)9 there is
some n > 0 such that P[V,, > x] > 0.

» An irreducible V is called recurrent iff there exists b € (0, 00) such that
Z P[||Va|| < b] = co. Otherwise V is called transient.
n>0

Fact: Let V be irreducible.
Then V is recurrent iff there is a b < oo such that a.s. ||V,|| < b infinitely often.
V is transient iff a.s. all components of V diverge to oc.
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Theorem 2: (Z., 2016) Let 0 < a <1,y >0 and let (Y,)n>1 be an i.i.d. sequence of
non-negative random variables such that P[Y1 < y] > 0. Set Xy := 0 and

Xy =aXp—1+ Yn
for all n > 1. Then (Xp)n>0 is recurrent iff
n
Y TPV <ya ™ =c. (%)
n>0 m=0
Earlier results:
Theorem 3: (Kellerer 1992, unpublished) (X,),>0 is
transient if liminft-PllnYy >t] > —Ina and
t—o0

recurrent if limsupt-PllnYy >t] < —Ina.
t—o00

Theorem 4: (Zeevi, Glynn 2004) Let P[In(1 + Y1) > t] = (1 4 Bt)~P for some
B >0 and p > 0 (“log-Pareto”). Then (Xp)n>0 is recurrent if p > 1 or (p =1 and
BIn(1/a) > 1), and transient otherwise.

Theorems 3 and 4 follow from Theorem 2 and Raabe’s test. ©zemer D



Pf Th 1: Claim: X, = aX,_1 + Y, recurrent & M, = max{aM,_1, Y,} recurrent &

Y JIPMi<ya = (%)

n>0 m=0
M recurrent < (x): v
X recurrent < M recurrent: ,,=": X, > M,.
.<": Let b < 0o be such that ) ., P[M, < b] = co and P[Y; < b] > 1/2. Set

7:=inf{m>0:a"Yy < b}. Since Xo = Y a" "V, and M, = maxa" "y,

n m=1 n
({a""Y: < b}] =) E[a”’"Ym
i=1 m=1

n—1
E[a™Y1,a™ Y1 < b] 2E[aVi] _ 2b
= < 2E|Y; ml = < =:cC.
mz::O PlamY; < b] - ln%;a 1-a “1-a ¢
Therefore, P[X, <2c] > P[X,<2¢, M, < b]=P[M, < b]—P[X,>2c, M, < b]
E[Xn, My < ] _ P[My < b]
2c - 2 '

EX, M, <b] = ) E[a”’”Ym
m=1

a" "y, < b]

> P[M, < b] —

which is not summable. 6
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Galton-Watson process (Z,)n>0 with immigration (Y,)s>0: Heathcote 1965.

Let (X,)n>0,/>1 be i.i.d. and independent of the i.i.d. sequence (Y})n>1 with
P[X1’1 € No] =1= P[Yl € No]. Set Zp := 0 and
Zy—1
Zy:=Yn+ Y Xp1j foralln>1
j=1
Pakes 1975, 1979: Sufficient conditions for recurrence or transience of Z in terms of
generating functions

Theorem 5: (Z. 2016) Assume 0 < a:= E[X11] <1 and E[X1,1log X11] < oo and let
y € (0,00) be such that P[Y1 < y] > 0. Then (Z,)n>0 is recurrent iff

Z H PlY:1 <ya "] = .

n>0 m=0
The proof uses that

> X, = E[Z,|(Ym)m>1] defines an autoregressive process: X, = Y, + aXp_1

» P[GW-process with average offspring a is not extinct at time n] ~ const a". -
(©Zerner



Application of Theorem 5 to frog processes

Fix p,r € (0,1). Put on each n > 0 a number Y, of sleeping frogs. Wake up the frogs
at 0. Once woken up, every frog performs a nearest-neighbor random walk, jumping
independently of everything else with probability pr to the right and with probability
p(1 — r) to the left. In each step it dies with probability 1 — p. Whenever a frog visits a
site with sleeping frogs those frogs are woken up and start their own independent lives.

) 2o, o o, 3 g ¢

No frogs
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Corollary 6: (Z. 2016) Let y € (0, 00) be such that P[Yy < y] > 0. Then the following
statements are equivalent.

> Almost surely only finitely many different frogs visit 0.

» Almost surely only finitely many frogs are woken up.

n

1— /1= 4p2r(1—
> Z H P[Yo <ya ™| = oo, where a := v pril—r) is the probability
n>0 m=0 2p(1 —r)

that a frog starting at 0 ever reaches 1.

Proof: Z,, := # frogs ever jumping from n to n+ 1 gives a subcritical branching
process with immigration up to the first time of extinction
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(2) General dimension d > 2:

Theorem 7: (Z. 2016) Let A € [0,00)?*? be primitive with spectral radius p < 1,
y € (0,00) and let (Y,)n>1 be an i.i.d. sequence of [0, 00)9-valued random variables
such that P[||Y1|| < y] > 0. Set Xp := 0 and

Xni=AXp—1+ Y

for all n > 1. Then (X,)n>0 is recurrent iff

ST PUYAl < yo ™ = .

n>0 m=0

A similar statement holds for multitype Galton-Watson processes with immigration.
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(3) Random environment:

Theorem 8: (Z. 2016) Let (Y,)n>0 be a sequence of [0, 00)?-valued random vectors
and let (Ap)n>1 be a sequence of [0, 00)¥*?-valued random matrices. Assume that
(An, Yn)n>1 is iid.. Let y € (0,00) be such that P[|| Y1|| < y] > 0. Define the a.s. limit

—In||A1... Ap .
Nom fim AL Al e Ay g = 1)
n—o0 n
and assume A > 0. Assume a certain boundedness condition (BA) on A and a

regularity condition (REG) on Yi. Set Xp := 0 and
Xn = ApXo1 + Ya forall n > 1.

n
Then (Xp)n>0 is recurrent iff Z H P[|| Y1 < ye™] = cc.
n>0 m=0
A similar statement holds for multitype Galton-Watson processes (Z,)n>0 with
immigration in random environment. Earlier results:
Theorem 9 (Bauernschubert 2013): /f d = 1 then under weak assumptions
(Zn)n>0 (and (Xa)no) is transient if IitriLr;f t-PlinYy >t] >—E[InA;] and

(Zn)n>o is recurrent if  limsupt- P[In Y1 > t] < —E[In Aq].
t—00 (©Zerner 1].



Assumptions in Theorem 8:

If d =1 then In Ay — E[In Aq] is sub-Gaussian.
If d > 2 then there exist K,y € N and x > 0 such that a.s. (BA)
|A1]] < v and A; ... Ak € [k, 00)9*d.

lim X*B(Inx)?P[|Y1] > €]=0  or liminfxP[|| Y[l > €] > A (REG)

Main tool for the proof of Theorem 8:

Lemma 10 (Sub-Gaussian concentration inequality) Assume (BA) and set
Sp = —1In||A1... Ap||. Then there are constants ¢; and ¢, such that for all n € N and

t €(0,00),
P[|Sh — An| > t] < cpexp (—c2t2/n) :
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Application of Theorem 8 to excited random walks in random environment:

Let wy, x € Z, be i.i.d. (0,1)-valued. If there are no cookies at the walker's current
position x then the walker jumps independently of everything else with probability w;y
to x + 1 and with probability 1 — wy to x — 1. This walk (without any cookies at all) is
a.s. transient to the left iff E[In(1 — wo)/wo] > 0 (Solomon '75, Smith-Wilkinson '69).
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Corollary 11: (Bauernschubert 2013, Z. 2016) Assume that (wx, Yx)xez is i.i.d.,
E[In(1 — wo)/wo] > 0, In(1 — wp)/wo — E[In(1 — wp)/wo] sub-Gaussian, (REG), and
P[Yo=0] > 0.

(a) If E[lny Yp] < oo then the walk is a.s. transient to the left.

(b) If E[Iny Yp] = oo and if

S fiefeen(oe b))

n>0 m=0

then the walk is a.s. recurrent.

(c) If the series in (b) is finite then the walk is a.s. transient to the right.

Proof: Z] := # upcrossing from n to n+ 1. Then Z) = Z, if the first excursion to the
right is finite and Z), < Z,, otherwise.
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