KdV Equation With Eergodic Initial Data

S. Kotani

Osaka University Emeritus Professor

CLASSICAL AND QUANTUM MOTION IN DISORDERED ENVIRONMENT

A random event in honour of Ilya Goldsheid's 70-th birthday Queen Mary, University of London, 18-22/12/2017

Introduction

- KdV hierarchy $q=q(t, x)$

1st	shift	$\partial_{t} q=\partial_{x} q$
2nd	KdV eq.	$\partial_{t} q=\partial_{x}^{3} q-6 q \partial_{x} q$
	\vdots	
nth		$\partial_{t} q=\partial_{x}^{2 n+1} q+p\left(q, \partial_{x} q, \cdots, \partial_{x}^{2 n} q\right)$
	\vdots	

Introduction

- KdV hierarchy $q=q(t, x)$

1st	shift	$\partial_{t} q=\partial_{x} q$
2nd	KdV eq.	$\partial_{t} q=\partial_{x}^{3} q-6 q \partial_{x} q$
	\vdots	
nth		$\partial_{t} q=\partial_{x}^{2 n+1} q+p\left(q, \partial_{x} q, \cdots, \partial_{x}^{2 n} q\right)$
	\vdots	

- History

Introduction

- KdV hierarchy $q=q(t, x)$

1st	shift	$\partial_{t} q=\partial_{x} q$
2nd	KdV eq.	$\partial_{t} q=\partial_{x}^{3} q-6 q \partial_{x} q$
	\vdots	
nth		$\partial_{t} q=\partial_{x}^{2 n+1} q+p\left(q, \partial_{x} q, \cdots, \partial_{x}^{2 n} q\right)$
	\vdots	

- History
(1) 1895 D.J. Korteweg, G. de Vries

Introduction

- KdV hierarchy $q=q(t, x)$

1st	shift	$\partial_{t} q=\partial_{x} q$
2nd	KdV eq.	$\partial_{t} q=\partial_{x}^{3} q-6 q \partial_{x} q$
	\vdots	
nth		$\partial_{t} q=\partial_{x}^{2 n+1} q+p\left(q, \partial_{x} q, \cdots, \partial_{x}^{2 n} q\right)$
	\vdots	

- History
(1) 1895 D.J. Korteweg, G. de Vries
(2) 1967 C.S. Gardner, G. Green, M.D. Kruskal, R.M. Miura

$$
L_{q}=-\partial_{x}^{2}+q \text { for real valued } q \in L_{l o c}^{1}(\boldsymbol{R})
$$

Introduction

- KdV hierarchy $q=q(t, x)$

1st	shift	$\partial_{t} q=\partial_{x} q$
2nd	KdV eq.	$\partial_{t} q=\partial_{x}^{3} q-6 q \partial_{x} q$
	\vdots	
nth		$\partial_{t} q=\partial_{x}^{2 n+1} q+p\left(q, \partial_{x} q, \cdots, \partial_{x}^{2 n} q\right)$
	\vdots	

- History
(1) 1895 D.J. Korteweg, G. de Vries
(2) 1967 C.S. Gardner, G. Green, M.D. Kruskal, R.M. Miura $L_{q}=-\partial_{x}^{2}+q$ for real valued $q \in L_{l o c}^{1}(\boldsymbol{R})$.
(3) 1968 P. Lax

Introduction

- KdV hierarchy $q=q(t, x)$

1st	shift	$\partial_{t} q=\partial_{x} q$
2nd	KdV eq.	$\partial_{t} q=\partial_{x}^{3} q-6 q \partial_{x} q$
	\vdots	
nth		$\partial_{t} q=\partial_{x}^{2 n+1} q+p\left(q, \partial_{x} q, \cdots, \partial_{x}^{2 n} q\right)$
	\vdots	

- History
(1) 1895 D.J. Korteweg, G. de Vries
(2) 1967 C.S. Gardner, G. Green, M.D. Kruskal, R.M. Miura $L_{q}=-\partial_{x}^{2}+q$ for real valued $q \in L_{l o c}^{1}(\boldsymbol{R})$.
(3) 1968 P. Lax
(9) 1979 V.A. Marchenko

Introduction

- KdV hierarchy $q=q(t, x)$

1st	shift	$\partial_{t} q=\partial_{x} q$
2nd	KdV eq.	$\partial_{t} q=\partial_{x}^{3} q-6 q \partial_{x} q$
	\vdots	
nth		$\partial_{t} q=\partial_{x}^{2 n+1} q+p\left(q, \partial_{x} q, \cdots, \partial_{x}^{2 n} q\right)$
	\vdots	

- History
(1) 1895 D.J. Korteweg, G. de Vries
(2) 1967 C.S. Gardner, G. Green, M.D. Kruskal, R.M. Miura $L_{q}=-\partial_{x}^{2}+q$ for real valued $q \in L_{l o c}^{1}(\boldsymbol{R})$.
(3) 1968 P. Lax
(9) 1979 V.A. Marchenko
(5) 1980 R. Hirota

Introduction

- KdV hierarchy $q=q(t, x)$

1st	shift	$\partial_{t} q=\partial_{x} q$
2nd	KdV eq.	$\partial_{t} q=\partial_{x}^{3} q-6 q \partial_{x} q$
	\vdots	
nth		$\partial_{t} q=\partial_{x}^{2 n+1} q+p\left(q, \partial_{x} q, \cdots, \partial_{x}^{2 n} q\right)$
	\vdots	

- History
(1) 1895 D.J. Korteweg, G. de Vries
(2) 1967 C.S. Gardner, G. Green, M.D. Kruskal, R.M. Miura $L_{q}=-\partial_{x}^{2}+q$ for real valued $q \in L_{l o c}^{1}(\boldsymbol{R})$.
(3) 1968 P. Lax
(9) 1979 V.A. Marchenko
(5) 1980 R. Hirota
(6) 1981 M. Sato

Known results

(1) Decaying initial data (Inverse scattering method) 2003 J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao

$$
H^{s}(\boldsymbol{R}) s>-3 / 4
$$

Known results

(1) Decaying initial data (Inverse scattering method) 2003 J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao

$$
H^{s}(\boldsymbol{R}) s>-3 / 4
$$

(2) Periodic initial data 2006 T. Kappeler, P. Topalov

$$
H^{s}(T) s \geq-1
$$

Almost periodic initial data

(1) 1994: I. Egorova limit periodic initial data initial data q should be approximated by periodic functions exponentially fast.

Almost periodic initial data

(1) 1994: I. Egorova limit periodic initial data initial data q should be approximated by periodic functions exponentially fast.
(2) 2013: K. Tsugawa local well-posedness for quasi periodic initial data

$$
\begin{aligned}
& q(x)=\sum_{k \in \mathbb{Z}^{N}} f(k) e^{i x k \cdot \alpha} \text { with }\left\||\alpha \cdot k|^{a}\langle k\rangle^{\sigma} \widehat{f}(k)\right\|_{l^{2}\left(Z^{N}\right)}<\infty \\
& \text { where } \sigma>1 / 2-1 /(2 N), s>(N-1) / 2
\end{aligned}
$$

Almost periodic initial data

(1) 1994: I. Egorova limit periodic initial data initial data q should be approximated by periodic functions exponentially fast.
(2) 2013: K. Tsugawa local well-posedness for quasi periodic initial data
$q(x)=\sum_{k \in \mathbb{Z}^{N}} f(k) e^{i x k \cdot \alpha}$ with $\left\||\alpha \cdot k|^{a}\langle k\rangle^{\sigma} \widehat{f}(k)\right\|_{l^{2}\left(\mathbf{Z}^{N}\right)}<\infty$, where $\sigma>1 / 2-1 /(2 N), s>(N-1) / 2$.
(3) 2016: Binder-Damanik-Goldstein-Lukic global well-posedness for quasi periodic initial data
$q(x)=\sum_{k \in \mathbb{Z}^{N}} \widehat{f}(k) e^{i x k \cdot \alpha}$ with $|\widehat{f}(k)| \leq \epsilon e^{-\kappa_{0}|k|}$,
where $|k \cdot \alpha| \geq a_{0}|k|^{-b_{0}}, 0<a_{0}<1, b_{0}>N$

Step Ilike initial data

2011: A. Rybkin For some $\delta_{ \pm}>0$ let q be

$$
q \in L^{2}\left(\boldsymbol{R}_{+}, e^{\delta_{+}|x|^{1 / 2}} d x\right), q \in L^{2}\left(\boldsymbol{R}_{-}, e^{-\delta_{-}|x|} d x\right)
$$

and $\operatorname{infsp} L_{q}>-\infty$. If L_{q} has non-trivial 2 fold a.c. spectrum, the solution to KdV with initial data q is given by

$$
u(t, x)=-2 \partial_{x}^{2} \log \operatorname{det}\left(I+\mathbb{M}_{t, x}\right) \quad \text { for } t \geq 0
$$

where $\mathbb{M}_{t, x}$ is called Marchenko operator defined by

$$
\mathbb{M}_{t, x} f(y)=\int_{0}^{\infty} M(t, y+s+2 x) f(s) d s \quad \text { for } f \in L^{2}\left(\boldsymbol{R}_{+}\right)
$$

with $M(t, y)=\sum_{n=1}^{N} c_{n}^{2} e^{8 \kappa_{n}^{3} t} e^{-\kappa_{n} y}+\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{8 i \lambda^{3} t} e^{i \lambda y} R_{+}(\lambda) d \lambda$,
when $q \in L^{1}(\boldsymbol{R},(1+|x|) d x) .\left\{-\kappa_{n}^{2}\right\}$ are the negative eigen-values of L_{q}, and $R_{+}(\lambda)$ is the right reflection coefficient.

Weyl m-function

- 1D Schrödinger op. on $R: \quad L_{q}=-\partial_{x}^{2}+q$ for real valued $q \in L_{l o c}^{1}(\boldsymbol{R})$ with $H(q)$ is essemtially self-adjoint on $L^{2}(\boldsymbol{R})$.

Weyl m-function

- 1D Schrödinger op. on $R: \quad L_{q}=-\partial_{x}^{2}+q$ for real valued $q \in L_{l o c}^{1}(\boldsymbol{R})$ with $H(q)$ is essemtially self-adjoint on $L^{2}(\boldsymbol{R})$.
- For $\forall z \in \boldsymbol{C} \backslash \boldsymbol{R}, \exists 1 f_{ \pm}=f_{ \pm}(x, z, q)$ satisfying

$$
L_{q} f_{ \pm}=z f_{ \pm} \text {, s.t. } f_{ \pm} \in L^{2}\left(\boldsymbol{R}_{ \pm}\right), \quad f_{ \pm}(0)=1
$$

Weyl m-function

- 1D Schrödinger op. on $\boldsymbol{R}: L_{q}=-\partial_{x}^{2}+q$ for real valued $q \in L_{l o c}^{1}(\boldsymbol{R})$ with $H(q)$ is essemtially self-adjoint on $L^{2}(\boldsymbol{R})$.
- For $\forall z \in \boldsymbol{C} \backslash \boldsymbol{R}, \exists 1 f_{ \pm}=f_{ \pm}(x, z, q)$ satisfying

$$
L_{q} f_{ \pm}=z f_{ \pm}, \text {s.t. } f_{ \pm} \in L^{2}\left(\boldsymbol{R}_{ \pm}\right), \quad f_{ \pm}(0)=1
$$

- Weyl m-functions: $m_{ \pm}(z)$ holomorphic on $C \backslash \boldsymbol{R}$

$$
m_{ \pm}(z)=m_{ \pm}(z, q)= \pm f_{ \pm}^{\prime}(0, z, q), \quad\left(m_{ \pm}(z, q=0)=i \sqrt{z}\right)
$$

Weyl m-function

- 1D Schrödinger op. on $\boldsymbol{R}: \quad L_{q}=-\partial_{x}^{2}+q$ for real valued $q \in L_{l o c}^{1}(\boldsymbol{R})$ with $H(q)$ is essemtially self-adjoint on $L^{2}(\boldsymbol{R})$.
- For $\forall z \in C \backslash \boldsymbol{R}, \exists 1 f_{ \pm}=f_{ \pm}(x, z, q)$ satisfying

$$
L_{q} f_{ \pm}=z f_{ \pm}, \text {s.t. } f_{ \pm} \in L^{2}\left(\boldsymbol{R}_{ \pm}\right), \quad f_{ \pm}(0)=1
$$

- Weyl m-functions: $m_{ \pm}(z)$ holomorphic on $C \backslash \boldsymbol{R}$

$$
m_{ \pm}(z)=m_{ \pm}(z, q)= \pm f_{ \pm}^{\prime}(0, z, q), \quad\left(m_{ \pm}(z, q=0)=i \sqrt{z}\right)
$$

- Define

$$
m(z)=\left\{\begin{array}{cc}
-m_{+}\left(-z^{2}\right) & \text { if } \quad \operatorname{Re} z>0 \\
m_{-}\left(-z^{2}\right) & \text { if } \operatorname{Re} z<0
\end{array}\right.
$$

m is holomorphic on $\boldsymbol{C} \backslash(\boldsymbol{R} \cup i \boldsymbol{R})$ and $\operatorname{Im} m(z) / \operatorname{Im} z>0$.

Weyl m-function

- 1D Schrödinger op. on $R: \quad L_{q}=-\partial_{x}^{2}+q$ for real valued $q \in L_{l o c}^{1}(\boldsymbol{R})$ with $H(q)$ is essemtially self-adjoint on $L^{2}(\boldsymbol{R})$.
- For $\forall z \in C \backslash \boldsymbol{R}, \exists 1 f_{ \pm}=f_{ \pm}(x, z, q)$ satisfying

$$
L_{q} f_{ \pm}=z f_{ \pm}, \text {s.t. } f_{ \pm} \in L^{2}\left(\boldsymbol{R}_{ \pm}\right), \quad f_{ \pm}(0)=1
$$

- Weyl m-functions: $m_{ \pm}(z)$ holomorphic on $C \backslash \boldsymbol{R}$

$$
m_{ \pm}(z)=m_{ \pm}(z, q)= \pm f_{ \pm}^{\prime}(0, z, q), \quad\left(m_{ \pm}(z, q=0)=i \sqrt{z}\right)
$$

- Define

$$
m(z)=\left\{\begin{array}{cc}
-m_{+}\left(-z^{2}\right) & \text { if } \operatorname{Re} z>0 \\
m_{-}\left(-z^{2}\right) & \text { if } \operatorname{Re} z<0
\end{array}\right.
$$

m is holomorphic on $\boldsymbol{C} \backslash(\boldsymbol{R} \cup i \boldsymbol{R})$ and $\operatorname{Im} m(z) / \operatorname{Im} z>0$.

- $\left\{m_{ \pm}(z)\right\}$ are called reflectionless on $A \in \mathcal{B}(\boldsymbol{R})$ if

$$
m_{+}(\lambda+i 0)=-\overline{m_{-}(\lambda+i 0)} \text { a.e. on } A
$$

Main theorem

Let \mathcal{Q} be the set of all q whose Weyl functions $m_{ \pm}$satisfy

$$
m_{ \pm}(-z)=\sqrt{z}+\sum_{k=1}^{n-1} a_{k} z^{-k+1 / 2} \pm \sum_{k=1}^{n-1} b_{k} z^{-k}+O\left(z^{-n}\right)
$$

as $|z| \rightarrow \infty$ along C_{α} with real a_{k}, b_{k} for any $n \geq 1, \alpha>0$, and $\operatorname{infsp} L_{q}>-\infty$. Set $e_{x}(z)=e^{x z}$

$$
\Gamma=\left\{g ; g=e^{h} \text { with real odd polynomial } h\right\} .
$$

Theorem

$\mathcal{Q} \subset C^{\infty}(\boldsymbol{R})$ holds, and $\tau_{m}(g)=\operatorname{det}\left(I+N_{m}(g)\right)$ can be defined as a smooth function with respect to m, g, and $(K(g) q)(x)=-2 \partial_{x}^{2} \log \tau_{m}\left(g e_{x}\right)$ defines a flow on \mathcal{Q}. In particular $K\left(g_{t}\right) q(x)=\left\{\begin{array}{c}q(x+t) \text { if } g_{t}(z)=e^{t z}=e_{t}(z)\end{array}\right.$
satisfies the $K d V$ equation if $g_{t}(z)=e^{4 t z^{3}}$.

Tau-function 1

- Assume $\operatorname{spL}(q)>-\infty$ and let $C_{\alpha},\left(C_{\alpha}^{\prime}\right)$ be a smooth curve surrounding $\operatorname{spL}(q)$ such that for $x \geq 1$

$$
C_{\alpha}=\{z(x), \overline{z(x)}\}_{x \geq 0} \text { with } z(x)=-x+i x^{-\alpha} \in C_{+}
$$

Tau-function 1

- Assume $\operatorname{spL}(q)>-\infty$ and let $C_{\alpha},\left(C_{\alpha}^{\prime}\right)$ be a smooth curve surrounding $\operatorname{spL}(q)$ such that for $x \geq 1$

$$
C_{\alpha}=\{z(x), \overline{z(x)}\}_{x \geq 0} \text { with } z(x)=-x+i x^{-\alpha} \in C_{+} .
$$

- Later α is chosen so that $g_{e}(z)=(g(\sqrt{z})+g(-\sqrt{z})) / 2$, $g_{o}(z)=(g(\sqrt{z})+g(-\sqrt{z})) /(2 \sqrt{z})$ remain bounded on C_{α}.

$$
g(z)=e^{z^{3}} \Longrightarrow g_{e}(z)=\cosh z^{3 / 2} \text { and } \alpha=1 / 2
$$

Tau-function 2

- Define $\tau_{m}(g)=\operatorname{det}\left(I+N_{m}(g)\right)$ with integral operator $N_{m}(g)$ on $L^{2}\left(C_{\alpha}\right)$ with kernel

$$
N_{g}(z, \lambda)=\frac{1}{2 \pi i} \int_{C_{\alpha}^{\prime}} \frac{\widehat{g}_{o}\left(\lambda^{\prime}\right)(g m)_{e}(\lambda)+\widehat{g}_{e}\left(\lambda^{\prime}\right)(g m)_{o}(\lambda)}{\left(\lambda^{\prime}-z\right)\left(\lambda-\lambda^{\prime}\right) m_{0}\left(\lambda^{\prime}\right)} d \lambda^{\prime}
$$

where $\widehat{g}(z)=g(z)^{-1}$ and $g_{e}(z)=(g(\sqrt{z})+g(-\sqrt{z})) / 2$, $g_{o}(z)=(g(\sqrt{z})+g(-\sqrt{z})) /(2 \sqrt{z})$.

Tau-function 2

- Define $\tau_{m}(g)=\operatorname{det}\left(I+N_{m}(g)\right)$ with integral operator $N_{m}(g)$ on $L^{2}\left(C_{\alpha}\right)$ with kernel

$$
N_{g}(z, \lambda)=\frac{1}{2 \pi i} \int_{C_{\alpha}^{\prime}} \frac{\widehat{g}_{o}\left(\lambda^{\prime}\right)(g m)_{e}(\lambda)+\widehat{g}_{e}\left(\lambda^{\prime}\right)(g m)_{o}(\lambda)}{\left(\lambda^{\prime}-z\right)\left(\lambda-\lambda^{\prime}\right) m_{0}\left(\lambda^{\prime}\right)} d \lambda^{\prime}
$$

where $\widehat{g}(z)=g(z)^{-1}$ and $g_{e}(z)=(g(\sqrt{z})+g(-\sqrt{z})) / 2$, $g_{o}(z)=(g(\sqrt{z})+g(-\sqrt{z})) /(2 \sqrt{z})$.

- $\tau_{m}(g)$ does not change by replacing m by \widetilde{m} in M_{g}, where $\widetilde{m}(z)=m(z)-\delta(z)$ with δ_{e}, δ_{o} holomorphic in $\mathcal{D} \supset C_{\alpha}^{\prime}$. Therefore, natural assumption: For any $n \geq 1$

$$
\left\{\begin{array}{l}
m_{0}(z)=1+\sum_{k=1}^{n-1} a_{k} z^{-k}+O\left(z^{-n}\right) \text { as }|z| \rightarrow \infty \text { along } C_{\alpha} \\
m_{e}(z)=\sum_{k=1}^{n-1} b_{k} z^{-k}+O\left(z^{-n}\right) \text { as }|z| \rightarrow \infty \text { along } C_{\alpha}
\end{array}\right.
$$

under which one can show the traceability of $N_{m}(g)$ and $\tau_{m}(g) \neq 0$.

Sufficient conditions

Theorem

\mathcal{Q} contains the classes of potentials below:
(i) $\mathcal{S}(\mathbb{R})$
(ii) Ergodic potentials having

$$
\int_{0}^{\infty} \lambda^{n} \gamma(\lambda) d \lambda<\infty \text { for any } n \geq 1
$$

which is satisfied when $q(x, \omega) \in C_{b}^{\infty}(\boldsymbol{R})$.
(iii) Smooth bounded potentials decaying sufficiently fast on one half axis and being ergodic on another axis.

Remark: If we are interested only in the KdV equation, we have only to assume the differentiability of initial functions q only up to a fixed number (≤ 16).

Ergodic initial data

Let \mathcal{M} be the set of all ergodic probability measures on \mathcal{Q}. For $\mu \in \mathcal{M}$ and $g \in \Gamma$ one can define the induced measure $K(g)^{*} \mu$. Since, $K(g)$ commutes with the shift operation, we have

$$
K(g)^{*} \mu \in \mathcal{M} .
$$

Define the Floquet exponent w_{μ} by

$$
w_{\mu}(z)=\mathbb{E}_{\mu}\left(m_{ \pm}\left(z, q_{\omega}\right)\right) .
$$

Then, the identities the IDS $N(\lambda)=\operatorname{Im} w_{\mu}(\lambda) / \pi$ and the Lyapunov exponent $\gamma(\lambda)=\operatorname{Re} w_{\mu}(\lambda)$ hold.

Theorem

$w_{\mu}=w_{K(g)^{*} \mu}$.

Proof 1

- Let $m_{ \pm}$be reflectionless on $\left(\lambda_{1}, \infty\right), \operatorname{infsp} L_{q}=\lambda_{0}<0$.

Proof 1

- Let $m_{ \pm}$be reflectionless on $\left(\lambda_{1}, \infty\right), \operatorname{infsp} L_{q}=\lambda_{0}<0$.
- Let C, C^{\prime} be simple closed curves as below

Proof 1

- Let $m_{ \pm}$be reflectionless on $\left(\lambda_{1}, \infty\right), \operatorname{infsp} L_{q}=\lambda_{0}<0$.
- Let C, C^{\prime} be simple closed curves as below

- For $g \in \Gamma$ let $N_{m}(g)$ be the operator on $L^{2}(C)$ with kernel

$$
N_{g}(z, \lambda)=\frac{1}{2 \pi i} \int_{C^{\prime}} \frac{\widehat{g}_{o}\left(\lambda^{\prime}\right)(g m)_{e}(\lambda)+\widehat{g}_{e}\left(\lambda^{\prime}\right)(g m)_{o}(\lambda)}{\left(\lambda^{\prime}-z\right)\left(\lambda-\lambda^{\prime}\right) m_{0}\left(\lambda^{\prime}\right)} d \lambda^{\prime}
$$

$\tau_{m}(g)=\operatorname{det}\left(I+N_{m}(g)\right)$ generates the KdV flow. This comes from Sato's theory developed by Segal-Wilson. The key in the proof is to factorize the Tau-function into two parts, one depends on $m_{ \pm}$and the other vanishes when taking the derivative twice.

Proof 2

- For ergodic potentials the property

$$
m_{ \pm}(-z)=\sqrt{z}+\sum_{k=1}^{n-1} a_{k} z^{-k+1 / 2} \pm \sum_{k=1}^{n-1} b_{k} z^{-k}+O\left(z^{-n}\right)
$$

along C_{α} can be shown by $R(z)$ introduced by Rybkin

$$
R(z)=\frac{m_{+}(z)+\overline{m_{-}(z)}}{m_{+}(z)+m_{-}(z)} \text { and } \chi(z)=\frac{\gamma(z)}{\operatorname{Im} z}-\operatorname{Im} w^{\prime}(z)
$$

Proof 2

- For ergodic potentials the property

$$
m_{ \pm}(-z)=\sqrt{z}+\sum_{k=1}^{n-1} a_{k} z^{-k+1 / 2} \pm \sum_{k=1}^{n-1} b_{k} z^{-k}+O\left(z^{-n}\right)
$$

along C_{α} can be shown by $R(z)$ introduced by Rybkin

$$
\begin{gathered}
R(z)=\frac{m_{+}(z)+\overline{m_{-}(z)}}{m_{+}(z)+m_{-}(z)} \text { and } \chi(z)=\frac{\gamma(z)}{\operatorname{Im} z}-\operatorname{Im} w^{\prime}(z) \\
\bullet 4 \chi(z)=\mathbb{E}\left(|R(z)|^{2}\left(\frac{1}{\operatorname{Im} m_{+}(z)}+\frac{1}{\operatorname{Im} m_{-}(z)}\right)\right)
\end{gathered}
$$

Proof 2

- For ergodic potentials the property

$$
m_{ \pm}(-z)=\sqrt{z}+\sum_{k=1}^{n-1} a_{k} z^{-k+1 / 2} \pm \sum_{k=1}^{n-1} b_{k} z^{-k}+O\left(z^{-n}\right)
$$

along C_{α} can be shown by $R(z)$ introduced by Rybkin

$$
R(z)=\frac{m_{+}(z)+\overline{m_{-}(z)}}{m_{+}(z)+m_{-}(z)} \text { and } \chi(z)=\frac{\gamma(z)}{\operatorname{Im} z}-\operatorname{Im} w^{\prime}(z)
$$

- $4 \chi(z)=\mathbb{E}\left(|R(z)|^{2}\left(\frac{1}{\operatorname{Im} m_{+}(z)}+\frac{1}{\operatorname{Im} m_{-}(z)}\right)\right)$
- $\mathbb{E}(|R(z)|) \leq \sqrt{2 \chi(z) \operatorname{Im} w(z)}$

Proof 2

- For ergodic potentials the property

$$
m_{ \pm}(-z)=\sqrt{z}+\sum_{k=1}^{n-1} a_{k} z^{-k+1 / 2} \pm \sum_{k=1}^{n-1} b_{k} z^{-k}+O\left(z^{-n}\right)
$$

along C_{α} can be shown by $R(z)$ introduced by Rybkin

$$
R(z)=\frac{m_{+}(z)+\overline{m_{-}(z)}}{m_{+}(z)+m_{-}(z)} \text { and } \chi(z)=\frac{\gamma(z)}{\operatorname{Im} z}-\operatorname{Im} w^{\prime}(z)
$$

- $4 \chi(z)=\mathbb{E}\left(|R(z)|^{2}\left(\frac{1}{\operatorname{Im} m_{+}(z)}+\frac{1}{\operatorname{Im} m_{-}(z)}\right)\right)$
- $\mathbb{E}(|R(z)|) \leq \sqrt{2 \chi(z) \operatorname{Im} w(z)}$
- $\xi_{1}=\arg \left(-\left(m_{+}+m_{-}\right)^{-1}\right)$,
$\xi_{2}=\arg m_{+} m_{-} /\left(m_{+}+m_{-}\right) \Longrightarrow$

$$
\left|\xi_{1}-\frac{\pi}{2}\right|, \quad\left|\xi_{2}-\frac{\pi}{2}\right| \leq 2|R|
$$

Open problems

- Although one can construct a solution to the KdV equation with C^{∞} almost periodic initial data q, the almost periodicity of $K(g) q$ is not known. Sodin-Yuditski showed the almost periodicity if q is reflectionless on the spectrum Σ and Σ has a certain homogeneous property.

Open problems

- Although one can construct a solution to the KdV equation with C^{∞} almost periodic initial data q, the almost periodicity of $K(g) q$ is not known. Sodin-Yuditski showed the almost periodicity if q is reflectionless on the spectrum Σ and Σ has a certain homogeneous property.
- To obtain a solution to the KdV equation starting from very irregular initial data also remains open.

Open problems

- Although one can construct a solution to the KdV equation with C^{∞} almost periodic initial data q, the almost periodicity of $K(g) q$ is not known. Sodin-Yuditski showed the almost periodicity if q is reflectionless on the spectrum Σ and Σ has a certain homogeneous property.
- To obtain a solution to the KdV equation starting from very irregular initial data also remains open.
- Remling obtained a theorem on limit behavior of $K\left(e^{t z}\right) q(x)=$ $q(x+t)$ as $t \rightarrow \infty$. It is natural to expect a generalization of his theorem to $K\left(e^{t h}\right) q$ for general odd polynomial h.

Thank you for your attention!

